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Abstract. We revisit Shin et al.’s leakage-resilient password-based au-
thenticated key establishment protocol (LR-AKEP) and the security
model used to prove the security of LR-AKEP. By refining the Leak ora-
cle in the security model, we show that LR-AKE (1) can, in fact, achieve
a stronger notion of leakage-resilience than initially claimed and (2) also
achieve an additional feature of traceability, not previously mentioned.

1 Introduction

Authenticated Key Establishment protocols (AKEPs) allow two parties to share
a secret key based on long-term secrets associated with individual entities (typi-
cally passwords). Passwords are strings easily memorized by humans and thus of
low entropy. Such protocols are especially popular in computationally restricted
devices and those requiring interaction with human users. For example, in prac-
tical applications, the secrets derived from passwords are stored in some devices
(e.g., a table containing hashed values of passwords kept by a trusted server).
A fundamental security threat for password-based AKEPs is, unsurprisingly,
dictionary attacks due to low entropy of password-based AKEPs.

We revisit the leakage-resilient password-based AKEPs (LR-AKEPs), first
proposed by Shin, Kobara and Imai [7] and subsequently extended in [4, 8–10].
LR-AKEPs, designed to maintain the secrecy of the long-term password even
in the case when stored secrets (i.e., functions of the password) are leaked, can
be broadly categorised into two families: the Diffie–Hellman-based LR-AKEPs
[7–9] and the RSA-based LR-AKEPs [4, 10].

Widely used security models for AKEPs (including password-based AKEPs)
include the indistinguishability-based models of Bellare, Pointcheval, and Rog-
away [1] model (hereafter referred to as the BPR2000 model) and Canetti and
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Krawczyk [2]4. In the BPR2000 model, leakages of established secret session keys
and long-term secrets (e.g., private key or password) are considered by allowing
the adversary to have access to the Reveal oracle and the Corrupt oracle respec-
tively. To model leakage-resilience, Shin et al. [7] introduced an additional Leak

oracle that allows the adversary to learn the stored secrets of unrelated sessions.

The focus of this paper is on the Diffie–Hellman-based LR-AKEP published
in ASIACRYPT 2003 [7] (hereafter referred to as “the LR-AKE protocol”). A
distinct difference between the LR-AKE protocol and latter extensions [8, 9] is
that only one secret is stored on the client in the latter schemes.

We regard our contributions in this paper to be three-fold:

1. Revised security model: We refine the original model used by Shin et al.
to prove the security of the LR-AKE protocol by splitting the Leak oracle
into LeakC and LeakS oracles5. By so doing, we are able to define how many
leakages occur on the server side.

2. Stronger notion of leakage-resilience than that defined by Shin et

al.: Shin et al. proved that the LR-AKE protocol is secure when the leaks do
not originate from both the client and servers simultaneously. We demon-
strate that the LR-AKE protocol can, in fact, provide an almost perfect
security level.

3. Notion of traceability not previously mentioned by Shin et al.:
We demonstrate that the LR-AKE protocol can provide traceability, which
allows us to identify the compromised client or server devices when leakages
occur.

2 Revisiting the leakage-resilient AKE protocol of
ASIACRYPT 2003

The notation used throughout this paper is as described in Table 1.
The LR-AKE protocol, described in Fig. 1, can be considered a two-party

password-based AKE involving a client-server pair where the server is one out
of n − 1 possible servers. The client, C, remembers a chosen password, pw, and
stores n − 1 secret values, hi (i = 1, . . . , n − 1), derived from pw in C’s device.
A partial secret value, hp(i).λi for 1 ≤ i ≤ n− 1 (not a share) of pw, is registered
with each of the n − 1 servers. This will enable C to establish a session key
with any of these servers in subsequent sessions. The underlined values in Fig.
1 represent the stored secrets of the respective client and server. Note that we
only present sufficient details to understand this paper and we refer interested
reader to [7] for further details.

4 Interested reader is referred to [3] for a comparison and a discussion of existing
security models for AKEPs.

5 The definitions of oracles A1 through A4 in Section 4 of [9] implicitly split the Leak

oracle, thereby distinguishing whether the leakage occurs at the client or at the
server.
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C The client with identity IDC

Si The ith server with identity IDSi
, (1 ≤ i ≤ n− 1)

G Finite cyclic group of large prime order q
g, h Generators of G

ri A random value in (Z/qZ)∗

pw The password chosen by the client
p(·) Random polynomial of degree n − 1 with coefficients also randomly

chosen in (Z/qZ)∗; defined as p(x) = Σn−1
j=0 αj · x

j mod q for which
α0 = pw

hp(i).λi The secret value registered by client with server Si, where p(i) is a
share of (n, n)-threshold secret sharing and λi is a Lagrange coeffi-
cient. Note that h−p(i).λi = hi ·h

−pw , which allows for both client and
server to compute the same MAC keys kmc and kms, respectively.

hi Client’s stored secret corresponding to server Si; equals hΣn
l=1,l 6=ip(l).λl

Tagc, Tags,Tagsk Pre-determined distinct values, e.g., Tagc = (IDC ||IDS ||00), Tags =
(IDC ||IDS ||01) and Tagsk = (IDC ||IDS ||11)

MACk(·) A MAC generation function with k as its keying material
Table 1. Summary of notations

Client, C Server, Si(1 ≤ i ≤ n− 1)

r1
R
← (Z/qZ)∗ r2

R
← (Z/qZ)∗

y1 ← gr1 · hi · h
−pw y1−−−−−−−−−−−−→ y2 ← gr2 · hp(i).λi

kmc ← (y2.hi · h
−pw)r1 = gr1r2

y2←−−−−−−−−−−−− kms ← (y1 · h
p(i)·λi)r2 = gr1r2

v1 ←MACkmc(Tagc||y1||y2)
v1−−−−−−−−−−−−→ v2 ←MACkms (Tags||y1||y2)

If v2 = MACkmc (Tags||y1||y2),
v2←−−−−−−−−−−−− If v1 = MACkms(Tagc||y1||y2),

then skc ←MACkmc(Tagsk||y1||y2). then sks ←MACkms(Tagsk||y1||y2).

Fig. 1. Original LR-AKE protocol of Shin, Kobara, and Imai [7]

Shin et al. proved the LR-AKE protocol secure against off-line dictionary attacks
even if the stored secrets are leaked from either the client or up to all n−1 servers,
but not from both client and n − 1 servers simultaneously [7, Theorem 1].

3 Refining the oracle for leakage resilience

We now revisit the BPR2000 model used by Shin et al. to prove the security of
the LR-AKE protocol.

Protocol participants. Let ID
def

= Clients∪ Servers be a non-empty set of
protocol participants, or principals. We assume Servers consists of n−1 servers,
{S1, . . . , Sn−1} and at any time a client C ∈ Clients is interacting with a server
Si ∈ Servers to establish an LR-AKE session.
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Protocol execution. The adversary, A, controls the communications be-
tween the protocol participants by interacting with the set of oracles, Πi

Uu,Uv
,

where Πi
Uu,Uv

is defined to be the ith instantiation of a protocol participant,
Uu, in a specific protocol run and Uv is the principal with whom Uu wishes to
establish a secret key. A controls the communication channels via the queries to
the targeted oracles. A description of the oracle types is presented as follows.
Note that we had split the Leak oracle into LeakC and LeakS oracles as this will
allow us to distinguish whether the leakage occurs at the client or at the server.

Send(Uu, Uv, i, m) query. This query to an oracle, Πi
Uu,Uv

, computes a response
according to the protocol specification and decision on whether to accept or
reject yet, and returns them to the adversaryA. If Πi

Uu,Uv
has either accepted

with some session key or terminated, this will be made known to A. Note
that if m = ∗, then this will result in the instantiation of the oracle Πi

Uu,Uv

if such an oracle has not been created previously.
Reveal(Uu, Uv, i) query. Any oracle, Πi

Uu,Uv
, upon receiving such a query and

if Πi
Uu,Uv

has accepted and holds some session key, will send this session key
back to A. The Reveal query is designed to capture this notion.

Corrupt(Uu) query. This query captures unknown key share attacks and insider
attacks. This query allows A to corrupt the principal Uu at will, and thereby
learn the complete internal state of the corrupted principal. Notice that a
Corrupt query does not result in the release of the session keys since A already
has the ability to obtain session keys through Reveal queries.

LeakC(ℓ, ) query. This query allows A to learn ℓ (1 ≤ ℓ ≤ n− 1) stored secrets
hι of the client oracle and the corresponding indices ι (for ι ∈ {1, . . . , n −
1}, ι 6= ) of the leaked secrets.

LeakS(t, ι) query. This query to a server oracle, Uv, returns the corresponding
stored secrets hp().λ of any t (1 ≤ t ≤ n−1) servers and their corresponding
indices  (for  ∈ {1, . . . , n − 1},  6= ι) of these leaked servers.

Protocol security. Security of the LR-AKE protocol [7] is defined in two
stages.

1. Proving that the protocol is secure even when the stored secrets are leaked.
2. The standard indistinguishability-based security proof (of the established

session key) as required by the BPR2000 model [1].

A revised security proof for the LR-AKE protocol, presented in Appendix A,
demonstrates that the LR-AKE protocol described in Fig. 1 provides both key
establishment and mutual authentication.

4 Strengthened notions of leakage resilience and
traceability

Shin et al. [7, 9] state that one cannot achieve security when there are leakages
from both the client and server(s) side (see Fact 2) , the situation in which they
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call perfect security (see Goal 1).

Goal 1: Perfect Security [7, 9]. Any AKE protocol with ‘perfect security’ re-
mains secure against leakages from client and server(s), simultaneously.

Fact 2. Impossibility of Perfect Security [7, 9]. Any AKE protocol cannot
achieve (strong) security against leakage from both a client and servers simulta-
neously. If an adversary obtains stored secrets from both a client and servers at
the same time, s/he can perfectly simulate the protocol using the leaked secrets.
Thus s/he can try the password candidates off-line in parallel.

Shin et al. then argue that the next highest achievable goal is the security of
the password against offline dictionary attacks even in the situation when there
are “leakages” from either the client or the server(s) (see Goal 2 below).

Goal 2: Strong Security [7, 9]. In absence of ‘perfect security’, [7, 9] claim
that the next highest goal is to achieve so-called ‘strong security’, i.e. security
against the “leakages” from a client and servers, respectively.

We can view ‘perfect security’ described in Goal 1 as security against leak-
ages from both the client and the server(s), while ‘strong security’ described in
Goal 2 as security against leakages from either the client or the server(s). We ar-
gue that their requirement is too strong, i.e., unnecessarily restrictive as Goal 2

is not the next best security in the absence of Goal 1. We can still have security
against leakages from both the client and server(s) with some trade-off.

Relation between the LR-AKE protocol and an (n, n) secret-sharing
scheme

The reader might have observed that in the LR-AKE scheme, the n shares of the
secret password pw are not separated uniformly among the n−1 servers and the
client. Therefore, leakage from a client should not be treated in the same way
as leakage from a server – leakage of a stored secret from any server contains
information about just one share whilst leakage from the client constitutes the
entire stored secret, hi. It should come as no surprise that the LR-AKE protocol
will be insecure if there are leakages from the client (i.e., n−1 shares are leaked)
and one or more servers.

We can, however, relax this strong requirement to achieve perfect security
to a certain extent. We termed this as almost perfect security, which can be
formalized by splitting the Leak queries (as described in Section 3). By having
a separate LeakC query for the client oracle and a separate LeakS query for the
server oracle, we are able to formally state:

1. whether the leakage is from the client or the server, and
2. how many stored secrets are leaked.

Making the former explicit is useful because leakages from a server contain only
information about a particular share, while leakage from a client contains infor-
mation about n − 1 shares. Making the latter explicit is also useful because by
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knowing which client’s stored secret has been compromised, we will know the
corresponding compromise at the server(s). Consequently, this allows us to show
that the original LR-AKE protocol proposed in [7] can achieve a stronger notion
of leakage resilience (in the sense of ‘almost perfect security’ as described in Goal
3).
Goal 3. Almost Perfect Security. Any AKE protocol with ‘almost perfect se-
curity’ remains secure even against leakages from both the client and up to n−2
servers, simultaneously.

Since Goal 1 trivially implies Goal 3 and Goal 3 is a stronger notion than
Goal 2, we now have the following result.

Theorem 1 The LR-AKE protocol achieves Goal 3 (almost perfect security)
even when both the client and up to n−2 servers leak their corresponding stored
secrets, as long as the leaked secret(s) hι of the client and leaked secret(s) of the
server(s) S are such that  6= ι.

Proof Intuition. Recall that:

– a LeakC(ℓ, ) query allows the adversary A to learn ℓ (1 ≤ ℓ ≤ n− 1) stored
secrets hι of the Client, and the corresponding indices ι (for ι ∈ {1, . . . , n−1})
of these leaked secrets, thus as long as the LeakS queries are issued only to
servers S for  6= ι, there are insufficient shares (since number of leaked
shares < n) to reveal the shared secret pw.

– a LeakS(t, ι) query allows the adversary A to learn t (1 ≤  ≤ n − 1) stored
secrets hp().λ of t Servers S, and the corresponding indices  (for  ∈
{1, . . . , n − 1}) of these leaked servers, thus as long as the LeakC query
returns only stored secrets hι of the client such that ι 6= , there insufficient
shares to reveal the shared secret pw.

⊓⊔
Although we cannot prove the protocol secure when leakages originate from both
the client and all servers, we can prove that the protocol remains secure when
the leakages originate from the client and up to n − 2 servers, even in the case
when the client leaks more than one (up to n − 2) secret(s). The conditions
necessary for achieving Goal 3 is that the total of the stored secrets leaked by
the client and the servers cannot exceed n−1, and all their indices are different.
Consequently, we can view Goal 3 as a special case of Goal 1 in the sense that
we can still maintain security when we have leakages from both the client and
the server(s) simultaneously.

Traceability. In our setting, the stored secrets can be leaked from either the
client or server(s), or both. Although it is hard to prevent such leakages, the
client would most likely to be interested to know which particular stored secret
has been leaked. This is similar to the copyright violator identification and dis-
pute resolution (arbitration) scenario (e.g., in buyer-seller protocols [6]). This
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allows us to handle cases where leakages are unavoidable, but future preventive
measures can be taken by firstly identifying the compromised client or server
devices.

In the context of the LR-AKE schemes, we should be able to determine
the compromised site (i.e., which particular server) since every registered stored
secret is unique. Consequently, we are able to demonstrate that the original LR-
AKE scheme provides traceability (i.e., in the event of leakages that compromise
the security of the password, it is possible to precisely pinpoint which server(s)
leaked). For example, when a password has been compromised, we know that it
is likely that the compromise is at the client site (except with negligible probabil-
ity). We can, therefore, trace which particular server(s) had caused the leakage
by simply checking which stored secret(s) of the client, hi, is (are) leaked.

It appears that the original LR-AKE protocol [7] is the only scheme in their
family that provides such a (traceability) feature as in the other variants (e.g.,
[8–10]), the Client stores only one secret instead of unique ones corresponding
to each server in the case of [7].
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A Revised Security Proof

We now provide a sketch of the revised security proof demonstrating that the
LR-AKE protocol provides both key establishment and mutual authentication.

Theorem 2 The LR-AKE protocol is a secure mutual authentication and key
establishment (MAKE) protocol if the underlying message authentication (MAC)
scheme is secure in the sense of existential unforgeability under adaptive chosen
message attack assuming the intractability of the DDH Problem.

Proof. The proof for key establishment generally follows that of Shin et al.
[9, Theorem 2]. We construct a forger F against the MAC, using an adversary
A against the protocol. F now simulates the view of A in the game simulation.
F answers all Send, Execute, Reveal, LeakC, LeakS, and Corrupt queries similar
to the proof simulation of [9, Theorem 2]. At some stage of the game simulation,
A decides to choose a session to be tested and asks the Test query, which is
answered by F in almost the same fashion as the proof simulation presented in
the proof for [9, Theorem 2]. Hence, whatever F can simulate in the proof for [9,
Theorem 2], F can do the same here. After asking the Test query, A is allowed to
further interact with the protocols by asking any Send, Execute, Reveal, LeakC,
LeakS, and Corrupt queries of choice, with the exception that A is not allowed to
trivially expose the Test session by asking any Reveal, LeakC, LeakS, or Corrupt

queries to the partner or owner associated with the Test session. Eventually, A
outputs the guess bit, b′.

It follows that whatever the MAC forger can simulate in the proof for [9,
Theorem 2], our F can do the same although the converse is not true. Recall
that the SIDs of A and B for the protocol described in Fig. 1 are defined to
be y1||y2||v1||v2. Let Repeat be the event that a value of SID repeats at some
point during the game simulation. It is easy to see that the probability of Repeat

happening occurs with probability upper bounded by
q2

s

2k (where G and qs is the
upper bound on the number of the sessions in the game simulation and k is the
security parameter) by a “birthday problem” calculation. Let the advantage of
A in our game simulation be denoted by AdvA(k) and the advantage of A in
the game simulation of [9, Theorem 2] be denoted by AdvA[9](k). It then follows

easily that AdvA(k) ≤ AdvA[42](k) +
q2

s

2k .
⊓⊔

We now prove that the LR-AKE protocol achieves mutual authentication.
We define as EventNo−Matching the event that a fresh oracle, Πi

U , who has been en-
gaged in a conversation and has successfully finished the protocol with a session
key output but without a partner oracle [1].

Lemma 1 The LR-AKE protocol of Shin et al. [7] described in Fig. 1 achieves
mutual authentication if Pr[Event

No−Matching] is negligible.
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Proof. Assume that an adversary can violate the mutual authentication with
probability ǫ within a time bound t. Similar to our earlier proof, we construct a
MAC forger, F , using such an adversary, A. F now simulates the view of such
an adversary, A, in similar fashion as the earlier game simulation.

We consider the probability that F does not abort the simulation, which
can happen under any of the scenarios: (1) abort when being asked some Reveal

queries (2) abort when being asked some LeakC queries (3) abort when being
asked some LeakS queries (4) abort when being asked some Corrupt queries. Let
qN be the maximum number of sessions between any two parties in the protocol
run and qP be the maximum number of players in the protocol run.

The probability that F does not abort for scenarios (1) to (3) are (q2
P qN −

2)/(q2
P qN ) respectively, and for (4) is (qP −2)/(q2

P ). One may further remark that
the simulation is perfectly indistinguishable from a real game, except for a negli-
gible probability. The probability for an oracle to have many partners is bounded
by q2

P /qN . Therefore, if F is successful during the simulation (the probability
is at least ǫ), then there is a completed/accepted oracle Πi

U such that Πi
U has

no matching oracle. Since there are at most q2
P qN oracles during the simulation,

the probability for this oracle to be the oracle, Πi
U0

, is 1/(q2
P qN ). Therefore, the

advantage of F is at least ǫ(22k

−1)(qP −2)((q2
P qN −2)/(q2

P qN ))3(1/(q7
P q3

N22k

)).
However, we know that both qN and qP are polynomial in the security param-
eter k. Hence, the probability of Pr[EventNo−Matching] is negligible if the MAC is
secure.

⊓⊔
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