000114798 001__ 114798
000114798 005__ 20180317092446.0
000114798 0247_ $$2doi$$a10.1142/S0218202506001133
000114798 037__ $$aARTICLE
000114798 245__ $$aA truncated Fourier/finite element discretization of the Stokes equations in an axisymmetric domain
000114798 269__ $$a2006
000114798 260__ $$c2006
000114798 336__ $$aJournal Articles
000114798 520__ $$aWe consider the Stokes problem in a three-dimensional axisymmetric domain and, by writing the Fourier expansion of its solution with respect to the angular variable, we observe that each Fourier coefficient satisfies a system of equations on the meridian domain. We propose a discretization of this problem which combines Fourier truncation and finite element methods applied to each of the two-dimensional systems. We give the detailed a priori and a posteriori analyses of the discretization and present some numerical experiments which are in good agreement with the analysis.
000114798 6531_ $$aStokes equations
000114798 6531_ $$aaxisymmetric domain
000114798 6531_ $$aFourier truncation
000114798 6531_ $$afinite elements
000114798 700__ $$aBelhachmi, Zakaria
000114798 700__ $$aBernardi, Christine
000114798 700__ $$0241667$$aDeparis, Simone$$g121157
000114798 700__ $$aHecht, Frédéric
000114798 773__ $$j16$$k2$$q233-263$$tMathematical Models and Methods in Applied Sciences (M3AS)
000114798 8564_ $$uhttp://dx.doi.org/10.1142/S0218202506001133$$zURL
000114798 909CO $$ooai:infoscience.tind.io:114798$$particle$$pSB
000114798 909C0 $$0252102$$pCMCS$$xU10797
000114798 917Z8 $$x190276
000114798 917Z8 $$x121157
000114798 937__ $$aCMCS-ARTICLE-2007-014
000114798 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000114798 980__ $$aARTICLE