Melanocytes and pigmentation are affected in dopachrome tautomerase knockout mice

The tyrosinase family comprises three members, tyrosinase (Tyr), tyrosinase-related protein 1 (Tyrp1), and dopachrome tautomerase (Dct). Null mutations and deletions at the Tyr and Tyrp1 loci are known and phenotypically affect coat color due to the absence of enzyme or intracellular mislocalization. At the Dct locus, three mutations are known that lead to pigmentation phenotype. However, these mutations are not null mutations, and we therefore set out to generate a null allele at the Dct gene locus by removing exon 1 of the mouse Dct gene. Mice deficient in Dct [Dct(tm1(Cre)Bee)] lack Dct mRNA and dopachrome tautomerase protein. They are viable and do not show any abnormalities in Dct-expressing sites such as skin, retinal pigment epithelium, or brain. However, the mice show a diluted coat color phenotype, which is due to reduced melanin content in hair. Primary melanocytes from Dct knockout mice are viable in culture and show a normal distribution of tyrosinase and tyrosinase-related protein 1. In comparison to the knockout, the slaty mutation (Dct(slt)/Dct(slt)) has less melanin and affects growth of primary melanocytes severely. In summary, we have generated a knockout of the Dct gene in mice with effects restricted to pigment production and coat color.

Published in:
Mol Cell Biol, 24, 8, 3396-403
Molecular Oncology, Swiss Institute for Experimental Cancer Research, National Center of Competence in Research, 1066 Epalinges, Switzerland.

 Record created 2008-01-10, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)