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ABSTRACT

An improved measurement methodology and a data-processing technique for multiangle data obtained
with an elastic scanning lidar in clear atmospheres are introduced. Azimuthal and slope scans are combined
to reduce the atmospheric heterogeneity. Vertical profiles of optical depth and intercept (proportional to
the logarithm of the backscatter coefficient) are determined. The purpose of this approach is to identify and
remove data points that distort the regression analysis results in order to improve the accuracy of the
retrieved optical depth and of the intercept. In addition, the influence of systematic distortions has been
investigated. Furthermore, profiles of the optical depth, intercept, and the range-squared-corrected signals
have been used to determine the lidar overlap function as a function of range. Simulation and experimental
results of this data-processing technique are presented.

1. Introduction

The method proposed by Kano (1968) and Hamilton
(1969) for the inversion of data obtained with a scan-
ning lidar is currently the only method available to ob-
tain extinction profiles from elastic backscatter data
without making assumptions about the backscatter-to-
extinction ratio. The Kano–Hamilton method assumes
that the atmosphere is horizontally stratified, implying
that backscatter and extinction coefficients are invari-

ant in horizontal layers. The real atmosphere is, of
course, not homogeneous, but in most cases the hori-
zontal variability is significantly less than vertical
changes in aerosol loading, at least for local ranges un-
der consideration. Therefore, the assumption of hori-
zontal homogeneity is often more reasonable than the
assumption of a height-independent backscatter-to-
extinction ratio (or lidar ratio), which is used in most
one-directional, vertical elastic-lidar measurements.
In fact, the inversion results obtained with one-
directional measurements based on an invariant lidar
ratio are known to be inaccurate [see, e.g., the study
done by the European Aerosol Research Lidar Net-
work (EARLINET) community (Böckmann et al.
2004)].

Unfortunately, multiangle methods, which do not re-
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quire a height-independent backscatter-to-extinction
ratio, can also yield poor inversion results (Spinhirne et
al. 1980; Russell and Livingston 1984; Rothermel and
Jones 1985) and are rarely used in lidar measurements
(Spinhirne et al. 1980; Russell and Livingston 1984; Ro-
thermel and Jones 1985; Sicard et al. 2002; Takamura et
al. 1994; Sasano 1996; Kovalev and Eichinger 2004;
Pahlow et al. 2004; Kovalev et al. 2004). Atmospheric
heterogeneity is commonly pinpointed as the major
reason for poor accuracy of these methods. We show in
this paper that the problem of multiangle measure-
ments goes beyond atmospheric heterogeneity. To ob-
tain a comprehensive understanding of the specifics of
multiangle measurements, we perform numerical simu-
lations, followed by analyses of experimental data ob-
tained at the Fire Science Laboratory (FSL) test site
located in mountainous terrain, approximately 30 km
west of the city of Missoula, Montana, at an altitude of
�1000 m. The measurements were made in clear atmo-
spheres.

The paper is structured in three parts: an improved
measurement methodology and data-processing tech-
nique for the Kano–Hamilton method is introduced
first, followed by the determination of the lidar overlap
function, and closing with a summary. The primary goal
of this study is to test a measurement methodology and
a data-processing technique that may improve the ac-
curacy of the retrieval results when using the Kano–
Hamilton multiangle method. The second goal is to ac-
curately determine the lidar overlap function. To do
this, it is critical to identify the optimal height interval
(hmin, hmax) that needs to be used to obtain accurate
inversion results. To achieve this, the effects of system-
atic distortions, in addition to the commonly considered
signal noise, need to be taken into account.

2. Measurement methodology and data-processing
techniques for the Kano–Hamilton method

A short outline of the Kano–Hamilton multiangle
method is provided below. It is followed by numerical
simulations to investigate the influence of systematic
distortions in lidar signals (in particular caused by a
remaining signal offset) on inversion results. These re-
sults allow us to establish criteria that are used to de-
termine the optimal height interval (hmin, hmax) that is
applied for inversion. In the second part we present
results obtained from the analysis of experimental data.

a. Theory and numerical simulations

With the assumption of a horizontally stratified at-
mosphere, the lidar signals Pj(h), measured along the
elevation angle �j, can be written as (Kano 1968;
Hamilton 1969)

Pj�h� � Cqj�h���h��h� sin�j�
�2 exp��2��0, h�

sin�j
�,

�1�

where C is a lidar system constant and qj(h) is the over-
lap function at height h for each elevation angle �j; �(h)
is the total (molecular and particulate) backscatter co-
efficient, that is, �(h) � �m(h) � �p(h); and 	(0, h) is
the total optical depth from ground level to height h,
including molecular and particulate components, 	(0,
h) � 	m(0, h) � 	p(0, h). The dependence of the Kano–
Hamilton function yj(h), defined as (Kovalev and Eich-
inger 2004)

yj�h� � ln
Pj�h��h �sin�j�
2�, �2�

taken versus independent variable xj � (sin�j)
�1, can

be written as

yj�h� � A�h� � 2��0, h�xj, �3�

where Pj(h)(h/sin�j)
2 is the range-squared-corrected li-

dar signal measured at the height h along the elevation
angle �j, and

A�h� � ln
Cqj�h���h��. �4�

The least squares analysis is applied using lidar data
measured along different elevation angles to obtain the
vertical optical depth 	(0, h) [Eq. (3)]. However, the
constants A(h) and 	(0, h) in Eq. (3) may be found only
if the overlap function at h in Eq. (4) does not depend
on �j. To achieve this, only those lidar signals within the
zone of complete overlap, where qj(h) � 1, should be
used. Then Eqs. (3) and (4) become

yj�h� � A*�h� � 2��0, h�xj �5�

and

A*�h� � ln
C��h��. �6�

Accordingly, the minimal height for each slope direc-
tion at which the lidar data can be used for the inver-
sion is defined by the length of the lidar incomplete-
overlap zone.

Multiangle measurements are influenced by at least
three major sources of uncertainty. The first source,
widely discussed in the literature, is related to the de-
termination of the slope in lidar data. Similar to differ-
ential absorption lidar (DIAL), high spectral resolution
lidar (HSRL), and Raman lidar measurements (White-
man 1999), the quantity that is regressed in the multi-
angle measurements [ln Pj(h)(h/sin�j)

2] is in general
not normally distributed. Various methods have been
proposed to improve the accuracy of the slope deter-
mination in lidar data (Kunz and Leeuw 1993;
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Rocadenbosch et al. 1998, 2000, 2004; Volkov et al.
2002; Whiteman 1999; Kovalev 2002).

Here we focus on the other two sources of measure-
ment uncertainty. The first is the systematic distortion
due to the signal offset that remains after subtraction of
the signal background component. The offset may be
related to low-frequency noise components (e.g., elec-
tric interferences), a restricted frequency range of the
photoreceiver, and/or receiver optics aberrations. An-
other source of uncertainty stems from using an imper-
fect measurement methodology and the multiangle in-
version technique itself (e.g., a nonappropriate height
interval used for inversion).

In our numerical simulations we consider the case of
a lidar operating at 355 nm with signals corrupted by
random noise in a layerwise horizontally homogeneous,
clear atmosphere. The atmospheric particulate extinc-
tion coefficient at this wavelength is assumed to de-
crease exponentially from 0.1 km�1 at ground level to
0.001 km�1 at a height of h � 4600 m. The incomplete-
overlap zone extends up to h � 1000 m, and the lidar
operates along discrete elevation angles of 6°, 7.5°, 9°,
12°, 15°, 18°, 22°, 26°, 32°, 40°, 49°, 58°, 68°, and 80°.
With an assumed standard vertical profile of the mo-
lecular extinction coefficient, the vertical molecular op-
tical depth, 	mol(0, h), and the particulate component,
	part(0, h) � 	 (0, h) � 	mol(0, h), can then be calculated.
The maximal lidar range, rmax,j, at which the lidar data
are still acceptable for inversion, needs to be estab-
lished. Here we chose rmax,j as the location where the
signal-to-noise ratio (SNR) is unity. Thus, all the signals
with SNR � 1 are used for inversion in the numerical
simulations.

Taking into account that the length of the incomplete
overlap has to be determined accurately, we first inves-
tigate the influence of data points that lie within the
zone of incomplete overlap on the inversion results. In
the upper plot of Fig. 1, the particulate optical depth as
a function of height, obtained with multiangle inversion
using simulated data, is shown. The signal noise level
has a standard deviation (STD) of 1 count (arbitrary
units), while the maximum signals reach 3100–3300
counts. In the middle plot of Fig. 1 the intercept, A*(h),
is shown as a function of height. The model overlap
function used for the simulations is shown in the bot-
tom part of Fig. 1. To demonstrate potential inversion
problems that can arise when an incorrectly defined
incomplete-overlap range is used (i.e., using points out-
side the complete-overlap zone), we erroneously as-
sume here that the complete overlap starts at 500 m,
whereas the correct range is 1000 m. Because of this
error, points that belong to the zone of incomplete
overlap are included in the inversion, resulting in the

divergence between the model and retrieved profiles up
to a range of �1000 m. Note that the optical depth and
the intercept are underestimated in the near field. The
optical depth also reaches a zero value at a height of
around 100 m [this effect was also observed, but not
explained, in the study by Sicard et al. (2002)]. This
illustrates that it is crucial to determine the length of
the incomplete overlap correctly. On the other hand, an
incorrectly selected incomplete-overlap zone can be re-
vealed by analysis of the nearest zone of the retrieved
optical depth (see Fig. 1).

We now address the problem that arises from under-
estimating or overestimating the background compo-
nent of the lidar signals. Either error in the estimated
background component introduces systematic shifts (or
offsets) in the background subtracted lidar signal. As a
result, the measured backscatter signal is the sum of the
real backscatter signal and the remaining offset, that is,
Pmeasured � Preal � Poffset. These shifts can distort the
derived profiles substantially at distant measurement
ranges. To illustrate this, Fig. 2 shows the retrieved
particulate optical depth 	p(0, h) and the intercept
A*(h), obtained from signals containing nonzero offsets
[the upper curve represents an overestimated back-
ground with 1 count (i.e., offset � �1), while the lower
curve represents an underestimated background with 1
count (i.e., offset � �1 count)]. Note that in this case

FIG. 1. Model dependence of the (top) particulate optical depth
and (middle) intercept A*(h) with height (thin curves), and those
obtained from the multiangle method with a virtual lidar (thick
curve) under the condition of erroneous estimation of the length
of the incomplete-overlap zone (500 m instead of 1000 m). (bot-
tom) The overlap function. The signals are corrupted with noise
with an STD of 1 count.
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the zone of complete overlap has been chosen cor-
rectly. The same model for the particulate optical depth
dependence as that in Fig. 1 is used. The length of the
incomplete overlap (1000 m) is chosen correctly. As
before, the signal random noise has an STD of 1 count.
The maximum signals are 3100–3300 counts. Note the
strong deviation of the retrieved profile from the model
profile over distant ranges.

To reduce measurement uncertainty arising from the
aforementioned sources we apply the following proce-
dure for measurements and data processing:

Lidar measurements at preselected elevation
angles are taken. To reduce the influence of local
atmospheric horizontal heterogeneity, at each el-
evation angle a sequence of 50 azimuthal scans
with 1° resolution is obtained, and a mean signal is
calculated and used for the inversion. We start
with the smallest elevation angle, take 50 azi-
muthal scans, move to the next elevation angle,
take another 50 azimuthal scans, and so on, until
we complete this set of scans at the last (largest)
elevation angle. The mean signal is computed as
follows. First, a mean and the standard deviation
over the last 200 range bins (i.e., in this particular
case 1200 m) of the 50 measured signals are com-
puted for each elevation angle. Profiles outside the

boundaries defined by the mean 
1 STD are ex-
cluded from the dataset over the total measure-
ment range. The signal mean and STD are recal-
culated with this reduced dataset for the entire
range (see Fig. 3). This STD is taken as a measure
of the errors in the data due to signal noise and to
possible heterogeneities in the atmosphere and is
accounted for in the propagation of the errors in
the process of the calculations (see the appendix).
For each direction, characterized by the elevation
and azimuth angles, 30 shots were averaged. The
background is subtracted from the mean signal,
and SNR is defined as the ratio between the back-
ground subtracted mean signal and its STD (see
the appendix). The range of the signals used in
further analyses is constrained by the additional
condition of SNR � 5 (Utkin et al. 2002).
The conventional Kano–Hamilton multiangle pro-
cedure is then applied, and the function yj(h), as
defined in Eq. (2), is calculated and plotted versus
xj. After exclusion of all data points that do not
satisfy the predefined conditions [i.e., outliers, in
the function yj(h), as discussed below], the linear
regression for the function yj(h) versus xj, applied
for each height h, is computed, and the regression
constants, the intercept A*(h), and the total optical
depth 	(0, h) are calculated (see Fig. 6).

Note that the spatial (horizontal) averaging is often
more desirable than the temporal averaging over a
single direction. The analysis of the recorded horizontal
scans allows us to exclude heterogeneities (local cloud
or cloud tatter that is present only over a local area) by
means of the statistical analysis. This is not possible
with a one-directional scanning, where sometimes the
only option is to stop the measurements until the cloud
passes by (if wind blows in the right direction) or dis-
appears. The main objective of this procedure is to de-
termine the optimal height interval (hmin, hmax) for
which best inversion results are obtained. As shown
within the simulations section, an important consider-
ation in lidar data processing is the subtraction of the
signal background component. Even minor uncertainty
in the estimated background component can substan-
tially affect the measurement accuracy over distant
ranges (see Fig. 2 and also Kovalev 2004). The aggra-
vating problem is that the actual background compo-
nent level can be masked by low-frequency noise, so
that the signal decreases slightly but continuously over
the entire far-end range. This problem has been widely
discussed in the literature (see, e.g., Lee et al. 1990;
Zhao 1999; Bristow 2002; Fang and Huang 2004).

The calculations of A*(h) and 	(0, h) are performed

FIG. 2. (top) The model and retrieved particulate optical depth
profiles obtained from the simulated multiangle measurements
for a remaining offset in the signals (the thin and bold curves,
respectively). The lower and upper bold curves show the retrieved
particulate optical depth profiles where an offset of 
1 count
remains in the signals after the background subtraction. (bottom)
The retrieved intercept. The thin curve represents the model,
while the lower and the upper bold curves represent the retrievals
for the cases of an offset with 
1 count. The signals are corrupted
with noise with an STD of 1 count.
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over an optimal height interval (hmin, hmax). The criteria
for determining an optimal height interval are as fol-
lows.

1) The individual maximal range, rmax,j, is given by the
condition SNR � 5 [or P(r) � 5 �P(r)]. The corre-
sponding maximal height is given by hmax,j � rmax,j

sin �j for each profile.
2) It is well known that points from incomplete overlap

should not be used for the inversion. Therefore, data
points on the left-hand side of the maximum value
of yj(h) are not used for the regression. Moreover, to
reduce the influence of possible systematic distor-
tions of the recorded backscatter signal in the range
of its sharp reduction, hmin was slightly shifted to the
right-hand side of the maximal yj(h).

3) At the maximal height, hmax, a minimal number,
nmin, of points is needed for the regression. For ex-
ample, in the case shown here, out of the 14 eleva-
tion angles we used nmin � 6 points. Elsewhere (h �
hmax), the minimum number of points for regression
was restricted to 3. With these criteria, the optimal
heights interval for yj is established, and the func-

tions 	(0, h) and A*(h) can be calculated from Eq.
(5) using a weighted linear regression (see the ap-
pendix) as a function of �P (see, e.g., Barlow 1989;
Taylor 1997; Whiteman 1999). This is illustrated
with an example shown in Fig. 4. Applying criteria
1–3 leads to hmin � hmin,3, while hmax � hmax,9. Note
that criteria 1 and 2 provide the individual hmin,j and
hmax,j (and the corresponding rmin,j and rmax,j), while
criterion 3 defines the optimal height interval (hmin,
hmax) (Fig. 5).

A qualitative analysis of both functions, 	(0, h) and
A*(h), helps to draw preliminary conclusions about the
quality of the lidar data and, particularly, on whether
the atmospheric conditions are favorable for applying
the multiangle inversion algorithms. There are at least
two simple conditions for 	p(0, h) that allow for an
initial estimate of the quality of the retrieved lidar data:
(i) the particulate optical depth, 	p(0, h), has to be posi-
tive and must be monotonically increasing and (ii) the
function 	p(0, h) should tend to zero when extrapolat-
ing 	p(0, h) to h � 0. Note that most of the experimental
data obtained at 1064 nm had to be rejected because

FIG. 4. Example of linear regression to determine 	(0, h) and A*(h) for a particular height. (a) In this example, the regression is
determined for h � 1800 m. (b) Values of yj(h � 1800 m) are plotted with respect to xj.

FIG. 3. Horizontal scan taken at elevation angle of 6°: (a) P(r) for all 50 azimuthal angles (which are undistinguishable) and (b) zoom
in of (a) over the last 600 m of the total range. The thick black curve represents the mean, and the gray thick curves represent the STD
over all 50 azimuthal angles. Profiles lying outside the boundaries defined by the STD (outside the gray curves) are excluded from the
dataset (see arrows). The thick red curve represents the final mean, while the thick orange curves represent the STD obtained after
exclusion of those signals.
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they did not satisfy condition (i) and sometimes also (ii)
and, therefore, it was considered suitable to stop per-
forming further inversion of these data.

b. Experiment

The experiment was performed on six days between
28 February and 6 April 2005, and several sets (se-
quences) of data were obtained per day with two lidars
[FSL and The Johns Hopkins University (JHU)]. The
experiments took place under clear atmospheric condi-
tions. During the experiment, the electronic noise in the
FSL lidar data was generally much less than in the JHU
lidar data; therefore, the results of the former are
mainly discussed. A few examples are shown to evalu-
ate the agreement between the two lidars. The techni-

cal characteristics of the FSL and JHU lidars are given
in Table 1. The digitizers have a 56-MHz low-pass filter.
We used a spatial resolution of 6 m, corresponding to a
25 MS s�1 digitizer rate. Measurements were carried
out using 14 elevation angles, the same that were used
for the numerical simulations. This provided a suffi-
ciently large number of points for regression. The total
time required for a full azimuthal and vertical scan was
approximately 30 min. The elevation angle’s pointing
resolution of the lidar is �0.0018°, the pointing ambi-
guity due to gear lash is up to 0.34°, and the leveling
error is less than 0.5°.

In clear atmospheres, where the particulate loading is
comparable with the molecular loading, the basic as-
sumption of the Kano–Hamilton method (horizontally

TABLE 1. Lidar system parameters.

FSL lidar JHU lidar

Laser Q-switch Nd:YAG Q-switch Nd:YAG
Wavelengths 1064, 355 nm 1064, 532, 355 nm
Receiver 25.4-cm Cassegrain telescope 25.4-cm Cassegrain telescope
Detectors 1064 nm: chilled, IR-enhanced Si Avalanche

Photodiode
355 nm: photomultiplier

1064 nm: IR-enhanced Si Avalanche Photodiode
355 and 532 nm: photomultiplier

Light pulse duration �10 ns �10 ns
Configuration Biaxial Coaxial
Resolution 6 m 6 m
Scanning capability Azimuth 0°–180°, elevation 0°–90° Azimuth 0°–180°, elevation 0°–90°
Max range 12 288 m (2048 bins) 12 288 m (2048 bins)
Digitizers Dual 12 bit, 125 MHz Dual 12 bit, 100 MHz
Pulse frequency 15 Hz 15 Hz
Max energy per pulse 98 mJ (1064 nm), 45 mJ (355 nm) 335 mJ (1064 nm), 185 mJ (532 nm), 44 mJ (355 nm)

FIG. 5. Example of selecting the optimal heights interval for yj(h) used for inversion. Criterion 1 gives
us hmax,j, while criterion 2 gives us hmin,j. Criterion 3 selects the optimal height interval such that hmin �
hmin,3 and hmax � hmax,9.
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stratified atmosphere) is better met for shorter wave-
lengths. Particularly, the measurement data at 355 nm
obey qualitative requirements (i) and (ii) (see previous
section) much better than the data at 1064 nm. There-
fore, we will focus on the inversion results obtained
from the lidar signals at 355 nm. A typical example of
experimental data measured with the FSL lidar on 6
April 2005 (sequence 1) is shown in Fig. 6. The upper
plot represents the particulate optical depth 	p(0, h)
and the molecular optical depth (the thick and thin
curves, respectively), while the lower plot shows the
intercept A*(h). Observe that hmax is �2700 m, follow-
ing the three criteria. Note, that in general, the STD for
	(0, h) is larger than the STD for A*(h). It follows from
our theoretical and experimental results that the rela-
tive uncertainty of the profile of the intercept A*(h) is
normally less than that for the optical depth; accord-
ingly, this function can generally be used for analyses
over a more extended height interval.

In Fig. 7, examples of (a) the optical depths and (b)

the intercepts retrieved from the two lidars at the wave-
length 355 nm on 5 April are shown. The weighted
method to compute the slope and intercept in a linear
regression, as well as their STDs, are shown in the ap-
pendix. The profiles of 	(0, h) and A*(h) for the JHU
lidar are noisier (and their STDs greater) because of
the higher noise level in the JHU lidar data. This can
also be seen by comparing the general behavior of 	(0,
h) and A*(h) with the FSL profiles. The optical depth
	p(0, h) can be determined from the FSL lidar data with
acceptable error for heights up to 2000 m.

For the JHU lidar, the measurement range is gener-
ally less than that of the FSL lidar because of increased
noise. The results for the longer wavelengths, 532 and
1064 nm, brought less encouraging results because the
yj(h) profiles were not smooth. This is because the total
optical depth for these wavelengths over the same alti-
tude range is less than that of 355 nm (i.e., the signals
are much weaker, and SNR is smaller), and the signals
are more sensitive to heterogeneity in the particulate
loading of the atmosphere (because of a smaller mo-
lecular component).

We suggest that multiangle measurements in clear
atmospheres provide the best inversion results when
shorter wavelengths are used. Our experiments also
confirmed that in clear atmospheres A*(h) is much less
sensitive to signal noise and can generally be de-
termined over a larger height interval than profiles of
	(0, h).

3. Determination of the lidar overlap function

a. Theory and numerical simulations

The procedures described in the previous section
yield mean profiles of A*(h) and 	(0, h). These func-

FIG. 6. FSL lidar data from the 355-nm channel, measured on 6
Apr 2005, sequence 1. (top) The particulate optical depth, 	p(0, h),
and the molecular optical depth, 	m(0, h), shown as the thick and
thin curves, respectively. (bottom) The intercept A*(h). The STD
is shown by error bars.

FIG. 7. (a) Particulate optical depth, 	p(0, h), and the intercepts, A*(h), obtained with the two lidars [FSL (thick curves) and JHU
(thin curves)] on 5 Apr 2005, sequence 1. Their STDs are shown by error bars. The FSL intercept functions are normalized to have the
same scale as the JHU profiles. (b) Same as in (a), but obtained on 5 Apr 2005, sequence 2.
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tions allow one to calculate a vertical “synthetic” range-
squared-corrected signal, Z*90(h),

Z*90�h� � exp
A*�h�� exp
�2��0, h��, �7�

and the corresponding synthetic signals along the eleva-
tion angles �j,

Z*j �h� � exp
A*�h�� exp��2��0, h�

sin�j
�. �8�

Using both synthetic and real signals for each elevation
angle �j [Eqs. (8) and (1), respectively], we are now in
a position to calculate the lidar overlap function versus
height along this direction as

qj�h� �
Pj�h��h�sin�j�

2

Z*j �h�
. �9�

The height-dependent functions qj(h), determined
for different �j, are then recalculated as functions of the
slope range, qj(r), and averaged to obtain the mean
overlap function q(r) (see Fig. 8). Hence, an estimate of
the overlap function q(r) can be determined directly
from the multiangle measurement data, provided that
the retrieved profiles A*(h) and 	(0, h) are free of sys-
tematic distortions. By comparing the averaged overlap
function with the individual functions qj(r), one can also
determine whether the retrieved individual overlap
functions are affected by systematic distortions when
the lidar elevation angles are changed during the scan-
ning. Because of the high sensitivity of multiangle mea-

FIG. 8. Overlap retrieval. (a) Individual overlap function as a function of height qj(h);
the lower curves represent the STD. (b) Individual overlap function as a function of range
qj(r); the lower curves represent the STD. (c) Mean overlap (black curve) and its STD (blue
curves).
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surements to any systematic distortions, we believe that
this method is a useful alternative to traditional meth-
ods of determining the overlap function (e.g., methods
by Sasano et al. 1979; Sassen and Dodd 1982; Tomine et
al. 1989; Dho et al. 1997).

Results of our numerical experiments showed that
generally the presence of random signal noise does not
significantly influence the mean overlap function. The
influence of systematic signal distortions is usually
more significant than noise. When data points from the
incomplete-overlap zone are erroneously used to deter-
mine the slope and intersect of the linear regression,
there will also be a slight increase of the value of the
overlap function in the region of the incomplete over-
lap, followed by a noticeable decrease of the value of
the overlap function in the intermediate range (here,
2000–4000 m). We illustrate this with an example,
shown in Fig. 9. The individual values of qj(r) are shown
in the upper plot where the deviation from unity for
ranges of more than 1000 m is noticeable for an overlap
corresponding to small elevation angles. The mean
overlap function q(r) (blue curve) and its STD (red
curves) are shown on the lower plot. The incomplete-
overlap zone is erroneously assumed to be 500 m (the

actual length being 1000 m). The correct overlap func-
tion is shown by the thin black curve on the lower plot.
The simulated lidar signals are corrupted only by ran-
dom noise (STD � 1 count), the offset being zero. The
maximum signals reach 3100–3300 counts. Recall Fig. 1
and note how the underestimated inversion results 	p(0,
h) and A*(h) are reflected by the overlap function. Fig-
ures 10 and 11 show the retrieved overlap function for
the case of systematic distortion due to offset in all
signals (while the region of the incomplete overlap is
estimated correctly). The background component is un-
derestimated and overestimated by 1 count (such that
the offset � 
1 count), respectively, and the signals are
also corrupted by random noise (STD � 1 count). All
three criteria (described in the methodology section)
are applied for the inversion. The observed effects on
q(r) for the two cases (offset � 
1 count) are opposite,
but the effect due to the negative offset �1 (back-
ground component overestimated) is noticeably strong
in the far field. A comparison with Fig. 2 reveals that
the estimates of 	(0, h) and A*(h) are reflected in the
overlap profile. An overestimated 	(0, h) and A*(h)
will result in an underestimated overlap for far ranges
(for more than 3000 m in this particular case) and vice

FIG. 9. (top) The retrieved qj(r) and (bottom) the mean function q(r) and its STD (blue and
red curves, respectively) obtained with an erroneously estimated length of the incomplete-
overlap zone when determining 	p(0, h) and A*(h) (recall Fig. 1). The simulated lidar signals
are corrupted by random noise (STD � 1 count), the offset being zero. The overlap model is
shown on the lower plot by the black thin curve. The STD is calculated using the weighted
method (see the appendix).
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versa. For experimental data the shape of the overlap
function provides additional information regarding the
accuracy of the retrieved 	(0, h) and A*(h). It should be
noted that, because multiangle methods are extremely

sensitive to any instrumental distortions in lidar data,
multiangle methods to determine the overlap function
may be useful when performing lidar tests and calibra-
tions.

FIG. 10. (top) The retrieved qj(r) and (bottom) the mean function q(r) and its STD (blue and
red curves, respectively) obtained when all signals are corrupted by a systematic offset of (top)
�1 count. (bottom) The mean overlap q(r) (blue curve) and its STD (red curves). The overlap
model is shown by the thin black curve on the lower plot. The length of the incomplete overlap
is correctly assumed (1000 m).

FIG. 11. Same as in Fig. 7, but here the functions qj(r) are obtained when all signals are
corrupted by a systematic offset of �1 count.
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b. Experiment

The overlap functions for the 355-nm channel of the
FSL and JHU lidars are shown in Figs. 12a and 12b,
respectively. These plots represent mean overlap pro-
files and their STDs, computed using a weighted
method (with the weights given by the individual over-
laps variance; see the appendix). In favorable condi-
tions (cloud free), which occurred during the last days
of the experiment, the FSL lidar overlap could be ac-
curately determined up to 5000 m, while the JHU over-
lap could be determined up to �2000 m. For the FSL
lidar, the complete-overlap zone starts at �1200 m, and
the JHU lidar complete-overlap zone starts at �600 m.
The behavior of the retrieved overlap function q(r) in
the more distant zones of the complete overlap, par-
ticularly its deflection from unity, is strongly related to

the quality of measured data, that is, on the presence or
absence of offsets in the signals.

Last, consider the consequences of an incorrect
background subtraction on the behavior of the re-
trieved overlap function, illustrated in Fig. 13. Here
the overlap functions found for the last two eleva-
tion angles (68° and 80°) of the measurement se-
quence are underestimated because of an overesti-
mated background. However, in this particular
case, the mean overlap is only slightly affected by the
two particular angles in this case. Hence, we can infer
that the 	p(0, h) and A*(h) are also slightly overesti-
mated.

The systematic distortions that corrupt the overlap
function must be removed (or at least minimized). The
flowchart of determining the optical depth and inter-
cept, on the one hand, and the overlap, on the other

FIG. 12. The overlap functions for the 355-nm channel for (a) the FSL lidar and (b) the JHU lidar. The dotted curves represent the
STD boundaries.

FIG. 13. Example of the overlap functions obtained from data with an inaccurate back-
ground subtraction. The overlap functions are obtained from the FSL 355-nm data on 6 Apr
2005, sequence 2. The plot shows the overlaps, qj(r), for all elevation angles; one can clearly
see the underestimated overlaps obtained for the data measured in the slope directions 68°
and 80°.
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hand, is shown in Fig. 14. The experimental results
shown in the present paper (optical depth and inter-
cept, as well as the overlap) are obtained after iterating
according to the flowchart. The individual overlap func-

tions show us if there are systematic distortions in the
lidar signals. This allows us to correct for hmin and back-
ground subtraction and improve the accuracy of the
optical depth and intercept. More detailed analysis of

FIG. 14. Flowchart for the measurement technology and data-processing technique.
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the systematic distortions is presented in the study by
Kovalev et al. (2007, manuscript submitted to Appl.
Opt.).

4. Summary

The purpose of this study is to analyze and improve
the Kano–Hamilton method for inversion of multiangle
data, obtained with an elastic lidar under clear atmo-
spheric conditions. It is generally agreed that the inac-
curacy of multiangle measurements results from apply-
ing a method that assumes homogeneity in situations
where the atmosphere is heterogeneous. Our analysis
revealed that the problem is in fact more cumbersome.
We showed that even minor errors that stem from in-
strumental uncertainties, inherent to real lidar data,
have important consequences for the Kano–Hamilton
method. This could significantly impede the use of this
method even in an ideally homogeneous atmosphere.
We conclude that the method needs to be improved in
order to be applied to real experimental data. In the
current paper we propose ways of improving the mea-
surement methodology when determining and analyz-
ing both constants in Eq. (5) and the behavior of the
overlap functions, retrieved from the functions A*(h)
and 	(0, h). The basic principle of our approach is to
thoroughly identify those data points that distort the
linear dependence of the function yj(h) on xj and re-
move them. A quantitative analysis, considering error
propagation, was performed including the STD of the
raw mean signals P(r) as input source for the errors.
Additionally, we analyzed the uncertainty in the re-
trieved data, taking into consideration both random sig-
nal errors (see the appendix) and systematic distortions
(Fig. 14). Our current study also includes a new prin-
ciple for the determination of effective overlap for
scanning lidar that operates in clear atmospheres. With
this procedure the actual behavior of the overlap func-
tion in the incomplete-overlap zone can be determined,
and useful information on the quality of derived atmo-
spheric parameters can be obtained. In particular, this
procedure allows a determination of whether a signifi-
cant offset remains in the inverted data after back-
ground subtraction and whether the atmospheric con-
ditions under consideration are suitable for multiangle
measurements with the Kano–Hamilton approach.

The application of the modified Kano–Hamilton
method to experimental data obtained in clear atmo-
spheres at different wavelengths showed that the lidar
signals measured at 355 nm yield inversion results with
higher accuracy than signals measured at longer wave-
lengths. Our results show that the retrieved profiles of
	p(0, h) at 355 nm better meet conditions (i) and (ii)

(see section on methodology) than the signals at longer
wavelengths. In most situations and for the clear atmo-
spheric conditions investigated here, the function A*(h)
and, accordingly, the total backscatter coefficient,
monotonically decrease with height.

The application of the multiangle method to the data
from the 532- and 1064-nm channels yielded less en-
couraging results. The total optical depth for these
wavelengths over the same altitude range is less than
that for 355 nm, and the signals are much more sensitive
to the heterogeneity of particulate loading. In addition,
the backscatter signals at 1064 nm are much weaker
than the signals at 355 nm, the signal-to-noise ratio is
worse and, accordingly, the total measurement range at
this wavelength is much shorter than at 355 nm. The
lidar measurements at 532 nm are more promising, and
we suspect that this wavelength can potentially be used
successfully in multiangle measurements in clear atmo-
spheres.

The selection of an optimal measurement range
(hmin, hmax) of the lidar signals for the inversion is an-
other important consideration when making multiangle
measurements. To accurately select the minimum
range, hmin, the length of the incomplete-overlap zone
must be accurately determined, and systematic signal
distortions must not be present in areas of sharp
changes in the signal intensities. The selection of the
maximum range, hmax, for the inversion is as important
as the selection of the minimal range, hmin. The random
signal noise at the far end of the measurement range, an
effect that strongly increases with range, coupled with
systematic distortions due to a remaining offset, may
result in large systematic shifts in the linear regression
of the dependence of yj(h) on xj. In the present work,
hmax was restricted by the condition SNR � 5 and by
criterion 3 (use of a sufficient number of points for
regression at hmax, here at least 6). Through combining
these considerations to reach the optimal height inter-
val used for inversion, we have developed a general
technique that will improve the analysis of multiangle
lidar measurements. Further work includes the deter-
mination of the aerosol extinction coefficient, using an
iterative method, taking into account both the optical
depth and the relative backscatter coefficient (Kovalev
et al. 2006; Kovalev 2006).

APPENDIX

Error Propagation

a. Background

Recall the error propagation for two general cases.
Assume that y is a function of xi; that is, y(x1, x2, . . .) �
�i xi.
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The error in y is determined as
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Now, assume y is a function of xi and zj; that is, y(x1,
x2, . . . , z1, z2, . . .) � (�ixi/�jzj). The error in y will be
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b. Mean and STD for the raw signals

As mentioned, the mean signal P0j(r), where j speci-
fies the elevation angle �j, is determined as the mean of

the number of horizontal scans. Its STD, �P0j(r), ac-
counts for the error propagation within the calcula-
tions. After the background subtraction, the signal and
its STD, as a function of range, are

Pj�r� � P0j�r� � Bj�r�, �A3�

�Pj �r� � ��P0j �r�
2 � �Bj �r�

2 . �A4�

SNR is defined as the ratio Pj(r)/�Pj(r).

c. Mean and STD for intercept and optical depth

The intercept and optical depth (�0.5 slope) in Eq.
(5) are computed using a weighted method (see Taylor
1997), where the weights wj(h) are given by the STD of
yj(h):

wj�h� � �yj �h� � �Pj �h� �Pj�h�. �A5�

Note that the mean and STD are given now as a func-
tion of height:
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The STD for intercept and optical depth are
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d. Mean and STD for the overlap

The STD of the individual overlap [Eq. (9)], accord-
ing to the propagation of the errors, is

�qj �h� � qj�h����Pj �h�

Pj�h�
�2

� �A*�h�
2 � 4xj

2�� �0,h�
2 .

�A11�

The mean overlap is determined using a weighting
method of the individual overlaps qj(r):

q�r� �
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The corresponding STD is
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