
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 357, Number 8, Pages 3311–3324
S 0002-9947(05)03735-9
Article electronically published on February 4, 2005

THURSTON’S WEAK METRIC ON THE TEICHMÜLLER SPACE
OF THE TORUS

ABDELHADI BELKHIRAT, ATHANASE PAPADOPOULOS, AND MARC TROYANOV

Abstract. We define and study a natural weak metric on the Teichmüller
space of the torus. A similar metric has been defined by W. Thurston on the
Teichmüller space of higher genus surfaces and our definition is motivated by
Thurston’s definition. However, we shall see that in the case of the torus, this
metric has a different behaviour than on higher genus surfaces.

1. Introduction

For any integer γ ≥ 1, let Sγ be the closed oriented topological surface of genus γ.
The Teichmüller space T(Sγ) of Sγ is a space of equivalence classes of Riemannian
metrics of constant curvature equal to 0 (a flat metric) in the case where γ = 1 and
equal to -1 (a hyperbolic metric) in the case where γ ≥ 2. (We shall recall below
the precise definition of the equivalence relation.) A number of important metrics
on these Teichmüller spaces have been studied. One of the most interesting ones
was defined by Teichmüller in the early developments of the theory. It is called the
Teichmüller metric, and in this paper we shall denote it by τ . The Teichmüller
metric is a Finsler metric on T(Sγ), and it is not very difficult to see that the
Teichmüller space of the torus, T(S1), equipped with the Teichmüller metric, is
isometric to the hyperbolic plane.

In the present paper, we study a weak metric on T(S1) whose definition is inspired
from a definition made by W. Thurston in the case where the genus is ≥ 2. Before
stating our results, we recall a few classical definitions.

In this paper, we shall deal separately with the cases γ ≥ 2 and γ = 1 and,
to simplify notation, we shall denote by S a fixed closed oriented surface of genus
γ ≥ 2 and by T 2 the closed oriented surface of genus 1, that is, the two-dimensional
torus.

As a general motivation, we begin with the case of surfaces of genus ≥ 2. Later
on, we shall only deal with the case of genus 1.

We recall that the Teichmüller space T(S) of S is the set H(S) of hyperbolic
metrics on S modulo the action of the group Diff0(S) of diffeomorphisms of S
isotopic to the identity by taking the pull-back of the metric. Thus, we can write

T(S) := H(S)/Diff0(S).
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The Teichmüller distance τ on T(S) is defined as follows:

τ(g1, g2) =
1
2

inf
{
logK(f)

∣∣ f ∈ Diff0(S)
}
,

where g1 and g2 are hyperbolic metrics on S representing two elements of the
Teichmüller space T(S) and K(f) the dilatation of the diffeomorphism f :

K(f) = sup
x∈S

(
sup

{‖dfx(u)‖ ∣∣ u ∈ TxS, ‖u‖ = 1
}

inf
{‖dfx(u)‖ ∣∣ u ∈ TxS, ‖u‖ = 1

}
)
.

In this formula, dfx is the differential of the diffeomorphism f : (S, g1) → (S, g2)
at the point x. Of course, the norm of the tangent vector dfx(u) is measured with
respect to the metric g2 and the norm of the tangent vector u is measured with
respect to the metric g1. Teichmüller proved in [5] that the map τ is a metric
and that the Teichmüller space T(S), equipped with the topology induced from the
metric τ , is homeomorphic to R6γ−6.

In [6], W. Thurston introduced and studied two alternative distances on the
Teichmüller space of S. The first distance is defined as

(1) λ(g1, g2) = inf log
{
Lip(f)

∣∣ f ∈ Diff0(S)
}
,

where

Lip(f) := sup
{
dg2(f(x), f(y))

dg1(x, y)

∣∣x, y ∈ S, x �= y

}
is the Lipschitz constant of the map f : (S, g1) → (S, g2). This distance is a
weak metric, i.e. it satisfies λ(g, g) = 0 for all g in T(S) and 0 ≤ λ(g1, g3) �
λ(g1, g2) + λ(g2, g3) for all g1, g2 and g3 in T(S). Furthermore, this weak metric
separates points in T(S), that is, it satisfies λ(g1, g2) > 0 if g1 �= g2. However, it is
not a metric in the usual sense since it is not symmetric.

The second distance on T(S) defined by Thurston is based on the comparison of
the lengths of closed curves with respect to the hyperbolic metrics g1 and g2. More
precisely, for every isotopy class α of closed curves, we denote by lg(α) the infimum
of the set of lengths of closed curves a : [0, 1] → S in the isotopy class α computed
in the metric g:

lg(α) = inf
{∫ 1

0

√
g(ȧ, ȧ)dt

∣∣ a ∈ α

}
.

Thurston defined the weak metric κ on T(S) by setting

(2) κ(g1, g2) = sup
α∈S(S)

log
(
lg2(α)
lg1(α)

)
,

where S(S) is the set of nontrivial isotopy classes of closed curves in the surface S.
One of the main results proved by Thurston in [6] is the following

Theorem 1. For every closed surface S of genus γ ≥ 2, the weak metrics κ and
λ coincide on T(S). Furthermore, these weak metrics are nonsymmetric and they
separate points: (

λ(g1, g2) = κ(g1, g2) = 0
) ⇐⇒ g1 = g2.

Our goal in this paper is to study similar weak metrics λ and κ on the Teichmüller
space of the torus T 2. Thus, we now focus our attention on the case of genus 1.

The Teichmüller space of the torus is defined as

T(T 2) = F(T 2)/
(
R

∗
+ × Diff0(T 2)

)
,
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where F(S) is the set of flat metrics on T 2 and where the group R∗
+ acts by scaling

the metric, that is, multiplying it by a constant factor.
Because a flat metric remains flat after scaling, a slight modification in the

definitions of λ and κ will be necessary to obtain well-defined weak metrics on
T(T 2). With the appropriate definitions, we shall prove the following results:

• The weak metrics λ and κ coincide on T(T 2).
• These weak metrics are nonsymmetric.
• They do not separate points.
• These weak metrics are not quasi-isometric to the Teichmüller metric τ .
• Their symmetrization is equal to the Teichmüller metric, i.e.

λ(g1, g2) + λ(g2, g1) = 2τ(g1, g2).

• The extremal map for κ (the minimal stretch map in the terminology of
[6]) coincides with the Teichmüller extremal map and it is the unique affine
map between the two flat metrics on the torus.

In the course of proving these results, we shall give an explicit formula for the
weak metric κ.

The rest of the paper is organized as follows. In Section 2, we discuss the notion
of weak metric and we study in detail an example of a weak metric δ on the upper
half-plane H2. This example will be a model for the weak metric κ on T(T 2). In
Section 3, we recall some basic facts about T(T 2), the Teichmüller space of the
torus T 2. In Section 4, we study the weak metric κ on T(T 2) and we show that
it coincides with the metric δ defined in Section 2. Then, we show that the weak
metric κ does not separate points and is not symmetric, that it is not quasi-isometric
to the Teichmüller metric and that the symmetrization of this metric coincides with
the Teichmüller metric. In Section 5, we consider the weak metric λ on T(T 2) and
we show that it coincides with the weak metric κ.

2. The notion of weak metric

The notion of metric space was introduced by M. Fréchet in 1906 (see [2], where
a metric is called an “écart”) and a number of variants of the set of axioms for a
metric space have been proposed in the following decades. Nonsymmetric metrics
have been studied extensively by H. Busemann; see for instance [1]. As Busemann
notes, the metrics that arise in the calculus of variations, that is, the metrics that
are defined by an extremal property, are in general nonsymmetric. The term weak
metric was introduced by H. Ribeiro in 1943 (see [4]) in relation with the metrization
problem of topological spaces and Fréchet (V) spaces, and we shall adopt this
terminology.

Definitions. a) A weak metric on a set X is a map η : X ×X → R such that for
all x, y and z in X , we have

1) η(x, x) = 0;
2) η(x, y) ≥ 0;
3) η(x, y) + η(y, z) ≥ η(x, z).

A weak metric η becomes a metric if it separates points , i.e. if

η(x, y) = 0 ⇐⇒ x = y,

and if it is symmetric, i.e. for every x and y in X

η(x, y) = η(y, x).
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b) We define the symmetrization of a weak metric η : X×X → R by the formula

Sη(x, y) :=
1
2

(η(x, y) + η(y, x))

for every x and y in X . This is again a weak metric and it is a metric if η separates
points.

We note that there exist other (not less) natural symmetrizations of a weak
metric η, namely the weak metrics ση : X ×X → R and σ∗η : X ×X → R defined
by

ση(x, y) = max
(
η(x, y), η(y, x)

)
and

σ∗η(x, y) = min
(
η(x, y), η(y, x)

)
.

These two symmetrizations are used by Busemann in [1].
c) Two weak metric spaces (X, η) and (X ′, η′) are quasi-isometric if there exists

a map f : X → X ′ and two constants c ≥ 0 and k ≥ 1 such that for all x and y in
X , we have

(3)
1
k
η′(f(x), f(y)) − c ≤ η(x, y) ≤ k η′(f(x), f(y)) + c

and for all x′ in X ′, there exists x ∈ X such that

η′(x′, f(x)) + η′(f(x), x′) ≤ c.

Such a map is then called a quasi-isometry

Lemma 1. Quasi-isometry is an equivalence relation among weak metric spaces.

Proof. It is obvious that the identity map is a quasi-isometry from any weak metric
space to itself. We now prove the symmetry of the relation.

Let (X, η) and (X ′, η′) be weak metric spaces and assume there exists a map
f : X → X ′ satisfying (3). By hypothesis, one can choose for any point x′ ∈ X ′

a point x ∈ X such that η′(x′, f(x)) + η′(f(x), x′) ≤ c. Let us call this point
x = g(x′). This defines a map g : X ′ → X such that

η′(x′, f ◦ g(x′)) + η′(f ◦ g(x′), x′) ≤ c

for all x′ in X ′. Then we have for all x′ and y′ in X ′

η(g(x′), g(y′)) ≤ k η′(f ◦ g(x′), f ◦ g(y′)) + c

≤ k
(
η′(f ◦ g(x′), x′) + η′(x′, y′) + η′(y′, f ◦ g(y′)))+ c

≤ k (c+ η′(x′, y′) + c) + c

= k η′(x′, y′) + c(2k + 1).

On the other hand, using

η′(f ◦ g(x′), f ◦ g(y′)) ≤ k η(g(x′), g(y′)) + c,

we obtain

η′(x′, y′) ≤ η′(x′, f ◦ g(x′)) + η′(f ◦ g(x′), f ◦ g(y′)) + η′(f ◦ g(y′), y′)
≤ η′(f ◦ g(x′), f ◦ g(y′)) + 2c
≤ k η(g(x′), g(y′)) + 3c.

Hence
1
k
η(g(x′), g(y′)) − c(2 +

1
k

) ≤ η′(x′, y′) ≤ k η(g(x′), g(y′)) + 3c.
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To complete the proof that g is a quasi-isometry, it suffices to show that for all x
in X , there exists a point y in X ′ such that

η(x, g(y)) + η(g(y), x) ≤ kc+ 2c.

We show that this holds with y = f(x). Using the fact that for all y in X ′ we have

η′(y, f ◦ g(y)) + η′(f ◦ g(y), y) ≤ c,

we obtain

η(x, g(y)) + η(g(y), x) = η(x, g ◦ f(x)) + η(g ◦ f(x), x)
≤ k

(
η′
(
f(x), f ◦ g ◦ f(x)

)
+ η′

(
f ◦ g ◦ f(x), f(x)

))
+ 2c

≤ kc+ 2c.

It follows that g : X ′ → X is a quasi-isometry.
Finally, the reader can easily check that if f : X → X ′ and h : X ′ → X ′′

are quasi-isometries between weak metric spaces, then h ◦ f : X → X ′′ is also a
quasi-isometry. This completes the proof of Lemma 1. �

A basic example of weak metric is given on the half line R∗
+ = (0,∞) by

(4) θ(s, t) := max{0, log(t/s)} =
{

log
(

t
s

)
if s ≤ t,

0 if s ≥ t.

This weak metric is clearly nonsymmetric and it does not separate points.

Remark (The topology induced by a nonsymmetric metric). The axioms for a non-
necessarily symmetric metric η on a space X that are used by Busemann in [1] also
include a separation axiom (η(x, y) = 0 ⇒ x = y) and the following axiom which
concerns the topology of the space X : for every point x in X and for every sequence
(xn)n≥0 of points in X , we have

lim
n→∞ η(x, xn) = 0 ⇐⇒ lim

n→∞ η(xn, x) = 0.

Under these axioms, the two notions of convergence, η(x, xn) → 0 and η(xn, x) →
0 coincide, and they amount to convergence in the usual sense with respect to
the topology defined by any of the symmetrizations Sη, ση and σ∗η (which are
genuine metrics). Let us also note that under these axioms of Busemann, the
three metrics Sη, ση and σ∗η are equivalent. The collection of right open balls,
Br(x, r) = {y ∈ X

∣∣ η(x, y) < r}, for x varying in the set X and r varying in the
set of positive reals, forms a sub-basis for the topology associated to each of the
metrics Sη, ση and σ∗η. The same result holds for the collection of left open balls
Bl(x, r) = {y ∈ X

∣∣ η(y, x) < r}.
Consider the upper half-plane H2 = {ζ ∈ C | Im(ζ) > 0}. We now study an

explicit example of a weak metric on this space which will be a model for the
Teichmüller space of the torus. We start by considering the function

M : H
2 × H

2 → R

defined by

M(ζ, ζ′) := sup
x∈R

∣∣∣∣ζ′ − x

ζ − x

∣∣∣∣ .
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Proposition 1. The function

δ(ζ, ζ′) := logM(ζ, ζ′)

is a weak metric on H2. This weak metric does not separate points and is not
symmetric.

Proof. It is clear that δ(ζ, ζ) = 0 for all ζ in H2. Observe also that for all ζ and ζ′

in H2, we have

M(ζ, ζ′) ≥ lim
x→∞

∣∣∣∣ζ′ − x

ζ − x

∣∣∣∣ = 1,

hence δ(ζ, ζ′) ≥ 0. The triangle inequality is easy to check. Indeed, we can write,
for all ζ, ζ′ and ζ′′ in H2,

M(ζ, ζ′′) = sup
x∈R

∣∣∣∣ζ′′ − x

ζ − x

∣∣∣∣ ≤
(

sup
x∈R

∣∣∣∣ζ′′ − x

ζ′ − x

∣∣∣∣
)(

sup
x∈R

∣∣∣∣ζ′ − x

ζ − x

∣∣∣∣
)

= M(ζ, ζ′)M(ζ′, ζ′′).

Therefore
δ(ζ, ζ′′) ≤ δ(ζ, ζ′) + δ(ζ′, ζ′′).

To see that δ does not separate points and is not symmetric, consider the points
ζ = u + is and ζ′ = u + it (where u, s, t ∈ R, s, t > 0). Then it is easy to see that
we have the following explicit formula:

M2(si, ti) = sup
x∈R

(
t2 + x2

s2 + x2

)
=
{ (

t
s

)2 if s ≤ t,
1 if s ≥ t,

i.e.

(5) δ(si, ti) =
1
2

log
(
M2(si, ti)

)
= θ(s, t),

where θ is the weak metric defined above. �

It is clear that δ(ζ, ζ′) = δ(ζ′, ζ) if and only if the points ζ and ζ′ in H2 have the
same imaginary part.

The weak metric that we just defined is interesting notably because of the fol-
lowing property:

Proposition 2. The symmetrization of the weak metric δ coincides with the Poin-
caré metric on H2. In other words, for all ζ and ζ′ in H2, we have

(6) Sδ(ζ, ζ′) = h(ζ, ζ′) =
1
2

log
( |ζ − ζ̄′| + |ζ − ζ′|
|ζ − ζ̄′| − |ζ − ζ′|

)
.

The proof of Proposition 2 uses Lemma 2 and Proposition 3 below. Lemma 2
gives an elementary formula in H2 which we shall use twice, and Proposition 3 gives
an explicit fomula for the weak metric δ(ζ, ζ′).

Lemma 2. For all ζ and ζ′ in H2, we have

|ζ′ − ζ̄|2 − |ζ′ − ζ|2 = |ζ − ζ̄||ζ′ − ζ̄′|.
Proof. For ζ and ζ′ in H2, we have

|ζ′ − ζ̄|2 − |ζ′ − ζ|2 = (ζ′ − ζ̄)(ζ̄′ − ζ) − (ζ′ − ζ)(ζ̄′ − ζ̄)
= −ζ′ζ − ζ̄′ζ̄ + ζ′ζ̄ + ζ̄′ζ
= −(ζ′ − ζ̄′)(ζ − ζ̄).
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We can write (ζ′−ζ̄′) = si and (ζ−ζ̄) = ti with s, t > 0. Therefore, (ζ′−ζ̄′)(ζ−ζ̄) =
st i2 = −st < 0 which gives

−(ζ′ − ζ̄′)(ζ − ζ̄) = |ζ − ζ̄||ζ′ − ζ̄′|.
�

Proposition 3. For all ζ and ζ′ in H2, we have

(7) δ(ζ, ζ′) = log
( |ζ′ − ζ̄| + |ζ′ − ζ|

|ζ − ζ̄|
)
.

Proof. The curve in C parametrized by u(x) := ζ′−x
ζ−x (x ∈ R) is a Euclidean circle.

Let us find its center and radius.
We have

u =
ζ′ − x

ζ − x
⇐⇒ x =

ζu− ζ′

u− 1
,

and the condition x ∈ R can be written as x = x̄, or, equivalently,

ζu− ζ′

u− 1
=
(
ζu− ζ′

u− 1

)
,

i.e.

(ζ − ζ̄)|u|2 − (ζ − ζ̄′)u+ (ζ̄ − ζ′)ū+ (ζ′ − ζ̄′) = 0.

One can rewrite this relation as

|u|2 −
(
ζ − ζ̄′

ζ − ζ̄

)
u−

(
ζ̄ − ζ′

ζ̄ − ζ

)
ū+

(
ζ′ − ζ̄′

ζ − ζ̄

)
= 0,

or, after a small calculation that uses Lemma 2,[
u−

(
ζ̄ − ζ′

ζ̄ − ζ

)] [
u−

(
ζ̄ − ζ′

ζ̄ − ζ

)]
=
∣∣∣∣ζ − ζ′

ζ − ζ̄

∣∣∣∣
2

.

This is the equation of a circle whose center and radius are respectively

c =
(
ζ̄ − ζ′

ζ̄ − ζ

)
and R =

∣∣∣∣ζ − ζ′

ζ − ζ̄

∣∣∣∣ .
The quantity M(ζ, ζ′) = supx∈R |u(x)| is the largest Euclidean distance from a
point on that circle to the origin, i.e.

M(ζ, ζ′) = sup
x∈R

|u(x)| = |c| +R =
|ζ − ζ̄′|
|ζ − ζ̄| +

|ζ − ζ′|
|ζ − ζ̄| ,

and thus

δ(ζ, ζ′) = log
( |ζ − ζ̄′| + |ζ − ζ′|

|ζ − ζ̄|
)

= log
( |ζ′ − ζ̄| + |ζ′ − ζ|

|ζ − ζ̄|
)
.

�
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Proof of Proposition 2. Lemma 2 implies that( |ζ′ − ζ̄| + |ζ′ − ζ|
|ζ − ζ̄|

)( |ζ − ζ̄′| + |ζ − ζ′|
|ζ′ − ζ̄′|

)

=

(|ζ′ − ζ̄| + |ζ′ − ζ|) (|ζ − ζ̄′| + |ζ − ζ′|)
|ζ′ − ζ̄|2 − |ζ′ − ζ|2

=

(|ζ′ − ζ̄| + |ζ′ − ζ|) (|ζ − ζ̄′| + |ζ − ζ′|)(|ζ′ − ζ̄| − |ζ′ − ζ|) (|ζ′ − ζ̄| + |ζ′ − ζ|)
=

|ζ − ζ̄′| + |ζ − ζ′|
|ζ′ − ζ̄| − |ζ′ − ζ| .

Thus, we have by Proposition 3,

Sδ(ζ, ζ′) =
1
2

(δ(ζ, ζ′) + δ(ζ′, ζ))

=
1
2

log
( |ζ′ − ζ̄| + |ζ′ − ζ|

|ζ − ζ̄|
)

+
1
2

log
( |ζ − ζ̄′| + |ζ − ζ′|

|ζ′ − ζ̄′|
)
.

=
1
2

log
( |ζ − ζ̄′| + |ζ − ζ′|
|ζ − ζ̄′| − |ζ − ζ′|

)
= h(ζ, ζ′).

�

We close this section with the following observation:

Proposition 4. The two spaces (H2, δ) and (H2, h) are not quasi-isometric.

The proof is based on the following, somewhat strange, lemma:

Lemma 3. For every ζ and ξ in H
2 and for all ε > 0, we can find ξ′ and ζ′ in H

2

such that
δ(ζ′, ζ) + δ(ζ′, ξ′) + δ(ξ′, ξ) ≤ ε.

Let us note that this lemma is possible because the weak metric δ is not sym-
metric, otherwise it would contradict the triangle inequality.

Proof. For all s ≥ 1, let us set ζs = ζ + is and ξs = ξ + is. Then we have by (5)

δ(ξs, ξ) = δ(ζs, ζ) = θ(1 + s, 1) = 0.

On the other hand, we have

lim
s→+∞

( |ξs − ζ̄s| + |ξs − ζs|
|ζs − ζ̄s|

)
= lim

s→+∞

( |ξ − ζ̄ + 2is|+ |ξ − ζ|
|ζ − ζ̄ + 2is|

)
= 1,

hence lim
s→+∞ δ(ζs, ξs) = 0 and it suffices to take ζ′ = ζs and ξ′ = ξs with s large

enough. �

Proof of Propositon 4. We proceed by contradiction. Suppose there exists a quasi-
isometry f : (H2, h) → (H2, δ). Then there exists k ≥ 1 and c ≥ 0 such that

1
k
δ(ζ, ξ) − c ≤ h(f(ζ), f(ξ)) ≤ kδ(ζ, ξ) + c

for all ζ and ξ in H
2.



THURSTON’S WEAK METRIC 3319

Let us choose ζ and ξ in H2 such that δ(ζ, ξ) > 1+4kc. By Lemma 3, we can find
points ξ′ and ζ′ in H2 such that δ(ζ′, ζ) + δ(ζ′, ξ′) + δ(ξ′, ξ) ≤ ε < 1/k2.Therefore
we have

δ(ζ, ξ) ≤ k h(f(ζ), f(ξ)) + kc

≤ k [h(f(ζ), f(ζ′)) + h(f(ζ′), f(ξ′)) + h(f(ξ′), f(ξ))] + kc

= k [h(f(ζ′), f(ζ)) + h(f(ζ′), f(ξ′)) + h(f(ξ′), f(ξ))] + kc

≤ k2 [δ(ζ′, ζ) + δ(ζ′, ξ′) + δ(ξ′, ξ)] + 4kc
≤ k2ε+ 4kc < 1 + 4kc < δ(ζ, ξ)

which is a contradiction. Thus, such a quasi-isometry does not exist. �

3. The Teichmüller space of the torus

We recall that we denote by F(T 2) the set of flat metrics on the 2-torus T 2. It
is clear that if g ∈ F(T 2) and t > 0, then tg is again a flat metric. We denote by
P(T 2) the quotient space F(T 2)/R∗

+. Equivalently, P(T 2) can be regarded as the
set of flat metrics of area one on T 2. The Teichmüller space of the torus is then
defined as

T(T 2) := P(T 2)/Diff0(T 2),
where Diff0(T 2) is the group of diffeomorphisms of T 2 which are isotopic to the
identity.

The Teichmüller space T(T 2) can be naturally identified with the hyperbolic
plane H2; we shall give below two natural ways to see this identification.

In the first such identification, we associate to each complex number µ satisfying
|µ| < 1, the flat metric on the complex plane C given by

gµ := |dz + µdz̄|2.
This flat metric is invariant under all translations of C and can thus be seen as a
flat metric on the torus

T 2 = C/ (Z + iZ) .
This defines a map

ι : D
2 =

{
µ ∈ C

∣∣ |µ| < 1
} → T(T 2)
µ �→ [gµ]

which is a homeomorphism. This map is an isometry between the disk D2 equipped
with the Poincaré metric and the space T(T 2) equipped with the Teichmüller metric
(see the remark after Theorem 2 below).

To explain the other identifications of T(T 2) with the hyperbolic plane, we need
to introduce another (equivalent) definition of T(T 2) based on the notion of marked
surfaces.

Definition 1. A marking of the torus is a choice of a group isomorphism ψ : Z2 →
π1(T 2).

Because π1(T 2) is abelian, there is a specific one-to-one correspondence between
the group Z2 and the set of isotopy classes of closed curves in a marked torus T 2.

Definition 2. Given a marked torus, we shall denote by ε the isotopy class corre-
sponding to the generator (1, 0) ∈ Z

2.
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It is a standard fact that the Teichmüller space T(T 2) can also be defined as the
set of equivalence classes of triples (S, g, ψ), where S is a closed oriented surface of
genus 1, g is a flat metric on S and ψ is a marking of S and where (S, g, ψ) and
(S′, g′, ψ′) are equivalent if there exists a diffeomorphism f : S → S′ and a constant
c > 0 such that f∗g′ = cg and f∗ψ = ψ′.

Let us now explain our second identification of T(T 2) with the hyperbolic plane
H2. Recall that the universal cover of a flat torus is the plane R2 equipped with
the Euclidean metric. In this picture, a flat torus appears as the quotient of R2 by
the action of a translation group

Γζ′,ζ = {mtζ′ + ntζ
∣∣m,n ∈ Z

2},
where ζ′ and ζ are linearly independent vectors in the plane. Here, tζ (respectively
tζ′) denotes the translation of the plane by the vector ζ (respectively ζ′). Performing
a homothety if necessary, one may assume that [ζ′, ζ] is a parallelogram of area 1.

The quotient surface R
2/Γζ′,ζ carries a flat metric of area 1 and a canonical

marking obtained by identifying (m,n) ∈ Z2 with mtζ′ + ntζ ∈ Γ = π1(R2/Γ).
Let us now consider the two-by-two matrix whose columns are the coordinates

of ζ′ and ζ. Since the parallelogram [ζ′, ζ] spanned by these vectors has area one,
the determinant of this matrix is equal to one and therefore this matrix belongs
to SL(2,R). Two such pairs of vectors give equivalent flat tori if and only if
they differ by a rotation. In this way the Teichmüller space T(T 2) is naturally
identified with the homogeneous space SL(2,R)/SO(2). It is well known that this
homogeneous space has a unique left-invariant Riemannian metric and that this
space, equipped with this metric, is isometric to the upper half-plane H2 equipped
with the hyperbolic metric.

In the sequel, we shall identify R2 with C and we shall replace the normalization
Area[ζ′, ζ] = 1 by the condition |ζ′| = 1. We shall also fix the rotation by assuming
ζ′ = 1 and Re(ζ) > 0. The surface R2/Γ1,ζ is then given by

Sζ = C/ (Z + Zζ) ;

it has a canonical flat metric and marking.

Theorem 2. The map
j : H

2 → T(T 2)

which associates to each element ζ ∈ H2 the equivalence class [Sζ ] of the flat marked
torus Sζ is an isometry if H2 is equipped with the Poincaré metric and T(T 2) with
the Teichmüller metric.

The proof is given in [3, Theorem 6.4, p. 219].
A calculation shows that the surface C/ (Z + iZ) with the flat metric gµ =

|dz + µdz̄|2 is homothetic to Sζ = C/ (Z + Zζ) if and only if µ = ζ−i
ζ+i . This

implies that the following diagram commutes:

H2 ϕ−→ D2

j ↘ ↙ ι
T(T 2)

where ϕ is the Cayley map ϕ : ζ → µ = ζ−i
ζ+i . Since φ is an isometry between the

upper half-plane model H2 and the unit disk model D2 of the hyperbolic plane, the
map ι : D

2 → T(T 2) defined above is also an isometry.
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In the sequel, we shall identify the point ζ ∈ H2 with the element j(ζ) = [Sζ ] ∈
T(T 2). Recall that the surface Sζ = C/ (Z + Zζ) has a canonical marking and
observe that the image of the interval [0, 1] ⊂ C via the canonical projection C → Sζ

is a curve of length one which represents the isotopy class ε (see Definition 2 above).

4. The weak metric κ on T(T 2)

Thurston’s weak metric κ which we recalled in Section 1 is not invariant under
multiplication of the metrics g1 or g2 by positive constants. Thus, we need to
modify the definition in order to obtain a similar weak metric on T(T 2).

Consider the set S(T 2) of nontrivial isotopy classes of closed curves in the surface
T 2.

To any pair of metrics g1, g2 on T 2, we associate the number

κ(g1, g2) = sup
α∈S(T 2)

log
(
lg2(α)/lg2(ε)
lg1(α)/lg1(ε)

)
,

where ε ∈ S(T 2) is the isotopy class defined above.
It is clear that this quantity is invariant under the action of R

∗
+ and Diff0(T 2).

In particular κ defines a map

κ : T(T 2) × T(T 2) → R

which is a weak metric.
Our next result states that, under the identification j : H2 → T(T 2), the weak

metric κ coincides with the weak metric δ on H2 defined in Section 2.

Theorem 3. For any ζ, ζ′ ∈ H2, we have

κ(ζ, ζ′) = δ(ζ, ζ′) = log (M(ζ, ζ′)) .

Proof. As before, we identify Z
2 with S(T 2): the isotopy class corresponding to

(m,n) ∈ Z2 is given by the image in Sζ = C/(Z+Zζ) of an arbitrary path connecting
0 ∈ C to m+ nζ.

It is clear that the minimal length of such a path in its isotopy class is equal to
|m+ nζ| :

�ρζ
(m,n) = |m+ nζ|,

where we denote by ρζ the projection of the canonical metric of C on the surface
Sζ = C/(Z + Zζ).

We also have

�ρζ′ (m,n) = |m+ nζ′|,

and, in particular,

�ρζ
(ε) = �ρζ′ (ε) = �ρ(1, 0) = 1.
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Consequently

κ(ζ, ζ′) = log sup
α∈S

(
�ρζ′ (α)/�ρζ′ (ε)
�ρζ

(α)/�ρζ
(ε)

)

= log sup
m,n∈Z

( | m+ nζ′ |
| m+ nζ |

)

= log sup
m,n∈Z

( | (m/n) + ζ′ |
| (m/n) + ζ |

)

= log sup
q∈Q

( | q + ζ′ |
| q + ζ |

)

= log sup
x∈R

( | x+ ζ′ |
| x+ ζ |

)
= log (M(ζ, ζ′))
= δ(ζ, ζ′).

�

From the results of Section 2, we deduce the following

Corollary 1. (a) The weak metric κ does not separate points and is not symmetric.
(b) The symmetrization Sκ of κ coincides with the Teichmüller metric τ .
(c) The weak metric κ is not quasi-isometric to the Teichmüller metric τ .

Recall also that an explicit formula for δ, and hence for κ, is given in Proposition
3.

5. The weak metric λ on T(T 2)

Let us define the normalized weak Lipschitz distance between two Riemannian
metrics g1, g2 on the torus T 2 by

λ(g1, g2) := inf
ϕ

(logL(ϕ)) ,

where ϕ : T 2 → T 2 is a homeomorphism isotopic to the identity and

L(ϕ) = sup
x �=y

(
dg2 (ϕ(x), ϕ(y))/lg2 (ε)

dg1(x, y)/lg1(ε)

)
.

Observe that λ(g1, g2) is invariant under the action of the groups R∗
+ and Diff0(T 2),

that is,
λ(tφ∗g1, sψ∗g2) = λ(g1, g2)

for all t, s ∈ R
∗
+ and φ, ψ ∈ Diff0(T 2). In particular, λ is well defined on the

Teichmüller space of the torus

λ : T(T 2) × T(T 2) → R,

and it is easy to check that it is a weak metric.

Theorem 4. Up to identifying the spaces T(T 2) and H2 via the map j, we have

λ(ζ, ζ′) = κ(ζ, ζ′)

for all ζ and ζ′ in T(T 2).
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To prove the theorem, we shall use the following lemma:

Lemma 4. The Lipschitz constant of the map ψ : C → C defined by ψ(ζ) :=
p̄2ζ + q2ζ̄ (where p, q ∈ C) is given by

Lip(ψ) = |p|2 + |q|2.
Proof. For all ζ, ζ′ ∈ C, we have

|ψ(ζ) − ψ(ζ′)| = |p̄2(ζ − ζ′) + q2(ζ − ζ′)| ≤ (|p|2 + |q|2)|ζ − ζ′|,
thus Lip(ψ) ≤ |p|2 + |q|2.

To prove the converse inequality, let us choose ζ = pq and ζ′ = 0. We then have
ψ(ζ′) = 0 and

ψ(ζ) = p̄2pq + q2pq = p̄q(|p|2 + |q|2),
consequently ∣∣∣∣ψ(ζ) − ψ(ζ′)

ζ − ζ′

∣∣∣∣ =
|p̄q(|p|2 + |q|2)|

|pq| = |p|2 + |q|2,

which shows that Lip(ψ) ≥ |p|2 + |q|2. Therefore we have Lip(ψ) = |p|2 + |q|2. �

Proof of Theorem 4. First observe that for any homeomorphism ϕ : (S, g1) →
(S′, g2), and any curve c : I → S, we have

lg2(ϕ ◦ c) ≤ Lip(ϕ) · lg1(c).

Therefore if ϕ : (Sζ , ρζ) → (Sζ′ , ρζ′) is a marking-preserving homeomorphism,
we have

κ(ρζ , ρζ′) ≤ λ(ρζ , ρζ′)

(since �ρζ
(ε) = �ρζ′ (ε) = 1 and thus Lip(ϕ) = L(ϕ) in this case).

To prove the converse inequality, we consider the map defined by

(8) f̃(x) :=
(
ζ′ − ζ

ζ − ζ

)
x−

(
ζ′ − ζ

ζ − ζ

)
x.

This is the unique real affine map f̃ : C → C such that

f̃(0) = 0, f̃(1) = 1 and f̃(ζ) = ζ′.

This map defines a diffeomorphism f : (Sζ , ρζ) → (Sζ′ , ρζ′).
Applying Lemma 4 with

p̄2 =
(
ζ′ − ζ

ζ − ζ

)
and q2 =

(
ζ′ − ζ

ζ − ζ

)
,

we see that

L(f) = Lip(f) =
∣∣∣∣ζ′ − ζ

ζ − ζ

∣∣∣∣+
∣∣∣∣ζ′ − ζ

ζ − ζ

∣∣∣∣ .
Using Proposition 3 and Theorem 3, we finally have

λ(ρζ , ρζ′) ≤ log
( |ζ′ − ζ̄| + |ζ′ − ζ|

|ζ − ζ̄|
)

= δ(ζ, ζ′) = κ(ρζ , ρζ′).

This completes the proof of Theorem 4. �
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Our final result is the following.

Theorem 5. The map f : (Sζ , ρζ) → (Sζ′ , ρζ′) whose universal cover is the affine
map (8) is the extremal map for the weak distance λ, i.e.

log(L(f)) = λ(ζ, ζ′).

It is also extremal for the Teichmüller metric, i.e.
1
2

log(K(f)) = τ(ζ, ζ′).

Proof. The first assertion follows from the proof of the previous theorem.
To prove the second assertion, recall that the dilatation of the affine map g :

C → C given by g(x) = ax+ bx is given by

K(g) =
|a| + |b|
|a| − |b|

(this is an easy computation, see [3, p. 19]). Applying this formula to our mapping
defined by (8), we find that

(9) K(f) =
|ζ′ − ζ| + |ζ′ − ζ|
|ζ′ − ζ| − |ζ′ − ζ| .

Hence

�(10)
1
2

logK(f) = h(ζ, ζ′) = τ(ζ, ζ′).

The extremal map for the Teichmüller distance is known to be unique (see [3,
Theorem 6.3]).
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