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The aim of this note is to prove an asymptotic formula relating the mean curvature of a
hypersurface at a given point and the volume of small balls centered at this point. For
instance, consider a sphere SR of radius R in Euclidean three-space R3. If p lies on SR

and t > 0 is small enough (i.e., 0 < t ≤ R), then
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where Bp(t) is the ball of radius t centered at p and B+
p (t) is the portion of the ball

lying inside the sphere SR . Our goal is to show that, up to a negligible term, a similar
formula holds for any hypersurface S in Rn, the factor 1/R being replaced with the
mean curvature of the hypersurface.

We briefly recall what mean curvature is. Let S be a hypersurface of class C2 in
Euclidean n-space Rn, and assume that a unit normal vector field N : S → Rn has been
chosen (this is always possible locally). It is a basic fact that the normal acceleration
〈c′′(t), N (c(t))〉 of a C2-curve c(t) on S depends only on its tangent vector V (t) =
c′(t): indeed,

0 = d

dt

〈
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(
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)〉 = 〈
c′′(t), N

(
c(t)

)〉 + 〈
c′(t),

d

dt
N

(
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)〉
,

so 〈c′′(t), N (c(t))〉 = −〈V , DV N 〉 (with the notation DV N = d(N (c(t))/dt).
The second fundamental form of the hypersurface S at a point p of S is the bilinear

form defined on the tangent space Tp S by

IIp(v, w) = −〈v, Dw N 〉.
The previous calculation shows that II(c′(t), c′(t)) is the normal acceleration of the
curve. It is not difficult to check that IIp is a symmetric bilinear form. The mean cur-
vature H(p) of the hypersurface S at the point p is then defined as

H(p) = 1

n − 1
Trace(IIp) = 1

n − 1

n−1∑
i=1

II(vi , vi ),

where v1, . . . , vn−1 is any orthonormal basis of the tangent space Tp S. (Observe that
replacing the normal field N by −N changes the sign of the mean curvature.) The mean
curvature and the second fundamental form of a surface in R3 are classical topics in
geometry (see, for instance, [1, chap. 5]).

Let us now fix a ball Bp(t) in Rn with radius t > 0 and center p on S. When t
is small enough, the hypersurface S separates Bp(t) into two connected components
B+

p (t) and B−
p (t), with the convention that Np points towards B+

p (t). We want to relate
the mean curvature of S at p to the ratio of the volumes of B+

p (t) and Bp(t).
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It is clear that for small values of t the volume of B+
p (t) is roughly one-half the

volume of the entire ball Bp(t); in fact, we have

Vol
(
B+

p (t)
) = 1

2
αntn + O(tn+1),

where αn denotes the volume of the unit ball in Rn . We claim: the next term of the
Taylor expansion of this volume is given by

Vol
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p (t)
) = 1

2
αntn − 1

2

(
n − 1

n + 1
αn−1

)
H(p) tn+1 + O(tn+2). (1)

In particular, the mean curvature satisfies

H(p) = 2
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)
lim
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p (t))

Vol(Bp(t))

)]
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To prove (1), we choose an orthonormal coordinate system centered at p such that
Np = (0, . . . , 0, 1). The hypersurface is then locally defined as a graph

xn = f (x1, . . . , xn−1),

where f is a smooth function satisfying f (0) = 0 and ∂ f/∂xi (0) = 0 for i =
1, . . . , n − 1. One then easily checks that the second fundamental form at p = 0
coincides with the Hessian of f at this point. Thus for X = (x1, . . . , xn−1) in Rn−1,
we have f (X) = 1

2 II(X, X) + o(‖X‖2).
It is convenient to begin with an analogue of estimate (1) in which balls are replaced

by cylinders. Namely, we set

C(t) = {
x = (X, xn) ∈ Rn−1 × R : max(‖X‖, |xn|) ≤ t

}
.

If ρ > 0 is small enough, then f is well defined on {X ∈ Rn : ‖X‖ ≤ ρ} and we
consider the intersection C+(t) = {x = (X, xn) ∈ C(t) : xn ≥ f (X)} of the cylinder
C(t) with the epigraph of f , where 0 ≤ t ≤ ρ. We then have

Vol
(
C+(t)

) = 1

2
Vol

(
C(t)

) −
∫

Bn−1(t)
f (X) d X,

where Bn−1(t) = {X ∈ Rn−1 : ‖X‖ ≤ t}. Now observe that for i, j = 1, . . . , n − 1
such that i �= j we have ∫

Bn−1(t)
xi x j d X = 0,

while for i = 1, . . . , n − 1∫
Bn−1(t)

x2
i d X = 1

n − 1

∫
Bn−1(t)

‖X‖2 d X =
(

1

n + 1
αn−1

)
tn+1.

Combining these three identities, we obtain
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)
H(p) tn+1 + O(tn+2), (3)

since f (X) = 1
2 II(X, X) + o(‖X‖2) and H(p) = Trace(IIp)/(n − 1).

We still have to verify that replacing cylinders with balls does not affect the signifi-
cant term in our Taylor expansion, i.e., we need to show that(
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) − 1

2
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2
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is at most of the order tn+2. We in fact obtain a better estimate. For any c in R set

Ac(t) = {
x = (X, xn) ∈ C(t) \ B(t) : xn ≥ ct2

} ;
in particular,

Vol(A0(t)) = 1

2
Vol

(
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) − 1

2
Vol

(
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)
.

The volume of A−c(t) \ Ac(t) is of the order tn+4, since this set is contained in a
cylinder of height 2ct2 whose base is an annulus of outer radius t and inner radius
roughly t − c2t3/2. More precisely,

A−c(t) \ Ac(t) ⊂
{

x = (X, xn)
∣∣√t2 − c2t4 ≤ ‖X‖ ≤ t, |xn| ≤ ct2

}
;

hence

0 < Vol A−c(t) − Vol Ac(t) ≤ 2αn−1ct2
(

tn−1 − (
√

t2 − c2t4)n−1
)

= O(tn+4).

Because A−c(t) ⊂ A0(t) ⊂ Ac(t), we thus obtain

Vol(Ac(t)) = Vol(A0(t)) + O(tn+4) = 1

2
Vol(C(t)) − 1

2
Vol(B(t)) + O(tn+4)

for all c. The same estimate also holds for Vol A−c(t).
If we now choose the positive constants c and ρ > 0 so that | f (X)| ≤ c ‖X‖2 when-

ever ‖X‖ < ρ, then we have for t ≤ ρ:

A−c(t) ⊂ C+(t) \ B+(t) ⊂ Ac(t).

In this way we arrive at

Vol
(
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) ≤ Vol
(
C+(t)

) − Vol
(
B+(t)

) ≤ Vol
(
Ac(t)

)
,

and the previous estimates implies that

Vol
(
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) = 1

2
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2
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) + O(tn+4).

It is now clear that the estimate (1) follows from (3).
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The notions of the second fundamental form and the mean curvature both extend
without substantial modification to the setting of hypersurfaces in Riemannian mani-
folds (see, for instance, [2, pp. 132–142]). We conclude this note by showing that the
Taylor expansion (1) still holds in this context.

Let S be a hypersurface in a Riemannian manifold (Mn, g), and let N be a (local)
unit normal vector field defined in a neighbourhood of the point p on S. The expo-
nential map φ = expp : U ⊂ Tp M → M is well defined in a neighbourhood U of
0 in Tp M . Moreover, when t > 0 is small enough, φ is a diffeomorphism from the
Euclidean ball B̃0(t) of radius t and center 0 in Tp M to the Riemannian ball Bp(t)
in M . Denote by S̃ the Euclidean hypersurface (φ|U )−1(S) and by Ñ the vector field
(φ−1)∗N .

From the fact that the 1-jets of the pull-back metric φ∗g and of the Euclidean metric
gp on Tp M coincide at the origin (see [2, Proposition 5.11, p. 78]), we infer that:

(i) the mean curvature H(p) of S at p, and H̃ (0) of S̃ at the origin (with respect
to the normal Ñ ) are equal;

(ii) VolE(B̃0(t)) = Volg(Bp(t)) + O(tn+2) (and similarly for B̃+
0 (t) and B+

p (t)).

It follows that the formula (1) is still valid in the Riemannian setting without any
correction.
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Timing Is Everything: The French
Connection
C. W. Groetsch

1. INTRODUCTION. Marin Mersenne (1588–1648) is remembered chiefly as a
one-man scientific clearing house—the Internet of his day. During the first half of the
seventeenth century, when mathematical physics was taking its first tentative steps
guided by Descartes and Galileo, “Mersenne did more to propagate emerging new
sciences of acoustics, pneumatics, and ballistics than anyone else of his time” [4,
p. 20]. But Mersenne was more than just a go-between and publicist. He also per-
formed “careful experiments” [5, p. 186] to test some of the new theories. Galileo’s
parabolic model for the ballistic trajectory of a particle in a resistanceless medium
was one of the “hot” new theories of the time. This model, which is featured in nearly
every elementary calculus textbook, implies that the ascent time and descent time
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