
Indexing Strategies for Rapid Searches of Short Words in
Genome Sequences
Christian Iseli1,2*, Giovanna Ambrosini2,3, Philipp Bucher2,3, C. Victor Jongeneel1,2

1 Ludwig Institute for Cancer Research, Bâtiment Génopode, Université de Lausanne, Lausanne, Switzerland, 2 Swiss Institute of Bioinformatics,
Bâtiment Génopode, Université de Lausanne, Lausanne, Switzerland, 3 Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland

Searching for matches between large collections of short (14–30 nucleotides) words and sequence databases comprising full
genomes or transcriptomes is a common task in biological sequence analysis. We investigated the performance of simple
indexing strategies for handling such tasks and developed two programs, fetchGWI and tagger, that index either the database
or the query set. Either strategy outperforms megablast for searches with more than 10,000 probes. FetchGWI is shown to be
a versatile tool for rapidly searching multiple genomes, whose performance is limited in most cases by the speed of access to
the filesystem. We have made publicly available a Web interface for searching the human, mouse, and several other genomes
and transcriptomes with oligonucleotide queries.

Citation: Iseli C, Ambrosini G, Bucher P, Jongeneel CV (2007) Indexing Strategies for Rapid Searches of Short Words in Genome Sequences. PLoS
ONE 2(6): e579. doi:10.1371/journal.pone.0000579

INTRODUCTION
One of the challenges of the post-genomic era is to be able to

identify rapidly, in fully sequenced genomes, transcriptomes, and

variants thereof, exact or near-exact matches to short words with

a limited number of occurrences. Such words could be the

sequences of individual probes from Affymetrix[1] or other gene

chips, PCR primers for the amplification of unique genomic

regions (STS[2]), tags derived from SAGE[3,4] or MPSS[5,6]

experiments, or the raw data from next-generation high-

throughput sequencers (using e.g. the Illumina technology).

Applications include probe and PCR primer design, mapping of

probe sets to genome features, interpretation of digital gene

expression analysis experiments, or individual genome re-sequenc-

ing. Ideally, software for word matching should be able to

accomplish the following tasks: (i) search very large databases

(&109 nucleotides) efficiently; (ii) return accurate and fully

exhaustive results for short (14–30 nucleotides) query sequences;

(iii) scale up gracefully to large collections of queries (106 queries);

(iv) provide a mechanism for finding single- or multiple-nucleotide

mismatches in alignments that are global relative to the query.

To our knowledge, no software has yet been designed to

precisely match these specifications. Megablast[7], a variant of the

NCBI BLAST suite that uses a word index to reduce the database

search space, and then a greedy algorithm to align only highly

conserved regions, can be tweaked to efficiently find exact matches

to short sequences (see below), although this was not part of its

original design. SSAHA[8], which creates a database hash table in

memory to accelerate search functions and was thus expected to

perform reasonably well, is optimized to find longer alignments

and fails in practice on most of the criteria set out above. The

indexing strategy used by the PCR primer analysis program of Jim

Kent (http://genome.ucsc.edu/cgi-bin/hgPcr?command = start,

http://www.soe.ucsc.edu/,kent/src/) is probably the approach

that comes closest to our goals, but it is meant to work with primer

pairs and not with independent queries.

For fast performance, the implementation of SSAHA or BLAT

keep the index or the hash table in the memory. They only use

non overlapping words and may use repeat masked sequence.

Thus for many of the short sequence searches they may not find

any or all matches. In contrast, the fetchGWI and tagger programs

use a complete indexing strategy for every base in the genome or

other databases and thus have higher sensitivity in sacrifice of

speed. This is desirable for certain applications.

In order to screen single or multiple genomes with collections of

sequence tags of various sizes, we designed two programs with

complementary goals and approaches, fetchGWI and tagger.

Tagger builds an index in RAM from a set of query sequences,

and is particularly well-suited for generating one-time mappings of

large collections of tags (typically all probes on a standard

Affymetrix chip set or a Nimblegen tiling array, or all tags derived

from a SAGE experiment) onto a genome or transcriptome.

FetchGWI relies on pre-computed genome indices stored on disk,

and is best used in cases where a limited number of queries have to

be mapped very rapidly, e.g. as a component of a Web service.

Only fetchGWI will be described in detail here, as it performs as

well or better than tagger in all tests, provided precomputed

genome or transcriptome indices are available.

For the occasional user, fetchGWI may be the fastest connection

from a small piece of a gene sequence to a genome browser

window displaying information about the genomic environment of

the corresponding gene. To this end, we developed a web interface

that provides direct HTML links to Ensembl[9] UCSC[10], and

NCBI[11] genome browsers for each exact or near-exact matches

to a query target found in a collection of large sequence databases.

Sequence databases comprise entire genomes or mRNA reference

sequences[12] (i.e. human, mouse, drosophila, dog, rat and

chimpanzee). This web service can be used interactively, or via

sequence tag-associated hyperlinks from within text documents.

Academic Editor: Xiaolin Wu, National Cancer Institute at Frederick, United States
of America

Received April 30, 2007; Accepted June 5, 2007; Published June 27, 2007

Copyright: � 2007 Iseli et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Funding: None, except the normal salary paid by the employer of each author.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: Christian.Iseli@licr.org

PLoS ONE | www.plosone.org 1 June 2007 | Issue 6 | e579

METHODS

Design Considerations
Genome sequences are high-quality, so we need to consider only

the four unambiguous nucleotides A, C, G, and T. The informa-

tion necessary to represent those 4 nucleotides can be encoded on

2 bits of data. Current processors are built to easily handle 64-bit

words, so it is straightforward to encode up to 32 nucleotides

within a single data word.

To get maximal search speed, we want to search only within the

index file. Thus we need one index entry for each nucleotide in the

genome. This exhaustive index also ensures that no match can

possibly be missed, as can happen when only non overlapping

words are used to construct the index.

To further improve search speed within the index file, we also

implemented a second format, which we call a compressed index

file, where the primary index file is subdivided into 16,777,216

(224) parts according to the first 12 nucleotides of each word. The

compressed format also allows a 25% size reduction of the index

file.

The method is divided into two separate steps: generation of the

index files, and actual sequence search. The generation of index

files needs to be performed once for each new version of a genome

or transcriptome. The search step can be repeated as often as

necessary once the index files have been generated.

Index Files Structure
The main index file is composed of a sorted list of entries. Each

entry is composed of four parts: a sequence tag, two flags,

a sequence offset, and an accession number index.
sequence tag The first and largest part is the sequence tag,

which is a binary encoding of a piece of DNA sequence. Each

nucleotide is encoded using two bits. The optimal size of the

sequence tag is a compromise between two opposing goals: while

longer sequence tags are more specific, and less likely to occur at

multiple positions in the genome, shorter sequence tags make for

smaller index files and shorter search times. We analyzed the

percentage of unique sequence tags, in a number of complete

genomes, as a function of tag length (Fig. 1). The data show that all

curves have an inflection point located between 15 and 20

nucleotides. For example, in the human genome most tags shorter

than 16 nucleotides are not unique as expected from the fact that

the size of the human genome is comprised between 415 and 416.

We also took into account the fact that many current method-

ologies (SAGE, MPSS, Affymetrix or Nimblegen genome arrays,

PCR primers, etc.) use tags where the size ranges in length from 17

to 25 nucleotides. We thus decided to use a tag size of 25

nucleotides or 50 bits of sequence.

flags The second component of an index entry is two flags:

one marking incomplete sequence tags, the other selecting short or

long sequence offset size.

While each sequence tag is 25 nucleotides long, we would still

like to allow shorter queries, with possible matches at the ends of

database sequences. This causes a problem near gaps and

sequence ends, because sub-words within the last 25 nucleotides

would not be indexed unless we allow for the indexing of

incomplete (i.e., shorter than 25) sequence tags. In this context,

a gap refers to a single or consecutive run of ambiguous nucleotide

characters, usually N’s. Note that in the current genome sequence

data files, short gaps of unsequenced regions are represented by

runs of 50–100 N’s. The flag is here to mark such shortened index

entries. The smallest query allowed is 10 nucleotides long. To be

more specific, such a word will be padded by a run of

complemented nucleotides of the last valid nucleotide to make it

a valid 25-letter word, and the incomplete flag will be set. For

example, the 10-mer ATGGCTGAGG will be stored as

ATGGCTGAGGCCCCCCCCCCCCCCC, the flag will be set,

and it is easy to find back the original word by removing all

occurrences of the repeated last nucleotide.

We have analyzed the genomic and mRNA content of the

RefSeq database, release 22. The longest sequence is 748,055,161

nucleotides long (chromosome 1 from the gray short-tailed

Figure 1. Word duplication in several genomes. Analysis of the percentage of unique sequence tags in several genomes as a function of tag length.
doi:10.1371/journal.pone.0000579.g001

Genome Word Index

PLoS ONE | www.plosone.org 2 June 2007 | Issue 6 | e579

opossum), so at least 30 bits are needed to specify an offset within

such a large sequence. However, most sequences are shorter.

There are 1,769,766 sequences in the analyzed release, and only

5,330 are longer than 1,048,576 nucleotides. To help decrease the

size of the index, we decided to use a flag to distinguish between

sequences which need large offset values but are few in numbers, and

sequences which can use a shorter offset but are more numerous.

sequence offset The third index component is the offset of

the sequence tag within the sequence. As noted in the previous

paragraph, the longest sequence currently known is roughly 750

megabases long so we need 30 bits to encode the long offsets. The

short offset uses 20 bits and can thus be used for sequences up to

1,048,576 nucleotides long.

accession number index The last component is used to

retrieve the accession number (or other unique identifier) of the

sequence from which the sequence tag was derived. A list of all the

accession numbers of the indexed sequences is kept in an auxiliary

index file. This auxiliary file is a plain text file, where each

sequence accession number is given a unique index number,

sequentially, starting from 0 for long sequences and from 16,384

for the shorter ones. We have set aside 14 bits to encode the index

number for long sequences, and 24 bits for shorter sequences. We

can thus accommodate 16,384 long sequences and 16,760,832

short sequences, which is currently more than enough for all

genomes and transcriptomes found in RefSeq and other (e.g.

FANTOM, H-INV) collections.

The complete index entry uses 96 bits, or 12 bytes, of storage.

Given that the human genome is roughly 3 billion nucleotides

long, the index file for this genome will occupy about 30 gigabytes

of storage space. With today’s hard disks storing 500 gigabytes

apiece, this is a manageable size.

Compressed Index Files
The idea behind the compressed index is to diminish the size of

the index files and to improve filesystem locality when searching

multiple words. Filesystem locality can improve the search speed

by reducing the amount of time spent seeking between different

parts of the hard disks and by taking advantage of data caching.

The whole index file is logically subdivided into 16,777,216 parts,

each part representing words having identical first 12 nucleotides.

A secondary index, recording the position in the main index file

where each part starts, is added to the end of the index file.

As an added benefit, since the first 12 nucleotides of each word

are given through the secondary index, the first 3 bytes of each

entry in the main index can be suppressed thus saving 25% of

storage space. The space required to store the secondary index is

128 megabytes, which is negligible.

Index File Generation
The generation of an index file is performed in two steps:

1. the genwin program is used to transform a set of FASTA

formatted files, containing nucleotide sequences, into a set of

files containing unsorted index entries, in the format explained

in the previous paragraphs. The generated files are not sorted

nor compressed. They must be sorted using the sortGWI

program before being usable by fetchGWI. Short words down

to 10 nucleotides long are indexed, using the incomplete flag

explained above

2. the sortGWI program is used to sort and/or merge the files

generated in step 1 into a file containing sorted index entries;

the sortGWI program can generate and use both plain and

compressed index files

Searching Through the Index Files
Finding where a query matches in the genomic sequence is

accomplished through the fetchGWI program. This program

performs the following steps:

1. collect all the queries to be searched, either from command line

arguments or from text files containing one query per line.

Each query line must contain a sequence tag to be searched at

the beginning of the line, optionally followed by a non-

alphabetical character and arbitrary data on the rest of the line,

which will be copied verbatim in the output. The sequence tag

can contain degenerate nucleotides (the standard letters

BDHKMNRSVWY are accepted), which will be automati-

cally expanded into all possible matching tags

2. if the user specified a search with one or several mismatches,

generate all possible sequence tags to be searched by

replacing the specified number of non-degenerate nucleo-

tides with all other possibilities

3. add all the reverse complemented queries, unless the user

specified otherwise, so that the search is performed on both

strands

4. split queries longer than 25 nucleotides into 25 nucleotide

sub-queries, keeping proper linking with the original queries.

Queries shorter than 25 nucleotides are padded on the right

with the nucleotide A to 25 nucleotides and a mask is

generated to allow proper comparison with the index by

masking out the unused nucleotides on the end of both the

query and the index

5. sort all the queries using the same sorting order as the index

files, so that we can benefit from better filesystem locality

when performing the search

6. map the secondary index structure in memory (when using

compressed index files)

7. perform the search of each query within the index file, using

a dichotomic search (also known as binary search) tech-

nique[13] and collect all the matches for each query. When

using compressed index files, a lookup in the secondary index

is performed to determine the boundaries of the dichotomy

search within the main index. The index is masked to the

proper length during each comparison for queries shorter

than 25 nucleotides

8. for queries longer than 25 nucleotides, analyze the matches

of the sub-queries and keep only those compatible with the

original query. This is performed by sorting all the matches

by queries, and examining all the sub-queries to find those

occurring in the proper arrangement

9. report the results by appending the actual sequence tag

found, along with the accession number and position offset

within the sequence for each matched query lines

It is possible to search short queries down to 10 nucleotides long

exhaustively, since short words down to 10 nucleotides are

indexed. It is possible to force fetchGWI to seek also shorter

queries, but in this case some words can be missed near gaps and

sequence ends.

The tagger Program
There are cases where constructing the index file itself is

considered too time consuming, usually because it would be used

only once. For these cases, we also supply a program named tagger

which uses a similar indexing strategy, but in the case of tagger the

index is built from the queries instead of the genome, and is only kept

Genome Word Index

PLoS ONE | www.plosone.org 3 June 2007 | Issue 6 | e579

in RAM. The word size is 13 nucleotides and the index table uses

512 megabytes of memory. Each tag to be searched is entered in the

table, and they are kept in a linked list when several tags are attached

to the same index location in the table. This is a very simple hashing

technique. The tagger program then parses through FASTA

formatted files containing the sequences to search and reports

matches as it finds them. All searched tags must be the same length

and cannot contain ambiguous nucleotides, which are further

restrictions compared with the fetchGWI program.

Tested programs
To test and validate our approach, seeking only exact matches for the

queries, we compared the output results and execution speed of our

fetchGWI and tagger tools with the results obtained by megablast.

It should be noted that searches using megablast produced two

different results:

1. the query TTGTGTTGTGTTGTGTTGTGTTGTG found

only 58 matches whereas 94 are expected on the current

assembly of the human genome. This is probably because

megablast reports non-overlapping matches, which is a matter

of choice – note that the above sequence is a repeat of the

5-letter word GTGTT

2. the query TGAATTCGGTCTTGCCTTGAACACA found

a spurious perfect match on the genomic sequence

NGAATTCGGTCTTGCCTTGAACACA.

Except for these minor problems, all three tools reported the

same hits. The version of megablast was 2.2.13. The parameters

used for the megablast runs were the following:

-f T -J F -F F -W 12 -s 25 -D 0

We also attempted to perform the same searches using SSAHA

(Version 3.2), but it only would match 24 of the 25 nucleotides of

the query sequences (the reason for this behavior is unknown to

the authors).

We then proceeded to test results when seeking possibly inexact

matches for the queries. However, neither megablast, nor blast, were

able to retrieve all correct hits reliably. For example, the sequence

ATGGCTGAAGGCCTTATGAGTCAAA has one exact match

on human chromosome 12 (NC_000012.10[10029321..10029345])

and 5 inexact matches (2 mismatched nucleotides: ATGGCTGA-

GGGCCTTAAGAGTCAAA) on human chromosomes 5, 10, 11,

X, and Y. FetchGWI finds all matches in about 10 seconds

Megablast only finds the exact match and 2 of the 5 inexact ones in

roughly 6 minutes, while blast finds the exact match only (in about

10 seconds). The parameters used for megablast in this case were:

-f T -J F -F F -W 8 -s 21 -D 0 -q -1 -G 10 -E 4

The fetchGWI and tagger results of Fig. 2, Fig. 3, and Fig. 4

were computed on a Linux workstation with Intel Xeon processors

running at 3 GHz, 4 GB RAM, and a local SATA hard disk of

250 GB. The megablast results were computed on a Linux

workstation with Intel Xeon processors running at 3.4 GHz in

em64t mode, 8 GB RAM, and local hard disks of 128 GB in

striped RAID mode. The fetchGWI results on the SFS (a

commercial implementation of LUSTRE from Cluster file

systems, inc., http://www.lustre.org/.) filesystem (Fig. 5) were

computed on a Linux workstation with Intel Itanium2 processors

running at 1.3 GHz, 4 GB RAM, and an 8 TB SFS filesystem

attached through an InfiniBand network.

RESULTS AND DISCUSSION
To examine the behavior of the fetchGWI and the tagger

programs, we ran queries with variable numbers of tag sequences

on the human and mouse genomes. Only exact matches were

sought, except for two experiments reported in Fig. 2. For building

Figure 2. Runtime comparisons on the human genome. Runtime comparisons between fetchGWI using plain and compressed index files, tagger,
and megablast. Each point is computed from the average of three runs on the human genome with different input data, except the last run done on
the whole dataset. Only perfect matches are sought, except for the 2 experiments explicitly noted were 2 mismatches were allowed.
doi:10.1371/journal.pone.0000579.g002

Genome Word Index

PLoS ONE | www.plosone.org 4 June 2007 | Issue 6 | e579

the queries, we used the probes from the Affymetrix ‘‘Human

Genome U133 Plus 2.0’’ array. The reason for choosing this probe

set is that it should offer a pretty good coverage of the whole human

genome, and it contains a reasonably sized set of 604,258 tags.

The test queries were generated in the following way:

N take the first three probes, and create three files with a single tag

N take the next thirty probes, and create three files of ten tags

N continue the procedure up to three files of one hundred

thousand tags

N the whole 604,258 tags file is also used as the final test

Figure 3. Runtime comparisons on multiple genomes. Runtime comparisons between fetchGWI (using a compressed index file) and megablast.
Each point is computed from the average of three runs on the combined genome of 9 species (human, mouse, honey bee, cattle, dog, drosophila,
zebrafish, chimp, and rat) with different input data, except the last run done on the whole dataset. Only perfect matches were sought.
doi:10.1371/journal.pone.0000579.g003

Figure 4. Runtime comparisons on combined index files. Runtime comparisons of fetchGWI when using either multiple index files, or a single,
combined, index file. Each point is computed from the average of three runs on the human and mouse genomes with different input data, except the
last run done on the whole dataset Only perfect matches were sought.
doi:10.1371/journal.pone.0000579.g004

Genome Word Index

PLoS ONE | www.plosone.org 5 June 2007 | Issue 6 | e579

Each query set (three files each containing 1 to 100,000 tags,

and one with 604,258 tags) was searched against assembly 36 of

the human genome, using fetchGWI, tagger, and megablast.

The average wall clock run time for the searches is plotted in

Fig. 2. The CPU time needed by fetchGWI is only a few percent of

the wall clock time; most of the time needed is spent waiting for

data to be retrieved from the filesystem. The CPU time needed by

both tagger and megablast is nearly the same as the total wall clock

time; most of the time needed is spent doing computations. As

expected, the search time of tagger is essentially independent of the

number of queries; however, it is somewhat surprising that tagger

never outperformed fetchGWI, even for very large query sets. The

use of compressed index speeds up the search 3- to 4-fold for small

number of tags, and is still slightly faster for large number of tags. It is

also worth noting that for query sets with 1000 tags, megablast

performs almost as well as fetchGWI, provided the correct

command-line switches are used. However, fetchGWI is over 10-

fold faster than megablast for mapping all 604,258 probes of the

Hu133 chip; larger query sets such as those found on genome-wide

tiling arrays are expected to show an even larger advantage for

fetchGWI. The speed advantage of fetchGWI is even slightly better

when searching through several genomes at once, as shown in Fig. 3.

We also show in Fig. 2 the run time of fetchGWI when allowing

2 mismatches, and note that it increases by a factor between 10

and 100. The search space is much larger, since it will grow as the

binomial coefficient of n and k, where n is the number of

nucleotides in the query and k is the number of mismatches

allowed. For example, searching for one query of 25 nucleotides

and allowing 2 mismatches is equivalent to searching for 2,776

queries with no mismatches. During the tests we performed, the

maximum amount of RAM used when searching for 1000 queries

and allowing 2 mismatches was 550 megabytes on a 32-bit

machine and 700 megabytes on a 64-bit machine.

The run time of a dichotomic search is O(lnn), where n is the

number of elements in the database. When the number of queries

gets large, some additional time will be spent sorting the queries

themselves, where the standard Unix quicksort routine is used and

has a run time of O(n ? lnn) where n is the number of queries. What

we observe in the results is the large influence of filesystem data

caching by the operating system. For example, repeating a search

containing 1000 queries brings the wall clock time down from

around 90 seconds to 0.15 second. On a machine with sufficient

amounts of RAM, even very large searches can be performed in

less than 1 second once the data have been cached. When the set

of queries gets large, the same data caching effect starts to show

(flattening of the curve with query sets of more than 10,000). The

reason is that fetchGWI sorts the queries, and thus the denser the

hits get on the genome, the higher the chance that the next query

to be searched corresponds to index data already loaded in RAM.

One of our goals was to provide a quick means to search for

matches across all known genomes, and this raises the question of

whether to keep each genome in its own index file, or to produce

index files of combined genomes. The behavior of fetchGWI has

been plotted in Fig. 4 for the following two cases:

1. produce a combined index file for the human and mouse

genomes, which has a size of 50 gigabytes and takes around

10 minutes to produce from the individual index files of the

human and mouse genomes

2. search first through the human genome index file, then repeat

the search for the mouse genome

Figure 4 shows that the performance gain for combining the two

indices is minimal. Again the influence of caching is apparent: for

large query sets, the difference disappears. For small query sets, the

O(lnn) behavior of the dichotomic search is the key.

Figure 5. Runtime comparisons on different filesystems. Runtime comparisons of fetchGWI when the index file is stored either on a filesystem on
local disks, or on a SFS cluster filesystem. Each point is computed from the average of three runs with different input data, except the last run done
on the whole dataset. Only perfect matches were sought.
doi:10.1371/journal.pone.0000579.g005

Genome Word Index

PLoS ONE | www.plosone.org 6 June 2007 | Issue 6 | e579

Dealing with very large files is not an easy task, and it makes

sense to use computer clusters to speed things up further. We

therefore analyzed the behavior of fetchGWI on a server that gets

its data from a distributed SFS cluster filesystem, to see how such

a system would cope with multiple random accesses distributed

through large files. Figure 5 shows that the results are very

similar to those measured for local hard disks. This indicates

that multiple instances of fetchGWI should be able to run

efficiently on a modern compute cluster with LUSTRE-based

file sharing.

Availability and requirements
We have created a web portal, TagScan at http://www.isrec.isb-

sib.ch/tagger, for rapid mapping of short oligo sequences to large

sequence databases comprising full genomes or transcriptomes (i.e.

full length mRNA sequences from human, mouse, bee, drosophila,

dog, rat, cow, and chimpanzee). The web server implementation

responds to the need of having a page that lets the user screen

vertebrate genomes or transcriptomes with oligo sequences (on

average 19–25 nucleotides long) and returns both perfect matches

and one or two nucleotide mismatches. This could certainly be

a very useful service for people designing PCR primers or oligos

for custom arrays. Other potential uses could include tasks such as

remapping large number of probe sequences from SNP or tiling

arrays to new assemblies of the human or other genomes. The

TagScan web server supports searches for perfect matches and for

single or double nucleotide mismatches. Along with word matches,

genomic or transcript coordinates are returned. For genome-wide

searches, useful hyperlinks to popular genome browsers such as the

Ensembl, UCSC and NCBI ones, are also provided.

Alternatively, the TagScan programs can be invoked directly by

using tag-associated hyperlinks from within text documents. The

hyperlink format is shown below:

http://www.isrec.isb-sib.ch/cgi-bin/tagger/tagscan?db

type = dna&dbname = HS&mode = 0&tag = ATGAGG-

TATTAGGAT

Further details on the use of inline hyperlinks are available from

the web page.

The TagScan inline URL service provides an easy and elegant

mechanism for specialized databases to hyper-link sequence-

tagged features to genome browsers without explicitly providing

chromosomal coordinates. The advantage of this on-the-fly

mapping mechanism is that it doesn’t require recalculation of

genome coordinates for new assemblies by the client database.

The source code is freely available on the SourceForge server:

N Project name: Tagger

N Project home page: http://sourceforge.net/projects/tagger

N Operating system(s): All POSIX

N Programming language: C

N Other requirements: none

N License: GNU GPL

The distribution also contains a user manual in the form of man

pages for the provided programs. There is a description of the

index structures and access functions for prospective developers in

the source code itself.

Conclusions and Perspectives
Tagger and fetchGWI were originally developed to support

research and development programs at our parent institutions.

The first application was to find sequences proximal to EST-

derived polyadenylation sites in the human genome[14]. Tagger

was subsequently used to remap the eukaryotic promoters in

EPD[15] to new assemblies of the human and other genomes with

the aid of unique sequence tags of length 60, and to reliably

associate ‘‘historically annotated’’ Affymetrix probe sets with

newly annotated genes and transcripts[16]. It was also essential in

producing a reliable annotation for human and mouse MPSS

signatures[6].

The programs were designed for speed and robustness rather

than for elegance or flexibility. They have been extensively field-

tested, and shown to produce accurate results very rapidly. The

results shown here indicate that their main strength lies in the

matching of very large probe collections to one or more genomes.

As such, they may become the sequence similarity search engines

of choice for developers of complex arrays of probes while keeping

track of issues of within-species and cross-species hybridization.

We also found fetchGWI extremely useful for tracking the

source(s) of contaminants in biological samples.

We have for the first time presented benchmark results to assess

the efficiencies of different indexing strategies for rapid exact

sequence matching in realistic settings. Our results indicate that

a compressed sorted word-index accessed by dichotomic search

outperforms other approaches for mapping large collections of

short tags to large genomes by an exact match criterion.

The fetchGWI and tagger programs could serve as search

engines for a large variety of other applications. We are currently

developing a tool using a modified version of fetchGWI for rapid

location of weight matrix-defined transcription factor binding sites

in whole genomes. The underlying principle is to expand the user

supplied weight matrix to the complete set of k-words that match

the matrix with scores equal to or higher than a threshold value. A

virtually infinite number of heuristic sequence similarity search

algorithms could use a fetchGWI-like mechanism as a first filtering

step. The index structures and search algorithms described here

are straightforward to use by application programmers. The

benchmarks presented will enable interested developers to judge

whether a fetchGWI type index structure could provide an

efficient solution to a specific problem arising in a whole genome

or transcriptome scan application.

ACKNOWLEDGMENTS
We thank the Ludwig Institute for Cancer Research (http://www.licr.org),

the Swiss Institute of Bioinformatics (http://www.isb-sib.ch) and the Swiss

Institute for Experimental Cancer Research (http://www.isrec.ch) for their

continued support. The computations were performed in part at the Vital-

IT (http://www.vital-it.ch) Center for high-performance computing of the

Swiss Institute of Bioinformatics.

Author Contributions

Performed the experiments: CI GA. Analyzed the data: CI. Wrote the

paper: CJ CI. Other: Made the initial proposal to develop this software,

contributed useful ideas regarding its implementation, provided construc-

tive criticisms on the manuscript: PB. Designed and wrote the code for

fetchGWI, sortGWI, and genwin, designed and wrote the code for tagger

together with GA: CI. Designed and wrote the code for tagger together

with CI, implemented the Web interface: GA.

REFERENCES
1. Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, et al. (2003) Netaffx:

Affymetrix probesets and annotations. Nucleic Acids Res 31: 82–86.

2. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006)

Genbank. Nucleic Acids Res (Database issue) 34: 16–20.

Genome Word Index

PLoS ONE | www.plosone.org 7 June 2007 | Issue 6 | e579

3. Lal A, Sui IM, Riggins G (1999) Serial analysis of gene expression: Probing

transcriptomes for molecular targets. Current Opinion in Molecular Therapeu-
tics 1: 720–726.

4. Wei CL, Ng P, Chiu KP, Wong CH, Ang CC, et al. (2004) 59 long serial analysis

of gene expression (longsage) and 39 longsage for transcriptome characterization
and genome annotation. Proc Natl Acad Sci USA 32: 11701–11706.

5. Brenner S, Williams SR, Vermaas EH, Storck T, Moon K, et al. (2000) In vitro
cloning of complex mixtures of dna on microbeads: Physical separation of

differentially expressed cdnas. Proc Natl Acad Sci USA 4: 1665–1670.

6. Jongeneel CV, Delorenzi M, Iseli C, Zhou D, Haudenschild CD, et al. (2005) An
atlas of human gene expression from massively parallel signature sequencing

(mpss). Genome Res 7: 1007–1014.
7. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for

aligning dna sequences. J Comput Biol 7: 203–214.
8. Ning Z, Cox AJ, Mullikin JC (2001) Ssaha: A fast search method for large dna

databases. Genome Res 11: 1725–1729.

9. Stalker J, Gibbins B, Meidl P, Smith J, Spooner W, et al. (2004) The ensembl
web site: Mechanics of a genome browser. Genome Res 5: 951–955.

10. Kuhn RM, et al. (2007) The UCSC genome browser database: update 2007.

Nucleic Acid Res. (Database issue) 35: 668–673.
11. Wheeler DL, et al. (2007) Database resources of the National Center fro

Biotechnology Information. Nucleic Acid Res. (Database issue) 35: 5–12.

12. Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence
(RefSeq): a curated non-redundant sequence database of genomes, transcripts

and proteins. Nucleic Acid Res. (Database issue) 33: 501–504.
13. Knuth D (1997) The art of computer programming. In: Sorting and Searching.

Boston: Addison-Wesley, volume 3. 3rd edition,. pp 409–426.

14. Iseli C, Stevenson BJ, de Souza SJ, Samaia HB, Camargo AA, et al. (2002)
Long-range heterogeneity at the 39 ends of human mRNAs. Genome Res 7:

1068–1074.
15. Schmid CD, Perier R, Praz V, Bucher P (2006) Epd in its twentieth year:

towards complete promoter coverage of selected model organisms. Nucleic Acids
Res (Database issue) 34: 82–85.

16. Praz V, Jagannathan V, Bucher P (2004) Cleanex: a database of heterogeneous

gene expression data based on a consistent gene nomenclature. Nucleic Acids
Res (Database issue) 32: 542–547.

Genome Word Index

PLoS ONE | www.plosone.org 8 June 2007 | Issue 6 | e579

