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Abstract We develop an axiomatic approach to the theory of Sobolev spaces on
metric measure spaces and we show that this axiomatic construction covers the main
known examples (Hajlasz Sobolev spaces, weighted Sobolev spaces, Upper-gradients,
etc). We then introduce the notion of variational p—capacity and discuss its relation
with the geometric properties of the metric space. The notions of p—parabolic and
p-hyperbolic spaces are then discussed.

Introduction

Recent years have seen important developments in geometric analysis on metric mea-
sure spaces (MM-spaces). Motivating examples came from various subjects such as
singular Riemannian manifolds, discrete groups and graphs, Carnot-Carathéodory
geometries, hypoelliptic PDE’s, ideal boundaries of Gromov-hyperbolic spaces,
stochastic processes, fractal geometry etc. The recent books [22] and [19} are con-
venient references on the subject.

Suppose we are given a metric measure space (X,d,p); how can we define in a
natural way a first order Sobolev space Wi?P(X) ?

Here is a simple construction. Let F be the class of Lipschitz functions with
compact support u: X — R, and define for any u € F and any point x € X the
infinitesimal stretching constant

L,(z) :=lim sup _______]u(y) — u()l .
=0 gy z)<r r
We can check that the formula
Nullp = llull oy + 1 Lall pogxy

defines a norm on F.
We then define W?(X) to be the completion of F for this norm. If X is the
Euclidean space R™, then this construction gives the usual Sobolev space W1?(R").
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It is also a natural construction of the Sobolev space W*(X) for a large class of
metric measure spaces.

However there are cases where this definition gives rise to a quite degenerate Sobolev
space; here is an example based on an idea of S. Semmes: Let X =R"™ with the
Lebesgue measure p and the metric d,(z,y) '= |y — z|®* where 0 <a <1 isa
fixed number. In this case, it is not difficult to see that if the function u:R"™ - R
is differentiable (in the classic sense) at a point «, then L,(z) = 0. In particular if a
function u:R" — Ris differentiable almost everywhere, then we have ||Ly|| ;5 x) =
0 hence ||uf|,, = [lul|;s(x); Which is a rather degenerate behaviour.

The Sobolev space is called non degenerate if ||Lul| 15y > 0 for any non constant
function u. We just observed that this condition is not always satisfied; it must
therefore be assumed axiomatically in order to develop a general theory.

An alternative notion of Sobolev spaces on metric spaces has been developed in
(4], [24] and [39] starting from the notion of upper gradient (see section 2.6 for a
description of this Sobolev space). This approach is well adapted to the case of
length spaces (these are metric spaces such that the distance is defined in terms of
the length of curves) or more generally to quasi-convex spaces.

A Poincaré inequality (see §sec.poinc) is often assumed or proved. It follows from
this inequality that the Sobolev space is non degenerate.

Another approach is the Sobolev space on metric measure space defined by Piotr
Hajtasz in [18]. The Hajlasz Sobolev space is in some sense a globally defined Sobolev
space (unlike the constructions above), it is always non degenerate.

Other concepts of Sobolev spaces where motivated by the study of first order differ-
ential operators on homogeneous spaces (see for example the discussion in {11]) and
by graph theory.

Our goal in this paper, is to develop an axiomatic version of the theory of Sobolev
spaces on metric measure spaces. This axiomatic description covers many examples
such as the Hajlasz Sobolev spaces, the weighted Sobolev spaces, the Sobolev spaces
based on Hérmander systems of vector fields and on more abstract upper gradients.

The basic idea of this axiomatic description is the following: Given a metric space
X with a measure y, we associate (by some unspecified mean) to each function
w: X — R aset D[u] of functions called the pseudo-gradients of u; intuitively a
pseudo-gradient ¢ € D[u] is a function which exerts some control on the variation
of u (for instance in the classical case of R™: D[u] = {g € L},.(R") : ¢ > |Vu] a.e.}).
A function v € LP(X) belongs then to W1P(X) if it admits a pseudo-gradient
g € D[u} N L?(X). Depending on the type of control required, the construction

yields different versions of Sobolev spaces in metric spaces.

Instead of specifying how the pseudo-gradients are actually defined, we require
them to satisfy some axioms. Qur axioms can be divided in two independent
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groups: The first group (axioms A1-A4) is a formal description on the set D[u]
of pseudo-gradients and the second group (axioms A5 and A6) gives a meaning to
the p—integrability of the pseudo-gradients.

A correspondence v — Dlu] satisfying the axioms is called a D-structure on the
metric measure space X. We look at such a structure as an ersatz for a theory of
differentiation of the functions on the space (hence the name). A metric measure
space (X,d, 1) equipped with a D-structure is called a MMD-space.

The p-Dirichlet energy €,(U) of a function v is the greatest lower bound of the
p'th power of the L,-norms of all the pseudo-gradients of v and the p-Dirichlet
space £7(X) is the space of locally integrable functions with finite p-energy. The
Sobolev space is then the space WP(X) := L?(X) N LP(X). We can prove from
the axioms that W'?(X) is a Banach space; however, due to the fact that the
definition of pseudo-gradient is not based on a linear operation, we can’t generally
prove that it is a reflexive Banach space for 1 < p < co. Using this theory, we obtain
a classification of metric spaces into p-parabolic/p-hyperbolic types similar to the
case of Riemannian manifolds.

We now briefly describe the content of the paper:

In section 1, we give the axiomatic construction of Sobolev spaces on metric measure
spaces and the basic properties of these spaces. The setting is the following: we fix a
metric measure space (X, d, 4} and we choose a Boolean ring X of bounded subsets
of X which plays the role of relatively compact subsets in the classical situation
(the precise conditions that K must satisfy are specified in the next section). The
space L? (X) is defined to be the space of all measurable functions u such that
ul, € LP(A) for all sets A € K. We then define the notion of D-structure by a set

of axioms and we list some basic properties of the axiomatic Sobolev spaces.

In section 2, we show that familiar examples of Sobolev spaces on metric spaces
such as the classical Sobolev spaces on Riemannian manifolds, weighted Sobolev
spaces, Sobolev spaces on graphs, Hajlasz Sobolev spaces and Sobolev spaces based
on upper gradients are examples of axiomatic Sobolev spaces.

In section 3, we develop the basics of non linear potential theory on metric spaces.
We denote by £37(X) the closure of the set of continuous functions w € £M*(X)
with support in a X-set and we define the variational p-capacity of a set F € K by

Capy(F) == inf{&(u) |u € A(F) },

where A,(F) := {u € £;”(X)|u > 0 and u > 1 on a neighbourhood of F}. A met-
ric space X is said to be p-hyperbolic if it contains a set @ < K of positive p-capacity
and p-parabolic otherwise. One of our results (Theorem 3.1) says that the space X
is p—parabolic if and only if 1 € £37(X).

In the last section, we quote without proof a few recent results from the theory of
Sobolev spaces on metric spaces.
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Let us conclude this introduction by mentioning a few important, very active and
related topics which are not discussed in this paper. First there is the theory of
Sobolev mappings between two metric spaces which is a natural extension of the
present work. Some papers on this subject are [32], [38] and [44]. Then there are
papers dealing with a generalized notion of (co)tangent bundle on metric spaces
such as [4], [37], [45] and [46]. Finally, there is the theory of Dirichlet forms and
analysis in Wiener spaces such as exposed in [2] and [35].

Finally, it is our pleasure to thank Piotr Hajlasz and Khaled Gafaiti for their friendly
and useful comments.
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1 Axiomatic theory of Sobolev Spaces

1.1 The basic setting

An MM-space is a metric space (X,d) equipped with a Borel regular outer measure
p such that 0 < p(B) < oo for any ball B C X of positive radius (recall, that an
outer measure p is Borel reqular if every Borel set is y-measurable and for every
set £ C X, there is a Borel subset A C F such that p(A4) = p(E), see [9, page 6]).

Our first aim is to introduce a notion of local Lebesgue space L}, .(X). For this
purpose we need the following concept :

Definition 1.1 (a) A local Borel ring in the MM-space (X, d, 1) is a Boolean ring!
K of bounded Borel subsets of X satisfying the following three conditions:

Kl) U A=X;
AEK
K2) if A € K and B C A is a Borel subset, then B € K;

K3) for every A € K there exists a finite sequence of open balls By, Bs, ...B,, €
K such that A C U2 B; and p(B;NBiyp) >0 for1 <i<m.

(b) A subset A C X is called a K-set if A € K.

Basic examples of such rings are the ring of all bounded Borel subsets of X and the
ring of all relatively compact subsets if X is locally compact and connected.

In the rest of this subsection, we discuss some of the properties of such a structure
(X,d,K, ). The reader may prefer to go directly to the next subsection and come
back to this one only when it is needed.

Lemma 1.1 The properties (K1)-(K3) have the following consequences:
i) X can be covered by open K-sets.

) X has the following “connectivity” property: For any pair of points z,y € X,
there exists a finite collection {By, Bs,..B,} C K of balls such that z € B,
y € B, and u(B;NBiyy) >0 for all .

iii) K contains all compact subsets of X.

LA collection of subsets K of X is a Boolean ring, if 4;, A2 € K = (A;UAy) and (A;\42) € K.
Boolean rings are also closed under finite intersections and symmetric differences.
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Proof (i) Follows directly from conditions (K1) and (K3) and (ii) follows from
(K3) since A := {z,y} € K. To prove (iii), let C C X be a compact sub-
set; by (i) it can be covered by open K-sets (in finite number, by compactness):
CcU=Ug,U;, where U; € K; since K is aring we have U € K, hence C € K

by (K2). o

This lemma has the following consequences :

1) A local Borel ring K is always contained between the ring of relatively compact
Borel sets and the ring of all bounded Borel sets.

In particular if X is a proper metric space (i.e. every closed bounded set is
compact), then both of these rings coincide and X is always the ring of relatively
compact Borel sets.

2) If X C R"is an open subset and X is the ring of relatively compact Borel
sets, then X must be connected.

In the sequel, X will always be an MM-space with metric d, measure p and a local
Borel ring K.

Definition 1.2 We say that the space X is a ok, or that it is a -countable space,
if X is a countable union of K-sets.

Examples (a) If £ is the ring of all bounded Borel subsets of X, then X is always
K-countable.

(b) If X is locally compact and separable, and K is the ring of all relatively compact
Borel subsets, then X is K-countable.

Definition 1.3 (a) For 1 < p < oo, the space L (X) = L} (X,K,p) is the
space of measurable functions on X which are p-integrable on every K-set.

(b) Lg2(X) is the space of measurable functions on X which are essentially bounded

on every K-set.

The family of semi-norms {||u|| ) K € IC} defines a locally convex topology on
LP (X); and we have :

loc

p

Lemma 1.2 If X is a K-countable space, then L} (X) is a Frechet space.

The proof is obvious. g

Observe also that, trivially, if X € K, then L} (X) = LP(X) is in fact a Banach
space.
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Notations The notation A CC Q (or A € 2) means that there exists a closed
K-set K such that A C K C Q (in particular A € X if and only if A is contained
in a closed K-set).

If Q@ C X is open, we denote by K|, the set of all Borel sets A such that A € Q. It is
a Boolean ring which we call the trace of K on . This ring satisfies conditions (K1)
and (K2) above. If condition (K3) also holds, then we say that Q is K-connected.

We denote by C(X) the space of all continuous functions » : X — R and by
C.(X) ¢ C(X) the subspace of continuous functions whose support is contained in
a K-set. If Q@ C X is an open subset, then C.(£2) is the set of continuous functions
u: @ — R such that supp(u) € Q.

It is clear that for any function u € Cy(§2), there exists an extension @ € Cp(X)
which vanishes on X \ @ and such that @ =wu on Q.

The space of bounded continuous functions on an open set 2 C X is denoted by
Cy(£2) = C(2) N L>(Q). 1t is a Banach space for the sup norm.

We conclude this section with a few more technical definitions:

Definition 1.4 A subset F of an MM-space X is strongly bounded if there exists a
pair of open sets € C Q C X such that 2y € K, p(X\Qs) > 0, dist(Q, X\) >
Oand F C Ql-

Definition 1.5 An MM-space X is strongly K-coverable if there exist two countable
families of open K-sets {U;} and {V;} such that V; # X for all 4 and

1) X =0U;
2} U; C V,; for all 4
3) dist(U;, X \ V;) > 0 and
4) p(Vi\U;) > 0.
Observe that if F' C U; for some ¢, then it is a strongly bounded set.

It is clear that every strongly K-coverable metric space is also K-countable. It is
in general not difficult to check that a space is strongly K-coverable. The next two
lemmas give examples of such.

Lemma 1.3 Suppose that X € K and contains four closed K-sets Ay, A}, Az, A}
such that A; C A, u(A;\ A;) >0, dist(4;, X\ A) >0 and AN A, =0. Then X
18 strongly K-coverable.
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Proof Let usset U;:= X\ A, and V;:= X\ A;. Then {U;,0} and {3, V2}

are the required coverings. O

Lemma 1.4 Let X be a separable metric space. Suppose that for each point
z € X there exists r, > 0 such that B(z,2r;) € K and u(B(z,2r) \ B(z,r)) > 0
forany 0<r <r,, then X is strongly K-coverable.

Proof Let @ C X be a dense countable subset. For each z € X, we choose a
point ¢ = ¢(2) € Q such that d(z,¢(2)) < tmin{l,7,} and ¢(2) =z if z€Q.
We then define a function s:@Q — R, by

s(g) = sup min{l,7,}
#(z)=q

and for each point ¢ € @, we choose z = (g} € X such that
1) ¢(z) =¢ and
2) 38(a) < s < s(g)-

Observe that the map ¢ : Q — X isaleft inverse of ¢ : X — @ (i.e. poy) = 1d|y);
we denote by o the map o:=¢o¢: X = X.

Observe also that for any point z € X we have ¢ = ¢(z) = d(z,¢) < § min{l,7.} <
1s(g) and d(g,9(q)) < $min{l,ryq} < 3s(g)-

Since s(g) < 2ry and ¥(g) = ¥(4(x)) = o(z), we obtain the estimate

4

dw,0(2)) < dlz,0) +dlg, ¥(0)) < 250) < 57ote)-

5
We have thus shown that for any point z € X we have z € B(0(z),7,(z)), ie.
{B(2,7;) }ze0tx) is a covering of X.

This is clearly a countable covering since o(X) = o(Q) is countable; thus the
families of open K-sets {U, := B(z,7;)}reo(x) and {V; := B(z,2r.)},eq(x) satisfy

all the conditions of Definition 1.5. 0

The following are by now classic notions (see [22}):

Definition 1.6 a) The measure p is called Ahifors-David regular of dimension
s if there exists a constant ¢ such that for any ball B(z,r) C X we have

1
Ers < u(B(z,7)) < cr’.

b) The measure p is locally s-regular if for every point z € X there exists two
constants ¢, R, such that for 0 <r < R, we have

L < u(B@, 1) < cur.
Cz



Axiomatic Theory of Sobolev Spaces 297

¢) The measure p has the doubling property if there exists a constant k such that
for all balls B C X we have

u(2B) < 25u(B)

(where 2B means the ball with same center and double radius).

1.2 D-structure and Sobolev spaces

To define an axiomatic Sobolev space on (X, d, K, i), we fix a number 1 < p < oo
and we associate to each function u € L} (X) a family D[u] of measurable functions
g: X = R, U{oo}. An element g € D[u] is called a pseudo-gradient® of u. The
correspondence v — D[u] is supposed to satisfy some or all of the following axioms:
Axiom Al (Non triviality) Ifu:X — R is non negative and k-Lipschitz, then
the function

g:=hsguw ={ § I 128

belongs to Dlu).

It follows from this axiom that 0 € Dfc] for any constant function ¢ > 0.

Axiom A2 (Upper linearity) If g; € Dlui], g2 € Dlug) and g > |a|g + |Blg2
almost everywhere, then g € D]au; + fus).

This axiom implies in particular that Dfu] is always convex and D{au] = |a|Du}.

Axiom A3 (Leibniz rule) Let w € L} (X). If g € Dfu), then for any bounded
Lipschitz function ¢ : X — R the function h{z) = (sup |pig(z) + Lip(p)|u(z)|)
belongs to Dlpul.

Axiom A4 (Lattice property) Letu := max{ui,us} and v := min{u;, us} where
uy,ug € LY (X). If g1 € D{u] and g5 € D[uo), then g := max{g, g} € D[u]NDfv].

The previous axioms fixed general properties of the set D[u] of pseudo-gradients.
The last two axioms concern the behavior of the p-integrable pseudo-gradients of
locally p-integrable functions; they really are properties of Sobolev spaces rather
than properties of individual functions.

Axiom A5 (Completeness) Let {u;} and {g;} be two sequences of functions
such that g; € Du;] for all:. Assume that u; — u in L}  topology and (g;—g) — 0

2This notion should not be confused with the pseudo-gradients in the sense of Palais as defined
e.g- in [27, page 299].
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in L? topology , then g € D{u].

This axiom implies in particular that two functions which agree almost everywhere
have the same set of pseudo-gradients. We henceforth always identify two functions
which agree a.e.

We define a notion of energy as follow :

Definition 1.7 The p— Dirichlet energy of a function u € L (X) is defined to be
Ep(u) = inf{/ gPdu: g€ D[u]}
X

Our final axiom states that if the energy of a function is small, then this function is
close to being constant.

Axiom A6 (Energy controls variation) Let {u;} C L£'?P(X) be a sequence
of functions such that £y(u;) — 0. Then for any metric ball B € K there exists a
sequence of constants a; = a;(B) such that |lu; — a;||Lo(s) = 0.

Definition 1.8 a) A D-structure on (X, d, K, u) for the exponent p is an operation
which associates to a function u € L} (X) a set D[u] of measurable functions g :
X — R U{oc} and which satisfies the Axioms A1-A5 above (for the corresponding
p).

b) The D-structure is non degenerate if it also satisfies axiom A6.

¢) A measure metric space equipped with a D-structure is called an MMD-space.

We now define the notion of Dirichlet and Sobolev spaces associated to a D-structure.

Definition 1.9 i) The p-Dirichlet space is the space L!P(X) of functions u €
L? (X) with finite p-energy.

loc

ii) The Sobolev space is then defined as
WH(X) =W (X,d, K, u, D) := L"(X) N LP(X).

Theorem 1.5 Given a D-structure on (X,d, K, u) (for the exponent p), the corre-
sponding Sobolev space W'P(X) is a Banach space with norm

ol = (/. |u|pdﬂ+s,,(u))””.
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Proof By axiom Al, we know that 0 € W'?(X). It is then clear from axiom A2
that W'?(X) is a vector space. Let us prove that [|-|ly1,(x) is indeed a norm.
1) [ullwioxy = 0= |lullgaxy =0=>u=0ae. is obvious.
i) [Mullyiay = A Jullpingx) follows from axiom A2, since g € Du] < |Alg €
D]w] for all A e R\ {0} hence &,(Au) = |A|PEp(u).

i) [Ju +vllwiexy < lullwropy + lollwisgxyalso follows from axiom A2, since
g1 € D[uy] and g, € D[ug] implies (g1 + g2) € Dluy + uo).
We have to prove that W?(X) is complete for this norm.
Let {u;} € W'P(X) be an arbitrary Cauchy sequence: we may
(taking a subsequence if necessary) that [|[(u; — uir1)|lwre(xy < 27
gla

Let us set v; := (u; —uj11); by hypothesis we can find h; € [
75l 1oy < 277

(and do) assume

LP(X) such that

We then choose an arbitrary element g; € D[u;] and set g, == gﬁ-Zf;ll h; for k > 2.
It follows from the identity uy := u; — Ef;ll v; and axiom A2 that g € Dfuy] for
all k e N.

Now {gr} and {ui} are both Cauchy sequences in LP(X); thus there exist limit
functions v = limu; and g = lim g5, in the L? sense. It follows then from axiom A5
that g € D[u]; and therefore u € W'P(X).

It only remains to show that ux — u in WUP(X). In fact, since ||(ux — u)||ze(x) = 0,
we only need to prove the existence of a sequence fx € D[(ux — u)] such that
I fille(xy = 0.

Fix k, the sequence vgm = (ux — um) (where m > k) is a Cauchy sequence
in WHP(X) because vgm — Vkn = Up — Uy. Furthermore, we have the following
estimate :

m— m-—
[[vk,mllwrexy < Z llus = tsrallwrrgxy < Z 2=,
s=k s=k

By construction we have lim vz, = (ux — u) in the L? sense and, by axiom A2, we
m—ro0
m-1 )

have ggm = Z hs € D(vgm] since vy, = Z;":",cl vs.
s=k
Now {gkm}m=12,. is a Cauchy sequence in L?(X) and

m—1 m—1
lgsmllzocey < 2 llhsllzoex) < 22‘3 < 2~ k=1),
s=k s=k

By axiom A5 the function f,, := lim gk, belongs to D[(ux — u)] and
m—00

[ Fllzeexy = lim {lgkmllzocey < 27¢70.
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This proves the completeness of W'P(X).

Observe that in this proof, we have only used Axioms A2 and A5.

From the proof we obtain the following

Corollary 1.6 L'?(X) is a seminormed space with seminorm |[ul| z1,px) = (Ep(u))™?.
]

If the D-structure is degenerate, then the p-energy may be trivial (i.e. &,(u) =0
for any ). In that case the Sobolev space WP(X) reduces to the usual Lebesgue
space LP(X). For this reason, it is necessary to understand the meaning of axiom
AB.

We first observe that the sequence of constants a;(B) appearing in axiom A8 is in
fact global, i.e. independent of the chosen ball B € K, as our next result shows:

Proposition 1.7 Assume that aziom A6 holds. Let {u;} C LYP(X) be a sequence of
functions such that £,(u;) — 0. Then there ezists a sequence of constants {¢;} CR
such that for any A€ K we have |lu; — ¢; ||zpay— 0.

Proof The proof follows easily from Lemma 1.1, axiom A6, and from the following

lemma.
[}

Lemma 1.8 Assume that D is a non degenerate D-structure. Let {u;} C LYP(X)
be a sequence of functions such that £,(v;) — 0 and let By, B, € K be open balls
such that u(By N Bg) > 0.

If | ui = cil|oemyy = 0 for some sequence {c;} C R then |ju; — ¢f|r(8,uB,) — 0.

Proof By axiom A6, there are sequences {a;},{a;} C R suchthat |lu; — aill 155, —

0and [lu; — @ill s(p,) — 0. It is clear that lim(a; — ¢;) = 0, on the other hand we
100

have lim (a; — a;) = 0 because u(B; N By) > 0 and
100

lla: — a“ILP(BlﬂBg) < i = aill oy + llui = a3l Logs,) — O-

It follows that the three sequences {a;},{a;} and {c;} are equivalent (i.e. lim(a;—
¢) = lim(a} — ¢;) = 0).

Therefore
i = cill pgupy < s = cillpog,) + llwi = cill oa,
< flu - aiIILP(Bl) + {Ju; — a;”LP(Bﬂ
+llei = aill zogp,y + llei = @il 1oy
- 0.
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We conclude this section by stating some elementary properties of the spaces L17(X)
and WHP(X).

Proposition 1.9 Suppose that azioms A1-A6 hold then
1) Ifu € LY?(X) has no energy, i.e. E,(u) =0, then u is a.e. constant

2) WHP(X) is a lattice, i.e. if u,v € W'P(X), then max{u,v} € W'P(X)
and min{u,v} € W?(X).

3) WYP(X) contains all Lipschitz functions with support in a K-set.

4) If we WY (X) and ¢ is a Lipschitz function with support in a K-set, then
ou € Whr(X).

5) Truncation does not increase energy, i.e. E(max(u,c)) < Ey(u).

Proof (1) is not difficult to prove from Proposition 1.7. It is also an obvious
consequence of Proposition 1.11 below. (2) follows from axiom A4 and (3) follows
from Al. Finally, (4) follows immediately from the axioms Al and A3 and (5) is a

direct consequence of axioms Al and A4. g

1.3 Poincaré inequalities

The next result gives us a practical way of checking axiom A6.

Proposition 1.10 Suppose that for each metric ball B € K there ezists a constant
C = Cp such that the following inequality

[ lu-usl < Cagy(w) (1)
B
holds for any function u € L}, (X) where up := ;i [y udp. Then aziom A6 holds.

An inequality such as (1) is classically called a Poincaré type inequality or a pseudo
Poincaré inequality

The proof of this proposition is obvious. What is interesting is that the converse
also holds; in fact we have the following stronger result.
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Proposition 1.11 (Floating Poincaré inequality) Assume that aziom A6 holds
and let Q@ C A C X be two measurable sets such that A € K and p(Q) > 0. Then
the inequality

flu - uQHLP(A) <Cagq ”g”LP(X)
holds for any u € LYP(X) and g € D{u]; where the constant C,q depends on p, A
and @ only, and ug = E(—léi Joudu.
We call this inequality the floating Poincaré inequality, because the function u is

averaged on the “floating vessel” @@ C A.

Proof Suppose by contradiction that for some @ C A C X with (@) > 0 and
A € K no such constant exists. It means that there exists sequences {u;} C I (X)

loc
and g; € D [u;] such that
. flui = ui,QHLp(A)
lim | —— 22 | = 00.
100 ”gi”LP(X)

Using axiom A2 we can renormalize the sequence {u;} in such a way that
i = uiQll s 4y =1 foralliand thus ||gil| px) =0 as i — oo

By Proposition 1.7 there exist a sequence of constants a; such that [ju; — a;|| Lra) —
0. By Hdlder’s inequality we have
_1 1
llus — ai“Lp(Q) > (@)% Jlui — a"i“Ll(Q) > p(Q)? |uig — ai |
where 1/p+ 1/q = 1. Therefore (u;o — a;) = 0 and we thus have

1= {ju; = ui0llpogay < Nui — @illogay + llai — viQllogay = 0.

This contradiction implies the desired result.

We will sometimes use the following corollary.

Corollary 1.12 Assume that aziom A6 holds and let @Q,A € K be two K-sets
such that u(@) > 0. Then there ezists a constant Cpq = C(A, Q,p) such that the
inequality

”u”Lp(A) <Cug ”g“LP(X)

holds for any u € LYP(X) such that u = 0 on Q and all g € D(u].

(Observe that we do not assume here that @ C A.)

Proof Apply Proposition 1.11 to the set 4; := AUQ. g

The next result is a variant of the Corollary 1.12 where the constant in the inequality
depends on A and p only:



Axiomatic Theory of Sobolev Spaces 303

Proposition 1.13 Assume that axiom A6 holds and let A C X be a measurable
K-sets such that (A} > 0 and pu(X \ A) > 0. Then there ezists a constant Cy
depending on p and A only for which the inequality

”u“Lp(A) <Ca ”g”LP(X)

holds for any u € LY?(X) such that supp(u) C A and g € D{u].

Proof We argue as in the proof of Proposition 1.11. If no such constant exists,
then we can find two sequences {u;} C LY?(X), g; € D [u;] such that supp(u;) C A4,
lluill poay = 1 for all ¢ and ||g;| ;xy — O for ¢ — oo.

By Proposition 1.7 there exist a sequence of constants a; such that [Ju; — ail{z,5) —
0 for all B € K. Choosing first a KX—set B C X \ A of positive measure, we deduce
that lima; = 0; and choosing then B = A yields the contradiction

L= [Juill pagay < lui = @illogay + llaill oay = 0
{4) )

O

The various Poincaré inequalities we have discussed above are rather weak in the
sense that no control of the constant involved is specified.

However the case where the constant depends linearly on the radius of the ball
deserves special attention; following J. Heinonen and P. Koskela, we adopt the fol-
lowing

Definition 1.10 One says that a D-structure on an MM-space X supports a (g, p)-
Poincaré inequality if there exists two constants ¢ > 1 and C > 0 such that

1/q i/p
(][ lu — uBI”du) <Cr (][ g”du) (2)
B(z,r) B(z,or)

for any ball B(z,r) € K, any u € L} (X) and any g € Dl[u].

loc

The explicit dependence on the radius of the ball expresses a scaling property of
the Poincaré inequality; therefore this inequality is sometimes also called a scaled
Poincaré inequality (inégalité de Poincaré “4 ’échelle des boules” in the terminology

of [1]).
The inequality (2) is sometimes called a weak Poincaré inequality when o > 1 and
a strong one if o0 = 1.

Remark If the MMD-space X supports a (g, p)-Poincaré inequality, then it also
supports a (g, p')-Poincaré inequality for all p’ > p (this follows directly from Jensen’s
—or Holder’s— inequality).

Likewise, if X supports a (g, p)-Poincaré inequality, then it also supports a (¢’, p)-
Poincaré inequality for all ¢’ < g.
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If the measure has the doubling property (Definition 1.6), then the Poincaré inequal-
ity has the following non trivial self-improving property (see Theorem 5.1 in [19] or
[39, Theorem 5.2] in the particular case of Ahlfors regular spaces).

Theorem 1.14 Suppose that the MMD space X supports a (1, p)— Poincaré in-
equality. If p has the doubling property, then there exists § > p  such that X
supports a (g, p)— Poincaré inequality for all 1 < q < 4. In particular it supports a
(p, p)— Poincaré inequality.

a
Corollary 1.15 Suppose that the MMD space X is doubling and supports a
(1, p)— Poincaré ineguality, then it is non degenerate.
Proof This follows from Proposition 1.10 and Theorem 1.14. .

Corollary 1.16 If X is doubling and supports a (1,1)— Poincaré inequality, then
it also supports a (g, p)— Poincaré inequality for any 1 < g <p < 0.

Proof This is clear from the previous remark and Theorem 1.14. 0

A quite complete investigation of the meaning of (g, p)—Poincaré inequalities can
be found in [19].

1.4 Locality

The gradient of a smooth function in R™ depends only on the local behaviour of
this function. This is still the case for a (classical) Sobolev function; for instance if
a function v € WH?(R") is constant on some set 4 C R", then its weak gradient
vanishes on that set.

This property is not always true in the context of axiomatic Sobolev spaces and
there seems to be several natural ways to define a notion of locality for Sobolev
spaces. We propose below three notions of local D-structures.

Definition 1.11 a) We say that a D-structure is local if, in addition to the axioms
A1-A5, the following property holds: If u s constant a.e. on a subset A € K,
then &,(u]d) =0 where

£,(uld) = inf{ /A g”dulge D[u]}

1s the local p-Dirichlet energy of u.
b) The D-structure is strictly local if for any g € D[v], we have (gx{v>0}) € D[vt].
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(Here v* = max {v,0} and X(y>0} is the characteristic function of the set {v > 0}.)
Lemma 1.17 If D is strictly local, then it is local.

Proof Suppose that u = ¢ = const. on asubset A C X andset v:= (u—c);so0
that w=v*" — v~ +c. We have ¢ = (gx{>0) € D[v7], 92 := (9X{v<o}) € D[v7]
by hypothesis and 0 € D[c] by axiom Al. We thus have from axiom A2, h:=
(9X{vz0}) = 91 + g2 + 0 € Dlu], hence

Ep(ujd) < / hPdu =0
A

since h=0 on A.
O

The difference between the two notions of locality can be illustrated by the next two
lemmas.

Lemma 1.18 A D-structure on the MM-space X 1is local if and only if for any
subset A € K and any pair of functions u,v € L} (X) such that u=v on A we

have
2176, (v]4) < &(uld) < 276,(0]4).

Proof is clear because constant functions have zero energy.

It is enough to prove the second inequality. Since the function w := (u —v)
vanishes on A, we have £,(w|A) = 0. We can thus find for any & > 0 a pseudo-
gradient go € D[w] such that [, ghdp <e.

Let g € D[v] be an arbitrary pseudo-gradient of v, since u = v + w, we have
h:= (g + go) € D[u] by Axiom A2. Thus

Ep(uld) < /hpduzf(g-kgg)”du
A A
< 2t (/ g”du+/g§dﬂ>
A A
<

or-1 (/ g”d,u+€)
A

and therefore &,(uld) < 2771&,(v]A). .

Lemma 1.19 Let X be a strictly local MMD-space. If u,v € L} (X) is a pair of
functions such that u=v on A€ K , then

£,(v]4) = £,(ulA).
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Proof Let w:= (u—v) and choose an arbitrary pseudo-gradient gy € Djw].
Now set g, := goX{w>0} and g := goX{w<o}; Observe that g; =g, =0o0n A.
Because the D-structure is strictly local, we have ¢; € D[w*] and ¢, € Djw™].
Fix & > 0 and choose g € D[v] such that [, gPdu < &,(v|4) +e.

Since u=uv-+w"+w™, we have h:=(g+ gi + ¢2) € D[u] by Axiom A2.
Thus

&p(ul4)

IA

/Mw=/@+m+wwu
A A

/ gPdp < E(v|A) +¢ .
A

I

and therefore &,(u|A) < £,(v|A). The converse inequality follows by symmetry. o

It is sometimes useful in some applications to have a notion of locality which is
intermediate between the notions (a) and (b).

Definition 1.12 A D-structure is absolutely local if it is local (i.e. condition (a) of
the previous definition holds) and if for any g € D[v], we have (gx(v>0}) € Dvt].

Some Sobolev spaces are local and some are not. For example, classical Sobolev
spaces on Euclidean domains or Riemannian manifolds are local, while trace spaces
of Sobolev spaces on bad domains are not local Sobolev spaces. The version of
Sobolev spaces on metric spaces introduced by P.Hajlasz (see section 2.3) is another
example of global Sobolev space.

A similar notion of locality appears in [19, page 9] under the name truncation prop-
erty. A different, albeit related, notion of locality also appears in the theory of
Dirichlet forms, see [2, page 28].

1.5 Topology on the Dirichlet space

Recall that the Dirichlet space £**(X) is a semi-normed space with semi-norm
lull 1oy = (€()'77 = inf { lgll x| 9 € Dftd}

The space L1?(X) is also equipped with a locally convex topology defined as follow:
one says that a sequence {u;} converges to some function u € LM(X) if &,(u—
u;) =0 and |ju—ullppa) 0 forall A€ K.

Proposition 1.20 The quotient space L'?(X)/R is a Banach space for the norm
[RIEZMORES
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Proof By Proposition 1.9 any function u € £*?(X) such that &(u) = 0 is a
constant, thus ||-|| = &,(-)!/? is a norm in the space L1?(X)/R.

To show that £17(X)/R is complete under this norm we consider a Cauchy sequence
{u;} in £L*?(X)/R. By Proposition 1.7, there exists a sequence {¢;} C R such that
v; := (u; — ¢;) converges in L} (X).

Arguing as in the proof of Theorem 1.5, we see that the function v := limv; €

100
L£Y?(X). Thus {u;} converges to v in L7(X)/R. o

It is also convenient to introduce a norm on £37(X): to define this norm, we fix a
set @ € K such that p(Q) > 0 and we set

[l ) = ( /Q 0Py +£p(u))1/p 3)

Theorem 1.21 This norm turns L'?(X) into a Banach space. Furthermore the
locally convex topology on L'P(X) defined above and the topology defined by this
norm coincide; in particular the Banach space structure is independent of the choice

of QeKk.

Proof The proof of the first assertion is the same as the proof of Theorem 1.5.
We prove the second assertion. Let ' be another K-set of positive measure and

choose a K-set A D QU Q. Since |ug| < ,L(—QI)JE llull Loy, We have

n\ l/p
luallisigr = (@) gl < (A2} g

By the floating Poincaré inequality (Proposition 1.11) we have [, |u — ug| du <
C&,(u), thus

“uHLP(Q’) = [lu—uq +uQ“LP(Q’) < lu- UQ”Lp(A) + ”“Q“m(@!)
"y e
< CSuI/”—F(M) vl
< (CE(w) Q) [ull oy

= const. ||U“c1,P(X,Q) :

The proposition follows

1.6 Minimal pseudo-gradient
Proposition 1.22 Assume that 1 < p < co. Then for any function u € L}P(X),
there ezists a unique function g, € D[u] such that / ghdp = E,(u).

X
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Definition 1.13 The function ¢, is called the minimal pseudo-gradient and is
denoted by D,u (or simply Du if explicit reference to p is not needed).

We have thus defined a map D : W*(X) — LP(X); this map is generally non
linear.

The proposition is an immediate consequence of the next two lemmas:
Lemma 1.23 For any function u, the set Du] N LP(X) is conver and closed in
L?(X).

Proof Convexity follows from axiom A2 and closedness follows from axiom A5,

Lemma 1.24 In any nonempty closed conver subset A C E of a uniformly conver
Banach space E, there exists a unique element z* € A with minimal norm: ||z*|| =
infyea ||z

Recall that a Banach space F is said to be uniformly convez if for any pair of
sequences {Z,}, {yn} C E satisfying

i ; 1
Jim [z ]| = Hm flyn]l = lim Sllzn +yall =1,
we have lim ||z, —y.|| =0.
n—00

This definition is due to Clarkson. A basic example of uniformly convex Banach
space is LP(X,dy) (see e.g. [7], [25] or [26]).

Lemma 1.24 can be found in [26, Satz 16.4]. We repeat the proof for the convenience
of the reader :

Proof If 0 € A, then there is nothing to prove, we thus assume that o :=

Existence: Set A; = 1A and choose a minimizing sequence {z,} C A; such that
l|Zn|| = 1 for n — co. Because 4 is a convex set, we have 2(z, + =) € A;, hence
1l|lzp +zmll > 1. On the other hand 1|z, + zm| < L (llall + [l#m]]) = 1 for
n,m — 0o, hence %Hxn + xmll = 1 for n,m — co. Thus, by definition of uniform
convexity ||z, — Zm|| — 0, ie. {z,} is a Cauchy sequence. Since F is complete,

there exists a limit z* = lim z,. Since A; is closed, we have z* € A; and the
Nn-—+00

existence of a minimal element is proved.
Uniqueness:  Suppose z*,y* are minimal elements of A. Then ||z*|| = |jy*|| =
a := inf e ||z||. By convexity of the norm we have “%(x* +1%)|| < @ By convexity
of A, we have L(z* + y*) € A, thus (by definition of &) ;||(z* +y")|| > . There-
fore ||z* +y*|| = 2a = ||z*|| + ||y*||. By uniform convexity, this equality implies
llz* —~ y*|| = 0, hence z* = y*.

O
Remark In the case where the pseudo-gradient is local (definition 1.11), then the
minimal pseudo-gradient Du of a function u € £LY?(X) vanishes a.e. on any K-set
where u is constant.
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1.7 Defining a D-structure by completion

The classical Sobolev space on R* can either be defined through the notion of weak
gradient or by completion of smooth functions for the Sobolev norm. A similar
completion is sometimes useful in the context of axiomatic Sobolev spaces on metric
spaces.

Let us first choose a class 7 of functions u«: X — R such that

F1) F is a vector space and a lattice;
F2) F contains all Lipschitz functions;

F3) if uw& F and ¢ is a bounded Lipschitz function, then ou € F.

In particular, F is a module over the algebra of bounded Lipschitz functions. As an
example, F may be the class of all locally Lipschitz functions.

We then assume that a family D[u] of pseudo-gradients has been defined for all
functions u € F in such a way that axioms A1-A4 hold for the correspondence
F 5y — Dlul.

We finally define l~7[u] for all functions w € L7 (X) by the following completion
procedure:

Definition 1.14 Let u € L} (X)and g : X — R, U{co} be a measurable function.

- loc
Then g € D[u] if and only if either g = oo or there exist two sequences {u;} and
{g;} of measurable functions such that u; € F, g¢; € D[y}, u; — u in I}
topology and (g — ¢;) = 0 in LP topology.

(If no such sequence exists, then ﬁ[u] contains only the function g = 00.)

An element of l~)[u] is called a generalized pseudo-gradient. Observe that l~)[u]
depends on the choice of F and of p.

Proposition 1.25 The correspondence w — E[U] satisfies azioms AI1-AS for
uwe IP (X).
Proof Axiom Al is obvious because Lipschitz functions belong to F.

To prove axiom A2, we consider two functions wu,v € L} _{X), pseudo-gradients

g € D[u] , h € D[y} and a function f > |ag + |8|h. By definition, we can find
sequences {u;},{v;} C F and {g:},{h;} such that g¢; € D[y, h; € Dlv;] ,
u; = u,v; »v in If (X) and (g —¢:),(h—h;) =0 in LP(X).

Let f; := |a|g; + |Blh: + (f — |a|g — |B8|h); since axiom A2 holds on F and f; >
|c|g: + |6]|hi, we have f; € Dlowu; + fuy).
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Because (f—fi) = (|el(g—g:) +18](h—hs)) = 0, we conclude that f € D]ou+ Suv).
To verify axioms A3 and A4 we only need to observe that these properties are stable

under L} convergence.

To prove axiom A5, we consider two sequences of functions {u;} and {g;} such that
gi € Dfu} for all ¢ and u; — v in L} and (g — ¢;) — 0 in LP. If, for some sub-
sequence, we have g;; = oo a.e. for all 4, then g = co almost everywhere and thus
g€ D[u]. Otherwise there exists for each i two sequences {u;} C F, and {g;;}
of measurable functions such that g;; € Dlu;;], i — w; in L} and (g—gi;) = 0
in L? as j — oo. Using a diagonal type process, we can find a sequence {v;} C F
and a sequence {fx} such that fy € D|[v] for all k and v; — v in LI topology and

loe
(9 = fx) = 0 in LP. Therefore g € D [u] by definition. a

Proposition 1.26 If aziom A~6’ holds for the correspondence u — D{u] where u €
F, then it also holds for v — Dlu} for any v € L} (X).

loc

Proof Suppose that wu; € L (X), ¢ € D[u] N LP(X) such that N9ill Loy =
(E,(w;))Y? — 0. Fix a ball B € K. Using the definition of generalized pseudo-
gradient and a diagonal argument as in the previous proof, we can find sequences
v; € F and fi € Dlu, such that [lg; — fill oy — 0 and [lu; — vill o — 0
in LF(B). Hence |/fillsxy — 0. Since axiom A6 holds for sequences {vj € F
there exists a sequence a; such that |jv; — a;| rpy — 0. We thus conclude that

lJui — az‘HLp(B) <l — Uz'HLp(B) + Jlvs — az‘”];p(a) = 0. g

Since generalized pseudo-gradients behave like pseudo-gradients we usually drop the
tilde and write simply D[u| instead of Dlu].

1.8 Relaxed topology, m-topology and density

Definition 1.15 Fix 1 < p < co. Asequence {u;} C W'?(X) is said to converge
to the function u € WY (X) in the relazed topology of W'P(X) if wu;—u in
IP(X) and Ey(u;) — Eplu).

Proposition 1.27 Suppose that WP(X) is uniformly convez. Then any sequence
{u;} € WYP(X) which converges in the relazed topology contains a subsequence
which converges in the usual topology (i.e. for the Sobolev norm).

The proof will be based on the following:

Lemma 1.28 Let {u;} C E be a sequence in a uniformly conver Banach space E.
Assume that {u;} converges weakly to an element v € E and that lim ||lu;]| = |jul].
j—oo

Then {u;} converges strongly to u.
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Proof We have to show that lim;_,« |[u; — u]] = 0. If u = 0 then there is nothing
to prove; we may thus assume u # 0 and we normalize it to [u|| = 1.

Set z;:=wu; and y; :=u, we have lim; o |l2;]| = |lull =1 and lim; . ||ly;]| =
lull = 1, on the other hand $(z; +y;) converges weakly to w, thus, from the lower
semicontinuity of the norm in the weak topology in any Banach space, we have

1 1
= < lim inf — ||z; A< i ~ ; AN =
1= flull < lim inf o flz; +yll < Jim sup 5 (2]l + llysl) = 1,
which implies lim ||z; + ;]| = 2.
j—oo
By the uniform convexity of E, we conclude that lim [ju; — ull = lim ||z; — y;|| =
J—=o0 Jroe

0.
O

Proof of Proposition 1.27 If {u;} C W'P(X) converges in the relaxed topol-
ogy, then it is bounded in W?(X), hence it contains a subsequence which converges

weakly. We conclude from Lemma 1.28. .

Until the end of this section, we assume that the Sobolev space W1?(X) is defined
by the completion procedure described in definition 1.14 starting from some class of
functions F.

Lemma 1.29 Assume that X is K-countable and lel 1 < p < oco. Then for any
u € WY(X), there ezist sequences {uy} C FNWLP(X) and {g:} C LP(X) such
that gy € D[u] and

1) u—u in LV (X) and

loc
2) gr = Du in LP(X).

In particular klim Ep(u;) = Eplu).
—00
Recall that Du is the minimal pseudo-gradient of u.

Proof By definition, for any k € N, there exists sequences {wi;} C F and
{gx;} € LP(X) such that gx; € Dlwy,], wx; = v in L (X) and (hx—gi;) — 0

loc
in I?(X) where h; € ﬁ[u] is a generalized pseudo-gradient for u and / hedu <
X
1
gp(u) -+ E

Because X is assumed to be K-countable, the space L} (X) is a Frechet space;

in particular it is metrizable. An example of metric on L¥ (X) is given by

oo
plu,v) = Z 279 min{L, [fu — vll o)}
J=1



312 V. Gol’dshtein and M. Troyanov

where U; C Uy C ---X is an exhaustion of X by K-sets.
For each k € N, we can find i(k) such that p(wrz),u) < 1/k. Let us set
Vg 1= Whik) a0d gk := Grik), then gy € Dlv] and vy — u in I[P (X). Furthermore

loc
lim sup/ grdp < Epu).
k—o0 X

In particular {g;} is a bounded sequence in the reflexive Banach space L?(X).
Passing to a subsequence if necessary, we may assume that {gix} converges weakly
in LP(X). By Masur’s lemma there exists a sequence of finite convex combinations
Gy = z;"z(',? kply (Qky >0, ZT:(’Z) o,y = 1) which converges in LP(X) to a
function h € LP(X). Let us set uy = Z,Tz(’fc) oty € F, then wup — u in L (X)
and Gy € Dluy] by axiom A2. It follows by definition that h € D{u] and thus

Ep(u) < | RPdu < limsup/ Ghdp < Ep(u),
X

X k—o0

Hence h := lim G is the minimal pseudo-gradient of u. 0

For 1 < p < oo, we introduce an intermediate topology between the relaxed topology
and the Sobolev topology :

Definition 1.16 Fix 1 < p < co. A sequence {u;} C W'#(X) issaid to converge
to u in the m-topology of W'P(X) if w; —wu in LP(X) and Duy — Du in
*(X).

This topology is metrizable; a compatible distance can be defined by
m(u,v) = ||lu— U”Lp(x) + || Du — Q’”HLP(X) .

Observe that the m-topology is finer than the relaxed topology. The terminology
comes from the fact that this topology is based on the notion of minimal pseudo-
gradient.

It is clear that a sequence {u;} C WP(X) converges to u in the m-topology if and
only if u; — u in LP(X) and, for each i, there exists g; € D[u;] N LP(X), such that
9i — Du.

Let us denote by Fy = F N Cy(X) the set of those functions in F having their
support in a K-set.

Theorem 1.30 Assume that K is the ring of all Borel bounded subsets of X and
that the D-structure is absolutely local. If 1 < p < oo, then FoNWIP(X) is dense
in WYP(X) for the m-topology (in particular, it is dense for the relazed topology).
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Proof Let u € W' (X) be an arbitrary Sobolev function; since every ball in X is
a K-set by hypothesis, the metric space X is clearly K-countable and we can thus
apply the previous Lemma. We then know that there exist two sequences {u;} and
{g:;} of functions such that wu; € FNWLP(X), ¢ € Dlu]NLP(X), wu; — u in
I¥ (X)and ¢; — Du in I?(X).

Fix £y € X and define
ox(x) = min {1, % dist(z, (X \ B(zo, 2k)))} ,

this is a }-Lipschitz function such that ¢ = 1 in B(zo,k), and supp(pr) =
§($0,2k})

Let us set Vki = Prls and h/m' = XB(x0,2k) (gk + %'Uzl)

Using axiom A3 and the fact that the D-structure is absolutely local together with
supp(vz;) = B(xo,2k) € K; we conclude that hg; € D v,]. It follows that v, €
Whp(X) N Fo.

Since Wm [lu; — ul| pop(zeoxy =0 for all k, we can find i, € N such that
100 ’

vk, = vl Logaize 2k < 27%. Hence the function wy := vy, satisfies

1

llwe = ullzex) < 55 + lullzroeseeo 2y

Since u € LP(X) we have klirn Wlull Lo (x\B(zo,2)) = O and thus klim llwg —u||Lrxy = 0.
—00 -0
The function fi := hi;, € D [wy] and it is clear that lim fi = lim (gxXB(zo2k)) =
k—00 k—o0

Du in I7(X). This implies that w, — v in m-topology. .

Corollary 1.31 Assume that K is the ring of all Borel bounded subsets of X and
that the Sobolev space is local. If W'P(X) is uniformly convez, then Fo NW'P(X)
is dense in WYP(X) for the usual topology.

Proof Follows directly from the previous Theorem and Lemma 1.28. a

In the special case that F is the class of all locally Lipschitz functions, we have, still
assuming that the Sobolev space W'P(X) is defined by the completion procedure
described in definition 1.14:

Corollary 1.32 Let X be a proper metric space and assume that the Sobolev space
is local. If WYP(X) is uniformly convez, then the space of Lipschitz functions with
compact support is dense in WYP(X) (for the usual topology).
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Proof Since X is proper, K is the ring of all Borel bounded subsets of X. As F,
is the set of Lipschitz functions with compact support, we have Fy C W?(X) and

the result follows from the previous corollary. -

Remark The notion of relaxed energy has its origin in the theory of non-convex
integrands in the calculus of variation (see e.g. section 5.2 in [8]).

1.9 Linear D-structures

Let X be a MM space, and let us choose a class F of functions X — R satisfying
the conditions (F1)-(F3) of section 1.7.

Definition. A linear D—structure X is given by the following data :
a) A Banach space E, associated to each point z € X is given and
b) for any function u € F and any point z € X, an element du(z) € E, is given.

It is furthermore assumed that z — |du(z)| is a measurable function on X for all
u, € F and that

i) If k—Lipshitz, then |du| <k a.e.
ii) d is linear.
ili) d(wv) = udv + vdu.

iv) If » = min{uy,u,}, then du = duy a.e. on the set {u; < uy} and du = du,
a.e. on {u; > us}.

Lemma 1.33 If two functions wu,v € F coincide on a set A, then du=dv a.e.
on A. .

Proof It is a direct consequence of condition (iv).

Proposition 1.34 The correspondence
F>3u— Dlu):={g: X — R| g is measurable and g > |du| a.e.}

satisfies the axioms AI-A4.
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Proof Axiom Al follows from the previous lemma and condition (i). Axiom A2
follows from the condition (ii) and A3 follows from (iii). »
It is clear from (iv) that if g¢; € Dfuy] and g € Duy), then max{g, g} €
D[min{ui,us}]. Now using (ii), (iv) and the relation max{ui,uz} = w1 + up —

min{u;, us}, we conclude that max{g:, g.} € D[max{ui, uz}|. o

The completion procedure of section 1.7 gives us an extension of the D-structure on

all functions u € LY (X) and we obtain a corresponding Sobolev space WP(X).

Proposition 1.35 This D-structure is a strictly local.

Proof Just observe that the previous Lemma implies that d(vt) =0 a.e. on the

set {vt =0} =X\{v>0} O

A slightly different notion of linear D-structure appears in [11] (see in particular
Theorem 9 and 10), in [4] and in [45].

2 Examples of axiomatic Sobolev Spaces

2.1 Classical Sobolev Space

Let M be a Riemannian manifold and X be the class of relatively compact Borel
subsets of M. We say that a measurable function ¢: M — R is a classic pseudo-
gradient of a function u € L} (M) if and only if either g = oo or for any smooth

vector field & with compact support we have

l / u div€ dvol
M

We denote by Dlu] the set of all pseudo-gradients of w.

< /M g€ dvol. (4)

Lemma 2.1 Ifu has a distributional gradient Vu € L}, (M), then g € Dlu] if and
only if g(z) > |Vu(z)| a.e

Proof The lemma is obvious for smooth functions because of the inequality

‘/ (Vu, £) dVol
M

= }/ u div £ d Vol
M

< /M |[Vu(z)| €] d Vol.

For general functions, it then follows from the density of smooth functions in the
space W,k (M).

loc

O
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Proposition 2.2 This definition of pseudo-gradient satisfies all Azioms A1-AS.

Proof Axioms Al-A4 are basic properties of weak gradients (see e.g. [23], [36] or
[48]). Axiom A5 follows from the fact that inequality (4) is stable under L  con-
vergence. Finally Axiom A6 is a consequence of Proposition 1.10 and the following

classical lemma. a

Lemma 2.3 For any closed compact ball B C M, there erists a constant C =
C(B) such that the Poincaré inequality

/]u—uB|Pdvol§C/|Vu|”dvol
B B

holds for any u € W'?(B).

Proof A general (functional analysis) inequality of this type is proven in [48,
Lemma 4.1.3]. In our case we need to set X = W'#(B), X, = L?(B), Y = R
(= constant functions) and the projection L : X — Y is given by averaging:
L(u) := up. Observe that a ball in a Riemannian manifold has a Lipschitz boundary;
hence we can apply, Rellich-Kondrachov’s theorem which says that the embedding
X C X, is compact, thus all hypothesis of [48, Lemma 4.1.3] are satisfied.

Remark From Lemma 2.1, we conclude that the Sobolev space associated to these
pseudo-gradients is the classical Sobolev space W1?(M). It is a local Sobolev space
in the sense of definition 1.11. If the manifold M is complete, it is a proper metric
space and hence Lipschitz functions with compact support form a dense subset
(Corollary 1.32).

2.2 Weighted Sobolev space
1

Let M be a Riemannian manifold and w € Lj, (M) be a weight (i.e. a non
negative function). We then define the measure to be dp = wdvol. The ring K and
the pseudo-gradients are defined as in the previous example.

Theorem 2.4 Suppose that the weight w belongs to the Miickenhaupt class Ay,
1 < p < oo. Then all Azioms A1-A6 hold. Furthermore smooth functions are dense
in the corresponding Sobolev space WiP(M, w).

Recall that w belongs to Miickenhaupt class A, if there exists a constant C, , such
that for all balls B C M we have

(/Bw(x)dvolz) (/Bw(x)l/(?‘l)dvolz)p—l < Cup.
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The proof of this Theorem can be found in the paper of T. Kilpeldinen, [29], see

Iso [30].
also [30] -

The theory of Weighted Sobolev space has been also extended to the case of domains
in Carnot groups (see [5] and [19, section 13.1]).

2.3 Hajlasz-Sobolev space

The following concept was introduced by P. Hajtasz in [18], see also [31]. In this
example X is an arbitrary measure metric space and K is the ring of all bounded
Borel subsets of X. A measurable function ¢ : X — Ry is said to be a Hagjlasz

pseudo-gradient of the function u: X — R, if

lu(z) — u(y)| < d(z,y)(g(z) + 9(y))

for all z,y € X \ F where F C X is some set (called the exceptional set) with
p(F) =0.
We denote by HDIu] the set of all Haglasz pseudo-gradients of u.

Lemma 2.5 Assume that 1 <p < oco. Let v € L}, ,(X) and g € HD[u], then the
floating Poincaré inequality

s = uqllzeay < 2 diam(A) ( EQﬁ) lollzsca

holds for any bounded measurable subsets @ C AC X with u(Q) > 0.
Proof Observe that
(o) = val = | [ (ute) = u)auts)| < 75 [ ) ~utl )

< ZES))#I / lu(z) — u(y)] dus(y)
(
@

< 9 (ot [ ) - Pt ))Up

by Jensen’s inequality. Thus

[u(a) ~ ugl’ < (ﬁ(%;)p (i /[ 1) - P du(y)> ,
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integrating this inequality gives us

[0 - ueP ey < (42 ( 5 [, [ 140 - s dutaute))
ainay (SO (- [ (g($)+9(y))pdﬂ(y)d#($)>

21 diam(4)? (4 ) (“( B / / du(y)du(z))

#Q)
2P diam(A)? (%) /g dy .

The proof is complete.

IA

IA

IA

0

Remark The proof of this Poincaré inequality is only a simple generalization of
the argument given in [18] and [31].

Proposition 2.6 The correspondence u — HD|u] satisfies Azioms AI-AS6.

Proof For Axiom Al we consider an arbitrary non negative K —Lipschitz function
u. We have to check that for all z,y € X, we have

lu(z) — u(y)| < d(z,y)(Ksgn(u(z)) + Ksgn(u(y))).

If u(z) = u( ) = 0 this inequality is trivial, otherwise either sgn(u(z)) =
sgn(u(y)) = 1 and thus, from the definition of K. we have

lu(z) - w(y)| < K d(z,y) < d(=,y)(Ksgn(u(z)) + Ksgn(u(y))).

We leave the verification of Axiom A2 to the reader.

To prove Axiom A3, we let F' C X be the exceptional subset for (u,g) and set
g1(z) = (sup |p|g(z) + Lip(ep)|u(z)|). We then have for all z,y ¢ F

lp(z)u(z) — p(z)uly) + p(z)uly) — o(v)u(y)]
sup |o] [u(z) — u(¥)| + lu@)| lo(z) — o(¥)|
(d(z,y) sup |pl(g(2) + g(y)) + Lip(w)|u(y)])
d(z,y) (91(z) + 01 () -

Axiom A4 is proved in [31, Lemma 2.4].

il

|o(z)u(z) - p(y)u(y)|

IN A A

We now prove Axiom A5: Consider two sequences {u;} and {g;} converging a.e. to
some functions u and g and such that g; € HD|u,] for all i.

We may assume (passing to a subsequence if necessary) that u; — u and (g;—g) — 0
pointwise on X \ G where G C X is some set of measure zero.
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Let F; C X be the exceptional set for g¢; and set F := G U (U2, F;), then it
is clear that F' has measure zero and |u(z) — u(y)| < (g(z) + g(y))d(z,y) for all

z,y € X \ F. We thus conclude that ¢ € HD[u], and Axiom 5 (and in fact a more
general statement since only a.e. convergence is needed) is thus proven.

Finally Axiom A6 is a consequence of Lemma 2.5 and Proposition 1.10.

Remarks 1) The associated Sobolev space is called the Hajlasz-Sobolev space
and denoted by HW'P(X) (or M'?(X) in the literature). It contains Lipschitz
functions as a dense subset (see [18]).

2) HD is not a local D-structure. Indeed, consider a Lipschitz function w such
that w = 0 on a bounded open set A € X and » = 1 on a bounded open set
A'CcX. fge HD[u],and z € A,y € A', then we have (g(z)+g(y)) > % (where
A :=sup{d(z,y) : z € A,y € A'}). Integrating this inequality over A x A’ yields.

T < p(4) /

’

o)du(s) + u(4) [ gla)du(o)

A
which gives a positive lower bound for the local energy &,(ulA) + Ep(uld), in
contradiction to the definition of locality.

Let us finally mention that, if the measure is locally doubling, then there is a kind
of converse to Lemma 2.5. Namely Hajlasz pseudo-gradients can be characterized
by a Poincaré inequality. More precisely :

Theorem 2.7 Assume that the measure u is locally doubling and atomfree. If
u € L? (X) and g € LP(X); then Kg belongs to HD[u] for some constant K > 0

1
if and %cnly if there exists a constant C such that for any bounded measurable subset
A C X of positive measure we have

]{1 |u — ualdp < Cdiam(A) (]ﬁ g”du) . : (5)

The proof is given in [14].

2.4 Graphs (combinatorial Sobolev spaces)

Let I' = (V,E) be a locally finite connected graph. We define the combinatorial
distance between two vertices to be the length of the shortest combinatorial path
joining them.

The ring K is the class of all finite subsets of V' and the measure x4 is the counting
measure given by u(A) = |A| = cardinal of A. See e.g. [41] for more information on
the geometry of graphs.
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For any function u : V' — R, we define C'D[u] to be the set of all functions g : V' — R
such that

If y~z then  |u(y)—u(z)| < (9(z) + 9(v)) (6)
where y ~ z means that y is a neighbour of = (i.e. there is an edge joining z to y).

Axioms A1-A5 for the correspondence u — CD[u] are not difficult to prove using
standard arguments, Axiom A6 is a direct consequence of the lemma below.

This construction gives us a combinatorial Sobolev spaces CW?'P(T'). This is a
local theory (in the sense of definition 1.11). Observe that all functions are trivially
locally Lipschitz functions.

Observe also that it follows clearly from the definition that for any function z on V,
we have HD[u] C CD]u], hence HW?(TI") ¢ CWh(T").

Lemma 2.8 For all finite subsets A C X and all non empty subsets Q C A we
have the floating Poincaré inequality :

Y lu(z) —uglf < C (Z g(y)”) (7)

z€EA yeX

forl any g € CD[u|, where ug := {7}7! Y _zequ(z) and the constant C' depends on A
only.

Proof Let us denote by A; the set of all vertices in X whose combinatorial
distance to @ is < diam(A).

For any z € A; and z € (), we can find a combinatorial path = = xg¢, 2y, ..., 2, = 2
where z; ~ z;.1, the z; € A; are pairwise distinct points and n < diam(A4). We
thus have

u(z) —u(z I<Z|ux1+1)—u%|<z 9(z;) +g(zjn)) <2 9y

yeA

Hence the following inequality holds for any z € A;

“®) |Ql§2
< 2) gy

yEAL

Y lu(@) —ugl < 2[4] Y gly

€A yEAL

o e

zEQ

|u(z) - ugl

and therefore
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Combining the previous inequalities with Holder’s inequality, we obtain

Y lu(@) —ugl < (ZIU(x)—uQI) < <2|Al Zg(y))
z€A zEA YyEAL

A

< (A4 S g(y)?
yeA
|
From Proposition 1.10 we now have the
Corollary 2.9 CD]|-] satisfies also aziom A6.
0

Remark. The condition (6) used in the definition of the combinatorial pseudo-
gradients is often replaced by the following, simpler one:

If y~z then  Ju(y) —u(z)| < g(z). (8)

This would lead to an equivalent topology on the Sobolev space, however the axiom
Al would fail to be true.

2.5 Infinitesimal Stretch

The Hajlasz Sobolev space is in some sense a universal non local Sobolev space; it is
universal because it is defined on any measure metric spaces (no additional structure
on the space is beeing needed). We now give an example of universal local Sobolev
space. In this example, X is a priori an arbitrary metric space and K is any ring of
bounded sets satisfying the conditions (K1)-(K3) given in section 1.1.

Let us first introduce some notations. For a locally Lipschitz function u : X — R
and a ball B(z,r) C X the local stretching constant is defined by
u(z) —u
@) = sup 1B =)
dly,z)<r r

and the “infinitesimal stretch” is the Borel measurable function

Ly(z) := limsup Ly, (z).
-0
(The infinitesimal stretch L,(z) is denoted Lip u(z) in [4].)
For a locally Lipschitz function u: X — R, we define SD[u] to be the set of all
Borel measurable functions g such that

9(z) 2 Lu(=)
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for almost all x € X. We then define SDf[u] for any function v € L?  using the
completion procedure of section 1.7. In other words, for a function w € LI , we
have g € SD[u] if and only if there exists two sequences of functions {u;} and {g;}
such that u; = uin L? topology and (g—g;) — Oin L? topology such that u;

loc

is locally Lipschitz and ¢; € SD[u).

It is not difficult to check that Axioms A1-Ab hold for all locally Lipschitz functions.
By the discussion in section 1.7 we know that Axioms A1-A5 hold for all functions
we L} (X).

The associated Sobolev space is denoted by SW'P(X). It is a local Sobolev space.

Remark 1 Axiom A6 is a special property of the space (X,d, u) which sometimes
fail and must therefore be assumed or proved (usually it is in fact a Poincaré type
inequality which is assumed or proved).

Example Recall the example in the introduction. Let X = R™ with the metric d(z,y) = |z—y{*/2
and choose any measure on X. Let u : X — R be any linear function; it is then easy to check
that 0 € SD[u] hence axiom A8 is not satisfied.

Remark 2 It is also possible to use an alternative definition; namely for a locally
Lipschitz function u: X — R, we define SD[u] to be the set of all Borel measurable
functions g such that

g(;z:) > llil’(l) sup Llp(u|B(a:,r))

for almost all € X, where Lip(u|,) is the Lipschitz function of u on the set A.

2.6 Upper Gradients

This Sobolev space is studied in [4], {24] and [39]. In this section, we assume X
to be a rectifiably connected metric space, i.e. any pair of points can be joined
by a rectifiable curve. We fix is a ring K of subsets of X satisfying the conditions
(K1)—-(K3).

Definition Let u: X — R be a locally Lipschitz function. A Borel measurable
function ¢: X — R is an upper gradient (also called very weak gradient) for u if
for all Lipschitz paths ~:[0,1] = X we have

[u(v(1)) = w(1(0))] < / o(v(®))dt

We denote by UD|u] the set of all upper gradients for a locally Lipschitz function
u; and we extend this definition by the procedure described in section 1.7. In other
words, for a function u € L} (X), we have g € UD[u] if and only if there exists two
sequences of functions u; — win L topology and g; — g in LP topology such
that u; is locally Lipschitz and g; is an upper gradient for u;. (In the terminology

of [4], we can say that g is a generalized upper gradient for wu).
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Proposition 2.10 The correspondence u — UD[u] satisfies Azioms A1-AS.

Proof Axioms A1-A4 can be checked by routine argumentation. Axiom A5 is a

consequence of Proposition 1.25. g

The associated Sobolev space is denoted by UW?(X). It is a local Sobolev space
(see [40, Lemma C.19] or [19, Lemma 10.4]).

Remark In general Axiom A6 is not satisfied. Here is an example taken from [17]: Let X = B" C
R™ be the unit ball in euclidean space with lebesgue measure A and with the metric:

d(zy,T2) == |r1 — ro| + min{ry,r2} |jor — o2]|”

where 0 < @ < 1, and (r,o) are polar coordinates on R™. This distance gives rise to the usual
topology on B"™; the MM-space X also enjoys the following properties:

1. 0 < A(B(z,p)) < oo for any ball of positive radius p;
2. X is compact;

3. X is rectifiably connected and the only rectifiable curves are contained in a union of radit
from 0.

Let w:S8" ! - R be an arbitrary non constant function on the sphere which is Lipschitz for
the metric |jor — 02)|* and set ug(z) = ur(r, o) := ¢ (r)w(o) where ¢r(r) = min{kr,1}; the
function wy is then Lipschitz on (X, d).

We now define g : X =+ R by

aino) =0 ={ § § VSTEVE

Because any rectifiable curve is contained in a union of radii, g, € UDu;]. We thus have
Uép(ui) < / ghdX = wp1 kP
X

Hence klim U&y(up) =0 if p <n. But klim ug(r,0) = u(r, o) = w(o) is not constant, it follows
— —c0
that Axiom A6 fails.

By Proposition 1.10, this problem is avoided if the space X supports a Poincaré
inequality.

There are many spaces on which upper gradients are known to support a Poincaré
inequality (see the discussion in §10.2 in [19]). Let us mention in particular the
following recent result of Laakso [34] showing that there are examples in any (fractal)
dimension :

Theorem 2.11 For any real number s > 0 there exists an unbounded proper geodesic
metric space X; with an Ahlfors regular measure p in dimension s end on which up-
per gradients support a weak (1, 1)-Poincaré inequality (see Definition 1.10).



324 V. Gol’dshtein and M. Troyanov

i

Remark On the space X, described above, UD is a non degenerate D-structure.

Indeed, by Jensen’s inequality, if UD supports a (1, 1)-Poincaré inequality, then it
also supports (1, p)-Poincaré inequality for all p > 1. On the other hand, since p is
Abhlfors regular, it is doubling. It thus follows from Corollary 1.15 that UD is non

degenerate.
0O

Thus Laakso’s construction provides us with an example of non degenerate Sobolev
space UWP(X,) on a metric space of Hausdorff dimension s for any s > 0 and any
p> 1.

Remark In [4], J. Cheeger constructs a Sobolev space based on upper gradients
in a slightly different way. Namely let F be the set of all measurable functions u
admitting an upper-gradient (i.e. such that there exists a Borel measurable function
g such that [u(y(1)) —u(y(0))] < fol g(y(t))dt for all Lipschitz path +:[0,1] — X).
We then denote by UD[u] the set of all upper gradients for a function u € F; and
we extend this definition by the same approximation procedure as above. If X
supports a weak p-Poicaré inequality, then we can define a corresponding Sobolev
space UWL?(X).

We have the following

Proposition 2.12 Suppose that locally Lipschitz functions are dense in both UWP(;
and UW'P(X). Then UW'P(X)=UW'P(X).

Proof If u : X — R is locally Lipschitz, then UD[u] = UD[u] and hence
lullywioxy = lullpwiscx)- It follows that the closure of locally Lipschitz functions

in the spaces UW?(X) and UW(X) coincides. a

In fact we always have UW'?(X) C UW?(X). We don’t know if there are cases
where UWh?(X) £ UWP(X).

Cheeger has also proved that if the measure yu satisfies the doubling condition and
if UD supports a (1, p)-Poincaré inequality, then the Sobolev norm in UW'P(X) is
equivalent to a uniformly convex norm, see [4, Proposition 4.48].

Let us finally mention that in [39], Nageswari Shanmugalingam develop another con-
struction of a Sobolev space based on upper-gradients. Her approach is to consider
the class of p—integrable functions v : X — R which admits a function g € LP(X)
which is an upper-gradient of u for p-modulus almost all curves; two such func-
tions are then identified if the norm of their difference vanishes. The resulting space
is a Banach space denoted by N'?(X) and is called the Newtonian space. For
1 < p < oo, N¥(X) coincides with UW#(X) (see [39, Theorem 4.10)).
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2.7 Comparing different D—structures

Let AD and BD be two D-structures on a fix MM-space (X,d,K,u). Let us
denote by AE,(u) and BE,(u) the corresponding energies and by AW(X) and
BW1P(X) the corresponding Sobolev spaces.

We will write AD < BD if AD[u] C BDlu] for all functions u € L} (X); we then
have the following simple observation :

Proposition 2.13 Assume AD < BD, then
i) A&, (u) 2 BE(w);
i) AWYP(X) C BWYP(X) (closed subspace);
iti) if AD is local, then so is BD;
w) if BD is non degenerate, then so is AD.

The proof is not difficult and left to the reader. -

Proposition 2.14 Suppose that 1 < p < 0o, then AD < BD if and only if for any
function u € L} _(X) we have BD,u < AD,u a.e. (where AD,u and BD,u are the

loc
corresponding minimal pseudo-gradients).

The proof is obvious.

Proposition 2.15 Consider a (finite or infinite) collection D = {Di;}er of
D-structures on X, then D = Mier D, is again a D-structure.
If one of the D, is a non degenerate D-structure, then D is also non degenerate.

Proof It is just a routine to check that D = MyerD; satisfy the axioms Al1-AS5.

The last assertion follows from last Proposition 2.13 (iv). .

Let us end this section with some examples :
Proposition 2.16 o) If X is a graph, then HD <X CD;
b) for any MM spaces we have SD < UD;

¢) if D is any D-structure on X, then D X AD for any 0 < A < 1, where
AD[u] :={Ag : g € D[ul} ;

d) for any MM spaces we have 4HD < UD (ie. if g € HD[u] then 4g €
UDlul).
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Proof (a)is clear from the definitions.

To prove (b), we observe that it is not difficult to check that SD[v] C UD[v] if
v : X — R is a locally Lipschitz function (see e.g. [4, Proposition 1.11]). The
inclusion SD[u] C UDJu] follows then for all functions v € L¥ (X) by construction.

loc

To prove (c), observe that by Axiom A2 we have AD[u] = {sg : g € D[u]and s > A},
hence D[u] C AD[y] for all u.
The proof of (d) is given in [39, Lemma 4.7].

Corollary 2.17 SW'P(X) and HW'?(X) are closed subspace of UWlP(X).

0O

A recent theorem of J. Cheeger says that if the measure p satisfies the doubling
condition and if UD supports a (1,p)-Poincaré inequality, then SD = UD, see
section 4.4, ‘

3 Capacities and Hyperbolicity

In this part we introduce a concept of variational p-capacity, and we study its relation
with the geometry of X. The corresponding theory for Riemannian manifolds can
be found in [16], [42] and [49)].

3.1 Definition of the variational capacity

Let Q@ C X be an open subset. Recall that Cy(€2) is the set of continuous functions
u: 2 — R such that supp(u) € £, i.e. supp(u) is a closed K-subset of Q.

Definition 3.1 a) We define L£;?(Q) to be the closure of Cy(Q) N L17(X)
in £'?(X) for the norm defined in section 1.5 (recall that this norm is given by

1
lull z1mi0,q) = (fQ luPdy + Sp(u|Q)) * Wwhere @ € N is a fixed K-subset of posi-
tive measure).

b) The variational p-capacity of a pair F C  C X (where € is open and F' is
arbitrary) is defined as

Capp(F, Q) = inf{&,(u) |u € A,(F, Q) },
where the set of admissible functions is defined by
A (F,Q) :={ue L(IJ”'(Q)| u > 1 on a neighbourhood of F and u > 0 a.e.}

If A,(F,Q1) = 0, then we set Capy(F,Q) = oco. If @ = X, we simply write
Cap,(F, X) = Capp(F).
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Remarks 1. The space £;7(2) may depend on the ambient space X D €2, however
we will avoid any heavier notation such as £37(€2, X).

2. By definition capacity is decreasing with respect to the domain Q : if Q; C €y,
then Capy(F, ) > Capy(F, Q).

Theorem 3.1 Let Q C X be a K-set such that u(Q) > 0. Then the following
conditions are eguivalent :

1) there ezists a constant C such that for any u € L(X) we have
“u”LP(Q) <C (5p(u))l/p ;

2) Capp(Q) > 0;
3) 1¢ L"(X);

4) Lg%(X) is @ Banach space for the norm ||u|| := (E,(u))? .

A similar result in the case of Riemannian manifolds was obtained in [43]. See also
[47] for the case of graphs.

Proof Observe that (1) = (2) and (2) = (3) are trivial. The proof of (3) = (4)
follows from the fact that £'?(X)/R is a Banach space for the norm ||u|| = &,(u)?
(Proposition 1.20) and that the canonical mapping £5?(X) — £"(X)/R is injec-
tive if and only if 1 ¢ £5”(X). Finally, the proof of (4) = (1) is a consequence of the
open mapping theorem applied to the identity map Id : (£5"(X), |- ce(x,) —

(£57(X), (). .

Definition 3.2 The MMD space X is said to be p—hyperbolic if one of the above
conditions holds and p—parabolic otherwise.

For instance if X € K, then X is p—parabolic for all p.

Remark. By Theorem 1.21, the space [,(l)’p {X) does not depend on the choice of
the K-set @ C X. It thus follows :

a) That condition (3) (or (4)) does not depend on the choice of Q. In particular
the notion of p—hyperbolicity of a MMD space is well defined.

b) X is p-parabolic <= Cap,(4) =0 for any A € K <= there exists at least
one K-set @ € K of positive measure such that Cap,(Q) = 0.

For more information on the parabolic/hyperbolic dichotomy in the case of Rieman-
nian manifolds, see [16], [49] and [42].
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Proposition 3.2 The variational p-capacity Capy( ) satisfies the following proper-
ties:

i) Capy( ) is an outer measure;
it) for any subset F C X we have Cap,(F) = inf{Cap,(U) : U D F open };
i) If X D K; D Ky D Kj... is a decreasing sequence of compact sets, then
; 3 = o f
il_lglocapp(Kz) Cap, (N2, K:) -

Proof If X is p-parabolic, then the p—capacity is trivial, we thus assume X to be
p—hyperbolic.

i) Clearly Cap,(#) = 0 and Cap,() is monotone : A C B = Cap,(A4) < Cap,(B).
To prove countable subadditivity suppose that {F, C X} is a sequence of subsets
of X such that Y oo, Capy(F,) < co. Let F := U, F, and fix some € > 0. By
definition of the variational p-capacity, for each n we can find a function u, €
A(F,, X) and g, € D[uy,) such that

£
Hgnnlzj,p(x) < Capp(Fn) + on "

By axiom A4 the function v, := max(uy, ..., u,) is admissible for U7_, F§; observe
that by Fatou’s lemma, the sequence {v,} converges to vy = sup;en(us) in L7 (X).
If m > n, then max(u, ..., um) < max(ui, ..., Un) + Max(Unt1, ..., Um). Using this
inequality and Axiom A4, we have for any m > n :

o —vn iy = N max(ur, -y um) — max(uy, .., tn) [Zasx)
< | max(un41, - Um) ”Zlm(x)
< |l max(gn+1s s Gm) ”’ir(x)
m m £
< Y Helps Y (ComelF) + )
i=n+1 =n+1
oo
< g+ Z Capp(Fi) .

i=n+l

Because the series ;" Cap,(F;) converges, the sequence {v,} is a Cauchy sequence
in the Banach space £?(X). Therefore v, — vy and v € L1?(X). Since we clearly
‘have vy > 1 on a neighbourhood of F := UZ,F,, we have thus established that
v € Ap(F, X), therefore

Capp(F) < “1’0“1,/);1,:7()() = 7}_1_)1{.10 “Un“fr’;l,p(x) = nh_{go || max(uy, ..., un) ||121,p(x)

o0 o
Z Il g: “IIJ,p(X)S €+ Z Capy(F) -
i=1 i=1

IA
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We have proved that the variational p-capacity is an outer measure.

ii) This assertion is clear from the definition of p-capacity.

iii) First we observe that the monotonicity of p-capacity implies lim Capp(K;) >
1—00

Cap,(K), where K := N2, K;. To prove the converse inequality, choose an arbitrary

open set U C X containing K. By compactness of the K;’s, the open set U contains

K; for all sufficiently large 7. Therefore lim Cap,(K;) < Capp(U). By (ii), we now
=300

obtain the inequality lim Capy(K;) < Capy(K).
i—300 g

3.2 Growth of balls and parabolicity

Theorem 3.3 Let§) C X be an open set and suppose that B(zo, 7} € B(zo, R) € .

Then B R
Cap,(B(z9,7),)) < ﬁ((}—zgig;—)p)) .

Proof Let us set AMx) := dist(z,zo) and define the function v = u, : X =+ R
(where t > 1) by

t if z € B(zog,r)
u(z) = E(—}%:%@ if z € B(zo, R) \ B(zg,7)
0 if z¢ B(zo,R) .

It is clearly a Lipschitz function with Lip(u) < . By axiom Al we thus have
u € LY(X). Observe also that u is continuous and suppu C B(zg,R) € ©; in
particular u € Ly?(Q). A pseudo-gradient g € D[u] is given by g(z) = & for
z € B(zg, R) and g(z) = 0 for all other z. If ¢ > 1, then the function u is an
admissible function for Capy(B(zo,7),2). Therefore

a r v _ p#(B(ao, R)) _ w(B(zo, R))
Capp(Blan, 1), ) < T /B R e

ast— 1.

We immediately deduce the following sufficient condition for p-parabolicity.

Corollary 3.4 Suppose that the metric space X is complete and unbounded and
that K is the Boolean ring of all bounded Borel subsets of X. If there exists a point
9 € X such that

NP 3
liminf R™Pu(B(z0, B)) = 0,

then X is p-parabolic.
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We also have the following consequence on the capacity of points :

Corollary 3.5 Suppose that }zm%) R7Pu(B(zoR)) = 0. Then Capy({zo},Q) =0
—

for every open set €1 containing z.

Proof For R > 0 small enough, we have B(zoR/2) € B(zoR) € Q. The
previous Theorem implies then

Capy (B(zo B/2), 9) < MB@R)

w(B(zoR)
GR)’

Letting R — 0 gives us the result.

4 A survey of some recent results

In this section we describe without proof some other recent results from the theory
of MMD spaces.

4.1 A global Sobolev inequality

The following Sobolev inequality has been proved by K. Gafaiti in his thesis [12]
using techniques of the paper [1].

Theorem 4.1 Let X be a complete MMD space such that
i) D is absolutely local;
i) p has the doubling property;

i1) there ezists constants s > 1 and ¢ >0 such that for all z € X we have
w(B(z,r)) > cr’.

iv) the p—Poincaré type inequality

[ uto) - usPdutey < cv [ gy
B 2B

holds for any locally Lipschitz function u:X — R, any ball B C X and any
g € Dlu).
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Then the following global Sobolev inequality

( /X |u|"*du) " < C (&)

holds for any u € WYP(X) where p* = s{%,

4.2 Some results on p-capacity

We first mention that p—capacity satisfies the Choquet property :

Proposition 4.2 Suppose that F' C X s a strongly bounded Borel set which is
contained in a countable union of compact sets, then

Capy(F) = sup{Capy,(K)| K C F a compact subset}.

The proof is given in [15]. o

Recall that a set F' C X is strongly bounded if there exists a pair of open sets
Ql C Qg C X such that QQ S K:, [L(X\Qg) > O, dlSt(Ql,X\Qg) >0and F C Ql.

‘We now state a result about the existence and uniqueness of extremal functions for
p—capacities. We first need a definition :

Definition A subset F' is said to be p—fat if it is a Borel subset and there exists
a probability measures 7 on X which is absolutely continuous with respect to p-
capacities (i.e. such that 7(S) =0 for all subsets S C X of local p—capacity zero)
and whose support is contained in F'.

Theorem 4.3 Let (X,d) be ¢ o-compact measure metric space and F C X be a

p—fat subset (1 < p < co). Then there ezists a unique function u* € Lg%(X)
such that u* = 1 p-quasi-everywhere on F and E,(u*) = Capy(F). Furthermore
0<u*(z)<1foralzeX.

The proof is also given in [15].
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4.3 Bilipschitz characterization of metric spaces

On a MMD space X we define Af(X) := Cp(X) N L1P(X) where Cy(X) is the set
of continuous functions converging to zero at infinity.

Lemma 4.4 Suppose that the MMD space satisfies the condition
(€)' < ol ()" + [l (E5(0)) ©)

for all u,v e AL(X).
Then A§(X) is a Banach algebra for the norm llll gy == lullpeo + (Ep(u)).

This algebra is called the Royden algebra of the MMD space X.

All examples of D-structures we have previously given do satisfy the hypothesis of
this Lemma.

We now consider two MMD spaces X and Y satisfying the following four condi-
tions:

1) X and Y are proper and quasi-convex, i.e. there exists @ > 1 such that any pair
of points a,b in X (or in ¥') can be joined by a curve of length at most Q - d(a, b)
2) X and Y are uniformly locally s-regular, i.e. for every point x € X there exists
two constants ¢,n > 0 such that for any ball B of radius r < 7 in X or Y we have

1 s s

-r° < p(B) <er’.

¢
3.) The (1, p)-Poincaré inequality holds on any ball of radius r < 7, i.e. there exists
two constants o > 1 and C > 0 such that

(]é lu — uBI"du) " <Cr (]é . g‘”du) ” (10)

for any ball B of radius r < n in X or Y, for any continuous function u : X = R
and any g € Dlul.
4.) X and Y satisfy the condition (9) above.

Theorem 4.5 Let X and Y be as above. Suppose that A5(X) and AN(Y) are
isomorphic Banach algebras for some p > s. Then X and Y are bilipschitz equiva-
lent.

This result has been obtained by Gafaiti in his thesis [12]. Note that in the special
case of Riemannian manifolds, this is a Theorem of J. Ferrand (see [10]).
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4.4 A theorem of J. Cheeger

The Sobolev space UW!P(X) has a very rich structure on doubling metric spaces
supporting a Poincaré inequality :

Theorem 4.6 If the MM space X satisfies the doubling condition and of UD sup-
ports a (1, p)-Poincaré inequality, then

i) UD = SD, in particular UW'P(X) = SWP(X);

i) UD can be defined from a linear D—structure, i.e. there ezists a linear D-
structure {Eg,d} such that for any locally Lipschitz function v on X we

have a.e.
(do(2)| = Lu(x) = UDu(z)
(where UDv is the minimal upper-gradient of v).

i) If1 < p < oo, then the Sobolev norm on UW?(X) is equivalent to a uniformly
convez norm (in particular UWP(X) is reflerive).

This is a deep result of J. Cheeger proved in Theorems 4.38, 4.48 and 6.1 of [4], see

also [45]. N. Weaver has developed an alternative construction in [46]. a

From this result and Corollary 1.32, we now have:
Corollary 4.7 Let X be a proper MM space X satisfying the doubling condition. If

UD supports a (1,p)-Poincaré inequality for some p > 1, then the space of Lipschitz
functions with compact support is dense in UWP(X) for the usual topology.
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