PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 2, Pages 541–545 S 0002-9939(99)05035-2 Article electronically published on July 8, 1999

SOLVING THE *p*-LAPLACIAN ON MANIFOLDS

MARC TROYANOV

(Communicated by Peter Li)

ABSTRACT. We prove in this paper that the equation $\Delta_p u + h = 0$ on a *p*-hyperbolic manifold M has a solution with *p*-integrable gradient for any bounded measurable function $h: M \to \mathbb{R}$ with compact support.

1. INTRODUCTION

The *p*-Laplacian of a function f on a connected oriented Riemannian manifold without boundary M is defined by $\Delta_p f = \operatorname{div}(|\nabla f|^{p-2}\nabla f)$; it is the Euler-Lagrange operator associated with the functional $\int_M |\nabla f|^p$.

A function $u \in W^{1,p}_{loc}(M)$ is said to be a weak solution to the equation

(1) $\Delta_p u + h = 0$

if for all $\psi \in C_0^1(M)$ one has

$$\int_{M} \left\langle \left| \nabla u \right|^{p-2} \nabla u, \nabla \psi \right\rangle = \int_{M} h \, \psi \, .$$

We introduce the *p*-Dirichlet space $\mathcal{L}^{1,p}(M)$ of functions $u \in W^{1,p}_{loc}(M)$ admitting a weak gradient such that $\int_M \|\nabla u\|^p < \infty$.

In [2], the following result has been proved:

Theorem 1. Suppose that M is p-parabolic, and let $h \in L^1(M)$ be a function such that $\int_M h \neq 0$. Then (1) has no weak solution $u \in \mathcal{L}^{1,p}(M)$.

The goal of this paper is to prove the following result in the converse direction.

Theorem 2. Suppose that M is a p-hyperbolic manifold $(1 and that <math>h \in L^{\infty}(M)$ has compact support. Then (1) has a weak solution $u \in \mathcal{L}^{1,p}(M)$. Moreover u is of class $C^{1,\alpha}$ on each compact set (where $\alpha \in (0,1)$ may depend on the compact set).

The notion of *p*-hyperbolic and *p*-parabolic manifolds will be recalled below (see also [6]). As an example, the euclidean space \mathbb{R}^n is *p*-hyperbolic if and only if p < n.

Remark. If $M = \mathbb{R}^n$ with $1 and <math>h \ge 0$, then equation (1) (and in fact a more general eigenvalue problem) is solved in [1].

©1999 American Mathematical Society

Received by the editors April 6, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 31C15, 31C12, 31C45; Secondary 53C20.

 $Key\ words\ and\ phrases.$ Differential geometry, potential theory, non linear partial differential equations.

MARC TROYANOV

2. Preliminaries on *p*-hyperbolicity

Definition. Let (M, q) be a connected Riemannian manifold, and $K \subset M$ a compact set. For 1 , the*p*-capacity of K is defined by

$$\operatorname{Cap}_p(K) := \inf \left\{ \int_M |\nabla u|^p : u \in C_0^1(M), \, u \ge 1 \text{ on } K \right\}.$$

The manifold M is said to be p-parabolic if $\operatorname{Cap}_p(K) = 0$ for all compact subsets $K \subset M$ and p-hyperbolic otherwise. It is a well known fact that, in a p-hyperbolic manifold, the *p*-capacity of any compact set with non empty interior is always positive (see e.g. [6]).

Let $D \subset M$ be a non empty bounded domain. We introduce the Banach space $E^p = E^p(D, M)$ of functions $u \in W^{1,p}_{loc}(M)$ such that

$$||u||_E^p := \int_D |u|^p dx + \int_M |\nabla u|^p dx < \infty .$$

We denote by E_0^p the closure of $C_0^1(M)$ in E^p .

Lemma 1. If M is p-parabolic, then $1 \in E_0^p$.

Proof. By hypothesis $\operatorname{Cap}_p(\overline{D}) = 0$; hence for all $\epsilon > 0$, there exists a function $u \in C_0^1(M)$ such that $u \equiv 1$ on D and $\int_M |\nabla u|^p dx < \epsilon$. Thus we have

$$\|1 - u\|_{E}^{p} := \int_{D} |1 - u|^{p} dx + \int_{M} |\nabla u|^{p} dx = \int_{M} |\nabla u|^{p} dx \le \epsilon .$$

It follows that $1 \in E_0^p$.

The next lemma is the well known Poincaré inequality.

Lemma 2. Let D be any bounded regular domain in a Riemannian manifold M and $1 \leq p < \infty$. Then there exists a constant A such that

$$\left(\int_{D} |u - u_D|^p dx\right)^{1/p} \le A \left(\int_{D} |\nabla u|^p dx\right)^{1/p}$$

for all $u \in W^{1,p}_{loc}(M)$, where $u_D = \frac{1}{vol(D)} \int_D u dx$ is the mean value of u on D.

A reference is [3, Lemma 3.8].

Combining this lemma with Hölder's (or Jensen's) inequality, we obtain

Corollary 1. There exists a constant $c = c_D$ such that

(2)
$$\int_{D} |u - u_D| dx \le c_D \left(\int_{M} |\nabla u|^p dx \right)^{1/p}$$

for all $u \in W^{1,p}_{loc}(M)$.

Proposition 1. Suppose that M is p-hyperbolic and let $D \subset M$ be as in Lemma 2. Then there exists a constant C_1 such that for all $u \in E_0^p$

$$\int_D |u| \, dx \le C_1 \left(\int_M |\nabla u|^p \, dx \right)^{1/p} \; .$$

Proof. Suppose that such a constant does not exist. Then for all $\varepsilon > 0$ it is possible to find a function $u \in E_0^p$ such that

$$\int_{D} |u| dx = \operatorname{vol}(D) \quad \text{and} \quad \|\nabla u\|_{L^{p}(M)} \leq \varepsilon \;.$$

We may also assume $u \ge 0$ (else replace u by |u|). From Corollary 1 one gets

(3)
$$\int_D |u-1| dx \le c_D \varepsilon \; .$$

Let us now choose a ball $B \subset \subset D$ and a function $\psi \in C_0^1(M)$ such that $0 \leq \psi \leq \frac{1}{2}$, supp $(\psi) \subset D$ and $\psi \equiv \frac{1}{2}$ on B, and define the function $v \in E_0^p$ by $v = 2 \max\{u; \psi\}$. Observe first that $v \geq 1$ on B, and define the sets

$$A := \{ x \in D | \psi(x) \ge u(x) \} \quad \text{ and } \quad A' := \left\{ x \in D | |u(x) - 1| \ge \frac{1}{2} \right\} .$$

We have $A \subset A'$ and by (3) we have $\frac{1}{2} \operatorname{vol}(A') \leq c_D \varepsilon$; thus

(4)
$$\operatorname{vol}(A) \leq 2c_D \varepsilon$$
.

Now we have almost everywhere

$$\nabla v = \begin{cases} 2\nabla u & \text{on} \quad M \setminus A, \\ \\ 2\nabla \psi & \text{on} \quad A; \end{cases}$$

in particular

$$|\nabla v| \le 2|\nabla u| + 2\chi_A |\nabla \psi|$$
 a.e.

from which one deduces

(5)
$$\|\nabla v\|_{L^p(M)} \le 2 \|\nabla u\|_{L^p(M)} + 2 \sup |\nabla \psi| (\operatorname{vol}(A))^{1/p}$$

From (4) and (5) one obtains

$$\|\nabla v\|_{L^p(M)} \le \left(2\varepsilon + 2\sup|\nabla \psi| (2c_D\varepsilon)^{1/p}\right).$$

Since $v \ge 1$ on B and ε is arbitrary, one deduces that $\operatorname{Cap}_p(B) = 0$, which contradicts the fact that M is p-hyperbolic.

We may sum up our results so far in

Theorem 3. The following conditions are equivalent:

- (a) *M* is *p*-hyperbolic;
- (b) There exists a constant C_2 such that for all $u \in E_0^p$ one has

$$||u||_{L^p(D)} \le C_2 \cdot ||\nabla u||_{L^p(M)}$$

(c) $1 \notin E_0^p$.

Proof. The implication (b) \Rightarrow (c) is obvious and (c) \Rightarrow (a) is Lemma 1.

Let us write u as $u = (u - u_D) + u_D$; using Proposition 1 and Lemma 2, we see that

$$\begin{aligned} \|u\|_{L^{p}(D)} &\leq \|u - u_{D}\|_{L^{p}(D)} + \|u_{D}\|_{L^{p}(D)} \\ &\leq A\left(\int_{D} |\nabla u|^{p} dx\right)^{1/p} + (\operatorname{Vol}(D))^{1/p} |u_{D}| \\ &\leq A\left(\int_{D} |\nabla u|^{p} dx\right)^{1/p} + (\operatorname{Vol}(D))^{(1-p)/p} \int_{D} |u| dx \\ &\leq A\left(\int_{D} |\nabla u|^{p} dx\right)^{1/p} + (\operatorname{Vol}(D))^{(1-p)/p} C_{1} \left(\int_{M} |\nabla u|^{p} dx\right)^{1/p} \\ &\leq C_{2} \left(\int_{M} |\nabla u|^{p} dx\right)^{1/p}. \end{aligned}$$

This proves (a) \Rightarrow (b).

3. Proof of Theorem 2

We first choose a regular bounded domain $D \subset M$ such that $\operatorname{supp}(h) \subset D$. We then define a functional $\mathcal{J}: E_0^p \to \mathbb{R}$ by

$$\mathcal{J}(u) = \frac{1}{p} \left(\int_M |\nabla u|^p dx \right) - \int_M hu \ dx \ .$$

The manifold M beeing p-hyperbolic, we have

$$\begin{aligned} \mathcal{J}(u) &\geq \frac{1}{p} \|\nabla u\|_{L^{p}(M)}^{p} - \left| \int_{M} hu \ dx \right| \\ &\geq \frac{1}{p} \|\nabla u\|_{L^{p}(M)}^{p} - \|h\|_{L^{\infty}} \cdot \|u\|_{L^{1}(D)} \\ &\geq \frac{1}{p} \|\nabla u\|_{L^{p}(M)}^{p} - C_{1} \|h\|_{L^{\infty}} \cdot \|\nabla u\|_{L^{p}(M)} \end{aligned}$$

where C_1 is the constant of Proposition 1. Since the function $g(x) = |x|^p - ax$ of the real variable x is bounded below, we conclude that the functional \mathcal{J} is bounded below on the space E_0^p .

Set $m := \inf \{ \mathcal{J}(u) | u \in E_0^p \}$, and let $\{u_i\} \subset E_0^p$ be a minimizing sequence for \mathcal{J} (i.e. $\mathcal{J}(u_i) \to m$). Then from the inequality above, one deduces that $\{u_i\}$ is a bounded sequence in E_0^p . Since E_0^p is a reflexive Banach space, this sequence contains a weakly convergent subsequence (still denoted by $\{u_i\}$). Let us denote by u^* the weak limit of $\{u_i\}$. By the compactness of the embedding $E_0^p \subset L^1(D)$, we may assume that $\{u_i\}$ converges strongly in $L^1(D)$, in particular

(6)
$$\int_D hu_i \to \int_D hu^* \; .$$

By Theorem 3, $\|\nabla u\|_{L^p(M)}$ is an equivalent norm on E_0^p ; hence by the weak lower semi-continuity of the norm on E_0^p we have

(7)
$$\|\nabla u^*\|_{L^p(M)} \le \lim_{i \to \infty} \inf \|\nabla u_i\|_{L^p(M)}.$$

544

From (6) and (7) one deduces that $\mathcal{J}(u^*) \leq \lim_{i\to\infty} \inf \mathcal{J}(u_i) = m$; hence $\mathcal{J}(u^*) = m$. By the usual arguments from variational calculus, one deduces that u^* is a weak solution to (1).

The $C^{1,\alpha}$ regularity follows from Theorem 1 in [5].

Remark. We have in fact solved (1) in the space $E_0^p \subset \mathcal{L}^{1,p}(M)$.

References

- P. Drábek, Nonlinear eigenvalue problem for p-Laplacian in ℝⁿ, Math. Nachr. 173 (1995), 131–139. MR 96b:35064
- [2] V. Gol'd
shtein and M. Troyanov, Sur la non résolubilité du p-laplacien sur
 $\mathbb{R}^n,$ C. R. Acad. Sci. Paris **326** (1998), 1185–1187. CMP 99:02
- [3] E. Hebey, Sobolev spaces on Riemannian manifolds, Springer Lect. Notes in Math. 1635. CMP 98:04
- [4] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monographs (1993). MR 94e:31003
- P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Diff. Equations 51 (1984), 126–150. MR 85g:35047
- [6] M. Troyanov, Parabolicity of manifolds, préprint EPFL, 1997.

Départment de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

E-mail address: troyanov@math.epfl.ch