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SOLVING THE p-LAPLACIAN ON MANIFOLDS

MARC TROYANOV

(Communicated by Peter Li)

Abstract. We prove in this paper that the equation ∆pu + h = 0 on a
p-hyperbolic manifold M has a solution with p-integrable gradient for any
bounded measurable function h : M → R with compact support.

1. Introduction

The p-Laplacian of a function f on a connected oriented Riemannian manifold
without boundaryM is defined by ∆pf = div(|∇f |p−2∇f); it is the Euler-Lagrange
operator associated with the functional

∫
M |∇f |p.

A function u ∈W 1,p
loc (M) is said to be a weak solution to the equation

∆pu+ h = 0(1)

if for all ψ ∈ C1
0 (M) one has∫

M

〈
|∇u|p−2∇u,∇ψ

〉
=

∫
M

hψ .

We introduce the p-Dirichlet space L1,p(M) of functions u ∈ W 1,p
loc (M) admitting

a weak gradient such that
∫

M ‖∇u‖p <∞.
In [2], the following result has been proved:

Theorem 1. Suppose that M is p-parabolic, and let h ∈ L1(M) be a function such
that

∫
M h 6= 0. Then (1) has no weak solution u ∈ L1,p(M).

The goal of this paper is to prove the following result in the converse direction.

Theorem 2. Suppose that M is a p-hyperbolic manifold (1 < p < ∞) and that
h ∈ L∞(M) has compact support. Then (1) has a weak solution u ∈ L1,p(M).
Moreover u is of class C1,α on each compact set (where α ∈ (0, 1) may depend on
the compact set).

The notion of p-hyperbolic and p-parabolic manifolds will be recalled below (see
also [6]). As an example, the euclidean space Rn is p-hyperbolic if and only if p < n.

Remark. If M = Rn with 1 < p < n and h ≥ 0, then equation (1) (and in fact a
more general eigenvalue problem) is solved in [1].
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2. Preliminaries on p-hyperbolicity

Definition. Let (M, g) be a connected Riemannian manifold, and K ⊂M a com-
pact set. For 1 < p <∞, the p-capacity of K is defined by

Capp(K) := inf
{∫

M

|∇u|p : u ∈ C1
0 (M), u ≥ 1 on K

}
.

The manifold M is said to be p-parabolic if Capp(K) = 0 for all compact subsets
K ⊂M and p-hyperbolic otherwise. It is a well known fact that, in a p-hyperbolic
manifold, the p-capacity of any compact set with non empty interior is always
positive (see e.g. [6]).

Let D ⊂ M be a non empty bounded domain. We introduce the Banach space
Ep = Ep(D,M) of functions u ∈W 1,p

loc (M) such that

‖u‖p
E :=

∫
D

|u|pdx+
∫

M

|∇u|pdx <∞ .

We denote by Ep
0 the closure of C1

0 (M) in Ep.

Lemma 1. If M is p-parabolic, then 1 ∈ Ep
0 .

Proof. By hypothesis Capp(D) = 0; hence for all ε > 0, there exists a function
u ∈ C1

0 (M) such that u ≡ 1 on D and
∫

M |∇u|pdx < ε. Thus we have

‖1− u‖p
E :=

∫
D

|1− u|pdx+
∫

M

|∇u|pdx =
∫

M

|∇u|pdx ≤ ε .

It follows that 1 ∈ Ep
0 .

The next lemma is the well known Poincaré inequality.

Lemma 2. Let D be any bounded regular domain in a Riemannian maniflold M
and 1 ≤ p <∞. Then there exists a constant A such that(∫

D

|u− uD|pdx
)1/p

≤ A

(∫
D

|∇u|pdx
)1/p

for all u ∈W 1,p
loc (M), where uD = 1

vol(D)

∫
D
udx is the mean value of u on D.

A reference is [3, Lemma 3.8].
Combining this lemma with Hölder’s (or Jensen’s) inequality, we obtain

Corollary 1. There exists a constant c = cD such that∫
D

|u− uD|dx ≤ cD

(∫
M

|∇u|pdx
)1/p

(2)

for all u ∈W 1,p
loc (M).

Proposition 1. Suppose that M is p-hyperbolic and let D ⊂ M be as in Lemma
2. Then there exists a constant C1 such that for all u ∈ Ep

0∫
D

|u| dx ≤ C1

(∫
M

|∇u|pdx
)1/p

.
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Proof. Suppose that such a constant does not exist. Then for all ε > 0 it is possible
to find a function u ∈ Ep

0 such that∫
D

|u|dx = vol(D) and ‖∇u‖Lp(M) ≤ ε .

We may also assume u ≥ 0 (else replace u by |u|). From Corollary 1 one gets∫
D

|u− 1|dx ≤ cD ε .(3)

Let us now choose a ball B ⊂⊂ D and a function ψ ∈ C1
0 (M) such that 0 ≤ ψ ≤ 1

2 ,

supp(ψ) ⊂ D and ψ ≡ 1
2 on B, and define the function v ∈ Ep

0 by v = 2 max{u;ψ}.
Observe first that v ≥ 1 on B, and define the sets

A := {x ∈ D|ψ(x) ≥ u(x)} and A′ :=
{
x ∈ D| |u(x)− 1| ≥ 1

2

}
.

We have A ⊂ A′ and by (3) we have 1
2vol(A′) ≤ cDε; thus

vol(A) ≤ 2cDε .(4)

Now we have almost everywhere

∇v =


2∇u on M \A,

2∇ψ on A;

in particular

|∇v| ≤ 2|∇u|+ 2χA|∇ψ| a.e.

from which one deduces

‖∇v‖Lp(M) ≤ 2 ‖∇u‖Lp(M) + 2 sup |∇ψ| (vol(A))1/p .(5)

From (4) and (5) one obtains

‖∇v‖Lp(M) ≤
(
2ε+ 2 sup |∇ψ| (2cDε)

1/p
)

.

Since v ≥ 1 on B and ε is arbitrary, one deduces that Capp(B) = 0, which contra-
dicts the fact that M is p-hyperbolic.

We may sum up our results so far in

Theorem 3. The following conditions are equivalent:

(a) M is p-hyperbolic;
(b) There exists a constant C2 such that for all u ∈ Ep

0 one has

‖u‖Lp(D) ≤ C2 · ‖∇u‖Lp(M) ;

(c) 1 /∈ Ep
0 .

Proof. The implication (b) ⇒ (c) is obvious and (c) ⇒ (a) is Lemma 1.
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Let us write u as u = (u− uD) + uD; using Proposition 1 and Lemma 2, we see
that

‖u‖Lp(D) ≤ ‖u− uD‖Lp(D) + ‖uD‖Lp(D)

≤ A

(∫
D

|∇u|pdx
)1/p

+ (Vol(D))1/p |uD|

≤ A

(∫
D

|∇u|pdx
)1/p

+ (Vol(D))(1−p)/p
∫

D

|u|dx

≤ A

(∫
D

|∇u|pdx
)1/p

+ (Vol(D))(1−p)/p C1

(∫
M

|∇u|pdx
)1/p

≤ C2

(∫
M

|∇u|pdx
)1/p

.

This proves (a) ⇒ (b).

3. Proof of Theorem 2

We first choose a regular bounded domain D ⊂ M such that supp(h) ⊂ D. We
then define a functional J : Ep

0 → R by

J (u) =
1
p

(∫
M

|∇u|pdx
)
−

∫
M

hu dx .

The manifold M beeing p-hyperbolic, we have

J (u) ≥ 1
p
‖∇u‖p

Lp(M) −
∣∣∣∣∫

M

hu dx

∣∣∣∣
≥ 1

p
‖∇u‖p

Lp(M) − ‖h‖L∞ · ‖u‖L1(D)

≥ 1
p
‖∇u‖p

Lp(M) − C1 ‖h‖L∞ · ‖∇u‖Lp(M) ,

where C1 is the constant of Proposition 1. Since the function g(x) = |x|p − ax of
the real variable x is bounded below, we conclude that the functional J is bounded
below on the space Ep

0 .
Set m := inf {J (u)|u ∈ Ep

0} , and let {ui} ⊂ Ep
0 be a minimizing sequence for

J (i.e. J (ui) → m). Then from the inequality above, one deduces that {ui} is
a bounded sequence in Ep

0 . Since Ep
0 is a reflexive Banach space, this sequence

contains a weakly convergent subsequence (still denoted by {ui}). Let us denote
by u∗ the weak limit of {ui}. By the compactness of the embedding Ep

0 ⊂ L1(D),
we may assume that {ui} converges strongly in L1(D), in particular∫

D

hui →
∫

D

hu∗ .(6)

By Theorem 3, ‖∇u‖Lp(M) is an equivalent norm on Ep
0 ; hence by the weak lower

semi-continuity of the norm on Ep
0 we have

‖∇u∗‖Lp(M) ≤ lim
i→∞

inf ‖∇ui‖Lp(M) .(7)
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From (6) and (7) one deduces that J (u∗) ≤ limi→∞ inf J (ui) = m; hence
J (u∗) = m. By the usual arguments from variational calculus, one deduces that u∗

is a weak solution to (1).
The C1,α regularity follows from Theorem 1 in [5].

Remark. We have in fact solved (1) in the space Ep
0 ⊂ L1,p(M).
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[4] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic
equations, Oxford Math. Monographs (1993). MR 94e:31003

[5] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Diff.
Equations 51 (1984), 126–150. MR 85g:35047

[6] M. Troyanov, Parabolicity of manifolds, préprint EPFL, 1997.
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