000114953 001__ 114953
000114953 005__ 20190316234109.0
000114953 02470 $$2DAR$$a341
000114953 02470 $$2ISI$$a000178246800005
000114953 0247_ $$2doi$$a10.1007/BF01217533
000114953 037__ $$aARTICLE
000114953 245__ $$aCapacities in metric spaces
000114953 269__ $$a2002
000114953 260__ $$c2002
000114953 336__ $$aJournal Articles
000114953 500__ $$aAMS Classification : Primary 46E35; Secondary 32U20, 31c15
000114953 520__ $$aWe discuss the potential theory related to variational capacity and the Sobolev capacity on metric measure spaces. We prove our results within the axiomatic framework.
000114953 6531_ $$aSobolev spaces
000114953 6531_ $$aAnalysis on Metric Spaces
000114953 6531_ $$aPotential Theory
000114953 700__ $$aGol'dshtein, Vladimir
000114953 700__ $$g106581$$aTroyanov, Marc$$0241796
000114953 773__ $$j44$$tIntegral Equations Oper. Theory$$k2$$q212-242
000114953 8564_ $$uhttp://www.springerlink.com/content/p7r02x78282x4146/$$zURL
000114953 8564_ $$uhttps://infoscience.epfl.ch/record/114953/files/mmcapacity1.pdf$$zn/a$$s317396
000114953 909C0 $$xU10116$$0252207$$pGR-TR
000114953 909CO $$qGLOBAL_SET$$pSB$$ooai:infoscience.tind.io:114953$$particle
000114953 937__ $$aGR-TR-ARTICLE-2002-001
000114953 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000114953 970__ $$a1030.46038/GR-TR
000114953 980__ $$aARTICLE