LIOUVILLE TYPE THEOREMS FOR MAPPINGS WITH BOUNDED (CO)-DISTORTION

by M. TROYANOV & S. VODOP’YANOV *

1. Introduction.

A mapping \(f : M \to N \) between oriented \(n \)-dimensional Riemannian manifolds is said to have bounded \(s \)-distortion (or \(s \)-dilatation) \((1 \leq s < \infty) \) if \(f \in W^{1,1}_{\text{loc}}(M, N) \) and

\[
|df_x|^s \leq K J_f(x)
\]

a.e. \(x \in M \).

The Sobolev class of mappings \(W^{1,1}_{\text{loc}}(M, N) \) is defined in Section 3 below; these mappings have a formal differential \(df_x : T_x M \to T_{f(x)} N \) almost everywhere; in the above inequality, \(|df_x| \) denotes its operator norm and \(J_f(x) = \det df_x \) its Jacobian.

Mappings with bounded \(s \)-distortion are generalizations of quasi-regular mappings; they have been studied (under various names and viewpoints) since about 30 years, see [6], [8], [24], [25], [28], [30], [41], [44] among other works. In the special case of homeomorphisms with bounded \(s \)-distortion with \(s > n - 1 \), a metric characterization has been given in [8].

These mappings originated as suitable class of mappings in the change-of-variable formula for functions in the Sobolev spaces \(L^{1,s} \) (see Section 4). As it turns out, this class of mappings feels quite well the

* This work is partially supported by the INTAS, grant No 10170.

Keywords: Mapping with bounded distortion – Capacity – Parabolicity.
asymptotic geometry of Riemannian manifolds. In [6], J. Ferrand was able to prove that a Riemannian manifold is characterized up to bilipschitz equivalence by its Royden algebra; the proof heavily uses the theory of mappings with bounded s-distortion. In [28], P. Pansu gave conditions on the geometry of manifolds implying that mappings with bounded s-distortion are quasi-isometries. The work of Ferrand and Pansu has been extended to the case of metric measure spaces in the recent thesis of K. Gafaïti.

Mapping with bounded s-distortion are a subclass of the so-called mappings with finite distortion which are defined by the condition that $J_f \in L^1_{\text{loc}}$ and $|df_x|^n \leq \Phi(x)J_f(x)$ where $\Phi(x)$ is finite a.e. (see the argument in the proof of Corollary 7.1). Mappings with finite distortion play an important role in non-linear elasticity (see e.g. [27]) and they are now being intensively studied. See e.g. the papers [16], [18], [41] and the rich references therein.

Another important generalization of mappings with bounded s-distortion is given by the class of mappings such that $|\Lambda_k f_x|^q \leq K J_f(x)$ where $\Lambda_k f$ is the k-th. exterior power of df, i.e. the effect of df_x at the level of k-forms. These mappings appear in L^p cohomology; see e.g. the recent paper [29] of P. Pansu, where flows of such mappings are used in the computation of L^p-cohomology of manifolds with negative curvature and solvable Lie groups.

In the present paper, we will consider the case $k = n - 1$; let us thus define a mappings with bounded q-codistortion (1 q ∞) to be a mapping $f \in W^{1,1}_{\text{loc}}(M, N)$ for which there exists a constant K' such that

$$|\Lambda_{n-1} f_x|^q \leq K' J_f(x) \quad \text{a.e.}$$

We now state a number of questions, concerning mappings with bounded s-distortion, we are interested in

1) What are the obstructions to the existence of a non constant mapping with bounded s-distortion $f : M \to N$?

2) Describe the set of all $s \geq 1$ for which there exists a homeomorphism (or a diffeomorphism) $f : M \to N$ with bounded s-distortion.

3) Suppose that $f : M \to N$ is a non constant mapping with bounded s-distortion: How big may the omitted set $N \setminus f(M)$ be? (In particular, when can it be said that f is onto?)

4) Assuming that $f : M \to N$ is a continuous mapping with bounded
s-distortion. What can be said about the topological and or the geometrical properties of f?

Similar questions may be raised about mappings with bounded q-codistortion.

We will give some answers to all of these questions. The main techniques we use are based on potential theory: Recall that a condenser in M is a pair (D, A) where $A \subset M$ is a connected open subset and $D \subset A$ is compact. The p-capacity of the condenser (D, A) is defined as

$$\text{Cap}_p(D, A) = \inf \left\{ \int_A |\nabla u|^p : u \in C^0_0(A) \cap W^{1,p}(A) \text{ and } u \geq 1 \text{ on } D \right\}.$$

Definition. — The manifold M is p-parabolic if $\text{Cap}_p(D, M) = 0$ for all compact subsets $D \subset M$ and p-hyperbolic otherwise.

We have included in Section 7.2 below a brief discussion of this notion.

An answer to the first question above is the following Liouville type theorem:

Theorem. — Let M and N be oriented n-dimensional Riemannian manifolds and let $f \in W^{1,n}_{\text{loc}}(M, N)$ be a mapping with bounded s-distortion with $s > (n - 1)$. Assume that M is p-parabolic, where $\frac{1}{p} + \frac{n-1}{s} = 1$. Then either f is constant a.e. or N is also p-parabolic.

This result is a consequence of Theorem A and Corollary 7.1 in the present paper; it is in fact proved for a wider class than $W^{1,n}_{\text{loc}}(M, N)$.

In the special case of quasi-regular mappings (i.e. $s = p = n$), this result has been obtained around 1968 by Y. Reshetnyak and, independently, by O. Martio, S. Rickman and J. Väisälä (see [32] and [22]). At the end of the paper we shortly recall the original argument of Reshetnyack.

Some answers to the other questions mentioned above are given in Sections 2, 4 and 7.

The paper is organized as follow: In Section 2, we give some additional definitions, state the main results of the paper and give some corollaries. In Section 3 we recall some basic facts about Sobolev mappings, in Section 4 we discuss homeomorphisms with bounded s-distortion and in Section 5 we prove a capacity inequality. After these preparations, we prove the main theorems in Section 6. Finally, in Section 7, we give some complementary information on mappings with bounded s-distortion.
2. Definitions and statement of the results.

Throughout the paper M and N are oriented, connected n-dimensional Riemannian manifolds. We denote by $d\mu$ and $d\nu$ the volume elements of M and N respectively.

In order to state our results, we need some additional definitions:

Definitions.

1. The map f has essentially finite multiplicity if $N_f(M) < \infty$, where

 $$N_f(A) := \text{ess sup}_y \text{Card}(f^{-1}(y) \cap A)$$

 for any measurable subset $A \subset M$.

2. A continuous map is open and discrete if the image of any open set $U \subset M$ is an open set $f(U) \subset N$ and the inverse image $f^{-1}(y)$ of any point $y \in N$ is a discrete subset of M. The branch set of such a mapping is the set $B_f \subset M$ of points $x \in M$ such that f is not a local homeomorphism in a neighborhood of x.

The next two definitions are regularity assumptions. They are always satisfied if one assumes e.g. that f is locally Lipschitz, or that $f \in W^{1,s}_{\text{loc}}(M,N)$ for $s > n$, or that f is locally quasi-regular.

3. A measurable map $f : M \to N$ satisfies Lusin’s property if the image of any set $E \subset M$ of measure zero is a set $f(E) \subset N$ of measure zero.

An important and well-known result (see Proposition 3.2) states that for any map $f : M \to N$ belonging to $W^{1,1}_{\text{loc}}(M,N)$ there exists a sequence of compact sets $A_i \subset M$ such that the restriction of f to each A_i is Lipschitz and the complementary set $E_f := M \setminus \cup_i A_i$ has measure zero. We call E_f the exceptional set of f.

4. The map $f \in W^{1,1}_{\text{loc}}(M,N)$ is almost absolutely continuous if it is continuous and for any bounded domain $\Omega \subset M$ the following property holds: for any $\varepsilon > 0$ we can find $\delta = \delta(\Omega, \varepsilon) > 0$ such that for any finite or infinite sequence of pairwise disjoint balls $\{B(x_i, r_i)\}$ contained in Ω with center $x_i \in E_f$, we have

 $$\sum \text{vol}(B_i) \leq \delta \quad \Rightarrow \quad \sum (\text{diam}(fB_i))^n < \varepsilon.$$

Remark. — The notion of almost absolute continuity appeared in [41], [42]; it is a generalization of absolute continuity in the sense of Malý.
as defined in [19]. In particular any mapping in $W^{1,p}_{\text{loc}}(M,N)$ with $p > n$ and any continuous mapping in $W^{1,n}_{\text{loc}}(\mathbb{R}^n,\mathbb{R}^n)$ with monotone coordinate functions is an example of almost absolutely continuous mapping, see [19].

In dimension 2, a mapping has bounded s-distortion if and only if it has bounded s-codistortion. In higher dimension, we have the following relation between distortion and codistortion:

Lemma 2.1. — Let $f : M \to N$ be a mapping with bounded s-distortion for some $s > n - 1$, then f has bounded q-codistortion for $q = s/(n - 1)$.

Conversely, if $f : M \to N$ is a mapping with bounded q-codistortion for some $q < \frac{n - 1}{2}$ such that $J_f > 0$ a.e., then f has bounded s-distortion for $s = \frac{q}{(n-1)-q(n-2)}$.

The exponents in this lemma are sharp.

Proof. — It is a trivial consequence of the inequalities

$$|\Lambda_{n-1}f_x| \leq |df_x|^{n-1} \quad \text{and} \quad |df_x| J_f(x)^{n-2} \leq |\Lambda_{n-1}f_x|^{n-1}.$$

We now state the main results of the present paper:

Theorem A. — Let $f \in W^{1,s}_{\text{loc}}(M,N)$ be a continuous open and discrete mapping with bounded s-distortion, where $s > (n - 1)$, satisfying Lusin’s property. If M is p-parabolic with $p = \frac{s}{s-(n-1)}$, then N is also p-parabolic.

Recall that a map $f \in W^{1,s}_{\text{loc}}$ always satisfies Lusin’s property if $s > n$. In Section 3 below we give other sufficient conditions. In Section 7.1 below, we will also give sufficient conditions for a continuous mapping with bounded s-distortion to be discrete and open.

The next result is an analog of Theorem A. It holds without any topological restrictions but assumes that f has finite essential multiplicity:

Theorem B. — Let $f \in W^{1,s}_{\text{loc}}(M,N)$ be a mapping of essentially finite multiplicity with bounded s-distortion where $s > (n - 1)$. Assume either

1) $|\Lambda_{n-1}f| \in L^{n/(n-1)}_{\text{loc}}(M)$, or

2) f is almost absolutely continuous and $J_f \in L^1_{\text{loc}}(M)$.

TOME 52 (2002), FASCICULE 6
If M is p-parabolic with $p = \frac{s}{s-(n-1)}$, then either f is constant a.e. or N is also p-parabolic.

In Theorem B (under assumption 2) no continuity is assumed. The proofs of theorems A and B are based on quite different approaches; it would be interesting to have a unified method proving both results.

Remark 1. — These results are sharp. They say for instance that there is no mapping of finite essential multiplicity with bounded s-distortion from the Euclidean space to the hyperbolic space for $s > (n-1)$. This is optimal since the Riemannian exponential $\exp : T_0 \mathbb{H}^n \to \mathbb{H}^n$ (where \mathbb{H}^n is the hyperbolic space) is a diffeomorphism with bounded $(n-1)$-distortion. Other comments on the optimality of these results are given in [7].

Theorem B will be obtained as a consequence of the following result on mappings with bounded codistortion:

Theorem C. — Let $f : M \to N$ be a mapping of essentially finite multiplicity with bounded q-codistortion where $q > 1$. Suppose that $J_f > 0$ on some set of positive volume. Assume furthermore either

1) $f \in W^{1,n-1}_{loc}(M,N)$ and $|\Lambda_{n-1}f| \in L^{n/(n-1)}_{loc}(M)$, or

2) f is almost absolutely continuous, $f \in W^{1,s}_{loc}(M,N)$ for some $s > (n-1)$ and $J_f \in L^1_{loc}(M)$.

If M is p-parabolic with $p = q/(q-1)$, then N is also p-parabolic.

Remark 2. — The condition that $J_f > 0$ on some set of positive volume cannot be replaced by the weaker condition that f is not constant a.e. For instance, look at the hyperbolic three-space in the upper-half space model $\mathbb{H}^3 = \{(x,y,z) \in \mathbb{R}^3 | z > 0\}$ (with metric tensor $ds^2 = (dx^2 + dy^2 + dz^2)/z^2$). Then the mapping $f : \mathbb{R}^3 \to \mathbb{H}^3$ given by $f(x,y,z) = (x,0,1)$ is of finite essential multiplicity and has bounded q-codistortion for all $q \geq 1$. Yet \mathbb{H}^3 is p-hyperbolic for all p and \mathbb{R}^3 is p-parabolic for all $p \geq 3$.

The next result goes in the other direction:

Theorem D. — Let $f \in W^{1,1}_{loc}(M,N)$ be a continuous non constant proper mapping with bounded s-distortion of finite essential multiplicity. If M is s-hyperbolic, then so is N.

Remark 3. — The hypothesis that f is proper is necessary. For
instance if N is a compact manifold and $M \subset N$ is an open domain whose complement $N \setminus M$ has non empty interior, then N is s-parabolic for all s and M is s-hyperbolic for all $s \in [1, \infty]$. Yet the inclusion $f : M \hookrightarrow N$ has bounded s-distortion for all s.

We now give some applications of our results. We begin by a Picard type theorem for mappings with bounded s-distortion.

Corollary 2.1. — *Let $f : M \rightarrow N$ be a continuous mapping with bounded s-distortion, $s > (n-1)$ satisfying the hypothesis of Theorem A. Assume that the manifold M is p-parabolic where $p := \frac{s}{s-(n-1)}$. Then f is surjective if $p > n$, and the omitted set $N \setminus f(M)$ has Hausdorff dimension $\leq (n-p)$ if $p \leq n$.*

Proof. — Observe that f actually maps M onto $N' = f(M)$ (which is an open subset of N). By Theorem A, the manifold N' is thus p-parabolic and therefore the Hausdorff dimension of $N \setminus N'$ is $\leq n - p$. ⊓⊔

For a quasiregular mapping on Euclidean space $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$, a stronger result is due to S. Rickman. He proved that f omits at most finitely many points (see theorem 2.1 in [34], chapter IV]).

Corollary 2.2. — *Let $f : M \rightarrow N$ be an injective C^1 mapping with bounded q-codistortion. Assume that $q < \frac{n}{n-1}$ and that M is p-parabolic with $p = \frac{q}{q-1}$, then f is a diffeomorphism.*

For the proof of this corollary, will need a lemma. Recall that the principal dilatation coefficients (or singular values) at $x \in M$ of a mapping $f \in W^{1,1}_{\text{loc}}(M, N)$ are the square roots $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ of the eigenvalues of $df_x df_x^T$; they are defined almost everywhere. Observe the following useful inequalities:

$$
|df_x| = \lambda_n, \quad |J_f(x)| = \lambda_1 \cdot \lambda_2 \cdots \lambda_n, \quad |\Lambda_{n-1} f_x| = \lambda_2 \cdot \lambda_3 \cdots \lambda_n.
$$

Lemma 2.2. — *Let $f : M \rightarrow N$ be a mapping with bounded q-codistortion. If $q < \frac{n}{n-1}$ then either $J_f = 0$ a.e. or there exists a constant $\delta > 0$ such that all the principal dilatation coefficients are almost everywhere $\geq \delta$.

Proof. — Let $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ be the dilatation coefficients of f at x. We have by hypothesis $|\Lambda_{n-1} f_x|^q \leq K J_f(x)$ a.e., i.e. $(\lambda_2 \cdot \lambda_3 \cdots \lambda_n)^q \leq$
$K (\lambda_1 \cdot \lambda_2 \cdots \lambda_n)$. This implies $\lambda_1^{(n-1)(q-1)} \leq (\lambda_2 \cdot \lambda_3 \cdots \lambda_n)^{q-1} \leq K \lambda_1$, from which one obtains $\lambda_1 \geq K^{1/(n+q-nq)}$, provided $q < \frac{n}{n-1}$. □

Proof of Corollary 2.2. — By the previous lemma, all principal dilatation coefficients are bounded below, in particular f is a local diffeomorphism. Assume now that f is not surjective. Then there exists a point $y_0 \in N \setminus f(M)$. Let $N' := N \setminus \{y_0\}$, this is a p-hyperbolic manifold (since $p > n$). By Theorem C, the manifold M must therefore be p-hyperbolic; but this contradicts the hypothesis and we thus conclude that f is surjective. □

If $M = N = \mathbb{R}^n$, we don’t need to assume global injectivity in the previous corollary.

Corollary 2.3. — Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 mapping with bounded q-codistortion where $q < \frac{n}{n-1}$ and such that $J_f \neq 0$. Then f is a global diffeomorphism.

Proof. — By Lemma 2.2 all the eigenvalues of $df_x^t df_t$ are uniformly bounded below. We thus conclude from a recent theorem of M. Chamberland and G. Meister that f is injective (see [1], th. 1.1).

Now set $p := \frac{n}{q-1}$, then $p > n$ and hence \mathbb{R}^n is p-parabolic. We conclude the proof from the previous corollary. □

We also have similar results for mappings with bounded s-distortion.

Corollary 2.4. — Let $f : M \to N$ be an injective C^1 mapping with bounded s-distortion.

Assume that $(n-1) < s < n$ and that M is p-parabolic with $p = \frac{s}{s-(n-1)}$. Then f is a diffeomorphism.

The proof is similar to that of Corollary 2.2. □

Corollary 2.5. — Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a non constant C^1 mapping with bounded s-distortion where $(n-1) < s < n$. Then f is a global diffeomorphism.

Proof. — This is clear from Lemma 2.1 and the previous corollaries. □

This last result also holds for $s = n \geq 3$. Indeed, V.A. Zorich has
proved that a quasi-regular mapping \(f : \mathbb{R}^n \to \mathbb{R}^n \), which is a local homeomorphism is in fact a global homeomorphism provided \(n \geq 3 \), see [46].

3. Calculus of Sobolev mappings.

Since a mapping \(f : M \to \mathbb{R}^m \) is given by its components which are \(n \) functions: \(f = (f_1, f_2, \ldots, f_m) \), it is natural to say that \(f \) belongs to the Sobolev space \(W^{1,s}_{\text{loc}}(M, \mathbb{R}^m) \) if each component \(f_i \in W^{1,s}_{\text{loc}}(M, \mathbb{R}) \).

In the case of a continuous mapping \(f : M \to N \) between Riemannian manifolds, we may define the condition \(f \in W^{1,s}_{\text{loc}}(M, N) \) by the use of local coordinates charts; however, such a procedure is in general not possible for a discontinuous map and we have to proceed differently to define the class of Sobolev mappings between Riemannian manifolds.

We follow the approach of [33], [42].

Definitions.

1) The mapping \(f : M \to N \) belongs to \(L^s_{\text{loc}}(M, N) \), \(1 \leq s \leq \infty \), if and only if the function \([f]_y : M \to \mathbb{R} \), defined by \([f]_y(x) = d(f(x), y) \), is in \(L^s_{\text{loc}}(M, \mathbb{R}) \) for all point \(y \in N \).

2) The map \(f \) belongs to \(W^{1,s}_{\text{loc}}(M, N) \) if and only if \([f]_y \in W^{1,s}_{\text{loc}}(M, \mathbb{R}) \) and there exists a function \(g \in L^s_{\text{loc}}(M, \mathbb{R}) \) such that \(|\nabla [f]_y|(x) \leq g(x) \) a.e. in \(M \) for any point \(y \in N \).

3) The map \(f \) belongs to \(ACL^s_{\text{loc}}(M, N) \) if it satisfies the following three conditions:
 i) the function \(M \ni x \to [f]_z(x) = d(f(x), z) \) belongs to \(L^s_{\text{loc}}(M) \) for every point \(z \in N \);
 ii) the mapping \(f : M \to N \) is absolutely continuous on lines in the following sense: for any coordinate chart \(\varphi : U \to \mathbb{R}^n \) on \(M \), the function
 \[
 (x, \tau) \to g_i(x, \tau) := \text{length}(f \circ \varphi^{-1}([x, x + \tau e_i]))
 \]
 is absolutely continuous in the parameter \(\tau \) for all \(i \) and almost all \(x \in \mathbb{R}^n \).
 iii) the derivative \(\partial_i g_i : x \to \lim_{\tau \to +0} \frac{g_i(x, \tau)}{\tau} \), which exists almost everywhere in \(U \), belongs to \(L^s_{\text{loc}}(U) \) for all \(i \).
Proposition 3.1. — The following assertions are equivalent:

1) \(f \in W^{1,s}_{\text{loc}}(M,N) \);

2) \(f \in ACL^s_{\text{loc}}(M,N) \);

3) \(f \in L^s_{\text{loc}}(M,N) \) and there exists a function \(g \in L^s_{\text{loc}}(M,R) \) such that for any Lipschitz function \(\psi : N \to \mathbb{R} \), the function \(\varphi := \psi \circ f : M \to \mathbb{R} \) belongs to \(W^{1,s}_{\text{loc}}(M,R) \) and \(|\nabla \varphi(x)| \leq \text{Lip}(\psi) g(x) \) a.e. in \(M \).

4) for any isometric embedding \(i : N \to \mathbb{R}^k \) all coordinate functions of the composition \(i \circ f \) belong to \(W^{1,s}_{\text{loc}}(M,R) \).

Proof. — The proof follows the order (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) \(\Rightarrow \) (4) \(\Rightarrow \) (2). Observe that (3) \(\Rightarrow \) (1) is trivial since distance functions are 1-Lipschitz.

Then (1) \(\Rightarrow \) (2) and (2) \(\Rightarrow \) (3) are proven in [42, Proposition 3] (notice that (1) \(\Rightarrow \) (3) is also proven in [33, Theorem 5.1] by other arguments).

The proof of (4) \(\Rightarrow \) (2) is given in [34, Proposition 1.2] for the special case \(N = \mathbb{R}^n \). Its extension to the case of a submanifold \(N \subset \mathbb{R}^k \) is based on the formula

\[
g_i(x, \tau) = \int_0^\tau \left| \frac{d}{dt}(f \circ \varphi^{-1}([x, x + t\mathbf{e}_i])) \right| dt
\]

which holds for all absolutely continuous curves in the \(\mathbb{R}^k \). The general case now follows from the fact that any Riemannian manifold admits an isometric embedding in some Euclidean space.

(3) \(\Rightarrow \) (4). We consider an isometric embedding \(i : N \to \mathbb{R}^k \) and some coordinate function \(z_j \) in \(\mathbb{R}^k \). The restriction \(z_j|_N \) is a Lipschitz function on \(N \), thus the composition \(z_j \circ f \) belongs to \(W^{1,s}_{\text{loc}}(M,R) \). \(\square \)

The next proposition says that a Sobolev mapping is Lipschitz on a big set.

Proposition 3.2. — Let \(f \in W^{1,1}_{\text{loc}}(M,N) \). Then there exists a measurable decomposition \(M = E_f \cup \bigcup_{i=1}^\infty A_i \) such that \(\mu(E_f) = 0 \), \(A_i \) is compact for all \(i \) and \(f|_{A_i} \) is Lipschitz.

Proof. — Using the previous proposition (assertion 4) we can reduce the proof to the well-known Whitney’s approximation theorem for Sobolev function (see e.g. [4, p. 254]). \(\square \)
As a consequence of this proposition, we have the following version of the change of variables formula for integrals (also known as the area formula), recall that χ_A denotes the characteristic function of a set $A \subset M$.

Proposition 3.3. — Let $f \in W^{1,1}_{\text{loc}}(M,N)$ be a Sobolev mapping between Riemannian manifolds of the same dimension. Then there exists a subset $E_f \subset M$ of measure zero such that for all measurable function $\psi : M \to \mathbb{R}_+$ we have
\[
\int_M \psi(x) |J_f(x)| \, d\mu(x) = \int_N \left(\sum_{f(x) = y} \psi(x) \chi_{M \setminus E_f}(x) \right) \, d\nu(y).
\]

If f satisfies Lusin’s property, then one may take $E = \emptyset$.

See e.g. [11] for a proof.

For the area formula to be useful, we need to work with mappings having a locally integrable Jacobian. Observe in particular that if $f \in W^{1,1}_{\text{loc}}(M,N)$ has bounded s-distortion and $J_f \in L^1_{\text{loc}}(M)$, then we have in fact $f \in W^{1,s}_{\text{loc}}(M,N)$.

The next two lemmas give us sufficient conditions for the local integrability of the Jacobian.

Lemma 3.1. — Let $f : M \to N$ be a mapping such that $f \in W^{1,1}_{\text{loc}}(M,N)$ and $|\Lambda_{n-1} f| \in L^{n/(n-1)}_{\text{loc}}(M)$. Then $J_f \in L^1_{\text{loc}}(M)$.

Proof. — This is a trivial consequence of the inequality $J_f \leq |\Lambda_{n-1} f|^{n/(n-1)}$.

Lemma 3.2. — If $f \in W^{1,1}_{\text{loc}}(M,N)$ is continuous and has essentially finite multiplicity or is open and discrete, then $J_f \in L^1_{\text{loc}}(M)$.

Proof. — This follows directly from the area formula.

We now give sufficient conditions for Lusin’s property:

Lemma 3.3. — Let $f : M \to N$ be a mapping satisfying one of the following conditions:

1) $f \in W^{1,s}_{\text{loc}}(M,N)$ with $s \geq (n-1)$, $J_f > 0$ a.e. and $|\Lambda_{n-1} f| \in L^{n/(n-1)}_{\text{loc}}(M)$;

2) $f \in W^{1,1}_{\text{loc}}(M,N)$ is almost absolutely continuous;
3) $f \in W^{1,n}_{\text{loc}}(M,N)$ is continuous open and discrete.

Then it also satisfies Lusin’s property.

Under hypothesis (1) this is Theorem 5.3 in [26]; see also [43] for the case $s = n$. In case (2), this is Theorem 8 from [41]. In case (3), this is a result from [20]; see also [40] for a short proof.

We refer to [23] and [19] for further results on Lusin’s condition.

PROPOSITION 3.4. — If the map f is continuous, open and discrete and has bounded s-distortion for $s > (n-1)$, then it is differentiable almost everywhere.

See Lemma 4.4 in chapter VI of Rickman’s book [34] or Proposition 1 in [41] for a more general result.

Finally we will also need the following result about the exterior differential of the pull-back of a $(n-1)$-form:

LEMMA 3.4. — Let $f : M \to N$ be a mapping satisfying one of the following conditions:

1) $f \in W^{1,n-1}_{\text{loc}}(M,N)$ and $|\Lambda_{n-1} f| \in L^{n/(n-1)}_{\text{loc}}(M)$;

2) f is almost absolutely continuous, $f \in W^{1,s}_{\text{loc}}(M,N)$ for some $s > (n-1)$ and $J_f \in L^1_{\text{loc}}(M)$.

Let β be a smooth $(n-1)$-form. Then $\alpha := f^* \beta \in L^1_{\text{loc}}(M, \Lambda^{n-1})$ and $d\alpha = f^*(d\beta)$.

This result is proved in [26, Th. 3.2] under the first hypothesis and in [41, Th. 8] in the case of the second hypothesis.

4. On homeomorphisms with bounded s-distortion.

In this section, we discuss the special case of homeomorphisms with bounded s-distortion.

DEFINITION. — The s-Dirichlet space of a Riemannian manifold M is the space $\mathcal{L}^{1,s}(M)$ of functions $u \in W^{1,s}_{\text{loc}}(M, \mathbb{R})$ such that $\int_M |\nabla u|^s \, d\mu < \infty$. This space is equipped with the semi-norm

$$\|u\|_{\mathcal{L}^{1,s}(M)} = \|\nabla u\|_{L^s(M)}.$$
If \(f : M \to N \) is a homeomorphism and \(v : N \to \mathbb{R} \) is any function, we denote by \(f^* v = v \circ f \) its pull back on \(M \). If \(u : M \to \mathbb{R} \), we denote by \(f_* u = u \circ f^{-1} : N \to \mathbb{R} \) its pushforward.

S. Vodop’yanov has proved the following result [38], [39] (see its generalized version in [44, Theorems 1 and 9]):

Theorem 4.1. — Let \(f : M \to N \) be a homeomorphism between \(n \)-dimensional Riemannian manifolds. Fix \(s \in [1, \infty) \), then the following assertions are equivalent:

1) \(f^* : \mathcal{L}^{1,s}(N) \to \mathcal{L}^{1,s}(M) \) is a bounded operator;

2) \(f \in W^{1,s}_{loc}(M,N) \) and \(f \) has bounded \(s \)-distortion:
\[
|df(x)|^s \leq K J_f(x) \quad \text{a.e.} \quad x \in M.
\]

Moreover, if \(s \in (1, \infty) \), then condition (1) or (2) are equivalent to

3) \(f^{-1} \) decreases the \(s \)-capacities of condensers up to a constant:
\[
\text{Cap}_s(C,A) \leq \text{const} \cdot \text{Cap}_s(f(C),f(A))
\]
for any condensers \((C,A)\) in \(M \).

Finally, if \(s > (n-1) \) and Lusin’s property holds, then any condition (1)–(3) is equivalent to

4) \(f^* : \mathcal{L}^{1,p}(M) \to \mathcal{L}^{1,p}(N) \) is a bounded operator where
\[
p = \frac{s}{s-(n-1)},
\]
and \(|df^{-1}(y)|^p \leq K^{p-1} J_{f^{-1}}(y) \) a.e. \(y \in N \), consequently \(f^{-1} \) has bounded \(p \)-distortion.

Proof. — We only give a short proof of the second part of assertion (4). By Proposition 3.4, the map \(f \) is differentiable a.e. and by [44, Theorem 9], we know that \(g := f^{-1} : N \to M \) is ACL (see also Lemma 5.6 below). Thus we have \(dg_f(x) \circ df_x = \text{Id} \) a.e. in \(M \). Notice also that \(J_g(y) \neq 0 \) a.e. in \(N \) since \(f \) has Lusin’s property by hypothesis, we thus have almost everywhere
\[
|dg_f(x)| \leq \frac{|df_x|^n}{J_f(x)},
\]
and therefore
\[
|dg_f(x)|^p \leq \left(\frac{|df_x|^p}{J_f(x)} \right)^{p-1} J_f^{-1}(x) \leq K^{p-1} J_{g}(f(x)).
\]

\(\square \)

A useful consequence of this theorem is the following...
Corollary 4.1. — If \(f : M \to N \) and \(g : N \to W \) are homeomorphisms with bounded \(s \)-distortion, then \(g \circ f : M \to W \) also has bounded \(s \)-distortion.

Special cases of the previous result where also obtained in [9.2 and 12.3], [24], [25, Section 6.4.3] and [30].

Definition. — The Royden algebra of \(M \) is the subspace \(R^s(M) \subset L^{1,s}(M) \) of bounded continuous functions; it is a Banach algebra with norm

\[
\|u\|_{R^s} = \|u\|_{L^{\infty}} + \|\nabla u\|_{L^{1,s}}.
\]

We denote by \(K_R \) the norm of the operator \(f^* : R^s(N) \to R^s(M) \) and by \(K_L \) the norm of the operator \(f^* : L^{1,s}(N) \to L^{1,s}(M) \).

Proposition 4.1. — Suppose \(1 < s < \infty \), then for any homeomorphism \(f : M \to N \) we have \(K_R = \max\{1, K_L\} \).

We will need the following

Lemma 4.1. — Let \(v \in R^s(N) \) be a non constant function, and fix \(\varepsilon > 0 \). If \(1 < s < \infty \), then for any \(t \in (\alpha, \beta) \), where \(\alpha := \inf v \) and \(\beta := \sup v \), there exists \(r = r(t, \varepsilon) > 0 \) such that \(r < \min\{t - \alpha, \beta - t\} \) and

\[
\varepsilon^{-1}(t'' - t') \leq \|\max(\min(v, t''), t') - t'\|_{L^{1,s}(N)}
\]

for all \(t', t'' \in (\alpha, \beta) \) such that \(t - r < t' \leq t \leq t'' < t + r \).

Proof. — Suppose the lemma false, then the function

\[
v_{t', t''} := \frac{\max(\min(v, t''), t') - t'}{t'' - t'}
\]

satisfies \(\|v_{t', t''}\|_{L^{1,s}(N)} \leq \frac{1}{2} \) for some \(\varepsilon > 0 \) and all \(t', t'' \in (\alpha, \beta) \) such that \(t - r < t' \leq t \leq t'' < t + r \). Consider a bounded domain \(A \subset N \) such that \(A_0 := \{x \in A : v(x) < t\} \) and \(A_1 := \{x \in A : v(x) > t\} \) are non empty open subsets.

The family \(\{v_{t', t''}\} \) is bounded in \(W^{1,s}(A) \) and hence weakly compact. It follows that there is a sequence \(v_n := v_{t'_n, t''_n} \) such that \(t'_n \leq t \leq t''_n \) and \((t''_n - t'_n) \to 0 \), which converges weakly to some function \(w \in W^{1,s}(A) \). We can furthermore assume that the sequence \(\lambda_n := \frac{t - t'_n}{t''_n - t'_n} \in [0, 1] \) converges to some number \(\lambda \). Using Mazur’s Lemma, we can produce convex combinations of the \(v_n \) converging strongly to \(w \). Hence \(w = 0 \) a.e. on \(A_0 \),
\textit{Proof of Proposition 4.1. —} Observe that $K_R \geq 1$ since constant functions belong to the Royden algebras. So we only need to prove the inequalities $K_L \leq K_R \leq \max\{1, K_L\}$. Since f is a homeomorphism, f^* defines an isometry $f^* : L^\infty(N) \to L^\infty(M)$ and the inequality $K_R \leq \max\{1, K_L\}$ follows immediately.

To prove the inequality $K_L \leq K_R$ it suffices, by density of $R^s(N)$ in $L^{1,s}(N)$, to show that
\begin{equation}
\|f^*v\|_{L^{1,s}(M)} \leq (1 + \varepsilon)K_R \|v\|_{L^{1,s}(N)}
\end{equation}
for any $\varepsilon > 0$ and any function $v \in R^s(N)$.

Set $\alpha := \inf v$ and $\beta := \sup v$. By compactness of the interval $[\alpha, \beta]$, we can find a subdivision $\tau = \{\alpha = t_0 < t_1 < \ldots < t_l = \beta\}$, such that $(t_{i+1} - t_i) < r_i$ for $i = 1, \ldots, l - 1$, where $r_i = r(t, \varepsilon)$ satisfies the property of the previous lemma for some $t \in (t_i, t_{i+1})$.

Set $v_\tau := \alpha + \sum_{i=1}^{l-1} v_i$, where $v_i := \max(\min(v, t_{i+1}), t_i) - t_i$. By the lemma we have $\|v_i\|_{L^\infty} \leq \varepsilon \|v_i\|_{L^{1,s}(N)}$ for $i = 1, \ldots, l - 1$, hence
\begin{align*}
\|f^*v_\tau\|_{L^{1,s}(M)}^s &\leq \|f^*v_\tau\|_{R^s(M)}^s \leq \sum_{i=0}^{l-1} \|f^*v_i\|_{R^s(M)}^s \\
&\leq \sum_{i=0}^{l-1} K_R^s \left(\|v_i\|_{L^\infty(N)} + \|v_i\|_{L^{1,s}(N)}\right)^s \\
&\leq K_R^s(1 + \varepsilon)^s \sum_{i=1}^{l-1} \|v_i\|_{L^{1,s}(N)}^s \\
&\leq K_R^s(1 + \varepsilon)^s \|v_\tau\|_{L^{1,s}(N)}^s
\end{align*}
because $\|v_\tau\|_{L^{1,s}(N)} = \sum_{i=1}^{l-1} \|v_i\|_{L^{1,s}(N)}^s$. The inequality (4) now follows since $\|v - v_\tau\|_{L^{1,s}(N)} \to 0$ and $\|f^*v - f^*v_\tau\|_{L^{1,s}(N)} \to 0$ as $\max\{t_1 - t_0, t_{i+1} - t_i\} \to 0$. \hfill \square

\textit{Remark. —} Pierre Pansu has defined in [28, p. 475] the notion of homeomorphism of bounded s-dilatation as homeomorphism such that $K_R \leq \infty$. It follows from the results of this section that the definition of homeomorphism of bounded s-dilatation used by Pansu, coincides with our notion of homeomorphism with bounded s-distortion if $1 < s < \infty$.
It also follows from Theorem 4.1 that if \(f \) is a homeomorphism satisfying Lusin’s property with bounded \(s \)-dilatation in Pansu’s sense, then \(f^{-1} \) is a homeomorphism with bounded \(p \)-dilatation where \(1/s + (n-1)/p = 1 \). This gives a positive answer to question 10.3 in [28] in the case where Lusin’s property holds.

5. Pushing functions forward.

The proof of Theorem A is based on a capacity estimate for the pushforward operator (Corollary 5.1) which is important in itself. It is the goal of this section to prove this capacity estimate.

Let \(f : M \to N \) be a continuous mapping and \(u : M \to \mathbb{R} \) a bounded function. We define the \emph{pushforward} of \(u \) to be the function \(v = f_\#u : N \to \mathbb{R} \) given by

\[
v(y) := \begin{cases}
 \sup\{u(x) : f(x) = y\} & \text{if } y \in f(M), \\
 0 & \text{otherwise}.
\end{cases}
\]

Lemma 5.1. — If \(f \) is continuous discrete and open, and \(u : M \to \mathbb{R} \) is continuous with compact support, then the function \(v = f_\#u : N \to \mathbb{R} \) is also continuous and \(\text{supp } v \subset f(\text{supp } u) \).

This is Lemma 7.6 in [22]. \(\square \)

If the mapping \(f \) has bounded \(s \)-distortion and \(u \in C^1_0(M, \mathbb{R}) \) then \(v = f_\#u \) belongs to \(W^{1,p}_{\text{loc}}(N, \mathbb{R}) \) where \(p = \frac{s}{s-(n-1)} \) provided \(s > (n-1) \). More precisely:

Theorem 5.1. — Let \(f \in W^{1,1}_{\text{loc}}(M, N) \) be a continuous open and discrete mapping with bounded \(s \)-distortion, \((n-1) < s < \infty \). Assume also that \(f \) satisfies Lusin’s property if \(n-1 < s < n \). Then the operator \(f_\# \) possesses the following properties:

1) \(f_\# : C^1_0(M) \to W^{1,p}(N) \cap C^0_0(N) \),

2) \(\int_N |df_\#(u)|^p \, d\nu \leq K^{p-1} \int_M |du|^p \, d\mu \), for any \(u \in C^1_0(M) \), where \(p = \frac{s}{s-(n-1)} \) and \(K \) is the constant in (1).

Remarks. — 1) If \(f \) is a continuous open mapping and \(f \in W^{1,n}_{\text{loc}}(M, N) \), then it always satisfies Lusin’s property [20] (see also [40] for a short proof).
2) This theorem is known for \(s = n \) (see [22]). It is also known for general values of \(s \) when \(f \) is a homeomorphism [44]. Our proof will be based on techniques borrowed from these two papers.

If \(f \) is continuous and open, then the image \((f(C), f(A))\) of a condenser \((C, A)\) in \(M \) is again a condenser in \(N \).

Corollary 5.1. — For any condenser \((C, A)\) in \(M \) we have

\[
\text{Cap}_p(f(C), f(A)) \leq K^{p-1} \text{Cap}_p(C, A).
\]

\[\square\]

Proof. — Choose a non negative function \(u \in C^1_0(M) \) such that \(u = 1 \) on \(C \), \(\text{supp}(u) \subset A \) and \(\int_A |du|^p \leq \text{Cap}_p(C, A) + \varepsilon \) where \(\varepsilon > 0 \) is arbitrary.

Let us set \(v = f_\# u : N \to \mathbb{R} \). Then, by Theorem 5.1 we have \(v \in W^{1,p}(A) \cap C^0(A) \). Since \(v \geq 1 \) on \(C \), we have

\[
\text{Cap}_p(fC, fA) \leq \int_{fA} |dv|^p \leq K^{p-1} \int_A |du|^p \leq K^{p-1}(\text{Cap}_p(C, A) + \varepsilon).
\]

\[\square\]

We begin the proof of Theorem 5.1 by some lemmas on capacities of condensers:

Lemma 5.2. — The inequality

\[
\text{Cap}_s(C, A) \leq \frac{|A|}{\text{dist}(C, \partial A)^s}
\]

holds for the capacity of any bounded condenser \((C, A) \subset \mathbb{R}^n\).

Proof. — Take \(u(x) := \min \left\{ \frac{\text{dist}(\partial A, x)}{\text{dist}(\partial A, C)}, 1 \right\} \) as a test function. \[\square\]

Lemma 5.3. — Let \((C, A) \subset \mathbb{R}^n\) be a condenser such that \(C \) is connected. If \((n - 1) < s < \infty\), then

\[
\text{Cap}_s^{n-1}(C, A) \geq b(n, s) (\text{diam} C)^s |A|^{(n-1-s)}
\]

where the constant \(b(n, s) \) depends on \(n \) and \(s \) only.

Proof. — See Lemma 5 of [44]. \[\square\]
Recall that a domain \(\Omega \subset M \) is said to be a normal domain for \(f \) if \(\overline{\Omega} \) is compact and \(\partial(f(\Omega)) = f(\partial \Omega) \). For any normal domain \(\Omega \subset M \) we have \(N_f(\Omega) < \infty \). A condenser \((C,A)\) is a normal condenser if \(A \) is a normal domain of \(f \).

Lemma 5.4. — If \(\Omega \subset M \) is a normal domain then \(\text{Cap}_a(C,A) \leq Kn_f(\Omega) \text{Cap}_s f(C,A) \) for any condenser \((C,A)\) in \(\Omega \).

This is a direct consequence of Lemma 6.2 below. See also [44, Th. 4].

The next lemma sums up the basic topological properties of a discrete and open mapping \(f : M \to N \). If \(x \in M \) and \(r > 0 \), then we denote by \(U(x,f,r) \) the connected component of \(f^{-1}(B(f(x),r)) \) containing \(x \).

Lemma 5.5. — Let \(f : M \to N \) be a continuous discrete and open mapping. Then \(\lim_{r \to 0} \text{diam}(U(x,f,r)) = 0 \) for every \(x \in M \). If \(U(x,f,r) \) is compact then \(U(x,f,r) \) is a normal domain and \(f(U(x,f,r)) = B(f(x),r) \). Furthermore, for every point \(x \in N \) there is a positive number \(\sigma_x \) such that the following conditions are satisfied for \(0 < r \leq \sigma_x \):

i) \(U(x,f,r) \) is a normal neighborhood of \(x \),

ii) \(U(x,f,r) = U(x,f,\sigma_x) \cap f^{-1}(B(f(x),r)) \),

iii) \(\partial U(x,f,r) = U(x,f,\sigma_x) \cap f^{-1}(S(f(x),r)) \) if \(r < \sigma_x \),

iv) \(M \setminus U(x,f,r) \) is connected if \(M \) is connected,

v) \(M \setminus \overline{U(x,f,r)} \) is connected if \(M \) is connected,

vi) if \(0 < r < s \leq \sigma_x \), then \(\overline{U(x,f,r)} \subset U(x,f,s) \), and \(U(x,f,s) \setminus \overline{U(x,f,r)} \) is a ring.

See [22], [34] or [12] for a proof.

Lemma 5.6. — Let \(f : M \to N \) be as in Theorem 5.1 and \(u \in C^0_0(M) \). Then the function \(v = f_2u \) is ACL.

Recall that a function \(v : N \to \mathbb{R} \) is absolutely continuous on lines (ACL) if for any local parametrization \(\varphi : Q \to N \) (where \(Q = \{y \in \mathbb{R}^n : a_i \leq y_i \leq b_i\} \subset \mathbb{R}^n \) is some \(n \)-interval) and for almost all \(z \in P_k(Q) \) (= the projection of \(Q \) on the hyperplane \(y_k = 0 \)), the one-variable function \(t \to v(\varphi(z + t\mathbf{e}_k)) \) is absolutely continuous.
Proof. — Let us fix some notations. Fix a local parametrization \(\varphi : Q \to N \) (where \(Q = \{ t \in \mathbb{R}^n : a_i \leq t_i \leq b_i \} \subset \mathbb{R}^n \) is some closed \(n \)-interval). Choose \(Q \) small enough so that for any ball \(B(y, r) \subset \varphi(Q) \) the domains \(U_i := U(x_i, f, r) \) are disjoint normal neighborhoods of \(x_i \) for \(1 \leq i \leq q \) where \(\{ x_1, \ldots, x_q \} = f^{-1}(y) \cap \text{supp } u. \)

The function \(v \circ \varphi^{-1} \) will be simply denoted by \(v : Q \to \mathbb{R} \). We need to show that for any \(l = 1, \ldots, n \) and for almost all \(z \in P_l(Q) \), the function \(v \) is absolutely continuous on the line segment \(\beta_z : [a_l, b_l] \to Q \) defined by \(\beta_z(t) = z + te_l. \)

To this aim, we define a set function \(\varphi \) on \(P_l(Q) \) by

\[
\Phi(A) := |U \cap f^{-1}(\varphi(A \times [a_l, b_l]))|
\]

where \(U = \bigcup_{i=1}^q U_i \) and \(A \subset P_l(Q) \) is any Borel set. Then \(\Phi \) is a completely additive set function in \(P_l(Q) \) and from Lebesgue’s differentiation theorem, we know that \(\Phi'(z) < \infty \) for almost all \(z \in P_l(Q) \).

It is known (see [22, Lemma 2.7]) that for every point \(x_0 \in U \cap f^{-1}(z + a_l e_l) \) there exists a path \(\alpha : [a_l, b_l] \to U \) such that \(\alpha(a_l) = x_0 \) and \(f \circ \alpha = \varphi \circ \beta_z \). We call such a path a lift of \(\beta_z(t) = z + te_l \) with base point \(x_0 \); clearly the number of lifts does not exceed \(\mathcal{N}_f(U) \).

Claim. — Let \(\alpha : [a_l, b_l] \to U \) be any lift of \(\beta_z \). If \(\Phi'(z) < \infty \), then \(\alpha \) is absolutely continuous.

Since the ACL-property is local it suffices to show that \(\alpha \) is ACL in a neighborhood of every point. We may thus restrict our considerations to the case of mappings \(f : U \to Q \) where \(U \) is a bounded domain in \(\mathbb{R}^n \).

To prove the claim, we fix some arbitrary pairwise disjoint closed segments \(\Delta_1, \ldots, \Delta_k \subset (a_l, b_l) \) of lengths \(b_1, \ldots, b_k \). Choose \(r > 0 \) small enough so that the sets

\[
R_i := \{ y \in \mathbb{R}^n | \text{dist}(y, \Delta_i) < r \}
\]

are pairwise disjoint. Let \(T_i := \bigcup_{z \in \Delta_i} U(\alpha(z), f, r) \), then \((\alpha(\Delta_i), T_i) \) and \((\Delta_i, R_i) \) are condensors and \((\Delta_i, R_i) = (f(\alpha(\Delta_i)), f(T_i)) \); indeed, we have

\[
f(T_i) = f \left(\bigcup_{z \in \Delta_i} U(\alpha(z), f, r) \right) = \bigcup_{z \in \Delta_i} B(z, f, r) = R_i.
\]

From Lemmas 5.2 and 5.3, we have

\[
\text{Cap}_s(\Delta_i, R_i) \leq \frac{|R_i|}{r^s} \leq c_1 b_i r^{n-1-s}
\]

TOME 52 (2002), FASCICULE 6
and
\[\text{Cap}_e(\alpha(\Delta_i), T_i) \geq c_2 \frac{(\text{diam} \alpha(\Delta_i))^{s/(n-1)}}{|T_i|^{(1-n+s)/(n-1)}}. \]
These inequalities, together with Lemma 5.4, imply
\[\text{diam} \alpha(\Delta_i) \leq c_3 b_i^{\frac{n-1}{s}} \left(\frac{|U \cap T_i|}{r^{n-1}} \right)^{\frac{1-n+s}{s}} \left(\sum_{i=1}^{k} b_i \right)^{\frac{n-1}{s}}. \]
where the constant c_3 depends on previous constants, K and $N_f(\text{supp} \ u)$.

Set $E(z,r) = \{ y \in Q : \text{dist}(y, \beta_z([a_i,b_i])) < r \}$, then $\bigcup_{i=1}^{k} T_i \subset f^{-1}(E(z,r))$. Summing the previous inequality over $i = 1, \ldots, k$ and applying Hölder’s inequality we obtain
\[\sum_{i=1}^{k} \text{diam} \alpha(\Delta_i) \leq c_4 \left(\frac{|U \cap f^{-1}(E(z,r))|}{r^{n-1}} \right)^{\frac{1-n+s}{s}} \left(\sum_{i=1}^{k} b_i \right)^{\frac{n-1}{s}}. \]
Letting $r \to 0$, we find that
\[\sum_{i=1}^{k} \text{diam} \alpha(\Delta_i) \leq c_5 \varphi'(z) \left(\sum_{i=1}^{k} b_i \right)^{\frac{n-1}{s}}, \]
hence α is absolutely continuous if $\varphi'(z) < \infty$.

We now conclude the proof of the lemma as follows: Let $\alpha_1,\alpha_2,\ldots,\alpha_d$ be all the lifts of the segment β_z. If $\Phi'(z) < \infty$, then $u \circ \alpha_i$ is absolutely continuous since u is C^1 and α_i is absolutely continuous. We conclude that $v \circ \beta_z$ is absolutely continuous since
\[v \circ \beta_z = \max_i u \circ \alpha_i. \]
\[\square \]

Lemma 5.7. — Let $f : M \to N$ be as in Theorem 5.1, then $J_f = 0$ almost everywhere on the branch set and the image of the branch set has measure zero.

Proof. — Because f has bounded s-distortion and $s > (n-1)$, $f \in W_{\text{loc}}^{1,s}$, it then follows from 3.4 that f is differentiable almost everywhere.

Suppose that f is differentiable at x and $J_f(x) > 0$, then the index $j(x,f) = 1$ (because the map is continuous open and discrete and the topological degree is stable under homotopy, see e.g. pp. 15-21 in [34]).

If $j(x,f) = 1$, then $x \notin B_f$ (see [34, Proposition 4.10]); it follows that $J_f = 0$ a.e. on B_f.

Annales de l’Institut Fourier
Because \(f \) is assumed to satisfy Lusin’s property, we can use the area formula (Proposition 3.3) to conclude that \(f(B_f) \) has measure zero:

\[
\nu(f(B_f)) \leq \int_N \left(\sum_{f(x)=y} \chi_{B_f(x)} \right) dv(y) = \int_M \chi_{B_f(x)} J_f(x) d\mu(x) = 0.
\]

\(\square \)

Proof of Theorem 5.1. — To conclude the proof of the theorem it only remains to check the integrability of \(dv \). To do this we first observe that Vitali’s covering Theorem implies

\[
\text{supp } v \setminus f(B_f \cap \text{supp } u) \subset \bigcup_{i=1}^{\infty} B(y_i, r_i) \cup A,
\]

where \(B_f \) is the branch set of \(f \), \(A \subset N \) is a set with \(\nu(A) = 0 \) and \(B(y_i, r_i) \), \(i \in \mathbb{N} \), are mutually disjoint balls small enough so that the components of \(f^{-1}(B(y_i, r_i)) \) which meet the support of \(u \) form a finite disjoint collection \(D_{i_1}, D_{i_2}, \ldots, D_{i_k} \) of open subsets of \(M \) such the restrictions of \(f \) define homeomorphisms \(f_j : D_{i_j} \to B(y_i, r_i) \), \(j = 1, \ldots, k \).

By Theorem 4.1, the inverse of \(f_i \), i.e. the map \(g_j := f_i^{-1} : B(y_i, r_i) \to D_{i_j} \) is ACL, furthermore, we have

\[
|dg_j|^p \leq K_{g_j} \quad \text{a.e.}
\]

for almost every \(z \in B(y_i, r_i) \). This implies

\[
\int_{B(y_i, r_i)} |dv(z)|^p \, dv \leq K_{g_j}^{-1} \sum_{j=1}^k \int_{B(y_i, r_i)} |du(g_j(z))|^p J(z, g_j) \, d\nu \leq K_{g_j}^{-1} \int_{f^{-1}(B(y_i, r_i))} |du|^p \, d\mu.
\]

From Lemma 5.7, we know that \(\nu(f(B_f)) = 0 \) and \(J_f = 0 \) a.e. on \(B_f \); we thus have from the area formula

\[
\int_N |dv(z)|^p \, dv = \sum_{i=1}^{\infty} \int_{B(y_i, r_i)} |dv(z)|^p \, dv \leq K_{g_j}^{-1} \sum_{i=1}^{\infty} \int_{f^{-1}(B(y_i, r_i))} |du|^p \, d\mu
\]

\[
\leq K_{g_j}^{-1} \int_M |du|^p \, d\mu.
\]

\(\square \)
6. Proofs of the main theorems.

6.1. Proof of Theorem A.

Let us recall the statement:

Theorem A. — Let \(f \in W^{1,1}_{\text{loc}}(M,N) \) be a continuous open and discrete mapping with bounded \(s \)-distortion where \(s > (n - 1) \). Assume also that \(f \) satisfies Lusin’s property. If \(M \) is \(p \)-parabolic with \(p = \frac{s}{s-(n-1)} \), then \(N \) is also \(p \)-parabolic.

Proof. — Let \(D \subset M \) be a compact subset with non empty interior. Because \(f \) is a continuous and open map, \(f(D) \subset N \) is also a compact set with non empty interior. By Corollary 5.1 we have

\[
\text{Cap}_p(f(D), N) \leq \text{Cap}_p(f(D), fM) \leq K^{n-1} \text{Cap}_p(D, M),
\]

hence if \(M \) is \(p \)-parabolic then so is \(N \).

6.2. Proofs of Theorems C and B.

The proofs will use the following criterion for hyperbolicity which is due to V. Gol’dshtein and M. Troyanov (see [9]).

Theorem 6.1. — Let \(M \) be an oriented connected Riemannian manifold \(M \). Then the following are equivalent \(\left(\frac{1}{p} + \frac{1}{q} = 1 \right) \):

1) \(M \) is \(p \)-hyperbolic;

2) there exists a smooth form \(\alpha \in L^q(M, \Lambda^{n-1}) \) such that \(d\alpha \geq 0 \) and \(\int_M d\alpha \neq 0 \);

3) there exists a form \(\alpha \in L^q(M, \Lambda^{n-1}) \) such that \(d\alpha \geq 0 \) and \(\int_M d\alpha \neq 0 \);

4) \(H^{n}_{\text{comp}, q}(M) = 0 \).

The cohomology space \(H^{n}_{\text{comp}, q}(M) \) is the space of all closed differential forms of degree \(n \) with compact support modulo the differential of \((n-1) \)-forms in \(L^q \).
We will also need the following lemma:

Lemma 6.1. — Let $f : M \to N$ be a mapping of class $W_{\text{loc}}^{1,1}$ with essentially finite multiplicity and bounded q-codistortion: $|\Lambda_{n-1} f|^q \leq K J_f$. Then

$$\Lambda_{n-1} f : L^q(N, \Lambda^{n-1}) \to L^q(M, \Lambda^{n-1})$$

is a bounded operator with norm $\leq (K \cdot N_f(M))^{1/q}$.

(Recall that $N_f(A) = \text{ess sup}_y \text{Card}(A \cap f^{-1}(y))$ for any set $A \subset M$.)

Proof. — Let $\beta \in L^q(N, \Lambda^{n-1})$, then

$$\int_M |\Lambda_{n-1} f(\beta)|^q d\mu \leq K \int_M |\beta_f(x)|^q J_f(x) d\mu$$

$$= K \int_N \left(\sum_{f(x) = y} |\beta_f(x)|^q \chi_{M \setminus E_f}(x) \right) d\nu$$

$$\leq (K \cdot N_f(M)) \int_N |\beta|^q d\nu.$$

We now prove Theorem C; we restate it in the following form:

Theorem C. — Let $f : M \to N$ be a mapping of essentially finite multiplicity with bounded q-codistortion where $q > 1$ and such that $J_f > 0$ on some set of positive measure. Assume furthermore either

1) $f \in W_{\text{loc}}^{1,n-1}(M, N)$ and $|\Lambda_{n-1} f| \in L^{n/(n-1)}_{\text{loc}}(M)$, or

2) f is almost absolutely continuous, $f \in W_{\text{loc}}^{1,s}(M, N)$ for some $s > (n-1)$ and $J_f \in L^1_{\text{loc}}(M)$.

If N is p-hyperbolic with $p = \frac{q}{q-1}$, then M is also p-hyperbolic.

Proof. — Let us choose a bounded Borel set $U \subset M$ such that U has positive measure, $f(U)$ is bounded and $J_f > 0$ on U. Observe that, by the area formula, $\nu(f(U)) > 0$.

Choose a non negative smooth function $h : N \to \mathbb{R}$ with compact support and such that $h > 0$ in a neighborhood of $f(U)$. Since N is p-hyperbolic, $H^n_{\text{comp}, q}(N) = 0$, hence there exists an $(n-1)$-form $\beta \in L^q(N, \Lambda^{n-1})$ such that $d\beta = h \cdot \omega_N$ (ω_M and ω_N are the volume forms of M and N respectively).
By Lemma 6.1, we have $\alpha := f^* \beta \in L^q(M, \Lambda^{n-1})$. We then have from Lemma 3.4
\[
d\alpha = f^*(d\beta) = (h \circ f) \cdot f^* \omega_N = (h \circ f) \cdot J_f \omega_M.
\]
Thus $d\alpha \geq 0$ and $\int_M d\alpha \geq \int_U (h \circ f) \cdot J_f \ d\mu > 0$ and we conclude by Theorem 6.1 that M is p-hyperbolic. \qed

Finally, we deduce Theorem B from Theorem C.

Theorem B. — Let $f \in W^{1,s}_{\text{loc}}(M, N)$ be a mapping of essentially finite multiplicity with bounded s-distortion where $s > (n - 1)$. Assume either
1) $|\Lambda_{n-1}f| \in L^{n/(n-1)}_{\text{loc}}(M)$, or
2) f is almost absolutely continuous and $J_f \in L^1_{\text{loc}}(M)$.

If M is p-parabolic and N is p-hyperbolic with $p = s/(s - (n - 1))$, then f is constant a.e.

Proof. — Let $q = p/(p - 1)$. Then $s = q(n - 1)$ and from Lemma 2.1 we know that if f has bounded s-distortion, then it has bounded q-codistortion. Hence by Theorem C, we have $J_f = 0$ a.e. and thus $|df| = 0$ a.e. since $|df|^s \leq K J_f$. As f is a Sobolev mapping, we conclude that f is constant a.e. \qed

6.3. Proof of Theorem D.

Lemma 6.2. — Let $f \in W^{1,1}_{\text{loc}}(M, N)$ be a mapping with bounded s-distortion and essential finite multiplicity. Then $f^* : L^{1,s}(N) \rightarrow L^{1,s}(M)$ is a bounded operator with operator norm at most $(KN_f(M))^{1/s}$.

Proof. — Let us first consider a function $v \in C^1(N) \cap L^{1,s}(M)$. Then $u := f^* v \in W^{1,1}_{\text{loc}}(M)$ and $du_x = df^*_x (dv_f(x))$. Hence we have almost everywhere $|du|^s \leq |dv|^s |df|^s \leq K |dv|^s J_f$. From the area formula we thus obtain
\[
\int_M |du_x|^s \ d\mu(x) \leq K \int_M |dv_f(x)|^s J_f(x) \ d\mu(x)
\]
\[
= K \int_N \left(\sum_{f(x) = y} |dv_f(x)|^s \chi_{M \setminus E_f}(x) \right) \ d\nu(y)
\]
\[
\leq K N_f(M) \int_N |dv|^s \ d\nu(y).
\]
Thus $u \in \mathcal{L}^{1,s}(M)$ and $\|u\|_{\mathcal{L}^{1,s}(M)} \leq (K N_f(M))^{1/p} \|v\|_{\mathcal{L}^{1,s}(N)}$.

Using the argument on page 673 of [44], we can extend this estimate from functions $v \in C^1(N) \cap \mathcal{L}^{1,s}(M)$ to all functions $v \in \mathcal{L}^{1,s}(N)$. This proves that the norm of the operator $f^* : \mathcal{L}^{1,s}(N) \to \mathcal{L}^{1,s}(M)$ is bounded by $(K N_f(M))^{1/s}$.

Recall the statement of Theorem D:

Theorem D. — Let $f \in W^{1,1}_{\text{loc}}(M,N)$ be a continuous non constant proper mapping with bounded s-distortion of finite essential multiplicity. If N is s-parabolic then so is M.

Proof. — Let $D \subseteq M$ be a compact set; then $D' = f(D) \subset N$ is also compact and, by hypothesis, it has zero p-capacity. For each $\varepsilon > 0$, one can thus find a continuous function $v \in \mathcal{L}^{1,s}(N)$ with compact support and such that $v \equiv 1$ on D' and $\int_N |dv|^s \leq \varepsilon$.

Since f is a proper map, the function $u := f^*(v)$ also has compact support and, clearly, $u \equiv 1$ on D. Let A be the norm of the operator $f^* : \mathcal{L}^{1,s}(N) \to \mathcal{L}^{1,s}(M)$; we know by Lemma 6.2 that A is finite. We then have $\int_M |du|^s \leq A^s \int_N |dv|^s \leq A^s \varepsilon$. Hence D has zero p-capacity and we conclude that M is p-parabolic.

7. Complements.

7.1. A topological result.

A famous theorem of Yu. Reshetnyak states that a non constant quasi-regular mapping is open and discrete. We formulate below a generalization of this theorem established recently by S. Vodop’yanov’s in [41], which provides topological properties for mappings with integrable distortion.

Theorem 7.1. — Let $f \in W^{1,1}_{\text{loc}}(M,N)$ be a continuous non constant mapping with nonnegative Jacobian $J_f(x) \geq 0$ and $K(x) = \frac{|df_x|^n}{J_f(x)} \in L^p_{\text{loc}}(M)$ for some $n-1 < p \leq \infty$. Assume either

1) $|\Lambda_{n-1} f| \in L^{n/(n-1)}_{\text{loc}}(M)$, or

2) f is almost absolutely continuous and $J_f \in L^1_{\text{loc}}(M)$.

Then f is discrete and open.
Remarks. — 1) If the manifolds are two-dimensional, then the condition $n - 1 < p < n$, can be relaxed to $1 < p < 2$.

(2) This result was also proven in [13] and [21] under the assumption $f \in W^{1,n}_{\text{loc}}(M,N)$. It has been also recently proved in [18] under different analytical assumptions.

As a consequence of Theorem 7.1 we obtain topological properties for mappings with bounded s-distortion. The next assertion gives a positive answer to the question 10.8 of [28].

Corollary 7.1. — Let $f \in W^{1,1}_{\text{loc}}(M,N)$ be a continuous non constant mapping with bounded s-distortion where $n - 1 < s \leq n$. Assume either

1) $|\Lambda_{n-1} f| \in L^{n/(n-1)}_{\text{loc}}(M)$, or

2) f is almost absolutely continuous and $J_f \in L^1_{\text{loc}}(M)$.

Then f is discrete and open.

Remark. — This result does not hold if $s > n$. Consider for instance the map $f : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$f(x) = \begin{cases} 0 & \text{if } |x| \leq 1, \\ |x| - 1 & \text{if } 1 \leq |x| \leq 2, \\ |x|^\alpha & \text{if } |x| \geq 2, \end{cases}$$

for some $\alpha > 1$. Then f is Lipschitz and has bounded s-distortion for $s = \frac{na}{\alpha-1} > n$. Clearly f is neither open nor discrete; however f has finite essential multiplicity.

Proof. — We suppose that $|df|^s \leq CJ_f$ a.e. for some $n - 1 < s < n$. Let us define the function

$$K_f(x) = \begin{cases} |df|^s \frac{J_f}{J_f(x)} & \text{if } J_f(x) \neq 0, \\ 1 & \text{else}. \end{cases}$$

Set $p = \frac{s}{n-s}$, we have at almost all points where $J_f(x) \neq 0$,

$$|K_f|^p = \frac{|df|^np}{J_f} \leq C^{np/s} \frac{J_f^{np/s}}{J_f} = C^{np/s} J_f^{p(n/s-1)} \leq C^{np/s} J_f.$$

Thus $K_f \in L^p_{\text{loc}}$. Since $n - s < 1$, we have $p > s > n - 1$ and we can conclude the proof from Theorem 7.1. □
Corollary 7.2. — Let \(f \in W_{1,1}^{1,1}(M,N) \) be a mapping with bounded \(q \)-codistortion where

\[
\frac{(n-1)^2}{1+(n-1)(n-2)} < q \leq \frac{n(n-1)}{1+n(n-2)}.
\]

Assume that \(J_f > 0 \) a.e. and either

1) \(|A_{n-1}f| \in L_{loc}^{n/(n-1)}(M) \), or
2) \(f \) is almost absolutely continuous and \(J_f \in L_{loc}^1(M) \).

Then \(f \) is discrete and open.

Proof. — By Lemma 2.1, \(f \) has bounded \(s \)-distortion for \(s = \frac{q}{(n-1)-(q(n-2))} \); observe that the inequalities (5) are equivalent to \(n-1 < s \leq n \). Thus the corollary follows from Corollary 7.1.

\(\Box \)

7.2. On \(p \)-parabolic manifolds.

A connected oriented Riemannian \(n \)-manifold \(M \) is called \(p \)-parabolic, \(1 \leq p < \infty \), if \(\text{Cap}_p(C,M) = 0 \) for all compact subsets \(C \subseteq M \) and \(p \)-hyperbolic otherwise. In this section, we list some facts concerning \(p \)-parabolicity. We refer to [37], [10], and [45] for further information on this notion.

a) If \(M \) contains one compact subset with nonempty interior having zero \(p \)-capacity then \(M \) is \(p \)-parabolic.

b) The Euclidean space \(\mathbb{R}^n \) is \(p \)-hyperbolic for \(p < n \) and \(p \)-parabolic for any \(p \geq n \).

c) If \(M \) is \(p \)-hyperbolic, then any domain \(\Omega \subseteq M \) is also \(p \)-hyperbolic.

d) If a closed subset \(S \subseteq M \) with Hausdorff dimension \(> (n-p) \) is removed from any manifold \(M \) and if \(M \setminus S \) is connected, then \(M \setminus S \) is \(p \)-hyperbolic.

e) In particular, if one removes a point \(x_0 \), then \(M \setminus \{x_0\} \) is \(p \)-hyperbolic for all \(p > n \) and if one removes a non separating closed subset with nonempty interior \(D \subseteq M \), then \(M \setminus D \) is \(p \)-hyperbolic for all \(p \geq 1 \).

f) If the manifold is complete and \(\text{Vol}(B(x_0,r)) \leq \text{const.} r^d \) then \(M \) is \(p \)-parabolic for any \(p \geq d \) (finer estimates relating the volume growth to parabolicity are in fact available).
g) If the isoperimetric inequality
\[\text{Area}(\partial \Omega)^{d/(d-1)} \geq \text{const. Vol(\Omega)} \]
holds for any big smooth domain \(\Omega \subset M \), then \(M \) is \(p \)-hyperbolic for \(p < d \).

h) Suppose that a Sobolev inequality
\[\|u\|_{L^q} \leq \text{const.} \|\nabla u\|_{L^p} \]
holds for some \(1 \leq q \leq \infty \) and all functions \(u \in C^1_0(M) \). Then \(M \) is \(p \)-hyperbolic.

Recall that the \(p \)-Laplacian is the operator \(\Delta_p u := \text{div}(|\nabla u|^{p-2}\nabla u) \).

A function is called \(p \)-superharmonic if \(\Delta_p u \leq 0 \).

i) \(M \) is \(p \)-parabolic if and only if every positive \(p \)-superharmonic function on \(M \) is constant.

j) \(M \) is \(p \)-hyperbolic if and only if there exists a positive Green function for the \(p \)-Laplacian.

k) \(M \) is 2-hyperbolic if and only if the Brownian motion is transient.

l) If \(M \) has finite volume, then there exists a number \(d \in [1, \infty] \) such that \(M \) is \(p \)-parabolic for \(1 \leq p < d \) and \(p \)-hyperbolic for \(p > d \).

m) For a non compact manifold with bounded geometry, we have the opposite behaviour: there exists an index \(d \), called the \emph{parabolic dimension} of \(M \), such that \(M \) is \(p \)-hyperbolic for \(1 \leq p < d \) and \(p \)-parabolic for \(p > d \).

n) The parabolic dimension is a quasi-isometric invariant of manifolds with bounded geometry.

o) \(n \)-parabolicity is a quasi-conformal invariant for any manifolds.

\textit{Proof.} — The proofs of (a)-(h) and (l)-(n) can be found in [37]. The proofs of (i) and (j) are in [14] (see also [17]). We refer to [10] for (k) and [45] for (o).

7.3. An improvement of a result by Pierre Pansu.

The following result gives an improvement of our Theorem B for Sobolev homeomorphisms with Lusin’s property between manifolds with...
bounded geometry. It was proved by P. Pansu for diffeomorphisms, see [28, corollaire 2.1].

Theorem. — Let M and N be Riemannian manifolds with bounded geometry, and assume that N satisfies an isoperimetric inequality of order $d > n$:

$$\text{Area}(\partial \Omega)^{d/(d-1)} \geq \text{const} \cdot \text{Vol}(\Omega)$$

for all smooth compact domain $\Omega \subset N$ of volume ≥ 1 (in particular N is n-hyperbolic).

If $\frac{n-1}{n-1} < s < n$, then every homeomorphism $f \in W^{1,1}_{\text{loc}}(M, N)$ with bounded s-distortion satisfying Lusin’s property is a rough quasi-isometry.

Proof. — We know that if f has bounded s-distortion, $s > (n-1)$ and satisfies Lusin’s property, then f^{-1} has bounded p-distortion where $p = \frac{s}{s-(n-1)}$ (see Theorem 4.1 and the Remark at the end of Section 4). The above theorem thus follows from [28, Théorème 1].

7.4. On Reshetnyak’s proof for the case of quasi-regular mappings.

In order to illustrate the alternative approach based on methods of non-linear potential theory, we give a short proof of Liouville’s theorem for quasi-regular mappings along Reshetnyak’s ideas.

Theorem. — Let $f : M \to N$ be a non constant quasi-regular mapping between oriented n-dimensional Riemannian manifolds. Assume that M is n-parabolic, then so is N.

Proof. — Assume that $f : M \to N$ is a non constant quasi-regular mapping, then it is known (see [31, Th. 6.4, chap. II]) that f is an open map; in particular $N' := f(M) \subset N$ is open. If N is n-hyperbolic, then so is N' and, by [14, Th. 5.2], we know that there exists a non constant positive n-superharmonic function $v : N' \to \mathbb{R}$. The function $u = f^* v = v \circ f : M \to \mathbb{R}$ is then \mathcal{A}-superharmonic where \mathcal{A} is the pull back to M of the operator $T N' \to T N'$ given by $\eta \to |\eta|^{n-2} \eta$ (see [31, Th. 11.2, chap. II] or [12, Th. 14.42]). By [14, Th. 5.2] again, one concludes that M is also n-hyperbolic, contradicting the hypothesis. \square
Final remarks. — 1) The argument of Martio, Väisälä and Rickman are based on capacity estimates in the spirit of our proof of Theorem A (see [22]).

2) Another proof can be found in [3]. This paper gives other obstructions to the existence of quasi-regular mappings.

BIBLIOGRAPHY

Annales de l'Institut Fourier

Manuscrit reçu le 7 novembre 2000,
révisé le 26 avril 2002,
accepté le 26 juin 2002.

Marc TROYANOV,
E.P.F.L.
Institut de Mathématiques
CH-1015 Lausanne (Switzerland).
marc.troyanov@epfl.ch

Sergei VODOP’YANOV,
Sobolev Institute of Mathematics
Novosibirsk 630090 (Russia).
vodopis@math.nsc.ru

ANNALES DE L’INSTITUT FOURIER