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CAPACITIES ON METRIC SPACES

V. GOL’DSHTEIN AND M. TROYANOV

Abstract. We discuss the potential theory related to the variational capacity
and the Sobolev capacity on metric measure spaces. We prove our results in

the axiomatic framework of [16].
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1. Introduction

Various notions of Sobolev spaces on a metric measure spaces (X, d, µ) have been
introduced and studied in recent years (see e.g. [4], [17], [22] and [39]). Good source
of information are the books [19] and [20].

The basic idea of all these constructions is to associate to a given function u :
X → R a collection D[u] of measurable functions g : X → R+ which control the
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variation of u. The Dirichlet p-energy of the function u is then defined as

Ep(u) := inf
{∫

X

gpdµ

∣∣∣∣ g ∈ D[u]
}

and the Sobolev space is W 1,p(X) := {u ∈ Lp(X) | Ep(u) <∞}.
We say that g is a pseudo-gradient of u if g ∈ D[u] and the correspondence
u→ D[u] (i.e. the way pseudo-gradients are defined) is called a D−structure. The
theory of D−structures is axiomatically developped in [16].

In the present paper, we introduce two notions of capacities on a metric measure
space X equipped with a D-structure. First the Sobolev capacity of an arbitrary
subset F ⊂ X is defined to be

Cp(F ) := inf{‖u‖W 1,p | u ∈ Bp(F ) } ,

where Bp(F ) := {u ∈W 1,p(X)
∣∣u ≥ 1 near F and u ≥ 0 a.e.}. We also define the

variational capacity of a bounded subset F ⊂ X by

Capp(F ) := inf{Ep(u) |u ∈ Ap(F ) } ,

where Ap(F ) := {u | u ≥ 1 near F , and u vanishes at ∞} (see Definitions 2.12 and
2.13).

The goal of this paper is to develop some basic topics in the potential theory related
to these notions of capacity. Specifically, we discuss the following subjects:

• Polar sets. A set S ⊂ X is said to be p-polar if it has locally zero
variational p-capacity; these are the negligible sets of the theory. We show
that for good spaces, polar sets can be described from the Sobolev capacity
(see Propositions 3.8 and3.9). We also prove that a set is p−polar if and
only if it is the set of poles of a Sobolev function (Proposition 3.11).

• Quasi-continuity. A Lusin type theorem is given (Theorem 4.3): it says
that every Sobolev function u has a p−quasi-continuous representative (i.e.
a representative which is continuous except for a p−polar set).

• Embedding theorem. We discuss some embedding of the Sobolev spaces into
the space of bounded measurable functions and into the space of bounded
continuous functions (see §6).

• Choquet property. The Choquet property has been proved in [29] for the
Sobolev capacity (in this paper, the proof is written for the Hajlasz Sobolev
space, but it is in fact axiomatic). In section 8, we prove the Choquet
property for the variational capacity.

• Extremal functions. Finally we prove the existence and uniqueness of an
extremal function for the variational p-capacity of an arbitrary p−fat subset
F ∈ K (for 1 < p <∞), see Theorem 10.1. (A subset F is called p−fat if it
supports a probability measure which is absolutely continuous with respect
to p−capacity.) This fact is also true for the Sobolev capacity. Such results
are well-known for compact subsets of a bounded Euclidean domain. In our
abstract setting, the proof is more delicate since the Sobolev space may not
be a uniformly convex Banach space.

We prove all our results in the axiomatic framework of [16]; they are thus not
restricted to a particular construction of Sobolev space on metric space.
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2. A review of Axiomatic Sobolev Spaces

In this section, we give a brief summary of the axiomatic theory of Sobolev spaces
developed in [16], we refer to that paper for more details and for the proofs of all
the results stated here.

2.1. The basic setting. An MM-space is a metric space (X, d) equipped with
a Borel regular outer measure µ such that 0 < µ(B) < ∞ for any ball B ⊂ X of
positive radius.

In order to define the notion of local Lebesgue space Lp
loc(X), we introduce the

following concept :

Definition 2.1. A local Borel ring in the MM-space (X, d, µ) is a Boolean ring K
of bounded Borel subsets of X satisfying the following three conditions:

K1)
⋃

A∈K
A = X;

K2) if A ∈ K and A′ ⊂ A is a Borel subset, then A′ ∈ K;
K3) for every A ∈ K there exists a finite sequence of open balls B1, B2, ...Bm ∈ K

such that A ⊂ ∪m
i=1Bi and µ(Bi ∩Bi+1) > 0 for 1 ≤ i < m.

A subset A ⊂ X is called a K-set if A ∈ K.

A local Borel ring is always contained between the ring of all bounded Borel subsets
of X and the ring of all relatively compact subsets if X.

In the sequel, X will always be an MM-space with metric d, measure µ and a local
Borel ring K.

Definition 2.2. We say that the space X is a σK, or that it is a K-countable space,
if X is a countable union of K-sets.

Definition 2.3. For 1 ≤ p <∞, the space Lp
loc(X) = Lp

loc(X,K, µ) is the space
of measurable functions on X which are p-integrable on every K-set. It is a Frechet
space for the family of semi-norms

{
‖u‖Lp(K) : K ∈ K

}
Notations The notation A ⊂⊂ Ω (or A b Ω) means that there exists a closed
K-set K such that A ⊂ K ⊂ Ω (in particular A b X if and only if A is contained
in a closed K-set).

If Ω ⊂ X is open, we denote by K|Ω the set of all Borel sets A such that A b Ω. It is
a Boolean ring which we call the trace of K on Ω. This ring satisfies conditions (K1)
and (K2) above. If condition (K3) also holds, then we say that Ω is K-connected.

We denote by C(X) the space of all continuous functions u : X → R and by
C0(X) ⊂ C(X) the subspace of continuous functions whose support is contained in
a K-set. If Ω ⊂ X is an open subset, then C0(Ω) is the set of continuous functions
u : Ω → R such that supp(u) b Ω.

For any function u ∈ C0(Ω), there exists an extension ũ ∈ C0(X) which vanishes
on X \ Ω and such that ũ = u on Ω.

The space of bounded continuous functions on an open set Ω ⊂ X is denoted by
Cb(Ω) = C(Ω) ∩ L∞(Ω). It is a Banach space for the sup norm.
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We conclude this section with a few more technical definitions:

Definition 2.4. A subset F of an MM-space X is strongly bounded if there exists
a pair of open sets Ω1 ⊂ Ω2 ⊂ X such that Ω2 ∈ K, µ(X \Ω2) > 0, dist(Ω1, X \
Ω2) > 0 and F ⊂ Ω1.

Definition 2.5. An MM-space X is strongly K-coverable if there exist two count-
able families of open K-sets {Ui} and {Vi} such that Vi 6= X for all i and

1) X = ∪Ui;
2) Ui ⊂ Vi for all i;
3) dist(Ui, X \ Vi) > 0 and
4) µ(Vi \ Ui) > 0.

Observe that if F ⊂ Ui for some i, then it is a strongly bounded set.

It is clear that every strongly K-coverable metric space is also K-countable.

2.2. D-structure on an MM space. Let X = (X, d,K, µ) be an MM space with
a local Borel ring and fix 1 ≤ p <∞.

Definition 2.6. a) A D-structure on X is structure which associate to each func-
tion u ∈ Lp

loc(X) a collection D[u] of measurable functions g : X → R+ ∪ {∞}
(called the pseudo-gradient of u). The correspondence u → D[u] is supposed to
satisfy Axioms A1–A5 below.
b) A measure metric space equipped with a D-structure is called an MMD-space.

Axiom A1 If u : X → R is non negative and k-Lipschitz, then the function

g := k sgn(u) =
{
k if u > 0,
0 if u = 0.

belongs to D[u].

Axiom A2 If g1 ∈ D[u1], g2 ∈ D[u2] and g ≥ |α|g1 + |β|g2 almost everywhere,
then g ∈ D[αu1 + βu2].

Axiom A3 Let u ∈ Lp
loc(X). If g ∈ D[u], then for any bounded Lipschitz

function ϕ : X → R the function h(x) = (sup |ϕ|g(x) + Lip(ϕ)|u(x)|) belongs to
D[ϕu].

Axiom A4 Let u := max{u1, u2} and v := min{u1, u2} where u1, u2 ∈ Lp
loc(X).

If g1 ∈ D[u1] and g2 ∈ D[u2], then g := max{g1, g2} ∈ D[u] ∩D[v].

Axiom A5 Let {ui} and {gi} be two sequences of functions such that gi ∈ D[ui]
for all i. Assume that ui → u in Lp

loc topology and (gi − g) → 0 in Lp topology,
then g ∈ D[u].

Definition 2.7. The D-structure is said to be non degenerate if it also satisfies
the following additional axiom:
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Axiom A6 Let {ui} ⊂ L1,p(X) be a sequence of functions such that Ep(ui) → 0.
Then for any metric ball B ∈ K there exists a sequence of constants ai = ai(B)
such that ‖ui − ai‖Lp(B) → 0.

The last Axiom is related to the existence of Poincaré inequalities as shown by the
next two propositions.

Proposition 2.8. A D structure on X is non degenerate if and only if for any pair
of measurable subsets Q ⊂ A ⊂ X such that A ∈ K and µ(Q) > 0, the inequality

‖u− uQ‖Lp(A) ≤ CA,Q ‖g‖Lp(X)

holds for any u ∈ L1,p(X) and g ∈ D[u].
Here the constant CA,Q depends on p, A and Q only, and uQ := 1

µ(Q)

∫
Q
u dµ is the

average value of u on Q.

Proposition 2.9. Assume that axiom A6 holds and let A ⊂ X be a measurable
K-sets such that µ(A) > 0 and µ(X \ A) > 0. Then there exists a constant CA

depending on p and A only for which the inequality

‖u‖Lp(A) ≤ CA ‖g‖Lp(X)

holds for any u ∈ L1,p(X) such that supp(u) ⊂ A and g ∈ D[u].

2.3. The Dirichlet space L1,p(X).

Definition 2.10. i) The p−Dirichlet energy of a function u is defined to be

Ep(u) = inf
{∫

X

gpdµ : g ∈ D [u]
}

ii) The p-Dirichlet space is the space L1,p(X) of functions u ∈ Lp
loc(X) with finite

p-energy.

The Dirichlet space L1,p(X) is equipped with a locally convex topology defined as
follow: one says that a sequence {ui} converges to some function u ∈ L1,p(X) if
Ep(u− ui) → 0 and ‖u− ui‖Lp(A) → 0 for all A ∈ K.

It is also convenient to introduce a norm on L1,p(X): to define this norm, we fix a
set Q ∈ K such that µ(Q) > 0 and we set

(2.1) ‖u‖p
L1,p(X,Q) :=

(∫
Q

|u|pdµ+ Ep(u)
)1/p

Theorem 2.11. This norm turns L1,p(X) into a Banach space. Furthermore the
locally convex topology on L1,p(X) defined above and the topology defined by this
norm coincide; in particular the Banach space structure is independent of the choice
of Q ∈ K.
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The next definition will be our notion of Dirichlet functions vanishing at the bound-
ary of an open subset Ω ⊂ X:

Definition 2.12. L1,p
0 (Ω) is the closure of C0(Ω) ∩ L1,p(X) in L1,p(X) for the

norm (2.1).

2.4. The variational capacity. Let Ω ⊂ X be an open subset. Recall that C0(Ω)
is the set of continuous functions u : Ω → R such that supp(u) b Ω, i.e. supp(u)
is a closed K-subset of Ω.

Definition 2.13. The variational p-capacity of a pair F ⊂ Ω ⊂ X (where Ω is
open and F is arbitrary) is defined as

Capp(F,Ω) := inf {Ep(u) |u ∈ Ap(F,Ω) } ,
where the set of admissible functions is defined by

Ap(F,Ω) := {u ∈ L1,p
0 (Ω)

∣∣∣ u ≥ 1 on a neighbourhood of F and u ≥ 0 a.e.}

If Ap(F,Ω) = ∅, then we set Capp(F,Ω) = ∞. If Ω = X, we simply write
Capp(F,X) = Capp(F ).

Remarks 1. The space L1,p
0 (Ω) may depend on the ambient space X ⊃ Ω, however

we will avoid any heavier notation such as L1,p
0 (Ω, X).

2. By definition capacity is decreasing with respect to the domain Ω : if Ω1 ⊂ Ω2,
then Capp(F,Ω1) ≥ Capp(F,Ω2).

Proposition 2.14. The variational p-capacity Capp( ) satisfies the following prop-
erties:

i) Capp( ) is an outer measure;
ii) for any subset F ⊂ X we have Capp(F ) = inf{Capp(U) : U ⊃ F open };
iii) If X ⊃ K1 ⊃ K2 ⊃ K3... is a decreasing sequence of compact sets, then

lim
i→∞

Capp(Ki) = Capp (∩∞i=1Ki) .

Definition 2.15. The MMD space X is said to be p-parabolic if Capp(K,X) = 0
for all K-set Q ∈ K and p-hyperbolic otherwise.

Theorem 2.16. X is p−hyperbolic if and only if one of the following equivalent
condition holds.

1) 1 /∈ L1,p
0 (X);

2) L1,p
0 (X) is a Banach space for the norm ‖u‖ := (Ep(u))1/p ;

3) Capp(Q) > 0 where Q ⊂ X is an arbitrary K-set such that µ(Q) > 0;
4) there exists a constant C such that for any u ∈ L1,p

0 (X) we have
‖u‖Lp(Q) ≤ C (Ep(u))1/p.
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3. Sobolev p-capacity and Polar sets

The Sobolev spaces associated to an MMD space X is defined as

W 1,p(X) := L1,p(X) ∩ Lp(X) ;

it is a Banach space with norm

‖u‖W 1,p(X) =
(∫

X

|u|pdµ+ Ep(u)
)1/p

(see [16, Th. 1.5]).

Definition 3.1. The Sobolev p-capacity of a pair F ⊂ Ω (where Ω ⊂ X is open
and F is arbitrary) is defined by

Cp(F,Ω) = inf
{
‖u‖p

W 1,p

∣∣u ∈W 1,p(Ω), u ≥ 1 near F and u ≥ 0 a.e.
}
.

The Sobolev p-capacity Cp(F,X) with respect to X is simply denoted by Cp(F ),
it satisfies the same basic properties as the variational p-capacity :

Proposition 3.2. i) The Sobolev p-capacity is an outer measure;
ii) for any subset F ⊂ X we have Cp(F ) = inf{Cp(U) : U ⊃ F open };
iii) If X ⊃ K1 ⊃ K2 ⊃ K3... is a decreasing sequence of compact sets, then

lim
i→∞

Cp(Ki) = Cp

( ∞⋂
i=1

Ki

)
.

Proof Use the same type of arguments as in the proof of Proposition 2.14 (see §3
in [16]).

Proposition 3.3. For any function u ∈ W 1,p(X), let Pu := {x ∈ X| lim
y→x

u(y) =

∞} be the set of poles of u. Then Cp(Pu) = 0.

Proof For any k ≥ 1 the function uk(x) := 1
k min(k, u(x)) is an admissible func-

tion for the Sobolev p−capacity of the set Pu. Using the axioms A1, A2 and A4,
we can check that ‖uk‖W 1,p(X) ≤

1
k ‖u‖W 1,p(X). Hence ‖uk‖W 1,p(X) → 0 as k →∞

and thus the Sobolev p−capacity of the set Pu is zero.

Proposition 3.4. For any set A ⊂ X, Cp(A) = 0 if and only if for any ε > 0
there exists a nonnegative function u ∈ W 1,p(X) such that lim

y→x
u(y) = ∞ for any

x ∈ A and ‖u‖W 1.p(X) ≤ ε.

Proof Suppose that Cp(A) = 0. By definition of the Sobolev p-capacity there
exists a sequence of nonnegative functions un such that ‖un‖W 1,p(X) ≤ 2−nε and
un = 1 in some neighbourhood of A. Then u =

∑
n un belongs to W 1,p(X) and

lim
y→x

u(y) = ∞. Furthermore, we clearly have ‖u‖W 1,p(X) ≤ ε.

The converse direction follows from the previous proposition.
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Definition 3.5. a) A set S ⊂ X is p-polar (or p-null) if for any pair of open
K-sets Ω1 ⊂ Ω2 6= X such that dist(Ω1, X \Ω2) > 0, we have Capp(S∩Ω1,Ω2) = 0.

b) A property is said to hold p-quasi-everywhere if it holds everywhere except on
a p-polar set.

In the rest of this section, we compare p-polar sets and sets of Sobolev p-capacity
zero, we show in particular that in good cases, the p−polar sets and the sets of
Sobolev p-capacity zero are the same.

We begin with a technical lemma which is used in some cut-off arguments.

Lemma 3.6. Let Ω1 ⊂ Ω2 ⊂ X be a pair of open sets such that Ω2 6= X and
δ := dist(Ω1, X \ Ω2) > 0. Then for any subset S ⊂ Ω1 and every ε > 0, there
exists a function ϕ = ϕε ∈W 1,p(X) with support in a closed subset of Ω2, such
that ϕ ≥ 1 in a neighbourhood of S and

(3.1) ‖ϕ‖W 1,p(X) ≤ 2
(

1 +
3
δ

)
(Cp(S) + ε)1/p

.

Proof Let us set σ(x) := dist(x,X \ Ω2) and

ψ(x) =

 1 if σ(x) ≥ 2
3δ ,

( 3
δσ(x)− 1) if 1

3δ ≤ σ(x) ≤ 2
3δ ,

0 if σ(x) ≤ 1
3δ .

Then ψ : X → R is a Lipschitz function with Lipschitz constant 3
δ , with support

in a closed subset of Ω2 and such that ψ ≡ 1 in a neighbourhood of Ω1.
By definition, we can find for any ε > 0 two nonnegative functions u, g : X → R
such that g ∈ D[u], u ≥ 1 in a neighbourhood of S and ‖u‖p

Lp(X) + ‖g‖p
Lp(X) ≤

Cp(S)+ε. Let us set ϕ := ψu; it is clear that supp(ϕ) is a closed subset of Ω2 and
ϕ ≥ 1 in a neighbourhood of S. From axiom A3 we know that h := g+ 3

δ |u| ∈ D[ϕ],
hence

‖ϕ‖W 1,p(X) ≤ ‖ϕ+ h‖Lp(X) ≤ ‖ϕ‖Lp(X) + ‖h‖Lp(X)

≤ ‖u‖Lp(X) + ‖g +
3
δ
u‖Lp(X) ≤ (1 +

3
δ

)
(
‖u‖Lp(X) + ‖g‖Lp(X)

)
≤ (1 +

3
δ

) 2 (‖u‖p
Lp(X) + ‖ g‖p

Lp(X))
1/p

≤ (1 +
3
δ

)2(Cp(S) + ε)1/p .

Corollary 3.7. Let Ω1, Ω2 and S be as in the lemma. If C(X) ∩W 1,p(X) is
dense in W 1,p(X) and Ω2 is a K-set, then

Capp(S,Ω2) ≤ 2p

(
1 +

3
δ

)p

Cp(S).

In particular if Cp(S) = 0, then S is p-polar.
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Proof Because C(X)∩W 1,p(X) is dense in W 1,p(X), the function ϕ constructed
in the previous lemma belongs to L1,p

0 (Ω2). The proof follows then from the in-
equality (3.1) as ε is arbitrarily small.

Proposition 3.8. Suppose that C(X) ∩W 1,p(X) is dense in W 1,p(X). Then a
strongly bounded set S ⊂ X is p−polar if and only if Cp(S) = 0.

Recall that S ⊂ X is strongly bounded if S ⊂ Ω1 ⊂ Ω2 ⊂ X where Ω1 and Ω2 are
open K-sets such that µ(X \ Ω2) > 0 and dist(Ω1, X \ Ω2) > 0.

Proof By the previous Corollary, we already know that if Cp(S) = 0 then S is
p−polar. Assume conversely that S is p-polar, we then have Capp(S∩Ω1,Ω2) = 0.
This means that for every ε > 0 there exists a function u ∈ L1,p

0 (Ω) such that
u ≥ 1 on a neighborhood of S and Ep(u) ≤ ε.
Recall that any function u ∈ L1,p

0 (Ω) is globally defined on X and vanishes on
X \ Ω. Since µ(X \ Ω2) > 0, we have from Proposition 2.9∫

X

|u|pdµ =
∫

Ω2

|u|pdµ ≤ CEp(u)

where C = C(Ω2, p). Thus u is an admissible function for the Sobolev p-capacity
Cp(S) and ‖u‖W 1,p(X) ≤ ((1+C)ε)1/p, therefore Cp(S) = 0 since ε is arbitrary.

Proposition 3.9. Suppose that C(X)∩W 1,p(X) is dense in W 1,p(X) and that X
is strongly K-coverable. Then

i) If a set S ⊂ X is p-polar then Capp(S,X) = 0;
ii) A set S ⊂ X is p-polar if and only if Cp(S) = 0.

Recall that X is strongly K-coverable if there exist two countable families of open
K-sets {Ui}, {Vi} such that: X = ∪Ui, Ui ⊂ Vi for all i, dist(Ui, X \ Vi) > 0 and
µ(Vi \ Ui) > 0.

Proof (i) Let Sj := S ∩ Uj , then Capp(Sj , X) ≤ Capp(Sj , Vj) = 0 since S is
p-polar. Thus, by countable subadditivity of the variational p-capacity, we have
Capp(S,X) = Capp(∪Sj , X) ≤

∑
j Capp(Sj , X) = 0.

(ii) We already know from Corollary 3.7 that if Cp(S) = 0, then S is p-polar.
Conversely, if S ⊂ X is an arbitrary p-polar set, then we consider the decomposition
S = ∪Sj where Sj = S ∩ Uj . We know by Proposition 3.8 that Cp(Sj) = 0 and
thus, by countable subadditivity of the Sobolev p-capacity, Cp(S) = Cp(∪Sj) ≤∑
Cp(Sj) = 0.

Lemma 3.10. Suppose that X is a strongly K-coverable metric space such that
C(X)∩W 1,p(X) is dense in W 1,p(X). Then any p-polar subset of X has µ-measure
zero.

Proof This follows from the trivial estimate µ(F ) ≤ Cp(F ).
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Remark The converse of assertion (i) in Proposition 3.9 is not true in general.
Indeed, suppose that X is p−parabolic, then Capp(S,X) = 0 for any subset S, yet
no set of positive measure is p-polar. However, one may ask the following

Question Suppose that X is strongly K-coverable and p−hyperbolic. Do we have
Capp(S,X) = 0 ⇔ S p-polar ?

Our final result explains the terminology: a set is p−polar if it is the set of poles
for some function u ∈W 1,p(X).

Proposition 3.11. Suppose that C(X) ∩W 1,p(X) is dense in W 1,p(X) and that
X is strongly K-coverable. A set A ∈ K is p-polar if and only if for any ε > 0 there
exists a nonnegative function u ∈ W 1,p(X) such that lim

y→x
u(y) = ∞ for any x ∈ A

and ‖u‖W 1.p(X) ≤ ε.

Proof Follows from Propositions 3.4 and 3.9.

4. Egorov type theorems and quasi-continuity

In this section, we prove Egorov and Lusin type theorems for the Dirichlet space
L1,p(X) with the topology induced by the norm (2.1):

‖u‖p
L1,p(X,Q) :=

(∫
Q

|u|pdµ+ Ep(u)
)1/p

,

where Q is a fixed K-set such that µ(Q) > 0. Recall that, by Theorem 2.11, this
norm is complete and the corresponding Banach space structure is independent of
the choice of Q.

It will be important throughout this section to keep in mind that a Cauchy sequence
in the Dirichlet space L1,p(X) converges in W 1,p(Ω) for any open K-set Ω ⊂ X;
this follows from Theorem 2.11 and the floating Poincaré inequality.

Theorem 4.1. Let {ui} ⊂ L1,p(X) ∩ C(X) be a Cauchy sequence in L1,p(X).
Then for any open set Ω ∈ K there exists a subsequence {ui′} of {ui} and a
sequence of open subsets Ω ⊃ U1 ⊃ U2 ⊃ U3 ⊃ ... such that lim

ν→∞
Cp(Uν ,Ω) = 0

and {ui′} converges uniformly in Ω\ Uν for all ν. In particular {ui′} converges
pointwise in the complement of the set of zero Sobolev p-capacity S := ∩∞j=1Uj.

Proof We know that {ui} converges in W 1,p(Ω) for any K-set Ω ⊂ X, we can
thus find a subsequence (which we still denote {ui}), such that

(4.1)
∞∑

i=1

2ip‖ui − ui+1‖p
W 1,p(Ω) <∞ .

For any i ∈ N, we set Ei := {x ∈ Ω : |ui(x)−ui+1(x)| > 2−i} and Uj := ∪∞i=jEi.
Since the functions ui are continuous by hypothesis, the sets Ei and Uj are open;
in particular 2i|ui − ui+1| is admissible for the Sobolev p-capacity of Ei in Ω,
hence

Cp(Ei,Ω) ≤ 2ip‖ui − ui+1‖p
W 1,p(Ω) .
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By countable subadditivity of the Sobolev p-capacity, we obtain

Cp(Uj ,Ω) ≤
∞∑

i=j

Cp(Ei,Ω) ≤
∞∑

i=j

2ip‖ui − ui+1‖p
W 1,p(Ω) ,

and from the convergence of the sum (4.1) we conclude that

Cp(S,Ω) ≤ lim
j→∞

Cp(Uj ,Ω) = 0

(where S = ∩∞j=1Uj) and {ui} converges pointwise in Ω \U . Moreover we have for
any x ∈ Ω\ Uν and all k > j ≥ ν

|uj(x)− uk(x)| ≤
k−1∑
i=j

|ui(x)− ui+1(x)| ≤
k−1∑
i=j

2−i ≤ 21−j .

This implies that {uj} converges uniformly in Ω \ Uν .

A consequence of the previous result is the following Lusin type theorem for
p−capacities in K-countable metric spaces. We first need the following

Definition 4.2. A function v : X → R is p−quasi-continuous if for every point
x ∈ X there exists an open K-set A containing x such that for every ε > 0, we can
find a subset S ⊂ A such that Cp(S,A) < ε and v is continuous on A \ S.

Theorem 4.3. Suppose that X is K-countable. For each u ∈ C(X) ∩ L1,p(X)
there is a function v ∈ L1,p(X) such that

i) u = v almost everywhere on X and
ii) v is p-quasi-continuous.

The function v is called a p−quasi-continuous representative of u. Note in particular
that every function u ∈ L1,p

0 (X) has a p−quasi-continuous representative (since
continuous functions are dense in L1,p

0 (X) by definition).

Proof By hypothesis, there exists a sequence of open K-sets Ω1 ⊂ Ω2 ⊂ Ω3 ⊂
... ⊂ X such that X = ∪Ωj . Choose ε > 0 and a function u ∈ C(X) ∩ L1,p(X);
there exists a sequence {ui} ∈ L1,p(X) ∩ C(X) which converges to u in L1,p(X).
In particular {ui} converges in W 1,p(Ωj) for any j, hence the previous theorem
(applied to X = Ωj) tells us that for any j there exist a subsequence {ui,j} of
{ui} which converges to a function vj = lim

i→∞
ui,j in W 1,p(Ωj)-norm, and a subset

Fj ⊂ Ωj such that Cp(Fj ,Ωj) < 2−jε and {ui,j} converges uniformly toward vj in
Ωj \ Fj ; in particular vj is continuous in that set.

Choose ij such that ‖uij ,j − vj‖W 1,p(Ωj) < 1/j and consider the diagonal subse-
quence wj := uij ,j . Because Ωj ⊂ Ωj+1, the sequence wj converges in L1,p(X)-
topology to a function v which coincides with vj in Ωj for any j. In particular,
vj = u almost everywhere in Ωj , and thus v = u almost everywhere in X. Since
v = vj on Ωj and is therefore continuous in Ωj \ Fj for all j, it is a p−quasi-
continuous function.
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Theorem 4.1 has a version for sequences of quasi-continuous functions in the space
L1,p

0 (X): every Cauchy sequence of quasi-continuous functions in L1,p
0 (X) contains a

subsequence which converges uniformly outside of set of arbitrary small p−capacity:

Proposition 4.4. Let {ui} ⊂ L1,p
0 (X) be a Cauchy sequence of p-quasi-continuous

functions. Then for any open set Ω ∈ K and any ε > 0, there exists a subsequence
{ui′} of {ui} which converges uniformly in Ω \Fε, where Fε ⊂ Ω is a subset such
that Cp(Fε,Ω) ≤ 2ε.

Proof We know that, given an arbitrary open K-set Ω ⊂ X, the sequence {ui}
converges in W 1,p(Ω) to a function u := limi→∞ ui. Since continuous functions
are dense in L1,p

0 (X), there exists for any i a sequence of continuous functions
vi,j ∈ L1,p

0 (X) which converges in W 1,p(Ω) to ui. By Theorem 4.1 there exists
for each i a sequence of open subsets Ω ⊃ Ui,1 ⊃ Ui,2 ⊃ Ui,3 ⊃ ... such that
lims→∞ Cp(Ui,s,Ω) = 0 and a subsequence of the sequence {vi,j} (which we still
denote {vi,j}) which converges uniformly toward vi = limj→∞ vi,j in Ω \ Ui,s for
any s. Given ε and i, we can therefore find ji such that Cp(Ui,ji ,Ω) < 2−iε and
supx∈Ω\Ui,ji

|vi − vi,ji
| < 2−iε.

Because ui and vi are both p-quasi-continuous and ‖ui − vi‖W 1,p(Ω) = 0 , there
exists a subset Fi ⊂ Ω such that Cp(Fi,Ω) = 0 and ui = vi in Ω \ Fi.

By construction the sequence of continuous functions wi := vi,ji converges in
W 1,p(Ω) to u. By Theorem 4.1 again, there exists a set Uε such that Cp(Uε,Ω) < ε
and a subsequence {wi′} that converges uniformly on Ω \ Uε to w := lim

i→∞
wi;

clearly w = u almost everywhere on Ω \ U0.

Set Fε := Uε ∪ (
⋃
i

Ui,ji
) ∪ (

⋃
i

Fi); by construction and countable subadditivity of

Sobolev p-capacity we have

Cp(Fε,Ω) ≤ Cp(Uε,Ω) +
∞∑

i=1

Cp(Ui,ji ,Ω) +
∞∑

i=1

Cp(Fi,Ω) ≤ 2ε.

Because ui′ = vi′ on Ω \ Fε we obtain finally

sup
x∈Ω\Fε

|ui′ − w| ≤ sup
x∈Ω\Fε

|vi′ − wi′ |+ sup
x∈Ω\Fε

|w − wi′ | ≤ 2−i′ε+ sup
x∈Ω\Fε

|w − wi′ | .

Thus {ui′} converges uniformly to w in Ω \ Fε.

If X is K−countable, then we can globalize the previous result:

Corollary 4.5. Assume that X is K−countable. Let {ui} ⊂ L1,p
0 (X) be a Cauchy

sequence of p-quasi-continuous functions. Then for any ε > 0, there exists a sub-
sequence {ui′} of {ui} which converges uniformly in X \ Fε, where Fε ⊂ X is a
subset such that Cp(Fε, X) ≤ ε.

The proof follows from previous proposition and countable subadditivity of the
Sobolev capacity.

Remark The proofs shows that the last two results also hold for Cauchy sequences
in C(x) ∩ L1,p(X).
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Recall that a continuous function f : X → R is said to be monotone (in the sense
of Lebesgue) if its restriction to any compact set assumes its extremal values at the
boundary of that set. For p−quasi-continuous we have a corresponding notion:

Definition 4.6. A function u : X → R is p−quasi-monotone if for every domain
D ⊂ X and every subdomain D1 b D the inequalities

inf
(D\D1)

u ≤ inf
D1
u ≤ sup

D1

u ≤ sup
(D\D1)

u.

hold p−quasieverywhere (i.e. on the complement of a p-polar subset of D).

5. The Sobolev capacity of a point

In this section, we study a metric relation between the Sobolev capacity of a point
and the measure µ.

Recall that if B(x0, 2R) ∈ K and µ(X \B(x0, 2R)) > 0, then there exists a constant
Cx0,R such that the inequality

(5.1) ‖u‖Lp(B(x0,2R)) ≤ Cx0,R Ep(u)1/p

holds for any u ∈ L1,p(X) such that supp(u) ⊂ B(x0, 2R) (Proposition 2.9).

Theorem 5.1. Suppose that B(x0, 2R) ∈ K and µ(X \ B(x0, 2R)) > 0. Then we
have for all x ∈ B(x0, R), all 0 < r < R and any 1 ≤ p <∞.

µ(B(x, r)) ≥

(
rp

2p(1 + Cp
x0,R)

)
Cp({x}) .

Proof Let us define the function ur by

ur(z)) =

 1 if z ∈ B(x, r/2)
2
r (r − d(x, x0)) if z ∈ B(x, r) \B(x, r/2)

0 if z /∈ B(x, r),

it is clearly a Lipschitz function with Lip(ur) ≤ 2
r . We have supp(ur) ⊂ B(x, r) ⊂

B(x0, 2R) (because x ∈ B(x0, R) and r < R).

By Axiom A1, ur ∈ L1,p(X) and a pseudo-gradient g ∈ D[ur] is given by g(z) = 2/r
if z ∈ B(x, r) and g(z) = 0 for all other z. Therefore

Ep(ur) ≤ 2p

rp

∫
B(x,r)

dµ = 2pµ(B(x, r))
rp

.

Using the inequality (5.1) above, we obtain ‖ur‖p
Lp(X) ≤ Cp

x0,R Ep(ur) for some
constant Cx0,R, thus

‖ur‖p
W 1,p(X) ≤ (1 + Cp

x0,R)Ep(ur) ≤ (1 + Cp
x0,r)2pµ(B(x, r))

rp
.

Since the function ur is an admissible function for the Sobolev p-capacity of the
point {x}, we have

Cp({x}) ≤ ‖ur‖p
W 1,p(X) ≤ (1 + Cp

x0,R)2p

(
µ(B(x, r)

rp

)
.
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6. On embeddings of W 1,p(X)

In this section we discuss embedding theorems of Sobolev spaces into the space of
bounded or continuous functions.

Proposition 6.1. Suppose that we have a bounded embedding W 1,p(X) ⊂ L∞(X).
Then we have Cp({x}) ≥ 1

νp for all x ∈ X where ν is the norm of the embedding
W 1,p(X) ⊂ L∞(X).

Proof If u ∈W 1,p(X) is an admissible function for the Sobolev p-capacity of the
point {x}, then the truncated function Tu(x) := max{0; min{1;u}} is also admis-
sible for the Sobolev p-capacity of {x}. The claim follows then from the inequality
1 = ‖Tu‖L∞(X) ≤ ν‖Tu‖W 1,p(X) and the definition of the Sobolev p-capacity.

Corollary 6.2. Suppose that we have a bounded embedding W 1,p(X) ⊂ L∞(X).
If B(x0, 2R) ∈ K and µ(X \ B(x0, 2R)) > 0, then there exists a constant κ such
that µ(B(x, r)) ≥ κrp for any x ∈ B(x0, R) and any 0 ≤ r < R.

Proof Define κ by 1/κ = (2ν)p(1 +Cp
x0,R) where ν is the norm of the embedding

W 1,p(X) ⊂ L∞(X) and Cx0,R is the constant in inequality (5.1). The result follows
then from Proposition 6.1 and Theorem 5.1.

We have the following result in the converse direction:

Proposition 6.3. Assume that Cp({x}) ≥ γ > 0 for all x ∈ X, then every
continuous function in W 1,p(X) is bounded.

Proof We need to prove that for any function u ∈ C(X) ∩W 1,p(X) we have

(6.1) ‖u‖W 1,p(X) ≤ 1 =⇒ ‖u‖L∞(X) ≤ γ−1/p

This can be proved by contradiction, indeed assume that ‖u‖W 1,p(X) ≤ 1 and
‖u‖L∞(X) > γ−1/p, then there exists λ > 1 and x0 such that |u(x0)| ≥ λ2γ−1/p.

We may assume w.l.o.g. that u(x0) > 0. By continuity v :=
(

γ1/p

λ u
)
> 1 in a

neighbourhood of x0, hence it is an admissible function for the capacity Cp({x0}).
We thus have

γ ≤ Cp({x0}) ≤ ‖v‖p
W 1,p(X) =

γ

λp

‖u‖p
W 1,p(X) < γ .

This contradiction implies (6.1) and the Proposition follows.

Corollary 6.4. Assume that Cp({x}) ≥ γ > 0 for all x ∈ X, then
a) C(X) ∩W 1,p(X) is complete for the norm ‖ ‖W 1,p(X).
b) If continuous functions are dense in W 1,p(X), then W 1,p(X) ⊂ Cb(X).

Proof (a) By condition (6.1), we know that if {ui} ⊂ C(X)∩W 1,p(X) is a Cauchy
sequence (for the W 1,p(X)-norm) then it converges uniformly. The limit is thus a
continuous function.
(b) Follows from (a) and the previous Proposition.
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For the Haj lasz-Sobolev space HW 1,p(X) (see [17] or [16] for the definition) , we
also have the following result based on a volume estimate rather than a capacity
estimate:

Theorem 6.5. Suppose that there exists a constant κ > 0 such that µ(B(x, r)) ≥
κrs for any x ∈ X and any 0 < r ≤ D for some D > 0. If p > s, then any
function u ∈ HW 1,p(X) is locally Hölder continuous.

Proof P. Haj lasz has proved in [17] that if p > s, then for any ϕ ∈ HW 1,p(X)
and almost all x, y ∈ B(x0, 3R) (where R is small enough) the following (Morrey
type) inequality holds:

(6.2) |ϕ(x)− ϕ(y)| ≤ C1diam(B(x0, 3R))µ(B(x0, 3R))−1/p ‖ϕ‖HW 1,p(X)

combining this fact with the inequality

µ(B(x0, 3R))−1/p ≤ 22/pκ−1/p diam(B(x0, 3R))−s/p, ,

we obtain

|ϕ(x)− ϕ(y)| ≤ C2diam(B(x0, 3R)) 1−s/p ‖ϕ‖HW 1,p(X)

from which the local Hölder continuity of ϕ follows:

|ϕ(x)− ϕ(y)| ≤
(
C3 ‖ϕ‖HW 1,p(X)

)
|y − x|1−s/p.

(Here the constants C2 and C3 depends on the constants in the previous
inequalities.)

7. Admissible functions for capacities

Recall that the set of admissible functions for the variational p−capacity of a set
F ⊂ X was defined as

Ap(F,Ω) := {u ∈ L1,p
0 (Ω)

∣∣∣ u ≥ 1 on a neighbourhood of F and u ≥ 0} .

Let us denote by A′

p(F,X) the closure of Ap(F,X)) in L1,p
0 (X), it is a closed convex

subset of L1,p
0 (X).

Proposition 7.1. Suppose that X is K-countable. Then for any function u ∈
A′

p(F,X) there exists a p-quasi-continuous representative v such that v = u almost
everywhere and v ≥ 1 p-quasi-everywhere on F .

Proof By definition any function u ∈ A′

p(F,X) is the limit of a sequence of non
negative functions ui ∈ L1,p

0 (X) such that ui(x) ≥ 1 for any x in some neighborhood
of F . By Theorem 4.3 any function ui admits a non negative p-quasi-continous rep-
resentative vi such that ui = vi almost everywhere. We may assume that vi(x) ≥ 1
in some neighbourhood of F . By Corollary 4.5, we can find a subsequence (which
we still denote {vi}) which converges pointwise in the complement of a set S of
zero Sobolev p−capacity to a p-quasi-continuous function v such that v = u almost
everywhere. Therefore v(x) ≥ 1 on F \ S and v is the desired p-quasi-continuous
representative of u.
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The previous proposition motivates the following definition of a more “natural”
admissible set for the variational p−capacity :

A
′′

p (F,X) =
{
u ∈ L1,p

0 (X)
∣∣∣ 0 ≤ u(x) ≤ 1 for all x and

u = 1 p-quasi-everywhere on F} .

(Given a subset F ⊂ X, the notation
{
u ∈ L1,p

0 (X)
∣∣∣u = 1 p-quasi-everywhere on F

}
means the set of those functions u ∈ L1,p

0 (X) which have a p−quasi-continuous rep-
resentative v such that v = 1 p-quasi-everywhere on F .)

Proposition 7.2. Suppose that X is K-countable, then A′′

p (F,X) is convex and
closed in L1,p

0 (X).

Proof Convexity is clear. To prove closedness, consider a sequence vi ∈ A
′′

p (F,X)
which converges to some function v ∈ L1,p

0 (X). By Corollary 4.5, we can find a sub-
sequence (which we still denote {vi}) which converges pointwise in the complement
of a set S of zero Sobolev p−capacity to a p-quasi-continuous function w such that
w = v almost everywhere. Therefore w(x) = 1 on F \ S and thus v ∈ A′′

p (F,X).

We define the truncation operator T : L1,p
0 (X) → L1,p

0 (X) by

Tu(x) =

 0 if u(x) < 0 ,
u(x) if 0 ≤ u(x) ≤ 1 ,

1 if u(x) > 1.

By Axiom A4, the operator T does not increase the Dirichlet energy, therefore

Proposition 7.3. We have Capp(F,X) = inf
{
Ep(u)|u ∈ T (A′

p(F,X))
}

.

Recall that a subset F ⊂ X is strongly bounded if there exists a pair of open K-sets
F ⊂ Ω1 ⊂ Ω2 ⊂ X such that µ(Ω2 \X) > 0 and dist(Ω1, X \ Ω2) > 0.

Proposition 7.4. Suppose that X is p−hyperbolic and K-countable and that C(X)
is dense in W 1,p(X). If F ⊂ X is strongly bounded then

T (A
′

p(F,X)) ⊂ A
′′

p (F,X) ⊂ A
′

p(F,X).

Proof The inclusion T (A′

p(F,X)) ⊂ A′′

p (F,X) follows from Proposition 7.1.

To prove the inclusion A′′

p (F,X) ⊂ A′

p(F,X), we have to show that for any function
u ∈ A′′

p (F,X) and for any η > 0, we can find a function ũ ∈ Ap(F,X) such that
‖u− ũ‖p

L1,p(X,Q) ≤ η. SinceX is p−hyperbolic, we know that (Ep( ))1/p is equivalent
to the norm ‖ ‖p

L1,p(X,Q) in the space L1,p(X) (see Theorem 2.16). It is therefore
enough to construct a function ũ ∈ Ap(F,X) such that (Ep(u − ũ)) is arbitrarily
small.

Because F is strongly bounded there exists a pair of open K- sets F ⊂ Ω1 ⊂ Ω2 ⊂ X
such that Ω2 6= X and δ := dist(Ω1, X \ Ω2) > 0. Applying Theorem 4.1 and
using the density of continuous functions in L1,p

0 (X), we know that for any ε > 0
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there exists a continuous functions v and an open sets U ⊂ Ω2 with the following
properties:

i) Cp(U,Ω2) < εp;
ii) (Ep(u− v))1/p < ε;
iii) |v(x)− u(x)| < ε/2 for all x ∈ Ω2 \ U .

From these conditions and the continuity of v, we deduce that v ≥ (1 − ε/2) on
(F \U). Let us set w := v/(1−ε), then w(x) ≥ 1 in some neighbourhood of (F \U)
and

(Ep(w − v))1/p =
(

ε

1− ε

)
(Ep(v))1/p ≤

(
ε

1− ε

)(
(Ep(u))1/p + ε

)
≤ β ε

where β is some constant depending on u.
By Corollary 3.7 we have

Capp(F ∩ U,X) ≤ αp Cp(F ∩ U,Ω2) < αp εp

where α := 2
(
1 + 3

δ

)
; and thus, by definition of the variational p-capacity, there

exists ϕ ∈ Ap(F,X) such that ϕ(x) ≥ 1 in some neighbourhood of F ∩ U and
Ep(ϕ) < αpεp.

Since w and ϕ are nonnegative the function ũ := (w + ϕ) ≥ 1 on a neighbourhood
of F , hence ũ ∈ Ap(F,X). On the other hand we have

(Ep(ũ− u))1/p ≤ (Ep(w − v))1/p + (Ep(v − u))1/p + (Ep(ϕ))1/p < (1 + β + α) ε .

Corollary 7.5. Under the conditions of the previous Proposition, we have

Capp(F,X) := inf
{
Ep(u) |u ∈ A

′′

p (F,X)
}
.

Proof This follows from the two previous Propositions.

The situation for the Sobolev capacity is similar; recall that Cp(F,Ω) is the infimum
of the Sobolev norm ‖u‖p

W 1,p of all functions u ∈ Bp(F,X) where

Bp(F,X) := {u ∈W 1,p(X)
∣∣ u ≥ 0 and u ≥ 1 on a neighborhood of F} .

If we define B′p(F,X) to be the closure of Bp(F,X) in W 1,p(X) and B′′p (F,X) to
be the set of those functions u ∈ W 1,p(X) such that 0 ≤ u ≤ 1 and u = 1 p-
quasi-everywhere on F . Then all results of this section hold for the sets Bp, B′p and
B′′p .

The equivalent result to Proposition 7.4 is more generally true for any subset F ⊂
X, i.e. without assumptions that F is strongly bounded, because the Corollary
3.7 used in the proof to compare the variational and the Sobolev capacity is not
needed.
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8. The Choquet Property

The abstract notion of capacity was introduced by Gustave Choquet (see [8] or [9]):

Definition 8.1. We say that a set function Ch : 2X → R defined in X is a Choquet
capacity if it satisfies the following conditions:

i) Ch is monotone : A ⊂ B ⇒ Ch(A) ≤ Ch(B);
ii) If X ⊃ K1 ⊃ K2 ⊃ .... is a decreasing sequence of compact sets, then

lim
i→∞

Ch(Ki) = Ch(∩∞i=1Ki);

iii) If A1 ⊂ A2 ⊂ .... ⊂ X is an arbitrary increasing sequence of non empty
sets, then

lim
i→∞

Ch(Ai) = Ch(∪∞i=1Ai) .

Theorem 8.2. If 1 < p <∞, then the Sobolev capacity F → Cp(F,X) is a Choquet
capacity.

Proof Because of Proposition 3.2, we only need to prove that condition (iii) holds.
The proof is given in [29] in the case of capacity relative to Haj lasz Sobolev space;
however, the same proof works for all capacities relative to any axiomatic Sobolev
space.

For variational capacities, the situation is more complex; we first define a local
version of the Choquet condition :

Definition 8.3. We say that a set function Ch : 2X → R defined in X is a Choquet
capacity relatively to strongly bounded subsets if it satisfies the conditions (i) and
(ii) above as well as

: iii’) If A1 ⊂ A2 ⊂ .... ⊂ X is an increasing sequence of non empty sets such
that A := ∪∞i=1Ai is strongly bounded, then

lim
i→∞

Ch(Ai) = Ch(∪∞i=1Ai) .

Theorem 8.4. Suppose that X is K-countable and C(X) is dense in W 1,p(X). If
1 < p <∞, then the variational p-capacity F → Capp(F,X) is a Choquet capacity
relatively to strongly bounded subsets.

For an arbitrary subset F ⊂ X, we define

P (F ) := D[A
′′

p (F,X)] = {g ∈ Lp(X) : g ∈ D[u] for some u ∈ A
′′

p (F,X)} .

Under the hypothesis of the theorem, we have

Capp(F,X) = inf
g∈P (F )

‖g‖p
Lp(X) .

for any strongly bounded subset F ⊂ X. This identity is proved in Corollary 7.5
for p-hyperbolic metric spaces X and for p-parabolic spaces it is trivial.

We will need the following two lemmas.
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Lemma 8.5. For any increasing sequence of arbitrary sets A1 ⊂ A2 ⊂ ... ⊂ X
we have ⋂

m

P (Am) ⊂ P (
⋃
m

Am) .

We will use the lighter notation A′′
(F ) for A′′

p (F,X).

Proof Let g ∈
⋂
m
P (Am). By definition of P (Am), there exists a function um ∈

A′′
(Am) such that g ∈ D[um]. Let us set vm := sup

1≤k≤m
uk. Then g ∈ D[vm] for all

m by axiom A4. Set v := sup
1≤m≤∞

um = lim
m→∞

vm. Then 0 ≤ v(x) ≤ 1 for all x and

v(x) = 1 p-quasi-everywhere on
⋃
m
Am, hence by definition v ∈ A′′

(∪Am).

Since v is bounded, it belongs to Lp
loc(X). Furthermore, v is the monotone limit

of the sequence of non-negative functions vm; hence, by Fatou lemma, vm con-
verges to v in Lp

loc(X). Applying axiom A5, we conclude that g ∈ D[u] and hence
g ∈ P (∪mAm).

Lemma 8.6. If X is K-countable and p-hyperbolic for some 1 < p < ∞, then for
any subset F ⊂ X, the set P (F ) is convex and closed in Lp(X).

Proof Let f, g ∈ P (F ). If h = λf+(1−λ)g for some 0 ≤ λ ≤ 1, then, by definition
of P (F ) there exist u, v ∈ A′′

p (F,X) such that f ∈ D[u] and g ∈ D[v]. By convexity,
of A′′

p (F,X) we have λu+ (1− λ)v ∈ A′′

p (F,X), thus h ∈ D[λu+ (1− λ)v] ⊂ P (F )
by Axiom A2; this shows that P (F ) is convex.

To show that P (F ) is closed in Lp(X), we need to prove that for any sequence
{gn} ⊂ P (F ) such that gn → g0 ∈ Lp(X), we have g0 ∈ P (F ).

Since X is K-countable we can find an exhaustion of X by open sets {Um}m∈N ⊂ K.
For each n, we have gn ∈ D[un] for some un ∈ A′′

p (F,X) and by Theorem 2.16
(assertion 1), we know that, for each m, there exists a constant Cm such that

(8.1) ‖un‖Lp(Um) ≤ CmE1/p
p (un) ≤ Cm‖gn‖Lp(X).

As ‖gn‖Lp(X) is bounded, this inequality implies that the sequence {un} is bounded
in Lp(Um) for all m; thus the pairs of functions (un, gn) is a bounded sequence in
the direct product Sm := Lp(Um)× Lp(X).
Since Sm is a reflexive Banach space, we may assume (passing to a subsequence
if necessary) that the sequence of restrictions {(un|Um

, gn)} has a weak limit
(vm, g0) ∈ Sm.
Using Mazur’s lemma we can find for each n ≥ m a collection of numbers αm

n,1, α
m
n,2, . . .

αm
n,n ≥ 0 such that

∑n
s=1 α

m
n,s = 1 and the sequence of convex combinations

wm,n :=
∑n

s=1 α
m
n,sus converges strongly to vm in Lp(Um) and the sequence fm,n :=∑n

s=1 α
m
n,sgs converges strongly to g0 ∈ Lp(X) as n→∞ (m being fixed). Let us

observe that, since gs ∈ D[us] for all s, axiom A2 implies that fm,n ∈ D[wm,n] for
all m,n.

Let us choose for each m a number nm ∈ N such that ‖wn,mn − vm‖Lp(Um) < 1/m,
and consider the diagonal subsequence w̃m := um,nm

; it is clear that w̃m converges
in Lp

loc(X)-topology to a function v0 ∈ Lp
loc(X) such that v0|Um

= vm for all m.
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Since f̃m := fm,nm
→ g0 (in Lp(X)), we conclude from axiom A5 that g0 ∈ D[v0].

By convexity we have w̃m ∈ A′′

p (F,X) for all m and thus, by Proposition 7.2
v0 = limwm ∈ A′′

p (F,X). We have proved that g0 ∈ D[v0] ⊂ P (F ).

Proof of Theorem 8.4 If the space X is p-parabolic, then we know by Theorem
2.16 that 1 ∈ L1,p

0 (X), therefore Capp(A,X) = 0 for any set A ⊂ X and the
Theorem is trivial.

We thus assume X to be p-hyperbolic. By Theorem 2.14 it is enough to prove the
property (iii’), i.e. that lim

i→∞
Capp(Am, X) = Capp(∪∞m=1Am, X) for any sequence

of non empty sets A1 ⊂ A2 ⊂ ... such that A := ∪mAm is strongly bounded.

The inequality lim
m→∞

Capp(Am, X) ≤ Capp(A,X) immediately follows from the
monotonicity of the variational p-capacity; it thus only remains to prove the con-
verse inequality : Capp(A,X) ≤ lim

m→∞
Capp(Am, X). If lim

m→∞
Capp(Am, X) = ∞

there is nothing to prove and we may therefore assume lim
m→∞

Capp(Am, X) <∞.

Set γ := Capp(A,X), fix some ε > 0 and define the set of functions

Pm := {g ∈ P (Am) : ‖g‖p
Lp(X) ≤ γ + ε} ⊂ Lp(X) .

This set is clearly non empty since infg∈Pm
‖g‖p

Lp(X) = Capp(Am, X) ≤ γ + ε.
By the previous lemma, Pm is a non empty closed convex subset of the reflexive
Banach space Lp(X). Therefore Pm ⊃ Pm+1 ⊃ · · · is a nested sequence of non
empty weakly compact subsets of Lp(X) and P := ∩Pm is thus non empty by
Cantor’s theorem.

By Lemma 8.5 we have ∩mPm ⊂ P (A). Because A is strongly bounded, we have
by Corollary 7.5

Capp(A,X) = inf
g∈P (A)

‖g‖p
Lp(X) ≤ inf

g∈∩Pm

‖g‖p
Lp(X) ≤ γ + ε .

Since ε is arbitrary, this inequality implies Capp(A,X) ≤ γ = lim
m→∞

Capp(Am, X).

Corollary 8.7. Suppose that F ⊂ X is a strongly bounded Borel set which is
contained in a countable union of compact sets, then

Capp(F ) = sup{Capp(K)| K ⊂ F a compact subset} .

Proof This result follows from Theorem 8.4 and Choquet’s capacitability theorem
(see [8] or [9, theorem 9.3]).

Remark. The proof of the Choquet property for classical Sobolev spaces on Rie-
mannian manifolds is much simpler (see e.g. the proof of Theorem 2(viii) in [11,
chapter2] where the argument is given for Rn). The classical proof uses the fact
that if w := max(u, v), then ∇w = ∇u a.e. on the set {u ≥ v}. This fact is not
guaranteed by our axioms and this is the main source of complication in the proof.
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9. Fat sets

Definition 9.1. A Borel measure τ on X is said to be absolutely continuous
with respect to p-capacity if τ(S) = 0 for all p-polar subsets S ⊂ X.

For any Borel subset F ⊂ X we denote by Mp(F ) the set of all probability
measures τ on X which are absolutely continuous with respect to p-capacities and
whose support is contained in F .

Definition 9.2. A subset F is said to be p−fat if it is a Borel subset and Mp(F ) 6=
∅.

For instance any measurable subset F ⊂ Rn such that µ(F ) > 0 is p−fat. On the
other hand, a p−polar set is never p−fat.

In a Riemannian manifold M , any Borel subset F ⊂M is either p−polar or p−fat
(we will give a proof of this fact in §11.1).
The next result gives us a geometric criterion to check if a set is p−polar or p−fat
in the context of Haj lasz theory.

Let us recall first that a metric space X is said to be locally s-regular if for each
x ∈ X, there exists c,R > 0 such that

rs

c
≤ µ(B(x, r) ≤ crs

for all 0 ≤ r ≤ R.

Theorem 9.3. Suppose that the space X is locally s-regular and consider capacities
with respect to Haj lasz-Sobolev space. If 1 < p < s, then

i) If Hs−p(F ) = 0, then F is p−polar;
ii) If F contains a subset A such that 0 < Hs−p(A) <∞, then F is p−fat and

τ := 1
Hs−p(A)H

s−pxA belongs to Mp(F ).

The proof of this theorem is given in [28, Theorem 4.13].

10. The extremal function

We now prove the existence and uniqueness of an extremal function for the varia-
tional p-capacity of an arbitrary p−fat subset F ∈ K.

Theorem 10.1. Let (X, d) be a K-countable measure metric space and F ⊂ X be a
p−fat subset (1 < p <∞). Then there exists a unique function u∗ ∈ L1,p

0 (X) such
that u∗ = 1 p-quasi-everywhere on F and Ep(u∗) = Capp(F,X). Furthermore u∗

is p−quasi-monotone on X \ F and 0 ≤ u∗(x) ≤ 1 for all x ∈ X.

This extremal function u∗ is called the capacitary function or the equilibrium po-
tential of the condenser F ⊂ X.

Recall that the notion of p−quasi-monotone function was defined in 4.6.

For the proof of this Theorem, we need the following Lemma. Recall that a Banach
space E is uniformly convex if for every ε > o there exists a δ > 0 such that if
x, y ∈ E with ‖x‖ = ‖x‖ = 1

‖y − x‖ ≥ ε ⇒ ‖1
2

(x+ y)‖ ≤ (1− δ).
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Lemma 10.2. In any nonempty closed convex subset A ⊂ E of a uniformly
convex Banach space E, there exists a unique element x∗ ∈ A with minimal
norm: ‖x∗‖ = infx∈A ‖x‖.

The proof can be found in [16] or [24].

Proof of Theorem 10.1 Let us choose a measure τ ∈ Mp(F ) and set E :=
Lp(X, dτ)⊕ Lp(X, dµ). Then E is a uniformly convex Banach space for the norm

‖(u, g)‖E :=
(∫

X

|u|pdτ +
∫

X

|g|pdµ
)1/p

.

Let us set A :=
{

(u, g) ∈ E|u ∈ T (A′p(F,X)) and g ∈ D[u]
}

. Then A is a convex
closed subset of E, and thus, by Lemma 10.2, we know that there exists a unique
element (u∗, g∗) ∈ A which minimizes the norm. It is clear that g∗ is the minimal
pseudo-gradient of u∗, i.e. that Ep(u∗) =

∫
X
|g∗|pdµ.

We assert that Ep(u∗) = Capp(F ). Indeed, if Ep(u∗) > Capp(F ), then, by Propo-
sition 7.3, one can find (u, g) ∈ A such that

∫
X
|g|pdµ <

∫
X
|g∗|pdµ. Since

u, u∗ ∈ T (A′p(F,X)), we may assume that u = u∗ = 1 p-quasi everywhere on F
(see Proposition 7.1) and thus u = u∗ = 1 τ -almost everywhere on F because τ is
absolutely continuous with respect to p-capacity. Therefore

‖(u, g)‖E =
(

1 +
∫

X

|g|pdµ
)1/p

<

(
1 +

∫
X

|g∗|pdµ
)1/p

= ‖(u∗, g∗)‖E

which contradicts the minimality of (u∗, g∗). The quasi-monotonicity of u can be
proved by a simple truncation argument.

The case of condensers

We define a condenser in X to be a pair of disjoint non empty sets F1, F2 ∈ K.
The variational p-capacity of such a condenser is defined by

Capp(F1, F2, X) := inf {Ep(u)|u ∈ Ap(F1, F2, X)}

where Ap(F1, F2, X) is the set of all functions u ∈ L1,p(X) such that u ≥ 1 on
a neighbourhood of F1 and u ≤ 0 on a neighbourhood of F2.

Theorem 10.3. Let F1, F2 ⊂ X be any condenser in a K-countable metric space X
such that either F1 or F2 is p−fat. Then there exists a unique function u∗ ∈ L1,p

0 (X)
such that u∗ = 1 p-quasi-everywhere on F1, u∗ = 0 p-quasi-everywhere on F2 and
Ep(u∗) = Capp(F1, F2, X). Furthermore u is monotone and 0 ≤ u ≤ 1.

The proof is similar to that of Theorem 10.1 and we omit it.

11. The case of Riemannian Manifolds

11.1. Polar sets in Riemannian manifolds. From Proposition 3.9, we immedi-
ately have :

Proposition 11.1. A compact subset S of a Riemannian manifold M is p-polar if
and only if Cp(S) = 0.
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In this section we give a proof of the following

Theorem 11.2. A Borel subset F ⊂M of a Riemannian manifold is either p−polar
or p−fat.

Proof Observe first that if p > n (= dimension of M), then the only p-polar set is
the empty set (see [35] or [21]), thus every measure on M is absolutely continuous
with respect to p-capacity and, therefore, any probability measure supported on a
Borel set F belongs to Mp(F ). Thus every non empty Borel set is p-fat.

We may thus assume p ≤ n. By Choquet’s theorem, we know that if F ⊂M is a
non p-polar subset, then it contains a compact subset K such that Cp(K) > 0.

Since being p−fat is clearly a local property which is stable under diffeomorphisms,
it is enough to prove this theorem for subset of Euclidean space.

For a compact subset K ⊂ Rn, the Bessel capacitary measure σp,K , suitably renor-
malized, belongs to Mp(F ). Let us be more specific.

We first recall some facts about Bessel potentials, basic references are [1], [36] and
[44]. The Bessel kernel is defined by Gα := F−1((1 +

∣∣ξ2∣∣−α/2) where F is the
Fourier transform. The Bessel kernel has two important basic properties: first we
have the convolution rule

Gα ∗Gβ = Gα+β

and secondly, the Bessel potential inverts the operator (I −∆)α/2 (where ∆ is the
Laplacian), i.e.

v = (I −∆)α/2u ⇔ u = Gα ∗ v .
The Bessel potential space Bα,p = Bα,p(Rm) is defined by

Bα,p(Rm) := {u|u = Gα ∗ v, v ∈ Lp(Rm)} ,

and the norm in Bα,p is given by ‖u‖Bα,p = ‖Gα ∗ v‖Bα,p := ‖v‖p (so that the
operator Gα : Lp(Rm) → Bα,p(Rm) defined by Gα(v) = Gα ∗ v is an isometry).

The following important theorem of Calderon allows us to use Bessel spaces instead
of Sobolev spaces in the study of p−polar subsets of Rn.

Theorem 11.3. For α ∈ N and 1 < p <∞, we have Wα,p(Rm) ' Bα,p(Rm) with
equivalent norms.

The Bessel p−capacity of a compact subset K ⊂ Rn is defined as:

B(1,p)(K) := inf
{
‖u‖p

B1,p

∣∣ u ∈ Ak

}
.

where AK := {u ∈ C1
0 (Rn) : u ≥ 1 on K}. This is a Choquet capacity and there

are constants c1, c2 > 0 depending only on p and n such that

(11.1) c1B(1,p)(K) ≤ Cp(K) ≤ c2B(1,p)(K)

for all compact subset K ⊂ Rn, where Cp(K) is the Sobolev p−capacity.

Using uniform convexity arguments, we obtain the following theorem (see [36] or
[1, Theorems 2.2.7 and Proposition 6.3.13]) :
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Theorem 11.4. Assume 1 < p <∞. Given a non polar compact subset K ⊂ Rn,
there is a unique measure τ with the following properties:

1) τ is a probability measure supported on K;
2) uK := 1

B(1,p)(K)Gα ∗ (Gα ∗ τ)1/(p−1) ∈ AK ;
3) ‖uK‖p

(1,p) = B(1,p)(K);
4) τ is absolutely continuous with respect to Bessel capacity

(AK denotes the closure of AK in B1,p(Rm)).

The function uK is the extremal function for the Bessel capacity of K; the measure
σp,K = B(1,p)(K) τ is called the Bessel capacitary measure of K.

In view of this theorem and the inequalities (11.1), the proof of Theorem 11.2 is
complete.

11.2. Existence of extremal function. Let (M, g) be a Riemannian manifold,
recall that a function u ∈W 1,p

loc (M) is called weakly p−harmonic if ∆pu = 0 where
∆p is the p−Laplacian defined by ∆pu := div(|∇u|p−2∇u); the function u is thus
weakly p−harmonic if and only if∫

M

〈
|∇u|p−2∇u,∇ψ

〉
= 0

for any ψ ∈W 1,p(M) (where ∇u is the weak gradient of f).

Theorem 11.5. Let F be a compact non p-polar subset of the Riemannian manifold
M . Then there exists a unique function u∗ ∈ L1,p

0 (M) such that
: a) u∗ = 1 p−quasieverywhere on F ;
: b) 0 ≤ u∗(x) ≤ 1 for all x ∈M and u∗ is monotone;
: c)

∫
M
|∇u∗|p = Capp(F );

: d) u∗ is weakly p−harmonic in the exterior domain M \ F .
Furthermore, u∗ = 1 p−quasi everywhere on M if M is p−parabolic and 0 <
u∗(x) < 1, p−quasi everywhere in M \ F if M is p−hyperbolic.

Proof Since every non p−polar set is p−fat in a Riemannian manifold, the ex-
istence of a function satisfying (a), (b) and (c) is a consequence of Theorem 10.1.
Property (d) is clear since ∆p is the Euler-Lagrange operator associated to the
Dirichlet energy.

Remark A generalization of condition (d) also holds in the case of subriemannian
manifolds, see e.g. [6, Proposition 6.1 ].

11.3. Regularity in M \F . The previous existence theorem is completed by the
following regularity result:

Theorem 11.6. Let u∗ ∈ L1,p(M) be the p-capacitary function of F ⊂ M . Then
for each relatively compact domain Ω ⊂ M \ F , there exists 0 < α < 1 such that
u ∈ C0,α(Ω).

The famous theorem of De Giorgi, Nash and Moser gives conditions under which
weak solutions to elliptic partial differential equations are Hölder continuous. We
present here an alternative argument, due to De Giorgi’s, which is well adapted to
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our situation. The argument is based on the following lemma (which is a Cacciop-
poli type inequality):

Lemma 11.7. Let Ω ⊂ M be an open subset and u ∈ L1,p(Ω) be a bounded weak
solution to ∆pu = 0. Then for any pair of concentric balls B(x0, ρ) ⊂ B(x0, R) ⊂ Ω
and any constant k ∈ R one has∫

B(x0,ρ)∩{u(x)≥k}
|∇u|p dx ≤ c

(R− ρ)p

(∫
B(x0,R)∩{u(x)≥k}

|u− k|p dx

)
Proof By assumption we have

(11.2)
∫

Ω

|∇u|p−2 〈∇u,∇ϕ〉 dx = 0

for any test function ϕ ∈W 1,p
0 (Ω). Let us choose a function η ∈ C1

0 (B(x0, R)) such
that η ≡ 1 on B(x0, ρ) and |∇η| ≤ 2

(R−ρ) and set

ϕ(x) := max{u(x)− k, 0} · η(x)p.

Observe that

∇ϕ =

 ηp∇u+ p(u− k)ηp−1∇η on B(x0, R) ∩ {u(x) ≥ k}

0 elsewhere.

Using ϕ as test function in (11.2) one obtains∫
ER

ηp|∇u|p = −p
∫

ER

(u− k)ηp−1|∇u|p−2 〈∇u,∇η〉 ,

where we have conveniently set ER := B(x0, R) ∩ {u(x) ≥ k}.
Using Hölder’s inequality we then get∫

ER

ηp|∇u|p ≤ p

(∫
ER

ηp|∇u|p
) p−1

p
(∫

ER

|u− k|p|∇η|p
) 1

p

.

Raising this inequality to the power p gives∫
ER

ηp|∇u|p ≤ pp

∫
ER

|u− k|p|∇η|p.

Finally, it follows from our assumptions on η that∫
B(x0,ρ)∩{u(x)≥k}

|∇u|p ≤
(

2p
R− ρ

)p ∫
ER

|u− k|p,

this proves the lemma.

Proof of Theorem 11.6 It is known that any bounded function u ∈ L1,p(Ω)
satisfying the conclusion of Lemma 11.7 is locally Hölder continuous (see chapter
2, §2 in [32] or §2.3.4 in [34]). The proof of the Theorem follows.

Remarks (1) Observe that for p > n, the above statement is a direct consequence
of Sobolev embedding’s theorem.
(2) For the special case (n− 1) < p ≤ n, a different proof is given in [31].
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(3) In fact, it is known that u∗ is locally C1,α in the exterior domain M \ F , see
[33] or [40].
(4) The continuity of extremal functions is also known for the case of weighted
Sobolev spaces in subriemannian geometry (see Theorem 4.4 in [5]). There are also
proofs of Hölder continuity for some Carnot groups, see e.g. [2, 3].
(5) Using the results and techniques of [30], it should be possible to prove continuity
of extremal functions for a wide class of axiomatic Sobolev space (perhaps assuming
that D is local and µ is doubling)

11.4. Boundary Regularity. A point x ∈ ∂F is a Wiener point of F if∫ δ

0

(
Capp(B̄x,t ∩ F ;Bx,δ)

tn−p

)1/(p−1)
dt

t
= ∞

for some δ. One also says that the set F is p-thin at x if x is not a Wiener
point. We easily verify that a point x ∈ ∂F satisfying an interior cone condition is
a Wiener point. One says that F ⊂M is Wiener regular if all points of ∂F are
Wiener points; examples of Wiener regular subsets are polyhedral and C1domains.

Theorem 11.8. Let u∗ be the p-capacitary function of F ⊂M . If x0 ∈ ∂F is
a Wiener point then lim

x→x0
u∗(x) = 1. In particular, if F is Wiener regular, then

u∗ is everywhere continuous.

See [25] or [34, Corollary 4.18].
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[25] T. Kilpeläinen Potential theory for supersolutions of degenerate elliptic equations. Indiana
Univ. Math. J. 38 (1989), no. 2, 253–275.
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