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SOLVING THE p-LAPLACIAN ON MANIFOLDS
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(Communicated by Peter Li)

ABSTRACT. We prove in this paper that the equation Apu + h = 0 on a
p-hyperbolic manifold M has a solution with p-integrable gradient for any
bounded measurable function h : M — R with compact support.

1. INTRODUCTION

The p-Laplacian of a function f on a connected oriented Riemannian manifold
without boundary M is defined by A, f = div(|V f|P~2V f); it is the Euler-Lagrange
operator associated with the functional [, |V f|P.

A function u € VVllof (M) is said to be a weak solution to the equation
(1) Apu+h=0
if for all ¢ € C}(M) one has

/M <|Vu|p_2 Va, w> - /M h.

We introduce the p-Dirichlet space £1'P(M) of functions u € Wﬁ)’cp (M) admitting
a weak gradient such that [, [|Vul[P < oc.
In [2], the following result has been proved:

Theorem 1. Suppose that M is p-parabolic, and let h € L*(M) be a function such
that [\, h # 0. Then (1) has no weak solution u € L"*(M).

The goal of this paper is to prove the following result in the converse direction.

Theorem 2. Suppose that M is a p-hyperbolic manifold (1 < p < o) and that
h € L*(M) has compact support. Then (1) has a weak solution u € LYP(M).
Moreover u is of class C1 on each compact set (where o € (0,1) may depend on
the compact set).

The notion of p-hyperbolic and p-parabolic manifolds will be recalled below (see
also [6]). As an example, the euclidean space R™ is p-hyperbolic if and only if p < n.

Remark. If M = R™ with 1 < p < n and h > 0, then equation (1) (and in fact a
more general eigenvalue problem) is solved in [1].
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2. PRELIMINARIES ON Pp-HYPERBOLICITY
Definition. Let (M, g) be a connected Riemannian manifold, and K C M a com-
pact set. For 1 < p < oo, the p-capacity of K is defined by
Capp(K) := inf {/ |VulP :u e C3(M),u>1 on K } .
M

The manifold M is said to be p-parabolic if Cap,(K) = 0 for all compact subsets
K C M and p-hyperbolic otherwise. It is a well known fact that, in a p-hyperbolic
manifold, the p-capacity of any compact set with non empty interior is always
positive (see e.g. [6]).

Let D C M be a non empty bounded domain. We introduce the Banach space
EP = EP(D, M) of functions u € WYP(M) such that

fully = [ e+ [ Valrde < oo
D M
We denote by EY the closure of C}(M) in EP.

Lemma 1. If M is p-parabolic, then 1 € Ef.

Proof. By hypothesis Cap,(D) = 0; hence for all € > 0, there exists a function
u € C§(M) such that w =1 on D and [, |Vu|Pdz < e. Thus we have

1—ul? = 1 —ulPdz + Vul|Pdz = VulPdr < €.
[
D M M

It follows that 1 € Ef. O

The next lemma is the well known Poincaré inequality.

Lemma 2. Let D be any bounded regular domain in a Riemannian maniflold M
and 1 < p < oco. Then there exists a constant A such that

1/p 1/p
</ |u — uD|pdx) <A </ |Vu|pda:>
D D

for all u € WZL’CP(M)7 where up = ﬁ([)) [ udz is the mean value of u on D.

A reference is [3, Lemma 3.8]. O
Combining this lemma with Holder’s (or Jensen’s) inequality, we obtain

Corollary 1. There exists a constant ¢ = cp such that

1/p
(2) / |lu —upldr < cp (/ |Vu|pda:>
D M

for all w € W,2P(M). O

loc

Proposition 1. Suppose that M 1is p-hyperbolic and let D C M be as in Lemma
2. Then there exists a constant Cy such that for all u € Eg

1/p
/ lu] dx < Cq </ |Vu|pdx) .
D M
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Proof. Suppose that such a constant does not exist. Then for all € > 0 it is possible
to find a function u € E} such that

/ fuldz = vol(D)  and [ Vull ) < -
D
We may also assume u > 0 (else replace u by |u|). From Corollary 1 one gets

(3) / lu—1ldx <cpe .
D

supp(¢) C D and ¢ = % on B, and define the function v € Ef by v = 2max{u;}.
Observe first that v > 1 on B, and define the sets

Let us now choose a ball B CC D and a function ¢ € C§(M) such that 0 < ¢ < £,

A:={z e D|y(z) >u(z)} and A ::{x€D||u(x)—1|2 %} :

We have A C A’ and by (3) we have $vol(A’) < cpe; thus
(4) vol(A) < 2¢pe .
Now we have almost everywhere

2Vu on M\ A,
Vv =
2VYy  on A;

in particular
|Vl < 2|Vul 4+ 2x4| VY| a.e.
from which one deduces
() V0l Lo ary < 21Vl o ary + 25up V] (vol(4))'/7
From (4) and (5) one obtains
IVl ooy < (26 +25up V| (20p2)") .

Since v > 1 on B and ¢ is arbitrary, one deduces that Cap,(B) = 0, which contra-
dicts the fact that M is p-hyperbolic. O

We may sum up our results so far in

Theorem 3. The following conditions are equivalent:

(a) M is p-hyperbolic;
(b) There exists a constant Co such that for all uw € Ef one has

”uHLP(D) <Csy- ||VU||LP(M) ;
(c) 1 ¢ Ef .

Proof. The implication (b) = (c) is obvious and (c) = (a) is Lemma 1.
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Let us write u as u = (u — up) + up; using Proposition 1 and Lemma 2, we see
that

lull oy < llw—=ubllpepy + llunllrep)
1/p
< A(/ |vu|de) + (VoI(D)? Jup)|
D
1/p
< A(/ |vu|de) +(V01(D))(1_p)/p/ lulda
D D

1/p 1/p
< A( / |vu|de) + (Vol(D))=P/7 ¢y ( / |Vu|pda:>
D M

1/p
< O </ |Vu|pdx) .
M

This proves (a) = (b). O

3. PROOF OF THEOREM 2

We first choose a regular bounded domain D C M such that supp(h) C D. We
then define a functional J : Ef — R by

T () :% (/M |Vu|pdx> _ /M hu da .

The manifold M beeing p-hyperbolic, we have

1
TJw) = = IVullf,n — ‘/ hu dzx
p M
1
2 > ||VUHZ£:)(M) = 12l e - lull g1y
1

= 5 ||VUHZ£:)(M) —Ch ||l - HVUHLP(M)v

where C is the constant of Proposition 1. Since the function g(z) = |z|P — az of
the real variable x is bounded below, we conclude that the functional 7 is bounded
below on the space Ef.

Set m := inf { J(u)|u € Ef}, and let {u;} C Ef be a minimizing sequence for
J (i.e. J(u;) — m). Then from the inequality above, one deduces that {u;} is
a bounded sequence in Ef. Since E} is a reflexive Banach space, this sequence
contains a weakly convergent subsequence (still denoted by {u;}). Let us denote
by u* the weak limit of {u;}. By the compactness of the embedding Ej C L!(D),
we may assume that {u;} converges strongly in L!(D), in particular

(6) /D hy — /D hu*

By Theorem 3, | Vul|,, (ar) 1s an equivalent norm on E?; hence by the weak lower
semi-continuity of the norm on Ef we have

(7) 190 o ary < Jim inf [Vl o -
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From (6) and (7) one deduces that J(u*) < lim;_ o inf J(u;) = m; hence
J(u*) = m. By the usual arguments from variational calculus, one deduces that u*
is a weak solution to (1).

The C1* regularity follows from Theorem 1 in [5]. O

Remark. We have in fact solved (1) in the space E} C LP(M).
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