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Abstract

This thesis focuses on the route choice behavior of car drivers (uni-modal net-
works). More precisely, we are interested in identifying which route a given
traveler would take to go from one location to another. For the analysis of
this problem we use discrete choice models and disaggregate revealed prefer-
ences data. Route choice models play an important role in many transport
applications, for example, intelligent transport systems, GPS navigation and
transportation planning.

The route choice problem is particularly difficult to analyze because it
involves the modeling of choice behavior in large transportation networks.
Several issues need to be addressed in order to obtain an operational model.
First, trip observations in their original format rarely correspond to link-by-
link descriptions of chosen paths and they therefore need to be matched to
the network representation used by the modeler. This involves data pro-
cessing that can introduce bias and errors. Second, the actual alternatives
considered by the travelers are unknown to the analyst. Since there is a large,
possibly infinite, number of feasible paths in the network, individual specific
choice sets of paths need to be defined. Third, alternatives are often highly
correlated due to physical overlap between the paths (shared links). Models
with flexible correlation structure are complex to specify and to estimate.
Simple models are therefore often used in practice even tough the associated
assumptions about correlation are violated. Fourth, most route choice mod-
els assume that the decision is performed pre-trip. Their application in a
context where drivers receive real-time information about traffic conditions
is questionable.

In this thesis we address each of the aforementioned issues. First, we
propose a general modeling scheme that reconciles network-free data with a
network based model so that the data processing related to map-matching is
not anymore necessary. The framework allows the estimation of any existing
route choice model based on original trip observations that are described as
sequences of locations. We illustrate the approach with a real dataset of
reported long distance trips in Switzerland.
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Second, a new paradigm for choice set generation in particular and route
choice modeling in general is presented. Instead of focusing on finding alter-
natives actually considered by travelers, we propose an approach where we
focus on obtaining unbiased parameter estimates. We present a stochastic
path generation algorithm based on an importance sampling approach and
derive the corresponding sampling correction to be added to the path util-
ities in the route choice model. This new paradigm also has implications
on the way to describe correlation among alternatives. We argue that the
correlation should be based not only on the sampled alternatives but also
on the general network topology. Estimation results based on synthetic data
are presented which clearly show the strength of the approach.

Third, we propose an approach to capture correlation that allows the
modeler to control the trade-off between the simplicity of the model and the
level of realism. The key concept capturing correlation is called a subnet-
work. The importance and originality of this approach lie in the possibility
to capture the most important correlation without considerably increasing
the model complexity. This makes it suitable for a wide spectrum of appli-
cations, namely involving large-scale networks. We illustrate the model with
a GPS dataset collected in the Swedish city of Borlänge.

The final contribution of this thesis concerns adaptive route choice mod-
eling in stochastic and time-dependent networks, as opposed to the static
network setting assumed in existing models. Optimal adaptive routing prob-
lems have been studied in the literature but the estimation of such choice
models based on disaggregate revealed preference data is a new area. We pro-
pose an estimator for a routing policy choice model and use synthetic data
for illustration. Given the uncertainty related to travel times and traffic
conditions in transportation networks, we believe that adaptive route choice
modeling is an important direction for future research.

To summarize, this thesis addresses issues related to data processing
(network-free data approach), algorithms for choice set generation (sampling
of alternatives) and models (subnetwork approach and adaptive route choice
model). Moreover, we use real applications (Borlänge GPS dataset and re-
ported trips in Switzerland) to illustrate the models and algorithms.

Keywords: route choice analysis, discrete choice models, choice set gener-
ation, sampling of alternatives, adaptive route choice, disaggregate revealed
preferences data, GPS data



Résumé

Dans cette thèse, nous nous concentrons sur le comportement des automo-
bilistes dans leur choix d’itinéraire. Plus précisément, nous nous intéressons
à identifier l’itinéraire qu’un voyageur prendrait pour aller d’un endroit à un
autre. Les modèles de choix discret et des données désagrégées de préférences
révélées sont utilisés pour l’analyse de ce problème.

Le problème de choix d’itinéraire est particulièrement difficile car il im-
plique une analyse de comportement de choix dans des réseaux de trans-
port de grande taille. Pour obtenir un modèle opérationnel il est néces-
saire d’aborder certains problèmes. Premièrement, les observations de choix
d’itinéraire correspondent rarement à des descriptions détaillées (arc par
arc) du trajet choisi et il faut associer les observations au réseau utilisé par
l’analyste. Ceci implique un traitement des données qui peut introduire des
erreurs et des biais. Deuxièmement, l’analyste ne connaît pas les alternatives
qui sont réellement considérées par les voyageurs. Des ensembles de choix
doivent être générés car le nombre d’alternatives possibles dans le réseau est
très grand, voir infini. Troisièmement, les alternatives peuvent partager des
arcs et sont pour cette raison souvent corrélées. Les modèles qui permettent
de définir une structure de corrélation sont complexes à spécifier et à estimer.
En conséquence, des modèles simples sont souvent utilisés en pratique mal-
gré le fait que les hypothèses associées ne sont pas vérifiées. Quatrièmement,
la majorité des modèles de choix d’itinéraire supposent que le choix est fait
avant d’entreprendre le trajet. L’application de ces modèles dans un con-
texte où les voyageurs reçoivent des informations en route doit être mit en
question.

Cette thèse aborde chacun des problèmes susmentionnés. Premièrement,
nous proposons un modèle général qui rend le traitement des données superflu
en permettant l’utilisation directe des choix observés. Cette approche permet
d’estimer n’importe quel modèle de choix d’itinéraire existant basé sur des
descriptions de choix sous forme d’une suite de lieux. Nous appelons ce type
de données “indépendantes du réseau”. Un jeu de données réel, récolté au
moyen d’un sondage et composé de choix d’itinéraire de longue distance en
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Suisse, est utilisé pour illustrer l’approche.
Deuxièmement, un nouveau paradigme est proposé pour la génération

d’ensembles de choix et la modélisation de choix d’itinéraire en général.
Plutôt que de se focaliser sur la génération des alternatives réellement consid-
érés par les voyageurs, nous proposons une approche dont le but est d’obtenir
une estimation non biaisée des paramètres. Nous présentons un algorithme
stochastique pour la génération d’alternatives basé sur une approche d’échan-
tillonnage et développons la correction d’échantillonnage correspondante à
ajouter dans les utilités du modèle de choix. Ce nouveau paradigme a aussi
des implications sur la manière de modéliser la corrélation qui ne devrait pas
seulement être basée sur les alternatives dans les ensembles de choix mais
également sur la topologie du réseau. Des résultats d’estimations avec des
données synthétiques sont présentés et montrent clairement les forces de cette
approche.

Troisièmement, nous proposons une approche pour modéliser la corréla-
tion qui permet à l’analyste de contrôler le compromis entre la simplicité
du modèle et le niveau de réalisme. Le concept clé capturant la corrélation
est appelé sous-réseau. La contribution principale et l’originalité de cette
approche résident dans la possibilité de modéliser la corrélation la plus im-
portante sans augmenter déraisonnablement la complexité du modèle.

La dernière contribution de cette thèse porte sur la modélisation de choix
d’itinéraire adaptatif dans un réseau stochastique et dynamique, contraire-
ment à l’hypothèse d’un réseau statique dans les modèles existants. Des
problèmes d’itinéraire adaptatif optimal ont été étudiés dans la littérature
mais l’estimation de tels modèles de choix basée sur des données désagrégées
de préférences révélées est un nouveau domaine. Nous proposons un estima-
teur pour un modèle de choix de “routing policy” et utilisons des données
synthétiques comme illustration. Étant donnée l’incertitude liée à l’état de
la circulation dans les réseau de transport, nous pensons que la modélisation
de choix d’itinéraire adaptatif est une direction importante pour la poursuite
de la recherche.

En résumé, cette thèse aborde des problèmes liés au traitement des don-
nées (approche avec des données “indépendantes du réseau”), aux algo-
rithmes pour la génération d’ensembles de choix (échantillonnage d’alter-
natives) et aux modèles (approche sous-réseau et modèle de choix d’itinéraire
adaptatif). De plus, des applications réelles sont utilisées pour illustrer les
modèles et les algorithmes.

Mots-clés : analyse de choix d’itinéraire, modèles de choix discret, généra-
tion d’ensembles de choix, échantillonnage d’alternatives, choix d’itinéraire
adaptatif, données désagrégées de préférences révélées, données GPS
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Chapter 1

Introduction

Traveling is an important part of many peoples everyday life. Numerous
trips are made for going to work, pick up children, going shopping, attending
social activities and so forth. Many of these trips are made by car which
has led to a number of problems with, for example, congestion and pollution
(both in terms of noise and emissions of chemical substances). In turn, these
problems have a negative impact on the environment and on peoples’ well-
being. In order to decrease the negative impact of travel it is essential to
first understand travel behavior.

Many different aspects of traveling are of interest for travel behavior anal-
ysis. General questions such as “Why do people travel?” and “Where do they
go?” are of great importance for understanding what factors drive the de-
mand and which areas are the most effected by this demand. Other questions
are related to a given trip, “When was the trip made?”, “What transporta-
tion mode was used?”,“Which route was taken?”, and allow to identify, for
instance, which infrastructures are used and how the transportation network
is effected at different points in time. Of course, all aspects of travel behavior
are interrelated which makes its analysis highly complex.

This thesis focuses on the analysis of route choice behavior. More pre-
cisely, we are interested in identifying which route a given traveler would take
to go from one location to another in a transportation network.

Route choice models can assess travelers’ perceptions of various route
characteristics such as distance, travel time, cost, number of traffic lights
and road types, and relate the results to the individuals’ characteristics (e.g.
gender, age, income and trip purpose).

Route choice models are also a powerful tool for predicting behavior under
different scenarios. Consider for example a project for building a new tunnel.
By using the tunnel travelers can save a certain amount of time compared to
existing routes but they will be charged a fee for each passage. Route choice

1



2 CHAPTER 1. INTRODUCTION

models can be used to analyze questions like “Which is the probability that
a 30 year old man with high income chooses the tunnel if the fee is 5 EUR
with a potential travel time saving of 10 minutes?” or “What share of the
travelers would take the tunnel if the travel time savings are approximately
30 minutes and the fee 10 EUR?”.

The aforementioned examples illustrate typical applications of route choice
models. Another application requiring advanced route choice modeling is Dy-
namic Traffic Management Systems. Such systems aim at improving traffic
conditions by controlling the supply of the network and by providing real-
time information to travelers to help them make better route choice decisions.
An important component is the prediction of future traffic conditions so that
consistent and unbiased information can be given to the travelers. In order
to provide such information it is important to know how travelers react to
information and how they adapt their route choices in consequence.

After this general introduction to route choice analysis we give a more
detailed overview of the modeling process in the following section.

1.1 Route Choice Modeling Overview

Consider a transport network composed of links and nodes. For a given
origin-destination pair and a given transport mode, the route choice problem
deals with identifying which route a given traveler would take.

A good overview of this problem can be found in Bovy and Stern (1990)
which is the first book entirely dedicated to the topic. The route choice
depends, on the one hand, on the attributes of the available routes, such as
travel time, type of road, number of traffic lights etc. On the other hand,
characteristics and preferences of the traveler also influence the choice. Some
travelers like high speeds on freeways while others prefer small scenic roads,
some avoid left turns, others traffic lights and so forth.

Several aspects of the route choice problem make it particularly complex.
The fact that it deals with paths in networks introduces a combinatorial
dimension, it also involves the modeling of choice behavior which is a com-
plex task as such. Moreover, route choice analysis is mainly of interest in
dense urban areas and the models therefore need to be operational for large
networks.

The efficiency of shortest path algorithms has been a strong motivation
for researchers to assume that travelers choose the shortest path, with respect
to some link additive generalized cost function. This leads to a simple de-
terministic route choice model which has the advantage of being operational
in large networks. Even though the cost function can be made individual
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specific, this model cannot directly capture uncertainty related to human
behavior and is therefore not realistic. There are indeed several sources of
uncertainty in a route choice context. First, travelers have imperfect knowl-
edge of the network and may not be aware of the shortest path. Second, some
path attributes, such as perceived travel time, that can be included in the
generalized cost function are uncertain. Finally, all individual characteristics
and preferences are most likely not available to the modeler and an exact
“true” cost function cannot be defined.

The random utility model framework is particularly suitable, and also
the most widely used approach, to model choice behavior and related un-
certainty. Within this framework, we assume that a traveler n associates
a utility Uin with each alternative i in his/her choice set Cn. The utility
is defined as Uin = Vin + εin and has both a deterministic term Vin and a
random term εin capturing uncertainty. The deterministic term can include
attributes of the alternative as well as socio-economic characteristics of the
traveler. It has in general a linear-in-parameters formulation Vin = βxin

where β is a vector of unknown coefficients to be estimated and xin a vec-
tor of attributes. Travelers are assumed to maximize utility and the prob-
ability that an alternative i is chosen by traveler n from Cn is therefore
P (i|Cn) = P (Uin ≥ Ujn ∀ j ∈ Cn) = P (Uin = maxj∈Cn

Ujn). Different as-
sumptions on the random terms lead to different types of discrete choice
models. For example, the Multinomial Logit model assumes that the ran-
dom terms are independent and identically distributed Extreme Value, which
results in the following probability formulation

P (i|Cn) =
eµVin

∑
j∈Cn

eµVjn
,

where µ is the positive scale parameter of the Extreme Value distribution.
The unknown parameters β can be identified with maximum likelihood es-
timation. This model was used by Dial (1971) who was one of the first
(Burrell, 1968, also uses a random utility model) to address the stochastic
dimension of the route choice problem in an operational model.

Despite the fact that discrete choice models are appropriate for route
choice analysis, a number of issues need to be addressed. In the following
we discuss each of these issues by giving an overview of the modeling pro-
cess (see Figure 1.1 for a schematic view). Before estimating a route choice
model (bottom of the figure) three main steps involving various modeling
assumptions need to be performed.

The model is to be estimated based on trips performed by travelers in a
real network. Trip observations can be obtained by either asking travelers
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to describe chosen routes, or by passive monitoring using the Global Posi-
tioning System (GPS). In both cases, the data collection is difficult and the
descriptions of the chosen routes are often ambiguous. The modeler has a
representation of the real network at hand consisting of links and nodes as
well as associated attributes (traffic lights, travel times etc.). In order to
obtain link-by-link descriptions of chosen routes (denoted path observations
in the figure), the first step in the modeling process is to match the trip
observations to the network representation used by the modeler.

In a route choice context, the alternatives considered by each traveler
are in general unknown to the analyst. It is therefore necessary to generate
a choice set Cn for each path observation, which is far from a trivial task.
The number of physically feasible alternatives for a given origin-destination
pair is huge, actually unbounded if paths with loops are considered. Path
generation algorithms are therefore used to define subsets of alternatives.

Even though the number of alternatives are limited by the choice set
generation, it can still be considered large compared to other discrete choice
applications. Moreover, the alternatives are highly correlated due to over-
lapping between the paths (shared links). Models with flexible correlation
structure are complex to estimate especially for large number of alternatives.
The third and final step before the model estimation involves an appropriate
description, or rather approximation, of the correlation among alternatives.

It is worth mentioning that some literature use discrete choice models
to analyze specific aspects of route choice behavior. To give two examples:

TripsNetwork

Choice sets

Route choice model

Description of
correlation

Path
Observations

Figure 1.1: Route Choice Modeling Overview



1.2. OBJECTIVES AND SCOPE OF THE THESIS 5

de Palma and Picard (2005) study risk aversion in route choice decisions
under travel time uncertainty using stated preferences data and Bogers et al.
(to appear) model learning in day-to-day route choice behavior using data
collected with a travel simulator.

Finally we note that other frameworks than random utility have been
used in the literature for modeling route choice behavior. Several different
models based on fuzzy logic have been proposed, see for example Lotan and
Koutsopoulos (1993), Lotan (1997), Henn (2000) and Rilett and Park (2001).
A review of work using artificial neural networks is given by Dougherty (1995)
and Yamamoto et al. (2002) use decision trees for modeling the route choice
between two alternatives. This list of literature is not exhaustive but gives
some existing alternatives to random utility models.

1.2 Objectives and Scope of the Thesis

This thesis concerns route choice analysis for car trips (uni-modal networks)
using discrete choice models and disaggregate revealed preferences data. The
latter refers to observations of trips actually performed by travelers in a real
network. Note that the same models can be used with stated preferences
data (hypothetical trips) if the proposed alternatives correspond to paths
in a network. Such a setting is however less complex since the number of
alternatives can be limited by design.

The objectives of this thesis can be summarized under the following four
keywords.

Data A considerable amount of data processing is in general required to
match trip observations to the network used by the modeler. This is not only
time consuming but may also introduce bias in the data used for estimation.
One objective is to propose an approach that limits the data processing and
allows to use original trip descriptions in the route choice model.

Algorithms Many choice set generation algorithms have been proposed in
the literature, each generating different choice sets. Furthermore, it is known
that estimation results vary depending on the definition of the choice sets.
Since the actual alternatives considered by the travelers are unknown to the
modeler, it is difficult to analyze which algorithm generates the most accu-
rate choice sets. This research aims at designing route choice set generation
algorithms which are both operational and realistic.
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Models Path alternatives often share links and are therefore correlated.
Discrete choice models with flexible correlation structure are complicated
to specify and to estimate. Simple models are therefore used in practice
even though the associated assumptions about correlation are violated. A
goal of this thesis is to develop a model that captures the correlation among
alternatives but that is still suitable for large scale route choice analysis.

Most route choice models assume that the decision is performed pre-trip.
Their application in a context where drivers receive real-time information
about traffic conditions is questionable. Another objective of this research is
to propose route choice models applicable in stochastic and time-dependent
networks.

Applications This research concerns fundamental methodological devel-
opments for route choice analysis but has the objective of being application
oriented. When appropriate, the goal is to use real networks and datasets to
illustrate proposed models and algorithms.

1.3 Contributions

In order to clearly show the contributions of this thesis we illustrate them
in the previously discussed route choice modeling overview (see Figure 1.2).
Brief descriptions of the main contributions are given below.

Network-free Data We propose a modeling approach that makes the ex-
plicit matching of trip observations to the network redundant. The dashed
lines in Figure 1.2 correspond to the process that is now unnecessary. The
original descriptions of trip observations can be directly used for choice set
generation and in the route choice model.

Real data, in their original format, rarely correspond to path definitions.
This is the case for GPS data as well as trips reported by interviewees. We
advocate that the data manipulation, such as map matching, required by
the underlying network model to obtain link-by-link descriptions of chosen
routes introduces bias and errors and should be avoided. We propose a
general modeling scheme that reconciles network-free data (original trip ob-
servations) with a network based model without such manipulations. The
framework allows for several paths to correspond to a same observation.
Fewer assumptions are therefore needed in case of ambiguous trip descrip-
tions. We illustrate the framework with a dataset of reported long distance
route choices in Switzerland.
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Trips

Network

Choice sets

Route choice model

Description of
correlation

Subnetwork approach

(Chapter 3)

Path
Observations

Extended Path Size

(Chapter 5)

Sampling of paths

(Chapter 5)

Sampling correction

(Chapter 5)

Adaptive route choice

(Chapter 6)

Network-free

data

(Chapter 4)

Figure 1.2: Contributions

Sampling of Paths A new paradigm for choice set generation is presented.
Existing approaches assume that actual choice sets are found with path gen-
eration algorithms. However, none of them is actually able to completely
reproduce even the chosen paths. We prefer to assume that the true choice
sets contain all paths connecting each origin-destination pair. Although this
is behaviorally questionable, we expect this assumption to avoid bias in the
econometric model. In this context, we propose a stochastic path generation
algorithm that corresponds to an importance sampling approach. The path
utilities must then be corrected according to the used sampling protocol in
order to obtain unbiased parameter estimates. We derive such a sampling
correction for the proposed algorithm. Furthermore, we argue that the de-
scription of the correlation should be based on the true choice set and not
only on sampled paths. We propose to do this within a Path Size Logit
model using an Extended Path Size attribute which approximates the true
correlation structure.

As shown in Figure 1.2, this novel view on choice set generation has sev-
eral implications on the traditional route choice modeling process. First, the
route choice model should be corrected according to the used path gener-
ation algorithm which has earlier been ignored. Second, the description of
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correlation should not only be based on sampled choice sets but also on the
general topology of the network.

Subnetwork Approach We propose an approach for describing correla-
tion that allows the modeler to control the trade-off between the simplicity of
the model and the level of realism. Within this framework, the key concept
capturing correlation is called a subnetwork. The importance and originality
of this approach lie in the possibility to capture the most important corre-
lation without considerably increasing the model complexity. This makes
it suitable for a wide spectrum of applications, namely involving large-scale
networks. We illustrate the model on a GPS dataset collected in the Swedish
city of Borlänge.

This approach is an important contribution to the literature where there
is a lack of models that can capture correlation in a realistic way and be
estimated on data collected in large networks.

Adaptive Route Choice The final contribution of this thesis is based
joint work with Moshe Ben-Akiva and Song Gao and concerns adaptive route
choice models in stochastic and time-dependent networks. Most existing
models assume that travelers make their complete path choice at the origin
(static and deterministic network). Such an assumption ignores an impor-
tant aspect of route choice behavior in real networks. Namely, travelers can
adapt their route choices en-route for example in response to real-time infor-
mation about traffic conditions. We estimate and analyze prediction results
(based on synthetic data) of two types of adaptive route choice models: an
adaptive path model where a sequence of (non-adaptive) path choice models
are applied at intermediate nodes, and a routing policy choice model where
alternatives correspond to routing policies (Gao, 2005) rather than paths.

There has been several algorithmic studies of optimal adaptive routing
problems presented in the literature but the estimation of such choice models
is a new area. This is therefore an important contribution to route choice
behavior analysis and to the literature on evaluation of real-time information
systems.

In Figure 1.2 this contribution is illustrated on the route choice model
level because the routing policy choice model affects all the previous modeling
steps. Ideally, even the trip observations are effected and should, in addi-
tion to descriptions of chosen routes, contain information about travelers’
information access.



1.4. THESIS OUTLINE 9

Applications Two different types of real data have been used in this thesis.
A GPS dataset collected in Sweden and reported long distance trips from a
survey in Switzerland. The Swiss network is to our knowledge the largest one
used in the literature on route choice analysis based on revealed preferences
data. Given the difficulties of making route choice models operational for
large networks, illustrating the methodology on real data is a contribution
as such.

To summarize, we have addressed several issues in route choice analysis
related to data (network-free data approach), models (Subnetwork approach
and adaptive route choice models) and algorithms (sampling of paths). More-
over, we have used real applications (Borlänge and Switzerland datasets).

1.4 Thesis Outline

This thesis is structured on four papers and the chapters are given in the their
chronological order. The outline of the thesis is presented in the following
and for each chapter we give the reference to the publication on which it is
based.

• Chapter 2 reviews the literature. We focus on analyzing the state
of the art rather than giving full technical details on all models and
algorithms.

• Chapter 3 deals with correlation in route choice models. We make
an in-depth analysis of the Path Size Logit model and present the
Subnetwork approach. This chapter has been published as:

Frejinger, E., and Bierlaire, M. (2007). Capturing correlation with
subnetworks in route choice models, Transportation Research Part B:
Methodological 41(3):363-378.

Ranked 13 in the top 25 hottest articles of Transportation Research B
for July-September 2007.

• Chapter 4 presents the framework for estimating existing route choice
models with network-free data. This chapter has been published as:

Bierlaire, M., and Frejinger, E. (to appear). Route choice modeling
with network-free data, Transportation Research Part C: Emerging
Technologies, Accepted for publication on July 23, 2007,
doi:10.1016/j.trc.2007.07.007.
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• Chapter 5 focuses on choice set generation and describes the importance
sampling approach. This chapter has been published as:

Frejinger, E. (2007). Random Sampling of Alternatives in a Route
Choice Context. Proceedings of the European Transport Conference
(ETC), Leiden, The Netherlands.

Received the Neil Mansfield Award by the Association for European
Transport for the best paper by a sole author aged 35 or under.

• Chapter 6 presents a joint work with Moshe Ben-Akiva and Song Gao
that deals with adaptive route choice models in stochastic and time-
dependent networks. This chapter has been published as:

Gao, S., Frejinger, E., and Ben-Akiva, M. (2007). Adaptive Route
Choice Models in Stochastic Time-Dependent Networks. Technical re-
port TRANSP-OR 070730. Transport and Mobility Laboratory, ENAC,
EPFL.

Accepted for presentation at the 87th Annual Meeting of the Trans-
portation Research Board, January 2008, and currently under review
for possible publication in the Transportation Research Records.

• Chapter 7 provides conclusions and future research perspectives.



Chapter 2

Literature Review

In this chapter we present the state of the art in route choice analysis based
on disaggregate data using discrete choice models. It is assumed that the
reader is familiar with discrete choice modeling. We refer to Bierlaire (1998)
for a concise and comprehensive introduction and to Ben-Akiva and Lerman
(1985) which is an excellent textbook on the discrete choice analysis. Train
(2003) is a recent textbook covering more advanced topics and focuses on
models that require estimation by simulation.

In route choice analysis we are concerned with identifying which route a
traveler would select in a transportation network (an introduction is given
in Section 1.1). Existing models are based on a static network setting. That
is, travelers are assumed to choose a path at the origin and follow it to the
destination without considering changes in traffic conditions. In Sections 2.1
to 2.4, we present a literature review of data collection, choice set generation
and models for route choice analysis in a static network setting. In the last
section we change perspective and present literature related to adaptive route
choice in stochastic and time-dependent networks. We introduce concepts
that are later used in Chapter 6.

2.1 Route Choice Data

Rather few studies of route choice behavior in uni-modal networks using
revealed preferences data are available in the literature. One of the reasons
is that data are difficult to collect. Route choice models are in general based
on link-by-link descriptions of observed routes. Such data can be collected
by either asking travelers to describe chosen routes or by passive monitoring
using the Global Positioning System (GPS). Each of these data collection
methods have issues. In this section we review some route choice modeling

11
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applications and discuss how data related issues have been dealt with.
Mail, telephone and more recently web-based surveys are conventional

methods for collecting trip data. Travelers are asked to describe chosen routes
and give related information. Various collection methods are proposed in the
literature, see for example Mahmassani et al. (1993) and Abdel-Aty et al.
(1995). One of the first applications of route choice modeling is presented in
Ben-Akiva et al. (1984). They use data collected in 1979 between Utrecht and
Amersfoort in the Netherlands (1515 observations). Cars were stopped at the
road side or license plates were recorded and surveys were either handed to
the driver or mailed to the owner of the car. In order to simplify the choice
context, the route choice is not directly modeled but rather the choice among
a given set of “labels”.

Ramming (2001) presents data collected by asking travelers to describe a
chosen path with a set of route segments. This lead to a number of incomplete
path descriptions. He uses the shortest path between two known points in
order to obtain connected paths. The final sample size is 159 observations.

Prato (2004) uses data collected with a web-based survey for the city of
Turin. Respondents were asked to indicate their route choice on an inter-
active map of the city center. 236 drivers reported 575 routes (one chosen
route and alternatives to it). Incomplete trip descriptions are ignored which
resulted in a sample of 276 observations.

Vrtic et al. (2006) present route choice data collected in Switzerland.
They performed telephone interviews where intermediate locations of long
distance trips were reported. This data (940 observations) are used to illus-
trate the modeling approach with network-free data described in Chapter 4.

In the past decade several studies presented in the literature (e.g. Mura-
kami and Wagner, 1999, and Jan et al., 2000) compare data obtained with
conventional survey methods with GPS data. There is a consensus that
passive monitoring has several advantages over conventional surveys. For
instance, multiple days of trip data can be collected automatically and are
directly available in electronic format. However, GPS data also have issues
(see Wolf et al., 1999, and Zito et al., 1995, for detailed discussions).

First, constraints of the technology, such as satellite clock errors, receiver
noise errors and type of receiver limit the accuracy of the data.

Second, depending on the number of available satellites, atmospheric con-
ditions, and local environment (high buildings, bridges, tunnels) the GPS
receiver can compute an inaccurate position or fail to compute the position
which introduces gaps in the data. Wolf et al. (1999) state that an accuracy
level of 10 meters is required in order to map match GPS points in urban
areas without ambiguity. In their tests using data collected in Atlanta, the
best performing receiver achieves this level for 63% of the GPS points on
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average. Note that this rather poor performance is partly due to the effect
of selective availability which is not an issue any more. However, Nielsen
(2004) observes that 90% of the trips collected in the Copenhagen region
had missing data.

A third issue is that the data are stored in one stream of GPS points
and data processing is required in order to reconstruct the trips. Such data
processing involves map matching, trip end identification and assumptions
of missing data. Recently, Marchal et al. (2005) propose a map matching
algorithm for large choice sets. They evaluate the performance in terms of
computation time and underline the difficulty of evaluating accuracy since the
actual chosen routes are unknown (see Quddus et al., 2003, for an overview
of map matching algorithms). Du and Aultman-Hall (2007) discuss trip end
identification algorithms. They manually identified trip ends in a GPS data
stream and evaluate the performance of the algorithms. They find that the
best algorithm correctly identified 94% of the trip ends.

Finally, we note that the data processing is highly dependent on the
accuracy of the geographical information system data base that is used.

Despite of the aforementioned issues, GPS data have been used for route
choice analysis. Nielsen (2004) studies route choice behavior and responses
to road pricing schemes based on a large GPS dataset (100 thousand ob-
servations) collected in Copenhagen. The author underlines the problems
associated with missing data and technical problems. The used map match-
ing approach is described in Nielsen and Joergensen (2004).

In Chapter 3 we estimate route choice models based on a GPS dataset col-
lected in the Swedish city of Borlänge (see Schönfelder et al., 2002, Axhausen
et al., 2003, and Frejinger, 2004, for details on the data). The data process-
ing was performed by the Atlanta based company GeoStats. Due to data
accuracy issues, observed routes could only be reconstructed for a subset (24
vehicles, 2978 observations) of the complete sample of 186 vehicles.

2.2 Choice Set Generation

We start by giving an overview of the choice set modeling process in Fig-
ure 2.1. In a real network a very large number of paths (actually infinitely
many if the network contains loops) connect an origin so and destination sd.
This set, referred to as the universal choice set U , cannot be explicitly gen-
erated. In order to estimate a route choice model a subset of paths needs to
be defined and path generation algorithms are used for this purpose. There
exist deterministic and stochastic approaches for generating paths. The for-
mer refers to algorithms always generating the same set M of paths for a
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Set of all paths U from so to sd

M ⊆ U Mn ⊆ U

Deterministic Stochastic

P (i|Cn) P (i) =
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Cn∈Hn
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Figure 2.1: Choice Set Generation Overview

given origin-destination pair, whereas an individual (or observation) specific
subset Mn is generated with stochastic approaches. A choice set Cn for in-
dividual n can be defined based on M (or Mn) in either a deterministic
way by including all feasible paths, Cn = M (or Cn = Mn), or by using a
probabilistic model P (Cn) where all non-empty subsets Hn of M (or Mn)
are considered. P (i|Cn) is the probability of route i given Cn. Defining choice
sets in a probabilistic way is complex due to the size of Hn and has never
been used in a real size application. See Manski (1977), Swait and Ben-Akiva
(1987), Ben-Akiva and Boccara (1995) and Morikawa (1996) for more details
on probabilistic choice set models. Cascetta and Papola (2001) (Cascetta
et al., 2002) propose to simplify the complex probabilistic choice set models
by viewing the choice set as a fuzzy set in a implicit availability/perception
of alternatives model.

In the following two sections we give brief overviews of existing determin-
istic and stochastic path generation algorithms focusing on the approaches
used in subsequent chapters. For recent and more detailed overviews the
reader is referred to Fiorenzo-Catalano (2007) and Bovy (2007b).
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2.2.1 Deterministic Approaches

The majority of existing path generation algorithms are deterministic ap-
proaches and most of them are based on some form of repeated shortest path
search. This type of approach is computationally appealing thanks to the
efficiency of shortest path algorithms.

Azevedo et al. (1993) propose the link elimination approach that consists
in computing the shortest path with respect to some generalized cost function
and add it to the choice set. Each link or some links belonging to the shortest
path are then removed and a new shortest path in the modified network is
computed and introduced in the choice set.

Instead of eliminating links, de la Barra et al. (1993) propose to increase
the generalized cost on links in the shortest path and then compute a shortest
path for the new cost structure. On the one hand, this link penalty approach
allows for essential links (e.g. bridges) to be used and a connected network
is guaranteed. On the other hand, a same path can be generated repeatedly
depending on how the cost structure is updated. Ramming (2001) concludes
that the computational time is prohibitively large and disregards it for further
consideration in his work.

The above mentioned algorithms may generate paths which are very simi-
lar to each other. This is the motivation to use a constrained k-shortest paths
approach which is another variant of repeated shortest path search. Re-
cent work is presented by Van der Zĳpp and Fiorenzo-Catalano (2005) who
propose an algorithm to efficiently identify k-shortest paths with respect to
detour and overlap constraints.

Ben-Akiva et al. (1984) propose a labeling approach that includes in the
choice set paths meeting specific criteria such as fastest, shortest or most
scenic paths. Shortest paths are therefore repeatedly computed based on
different generalized cost functions.

Instead of performing repeated shortest path searches, a constrained enu-
meration approach referred to as branch-and-bound has recently been pro-
posed. Friedrich et al. (2001) present an algorithm for public transport net-
works, Hoogendoorn-Lanser (2005) for multi-modal networks and Prato and
Bekhor (2006) for route networks. These algorithms build a tree where each
branch correspond to a path and generate all paths satisfying some con-
straints. Prato and Bekhor (2006) use directional, temporal, detour, similar-
ity and movement constraints. This type of approach does not benefit from
the efficiency of shortest path algorithms and it is therefore crucial to define
the constraints such that the size of the tree is limited. This is particularly
important for route networks since the number of links in generated paths
may be large and this defines the depth of the tree. As stated by Prato and
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Bekhor (2006) the speed of the algorithm depends linearly on the width of
the tree (number of paths) but exponentially on its depth.

2.2.2 Stochastic Approaches

Most of the deterministic approaches can be made stochastic by using random
generalized cost for the shortest path computations. In the following we
present two algorithms which are stochastic in their original version. This
type of approaches is of particular interest in Chapter 5 where we view path
generation as random sampling of alternatives.

Ramming (2001) proposes a simulation method that produces alterna-
tive paths by drawing link costs from different probability distributions. The
shortest path according to the randomly distributed generalized cost is cal-
culated and introduced in the choice set.

Recently, Bovy and Fiorenzo-Catalano (2006) proposed the so-called dou-
bly stochastic choice set generation approach. It is similar to the simulation
method but the generalized cost functions are specified like utilities and both
the parameters and the attributes are stochastic. They also propose to use a
filtering process such that, among the generated paths, only those satisfying
some constraints are kept in the choice set.

2.2.3 Evaluation of Generated Choice Sets

The evaluation of generated choice sets is difficult since the actual choice sets
in general are unknown to the modeler. The following measures, proposed
by Ramming (2001) (see also Bekhor et al., 2006), are often used:

• computational time,

• number of routes in the choice set,

• number of links in the choice set and

• coverage of the observed routes (called prediction success rate by Bovy
and Fiorenzo-Catalano, 2006, and Bovy, 2007b).

In addition, Prato and Bekhor (2006) and Bekhor and Prato (2006) use es-
timation results and “reduced choice sets”. The latter consists in estimating
models based on subsets of the generated choice sets in order to evaluate the
influence of number of paths in the choice set.

Fiorenzo-Catalano (2007) focuses on choice set generation for prediction
and provides definitions of reasonable routes (note that this definition is
different from the one proposed by Dial, 1971) and of adequate choice sets.
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These definitions are based on different criteria similar to the ones used in
constrained enumeration algorithms and filtering processes. For example,
detour and acyclic criteria at route level and overlap, size, comparability
criteria at choice set level.

It is important to underline the limitations of the quality measures pro-
posed in the literature. The coverage indicates if the observed routes have
been generated. If there is one observation per origin-destination pair, which
is often the case, the corresponding choice sets can contain only one path
and still have perfect coverage. The measure is however useful to have an
indication on the reasonableness of the generated paths.

Is is not not straightforward to statistically compare estimation results
(model fit measures and parameter estimates) for different choice sets. If two
estimations of the same model using the same dataset are made but where
the definition of the choice sets differ, the results cannot be compared with
classic tests such as the likelihood ratio test. Indeed the choice contexts are
different and hence so are the null log likelihood values.

The number of routes and links in the choice sets, overlap measures etc.
are useful for interpreting the estimation results. However, there exist no
reference on “ideal” values for these measures. For this reason it is also
difficult to define threshold values for constraints used in filtering processes
and constrained enumeration algorithms. The choice of such threshold values
must be based on the modeler’s intuition and knowledge of the problem
taking computation time and memory constraints into account.

For in-depth comparisons of the algorithms described in the previous sec-
tions with respect to these measures we refer the reader to Ramming (2001),
Hoogendoorn-Lanser (2005), Bovy and Fiorenzo-Catalano (2006), Prato and
Bekhor (2006), Bekhor and Prato (2006), Fiorenzo-Catalano (2007) and Bovy
(2007b).

Finally we note that Van Nes et al. (2006) discuss generated versus ob-
served choice sets (alternatives reported by travelers) using multi-modal route
choice data (Hoogendoorn-Lanser, 2005). On average only 2.8 non-chosen
routes are reported. Clearly, using only reported routes does not provide
enough variability for model estimation. The authors underline the diffi-
culty of collecting data on alternatives considered by the travelers and they
recommend to use generated choice sets for both estimation and prediction.

2.3 Route Choice Models

In this section we give an overview of route choice models in general and
those used in subsequent chapters in particular. We focus on models which
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have been used in real applications and discuss advantages and drawbacks
of each model as opposed to giving all technical details of the underlying
discrete choice models. Other reviews of route choice models are available
in the literature. Ben-Akiva and Bierlaire (2003) give a concise description
of discrete choice methods related to route choice applications and Prashker
and Bekhor (2004) focus on route choice models used in the stochastic user
equilibrium problem.

2.3.1 Multinomial Logit

The Multinomial Logit (MNL) model is simple but restricted the assump-
tion that the error terms are identically and independently distributed (i.i.d.)
which does not hold in the context of route choice due to overlapping paths.
Due to its simplicity it is one of the most commonly used models in practice.
Efforts have therefore been made to overcome this restriction by making a
deterministic correction of the utility for overlapping paths. Cascetta et al.
(1996) were the first to propose such a deterministic correction. They include
an attribute, called Commonality Factor (CF), in the deterministic part of
the utility obtaining the C-Logit model. The CF value of one path is propor-
tional to the overlap with other paths in the choice set. Cascetta et al. (1996)
present three different formulations of the CF attribute. They do however
not provide any guidance about which of the formulations to use.

The lack of theoretical guidance for the C-Logit model was the motivation
for Ben-Akiva and Ramming (1998) and Ben-Akiva and Bierlaire (1999a) to
propose the Path Size Logit (PSL) model. The idea is similar to the C-Logit
model. A correction of the utility for overlapping paths is obtained by adding
an attribute to the deterministic part of the utility. In this case, the Path
Size (PS) attribute. The original PS formulation is derived from discrete
choice theory for aggregate alternatives (Ben-Akiva and Lerman, 1985). The
utility associated with path i by individual n is Uin = Vin + βPS ln PSin + εin

where Vin is the deterministic part of the utility and εin is the random part.
The PS attribute is defined as

PSin =
∑

a∈Γi

La

Li

1∑

j∈Cn

δaj

, (2.1)

where Γi is the set of all links of path i, La is the length of link a and Li

is the length of path i. δaj equals 1 if link a is on path j and 0 otherwise.∑
j∈Cn

δaj is therefore the number of paths in choice set Cn sharing link a.
Ben-Akiva and Bierlaire (1999b) present another version of this formula-
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tion including the length of the shortest path in the choice set, L∗
Cn

,

PSin =
∑

a∈Γi

La

Li

1
∑

j∈Cn

L∗
Cn

Lj

δaj

. (2.2)

Ramming (2001) introduces a third PS formulation, called Generalized
PS

PSin =
∑

a∈Γi

La

Li

1
∑

j∈Cn

(
Li

Lj

)ϕ

δaj

, (2.3)

where ϕ is a parameter greater or equal to zero. Note that when ϕ = 0
the formulation corresponds to the original PS formulation (2.1). Ramming
(2001) proposes this formulation in order to decrease the impact of unreal-
istically long paths in the choice set. In the original PS formulation (2.1)
the contribution of a link is decreased by the number of paths that share the
link. If there are very long paths that no traveler is likely to choose sharing
a link, then these long paths have a negative impact on the utility of shorter,
more reasonable paths.

Ramming (2001) compares estimation results of the C-Logit and PSL
models with the different formulations but does not provide a theoretical
comparison. He finds that the PSL model with the Generalized PS formula-
tion (2.3) outperforms the C-Logit model.

Hoogendoorn-Lanser et al. (2005) (see also Hoogendoorn-Lanser, 2005)
study how to define overlap in multi-modal networks. Based on the conclu-
sions of Ramming (2001), they do not further analyze the C-Logit model but
focus on the PSL model. They investigate if the βPS parameter should be
estimated or be set to one, and conclude that it should be estimated since the
PS attribute can capture behavioral perceptions regarding overlapping paths.
Moreover, they compare different PS formulations in terms of model fit mea-
sures and find that the generalized formulation (2.3) with ϕ = 14 shows best
results. They also observe best model fit when overlap is expressed in terms
of number of legs1 compared to time or distance.

Motivated by the derivation presented in Frejinger and Bierlaire (2007)
(detailed in Chapter 3), Bovy (2007a) propose an alternative derivation which
results in the so-called Path Size Correction (PSC) factor

PSCin =
∑

a∈Γi

La

Li

ln

(
1∑

j∈Cn
δaj

)
. (2.4)

1A leg is a part of a route between two nodes in which a single mode or service type is
used.
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The utility is then specified as Uin = Vin + βPSCPSCin + εin. The difference
between this and the original formulation is the way the logarithm enters
the equation. The PSC is theoretically more appealing than the original PS
but estimation results presented by Bovy et al. (2008) do not indicate sig-
nificant differences between the two formulations. We discuss the theoretical
differences further when deriving the original formulation in Section 3.1.

Given the shortcomings of the MNL model, more complex models have
been proposed in the literature to explicitly capture path overlap within the
error structure. However, rather few of these models have been applied to
real size networks and large choice sets.

2.3.2 Multinomial Probit

The error terms are distributed Normal in a Multinomial Probit (MNP)
model (see for example Burrell, 1968, and Daganzo, 1977) which permits an
arbitrary covariance structure specification. It is well adapted for application
and simulation when utilities are link additive. However, it does not have
a closed form, and its evaluation requires a great deal of computing time.
Consequently, it is rarely adequate for real applications.

Yai et al. (1997) propose a MNP model with structured covariance matrix
in the context of route choice in the Tokyo rail network. This considerably
limits the number of covariance parameters to be estimated. They still use
maximum three alternatives in their application.

An efficient estimation method for MNP is proposed by Bolduc (1999)
where he estimates a model with 9 alternatives. However, the choice set sizes
in real route choice applications are often considerably larger.

2.3.3 Multivariate Extreme Value

The Multivariate Extreme Value (MEV), also called Generalized Extreme
Value (GEV), is a family of models proposed by McFadden (1978) and in-
cludes for example the MNL and Nested Logit models. Contrary to the MNL
model, the MEV model allows for some correlation and has the advantage of
having a closed form.

Vovsha and Bekhor (1998) propose the Link-Nested Logit (LNL) model,
which is a Cross-Nested Logit (CNL) formulation where each link of the net-
work corresponds to a nest, and each path to an alternative. This model
allows for a rich correlation structure but due to a high number of nests the
nesting parameters cannot be estimated. Vovsha and Bekhor (1998) there-
fore propose to use the network topology (lengths of links and paths) to
approximate the nesting parameters. Ramming (2001) estimated the LNL
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model on route choice data collected in Boston. He concludes that the PSL
model with the generalized formulation (2.3) outperforms the LNL model.
It is possible that the poor performance of the model is due to the approxi-
mation of the nesting parameters. Indeed, the imposed correlation structure
may not reflect the actual structure.

Abbé et al. (2007) analyze the CNL model and derive the exact correlation
structure. The nesting parameters can be computed by solving a system of
equations involving numerical integration. This has not yet been tested for
a real size route choice application and is an interesting topic for future
research.

Two other MEV route choice models have been proposed in the literature.
The Paired Combinatorial Logit model, developed by Chu (1989), has been
adapted to the route choice problem by Prashker and Bekhor (1998) and
Gliebe et al. (1999). Similar to the LNL model, they propose two different
ways to approximate the nesting parameters based on the network topology.
Recently, the Link-Based Path-Multilevel Logit model has specifically been
developed for the route choice problem by Marzano and Papola (2004). In
the same way as the MNL based approach proposed by Dial (1971), it al-
lows for stochastic network loading with “implicit path enumeration” (all
efficient paths, i.e. paths that do not backtrack). Both model types are only
illustrated on toy networks where no estimation is performed.

2.3.4 Error Component

An Error Component (EC) model is a Normal Mixture of MNL (MMNL)
model and was introduced namely by Bolduc and Ben-Akiva (1991) and is
designed to be a compromise between the MNL and MNP models. The
utilities have Normal as well as Extreme Value distributed error terms. A
flexible correlation structure can therefore be defined while keeping the form
of a MNL model. The estimation is simpler than for MNP but simulated
maximum likelihood estimation is required.

The EC model can be combined with a factor analytic specification where
some structure is explicitly specified in the model to decrease its complexity
(Ben-Akiva and Bolduc, 1996). Bekhor et al. (2002) (see also Ramming,
2001) estimate an EC model based on route choice data collected in Boston.
The utility vector Un (Jn × 1, where Jn is the number of paths in Cn) is
defined by

Un = Vn + εn = Vn + FnTζn + νn, (2.5)

where Vn (Jn ×1) is the vector of deterministic utilities, Fn (Jn ×Mn) is the
link-path incidence matrix (Mn is the number of links in Cn), T (Mn×Mn) is



22 CHAPTER 2. LITERATURE REVIEW

the link factors variance matrix, and ζn (Mn×1) is the vector of i.i.d. Normal
variables with zero mean and unit variance. Bekhor et al. (2002) assume
that link-specific factors are i.i.d. Normal and that variance is proportional
to link length so that T = σ diag

(√
l1,

√
l2, . . . ,

√
lMn

)
where σ is the only

parameter to be estimated. The covariance matrix can then be defined as
follows

FnTT
T
F

T
n = σ2




L1 L12 . . . L1Jn

L12 L2 . . . L2Jn

...
...

. . .
...

L1Jn
L2Jn

. . . LJn




where Lij is the length by which path i overlaps with path j.
MMNL models have been used in several studies on real size networks

with stated preferences data. The size of the choice set is then limited. Han
(2001) (see also Han et al., 2001) use a MMNL model to investigate taste
heterogeneity across drivers and the possible correlation between repeated
choices. Paag et al. (2002) and Nielsen et al. (2002) use a MMNL model
with both random coefficient and error component structure to estimate route
choice models for the harbor tunnel project in Copenhagen.

2.4 Sampling of Alternatives

The MNL model can be consistently estimated on a subset of alternatives
(McFadden, 1978) using classical conditional maximum likelihood estima-
tion. The probability that an individual n chooses an alternative i is then
conditional on the choice set Cn defined by the modeler. This conditional
probability is

P (i|Cn) =
eµVin+ln q(Cn|i)

∑

j∈Cn

eµVjn+ln q(Cn|j)
(2.6)

and includes an alternative specific term, ln q(Cn|j), correcting for sampling
bias (µ is a scale parameter). This correction term is based on the probability
of sampling Cn given that j is the chosen alternative, q(Cn|j). See for example
Ben-Akiva and Lerman (1985) for a more detailed discussion on sampling of
alternatives. Bierlaire et al. (to appear) have recently shown that MEV
models can also be consistently estimated and propose a new estimator.

If all alternatives have equal selection probabilities, the estimation on the
subset is done in the same way as the estimation on the full set of alter-
natives. Namely, q(Cn|i) is equal to q(Cn|j) ∀ j ∈ Cn and the corrections
for sampling bias cancel out in Equation (2.6). A simple random sampling
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protocol is however not efficient if the full set of alternatives is very large.
Indeed, the sample should include attractive alternatives since comparing
a chosen alternative to a set of highly unattractive alternatives would not
provide much information on the choice. In order to ensure that attractive
alternatives are included, the sample would need to be prohibitively large.

When using a sampling protocol selecting attractive alternatives with
higher probability than unattractive alternatives (importance sampling), the
correction terms in Equation (2.6) do not cancel out. Note however that if a
full set of alternative specific constants are estimated, all parameter estimates
except the constants would be unbiased even if the correction is not included
in the utilities (Manski and Lerman, 1977).

Importance sampling of alternatives has been used in the literature. For
example, Ben-Akiva and Watanatada (1981) use samples of destinations for
prediction and Train et al. (1987) sample alternatives for the estimation of
local telephone service choice models. A sampling of alternatives approach
has however never been used in a route choice modeling context, to the best
of our knowledge.

2.5 Adaptive Route Choice

Traffic conditions in transportation networks are inherently uncertain due
to disturbances such as traffic lights, incidents, vehicle breakdowns, work
zones, bad weather conditions, special events and so forth. Travelers re-
ceive information about traffic conditions during trips and can adapt their
route choices accordingly. A static network setting is assumed in the route
choice models presented in Section 2.3 and the dynamic route choice pro-
cess is therefore neglected. These existing models can in principle be applied
successively in a stochastic and time-dependent network to model adaptive
route choice behavior. DynaMIT (Ben-Akiva et al., 2001) and DYNASMART
(Mahmassani, 2001) are examples of dynamic traffic assignment models that
use this kind of approach. Calibration of DynaMIT’s route choice model
based on aggregate data is reported in Balakrishna (2006) and Balakrishna
et al. (2007). We are however unaware of any estimation of sequential route
choice models based on disaggregate data.

In a stochastic and time-dependent network setting it is assumed that
the link travel times are random variables with time dependent distribu-
tions. Since the travel time is random, a traveler entering a link at a given
time might exit the link at various times, which in turn can result in differ-
ent travel time distributions on the downstream links. A path is a purely
topological concept and is therefore not appropriate in this setting. Instead,
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adaptive routing concepts have been proposed, referred to as routing pol-
icy (Gao, 2005), hyperpath, strategy (see Marcotte and Nguyen, 1998, for
an overview) or online path with recourse (Polychronopoulos and Tsitsik-
lis, 1996). The literature includes a number of algorithmic studies of optimal
adaptive routing problems but the estimation of such choice models is a new
area. Ukkusuri and Patil (2006) apply sequential Logit loading of hyper-
path flows in an equilibrium traffic assignment model where they assume
that travelers learn realized travel times on outgoing links. The estimation
problem is however not addressed.

Finally we note that there have been a large number of studies evaluating
the potential benefits of providing pre-trip and en-route real-time informa-
tion to travelers. A recent literature review can be found in Abdel-Aty and
Abdalla (2006). We are however unaware of any studies estimating route
choice models based on real trip observations, instead, interactive simula-
tion, synthetic or stated preference data are mainly used.

In the following we focus on the concept of routing policy proposed by
Gao (2005) (see also Gao and Chabini, 2006) which is used in Chapter 6.

2.5.1 Routing Policy

For this concept, we assume a stochastic and time-dependent network defined
as G = (V, E , T ,P) where V is the set of nodes, E the set of links and T
the set of time periods. The travel time on each link ℓ at each time period
t is a random variable T̃ℓt with a given probability mass function (PMF).
P is the probabilistic description of the link travel times. The most general
definition of P is a joint probability distribution of all link travel time random
variables: P = {̺1, ̺2, . . . , ̺r, . . . , ̺R} where ̺r is a matrix (|T | × |E|) and
R the number of support points. Each support point r has a probability
P (r) and

∑R

r=1 P (r) = 1. An element of ̺r is denoted T r
ℓt and represents the

realized travel time of link ℓ at time t for support point r.
At each node in the network, a traveler can decide which is the next node

depending on the current state {v, t, I} where v is the current node, t the
current time and I the current information. The latter refers to a set of
realized link travel times. A routing policy is defined as a mapping from
states to decisions (next nodes in the network) and it manifests itself as a
path for each support point of the network. A routing policy can therefore
be viewed as a collection of paths, each with a certain probability. For more
details we refer the reader to Gao (2005) and Gao and Chabini (2006).

Gao (2005) propose a Policy Size Logit model which is similar to the
Path Size Logit model (Ben-Akiva and Ramming, 1998, and Ben-Akiva and
Bierlaire, 1999b). It is designed to model the probability of a routing policy γ
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given an individual specific choice set of routing policies Gn, P (γ|Gn), using a
MNL model. The utilities are corrected with the Policy Size (PoS) attribute
Uγn = Vγn + βPoS ln PoSγn + εγn, ∀ γ ∈ Gn, that is defined as

PoSγn =
R∑

r=1



∑

a∈Ir
γ

(
T r

a

T r
γ

)
1

M r
an


P (r) (2.7)

where

• Ir
γ is the set of links of the realized path of routing policy γ for r,

• T r
a is the realized travel time of link a for r,

• T r
γ is the realized travel time of routing policy γ for r and

• M r
an the number of routing policies in Gn using link a for r.

Note that all variables are time-dependent, but the time subscript is omit-
ted to make the notation light. The PoS attribute may be viewed as an
“expected” PS. For each support point a routing policy manifests itself as a
path. The PS attribute is computed for each support point and the expec-
tation is taken over all possible support points.





Chapter 3

Modeling Correlation in Route

Choice Models

When using random utility models for a route choice problem, a critical issue
is the significant correlation among alternatives, as discussed in Section 2.3.
There are basically two types of models proposed in the literature to address
it: (i) a deterministic correction of the path utilities in a Multinomial Logit
model (such as the Path Size Logit or the C-Logit models) and (ii) an explicit
modeling of the correlation through assumptions about the error terms and
the use of advanced discrete choice models such as the Cross-Nested Logit or
the Error Component models. The first is simple, easy to handle and often
used in practice. Unfortunately, it does not correctly capture the correlation
structure, as we discuss in details in the following section. The second is
more consistent with the modeling objectives, but complicated to specify
and estimate.

The modeling framework presented in this chapter allows the analyst to
control the trade-off between the simplicity of the model and the level of
realism. Within this framework, the key concept capturing the correlation
structure is called a subnetwork. A subnetwork is a simplification of the road
network only containing easy identifiable and behaviorally relevant parts. In
practice, the subnetwork can easily be defined based on the road network
hierarchy. The importance and the originality of our approach lie in the
possibility to capture the most important correlation without considerably
increasing the model complexity. This makes it suitable for a wide spectrum
of applications, namely involving realistic large-scale networks.

As an illustration, we present estimation results of a factor analytic spec-
ification of a mixture of Multinomial Logit model, where the correlation
among paths is captured by error components. The estimation is based on
a GPS dataset collected in the Swedish city of Borlänge. The results show

27
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a significant increase in model fit and forecasting performance for the Er-
ror Component model compared to a Path Size Logit model. Moreover, the
correlation parameters are significant.

In the following section we analyze the Path Size Logit model. In Sec-
tion 3.2 we introduce the new modeling approach based on the concept of
subnetworks. Finally, we present estimation and prediction results for real
data of Error Component models based on subnetworks and compare the
results with Multinomial Logit and Path Size Logit models.

3.1 Deterministic Correction for Correlation

Several formulations of the Path Size (PS) attribute have been proposed in
the literature. Here, we show that the original PS formulation (2.1), or the
Path Size Correction (PSC) factor (2.4), should be used for correcting utilities
of overlapping paths. These are the formulations that both show intuitive
results and have a theoretical motivation. We start by showing how and
under which assumptions the original PS formulation can be derived from
the theory on aggregation of alternatives (Ben-Akiva and Lerman, 1985).

A nested structure is assumed where each nest corresponds to an aggre-
gate alternative grouping elemental alternatives. In a route choice context
the elemental alternatives correspond to the paths and the aggregate alter-
natives to the links. For the derivation of the original PS formulation we are
interested in the choice of elemental alternative (route choice) as well as the
size of the aggregate alternatives, where the size of an aggregate alternative,
a link, equals the number of paths using the link.

We denote by Cn the set of paths considered by individual n, and we define
subsets, Can ⊆ Cn, a = 1, . . . , Mn, where Can is the set of paths using link a,
and Mn is the number of links in Cn. The utility Uin individual n associates
with path i is Uin = Vin + εin where Vin represents the deterministic part
of the utility and εin the random part. The link utility Uan is defined by
Uan = maxj∈Can

(Vjn + εjn), a = 1, . . . , Mn. Uan can also be expressed as the
sum of its expectation Van and its random term εan, that is, Uan = Van + εan

where Van = E[maxj∈Can
(Vjn + εjn)]. The average deterministic utility of

paths using link a is defined by V an = (1/Man)
∑

j∈Can
Vjn where Man is

the number of paths in Cn using link a (the size of link a). That is, Man =∑
j∈Cn

δaj , where δaj is the link-path incidence variable that equals one if link
a is on path j and zero otherwise.

According to the theory, if we assume that the size of Can is large for all
links, that the path utilities using a link have equal means and the random
terms εin are independent and identically distributed (i.i.d.), then the utility
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individual n associates with link a is defined by

Uan = V an +
1

µ
ln Man + εan,

where µ is a positive scale parameter (see Ben-Akiva and Lerman, 1985, p.
256, Eq. (9.7)).

The original PS formulation, correcting the path utility Uin, is based on
the definition of the link utility Uan. Accordingly, the positive correction for
the size of an aggregate alternative, results in a negative correction of the
utility of an elemental alternative. Moreover, there is no correction of an ele-
mental alternative which belongs to a nest with size one. The size correction
for an elemental alternative can therefore be defined as (1/µ) ln(1/Man). The
contribution of a link a is thus

1

µ
ln

1∑

j∈Cn

δaj

where δaj is the link-path incidence variable. Furthermore, we assume that
the size of a path is proportional to the length of its links. If La denotes the
length of link a and Li the length of path i, we have derived the original PS
formulation

PSin =
∑

a∈Γi

La

Li

1∑

j∈Cn

δaj

.

Including a PS correction in the utility Uin gives

Uin = Vin + βPS ln PSin + εin, i ∈ Cn,

where βPS = 1/µ. βPS should therefore be estimated and be strictly positive
in order to be consistent with the theory.

In the derivation of the PSC factor Bovy (2007a) defines the contribution
of each link in path j as

La

Lj

1

µa

ln
1

Man

which seems more appropriate from a theoretical perspective than weighting
with (La/Lj) inside the logarithm as is done in the original PS. The utility
is then defined as

Uin = Vin + βPSC

∑

a∈Γi

La

Li

ln
1∑

j∈Cn
δaj

+ εin
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where it assumed that µa = µ ∀a ∈ Γi and βPSC = 1/µ.
Ben-Akiva and Bierlaire (1999b) do not include a βPS in their utility spec-

ification. Ramming (2001) argues that according to discrete choice theory,
βPS should be fixed to one. However, his βPS estimate is significantly differ-
ent from both zero and one. Hoogendoorn-Lanser et al. (2005) suggest that
the PS attribute can have a behavioral interpretation and therefore argues
that βPS should be estimated. They also get better empirical results when
estimating βPS. When deriving the original PS formulation, we show that
βPS = 1/µ where µ is a positive scale parameter.

Both Ramming (2001) and Hoogendoorn-Lanser et al. (2005) conclude
that the PS attribute only corrects the utility for a part of the correlation.
In the derivation of the PS attribute, the error terms of paths using a same
link are assumed to be i.i.d. The cross-nested structure and the correlation
due to paths using more than one link is therefore neglected. This explains
the PS attribute’s limited capacity of capturing correlation.

Ben-Akiva and Bierlaire (1999b) present an alternative PS formulation
(2.2) including the length of the shortest path in the choice set L*

Cn
. The

correlation of the utility ln PSin can be written as follows:

ln PSin = − ln Li − ln L∗
Cn

+ ln
∑

a∈Γi

La

∑

j∈Cn

1

Lj

δaj

.

Note that, including L*
Cn

adds a constant ln L∗
Cn

to all path utilities in the
choice set which does not change their relative utility. The length component
in the denominator, 1/Lj, does however play a role.

The Generalized PS formulation (2.3) is introduced by Ramming (2001)
in order to decrease the influence of unrealistically long paths on the util-
ity of shorter paths in the choice set. The formulation is however difficult
to interpret for ϕ > 0. (Note that ϕ = 0 corresponds to the original PS
formulation.)

In order to analyze the influence of the ϕ parameter, we write ln PSin as
follows:

ln PSin = −(ϕ + 1) lnLi + ln
∑

a∈Γi

La

1
∑

j∈Cn

(
1

Lj

)ϕ

δaj

. (3.1)

Independently of the value of the ϕ parameter, this formulation yields a zero
correction when path i has no overlap with any other path in the choice set.
When ϕ → +∞, if we assume that Li > 1 ∀ i ∈ Cn, the limits of the two
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Figure 3.1: Example for Deterministic Correction Formulation

terms in Equation (3.1) are

lim
ϕ→+∞

−(ϕ + 1) lnLi = −∞ lim
ϕ→+∞

ln
∑

a∈Γi

La

1
∑

j∈Cn

(
1

Lj

)ϕ

δaj

= +∞.

This result can be explained by the fact that the sum in the denominator
of formulation (2.3) is composed of terms (Li/Lj)

ϕ where (Li/Lj) can be
greater or equal to one, or less than one depending on the lengths Li and
Lj . Since Ramming (2001) considered an example with only two correlated
alternatives this effect was not illustrated in his thesis. Here we consider
instead an example with three correlated alternatives (shown in Figure 3.1)
where the length of path 3, L3, varies with the length of link 4, l4.

In Figure 3.2 we compare the values of the original PS formulation (2.1),
ϕ = 0 (thin lines), with the generalized formulation (2.3) using a high value
of ϕ (thick lines) as a function of l4. Only the PS values for the correlated
alternatives are shown.

The original PS formulation penalizes path 2 the most and path 4 the
least. This is intuitive since the correlated part (link 2) has a higher propor-
tion of the total length for path 2 than path 4. Moreover, path 3 is penalized
proportionally to the length of link 4, as expected.

For high values of ϕ the results are problematic. Firstly (and most impor-
tantly), we observe a high sensitivity of the PS value with respect to small
modifications in the length of the paths. This happens when two paths, in-
cluding the shortest one, have almost the same length. This is illustrated by
values of l4 close to 4.0 in Figure 3.2. Clearly, this may have a disastrous
impact on the probabilities in the presence of tiny errors in the route length
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Figure 3.2: PS Values (ϕ = 0 and ϕ = 3000) for Correlated Alternatives in
Example 3.1 as a Function of l4

data. Secondly, when l4 increases, we obtain an extreme situation where the
shortest path (path 2) is not penalized at all.

We now consider a choice set where two correlated alternatives have al-
most the same length and one of those alternatives is the shortest path, that
is L1 = 10.0, L2 = 10.0,L3 = 10.1 and L4 = 12. This case is common in
practice. In Figure 3.3 we show the PS values for this case as ϕ varies. First
of all, note that the ordering of the paths changes. Path 4 is more penalized
than path 3 for ϕ < 170 and then the order is inverted. Second, even though
path 3 is only 1% longer than path 2, its PS value decreases as ϕ increases.

We conclude that the generalized formulation may produce counter intu-
itive results and the original PS formulation (or the recently proposed PSC
factor) should therefore be preferred, with the additional motivation that it
has a theoretical foundation. However, as pointed out earlier, the PS at-
tribute can only capture part of the correlation. It is preferable to use a
model that accounts explicitly for correlation within the error structure, but
without considerably increasing the complexity. For this purpose, we propose
to use subnetworks which are discussed in the next section.
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Figure 3.3: PS Values for Correlated Alternatives as a Function of ϕ

3.2 Subnetworks

We are proposing a modeling approach which is designed to be both be-
haviorally realistic and convenient for the analyst. We define a subnetwork
component as a set of links corresponding to a part of the network which can
be easily labeled and is behaviorally meaningful in actual route descriptions
(Champs-Elysées in Paris, Fifth Avenue in New York, Mass Pike in Boston,
etc.). The analyst defines subnetwork components either by arbitrarily se-
lecting, for example, motorways and main roads in the network hierarchy, or
by conducting simple interviews to identify the most frequently used names
when people describe itineraries. Note that the actual relevance of a given
subnetwork component can be tested after model estimation, so that various
hypotheses can be tried.

The model is designed such that paths sharing a subnetwork component
are correlated. This allows for a great deal of modeling flexibility, including
the possibility to capture perceptual correlation among paths that are not
physically overlapping. For instance, two paths going through the city center
may share unobserved attributes, even if they do not share any link.

We propose to explicitly capture this correlation within a factor analytic
specification of an Error Component (EC) model. The model specification is
combined with a PS attribute that accounts for the topological correlation
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on the complete network. The EC model specification is an extension of the
model presented by Bekhor et al. (2002). We define the utility as

Un = Vn + FnTζn + νn (3.2)

where Fn (Jn×Q) is the factor loadings matrix (Jn is the number of paths in
choice set Cn and Q is the number of subnetwork components), T(Q×Q) =
diag (σ1, σ2, . . . , σQ) (σq is the covariance parameter associated with subnet-
work component q, to be estimated), ζn (Q×1) is a vector of i.i.d. N(0,1)
variates, and νn(Jn×1) is a vector of i.i.d. Extreme Value distributed variates.
An element (fn)iq of Fn equals

√
lniq where lniq is the length by which path

i in choice set Cn overlaps with subnetwork component q.
We illustrate the model specification with a small example presented in

Figure 3.4. We consider one origin-destination pair, three paths and a sub-
network composed of two subnetwork components (Sa and Sb). Path 1 uses
both subnetwork components whereas path 2 only uses Sa and path 3 only
Sb. Path 1 is assumed to be correlated with both path 2 and path 3 even
though path 1 and path 2 do not physically overlap. The path utilities for
this example are consequently

U1 = V1 +
√

l1aσaζa +
√

l1bσbζb + ν1

U2 = V2 +
√

l2aσaζa + ν2

U3 = V3 +
√

l3bσbζb + ν3,

where ζa and ζb are distributed N(0,1), liq is the length path i shares with
subnetwork component q. σa and σb are the covariance parameters to be
estimated. The variance-covariance matrix of ζ for this example is

FTT
T
F

T =




l1aσ

2
a + l1bσ

2
b

√
l1a

√
l2aσ

2
a

√
l1b

√
l3bσ

2
b√

l1a

√
l2aσ

2
a l2aσ

2
a 0√

l3b

√
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2
b 0 l3bσ

2
b



 .

3.2.1 Empirical Results

The estimation results presented in this section are based on a GPS dataset
collected during a traffic safety study in the Swedish city of Borlänge. Nearly
200 vehicles were equipped with a GPS device and the vehicles were moni-
tored within a radius of about 25 km around the city center. Since the dataset
was not originally collected for route choice analysis, an extensive amount
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of data processing has been performed in order to obtain coherent route
observations. The data processing was mainly performed by the company
GeoStats in Atlanta. Data of 24 vehicles and a total of 16 035 observations
are available for route choice analysis (see Axhausen et al., 2003, Schönfelder
and Samaga, 2003, and Schönfelder et al., 2002, for more details on the Bor-
länge GPS data set). For the model estimations we consider a total of 2 978
observations corresponding to 2 244 observed simple routes of 24 vehicles
and 2 179 origin-destination pairs. Note that we make a distinction between
observations and observed routes since a same route can have been observed
several times.

Only individuals who had access to their own vehicle were recruited for
the survey. Moreover, we do not have access to the characteristics of the
drivers. We therefore assume that each vehicle correspond to one single
individual.

Borlänge is situated in the middle of Sweden and has about 47 000 in-
habitants. The road network contains 3 077 nodes and 7 459 unidirectional
links. We have defined a subnetwork based on the main roads traversing
the city center. Two of the Swedish national roads (“riksväg”) traverse Bor-
länge. The subnetwork is composed of these national roads (referred to as
R.50 and R.70) and we have defined two subnetwork components for each
national road (north and south directions). In addition, we have defined
one subnetwork component for the road segment in the city center where
R.50 and R.70 overlap (called R.C.). The Borlänge road network and the
subnetwork are shown in Figure 3.5. In Table 3.1 we report for each sub-
network component its length and the number of observations that use the
component. Table 3.1 also reports the weighted number of observations Nq,
defined by Nq =

∑
o∈O(loq/Lq), where loq is the common length between the
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R.50 S R.50 N R.70 S R.70 N R.C.

Component length [m] 5255 4966 11362 7028 1733
Nb. of Observations 173 153 261 366 209
Weighted Nb. of 36 88 65 73 116
Observations (Nq)

Table 3.1: Statistics on Observations of Subnetwork Components

route corresponding to observation o and subnetwork component q, Lq is the
length of q, and O is the set of all observations.

A link elimination approach (Azevedo et al., 1993) has been used for the
choice set generation. This algorithm computes the shortest path and adds
it to the choice set. One link at a time is then removed from the original
shortest path, and a new shortest path in the modified network is computed
and added to the choice set, if it is not already present.

The main drawback of the link elimination approach is that it generates
similar routes. When one link is removed, there exists often a short deviation
using roads next to the removed link. In order to address this drawback we
have used two generalized cost functions for the shortest path computation.
In addition to estimated travel time, we have also used link length divided
by the number of lanes. For each origin-destination pair, the link elimination
algorithm is therefore applied to two shortest paths.

The observed routes that were not found by the choice set generation
algorithm were added afterward. The algorithm found all the observed routes
for 80% of the origin-destinations pairs. However, for 20% of the origin-
destination pairs, none of the observed routes were identified. Typically, this
is the case when the observed routes make long detours compared to the
shortest path, for example, in order to avoid the city center. These results
are consistent with the findings of Ramming (2001) who at best found 84%
of the observed routes by combining all the choice set generation algorithms
that he had tested. The number of paths in the choice sets varies between 2
and 43 where a majority of the choice sets (93%) include less than 15 paths.

Model Specifications

We compare MNL and PSL models with five different specifications of an EC
model based on the subnetwork defined previously. Two EC models are spec-
ified with a simplified correlation structure where the covariance parameters
are assumed to be equal (models EC1 and EC′

1). Two other EC models are
specified with one covariance parameter per subnetwork component (models
EC2 and EC′

2).
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Figure 3.5: Borlänge Road Network and Subnetwork Definition
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The PSL, EC1 and EC2 models are specified with the same linear in
parameters formulation of the deterministic part of the utility function. The
deterministic part Vi of the utility for alternative i is

Vi = βPS ln(PSi) + βEstimatedTimeEstimatedTimei+

βNbSpeedBumpsNbSpeedBumpsi + βNbLeftTurnsNbLeftTurnsi+

βAvgLinkLengthAvgLinkLengthi.

For comparison we also estimate models without a PS attribute (MNL, EC′
1

and EC′
2) which otherwise have the same deterministic utilities as the other

models. In addition to attributes such as estimated travel time, number of
speed bumps and number of left turns in uncontrolled crossings, we have
included average link length which is intended to capture an attraction for
routes with few crossings. The estimated travel time is computed for each link
in the network based on its length and an average speed. We have used one
average speed for each speed limit that corresponds to the observed average
speed. Statistics on all attributes included in the model specifications are
given in Table 3.2.

PS formulations based on length and estimated travel time show similar
results in our case. We have therefore preferred the definition based on length,
which is directly observed. A high correlation among the routes is expected
since a link elimination approach has been used for generating the choice sets.
In Figure 3.6 we show the PS values for all routes and all choice sets. The
generated routes are shown with black bars and the observed routes with gray
bars. A majority of the routes have a high overlap (low PS values). Only 5%
of the routes have no overlap (PS value that equals 1). Note that almost 50%
of the routes that have no overlap are observed routes. This can be explained
by the poor performance of the choice set generation algorithm discussed in
the previous section. Namely, for 20% of the origin-destination pairs, none of
the observed routes were found by the algorithm. These observed routes are
therefore expected to have a low overlap with the other routes in the choice
set.

We deal with heteroscedasticity by specifying different scale parameters
for different individuals. After systematic testing of various specifications,
eight individuals have one scale parameter each which are estimated signifi-
cantly different from one. For the remaining individuals the scale parameter
is fixed to one.

Even though the number of individuals is small, we provide a model,
EC3, where we take into account that we have panel data. Otherwise the
specification is the same as for EC2. Our objective is purely illustrative,
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Figure 3.6: Number of Routes for PS Values

and this model would clearly need data from more than 24 individuals to be
meaningful. We assume that the perception of correlated alternatives on the
subnetwork is individual specific and that the taste is constant over choice
situations. The error components in the correlation structure are therefore
specified to be invariant across the observations of a given individual.

Model Estimation

The parameter estimates are given in Table 3.3. We have provided a scaled
parameter estimate in order to facilitate the comparison of different models.

Attribute Min Average Max
Estimated Travel Time [min] 0.5 4.2 37.5
Number of Left Turns 0 3.2 27
Average Link Length [m] 11 198.7 2947
Number of Speed Bumps 0 0.3 5
ln(PS) -3.7 -0.9 0

Table 3.2: Statistics on Attributes
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The scaling is based on the estimated travel time parameter in the MNL
model. The magnitude of the scaled estimate for this parameter is conse-
quently the same for all the models.

We start by comparing the models PSL, EC1 and EC2. The parameter
estimates shown in Table 3.3 related to average link length, estimated travel
time, number of left turns and number of speed bumps are all significantly
different from zero. Moreover, the parameter values as well as the robust
t-test statistics are stable when comparing the different models.

The PS parameter estimate, βPS, is negative and significantly different
from zero and from minus one in models PSL, EC1 and EC2. As discussed in
Section 3.1 a negative value of βPS is not consistent with choice theory since
it corresponds to a scale parameter and consequently should be positive. The
negative estimate suggests that the PS attribute captures an attractiveness
for overlapping paths. An increase in magnitude and significance of the scaled
βPS estimates can be noted when comparing EC1 with PSL and EC2 with
EC1. More precisely, when the correlation structure on the subnetwork is
explicitly captured by the error terms, the value of βPS increases in magnitude
and significance. Based on these results, we draw the conclusion that the PS
attribute has an ambiguous interpretation. On the one hand, it negatively
corrects the utility for the independence assumption on the random terms.
On the other hand, it has a behavioral interpretation. Namely, it captures an
attractiveness for overlapping paths, for example, because they provide the
possibility of route switching (this has also been suggested by Hoogendoorn-
Lanser et al., 2005, in the context of multi-modal route choice). Another
possible explanation for the negative βPS estimate is based on the choice set
definition. A majority of the observed paths have a high overlap with other
paths in the choice set (see Figure 3.6). Hence, the utility is increased for
overlapping paths.

The estimates of σR50S (see Table 3.3) are not significantly different from
zero. This can be explained by the limited number of observations using this
subnetwork component. As shown in Table 3.1, 173 observations use R.50
S but since the number of weighted observations is only 36, the length by
which they overlap with the subnetwork component is relatively short. The
other covariance parameter estimates are all significant (σR50N in EC′

2 at 10%
significance level).

The estimation results for the models without a PS attribute (MNL, EC′
1

and EC′
2) are comparable to the results for the other models. As expected,

the covariance parameter estimates are slightly different but all significant
(except σR50S). This is also the case for the parameters associated with the
explanatory variables.

Based on the log likelihood values reported in Table 3.4, and the likelihood
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ratio tests shown in Table 3.5, the MNL model can, as expected, be rejected
in favor of the PSL model. The EC1 and EC2 models are significantly better
than the PSL model, and EC2 has better model fit than EC1. The hypothesis
of equal covariance parameters for all subnetwork components can therefore
be rejected although not as strongly as the PSL model. Moreover, we note
that the two EC models including a PS attribute are significantly better than
those that do not.

Considering the significant improvement in model fit for the EC models
compared to the PSL model, as well as the significant covariance parame-
ter estimates, we conclude that the specification based on the subnetwork
captures an important correlation structure.

Finally, we compare EC2 with EC3 where EC3 explores the panel data
structure of the observations. Referring to the scaled parameter estimates
in Table 3.3 for average link length, estimated travel time, number of left
turns and number of speed bumps, the value of the estimates are stable. On
the contrary, the value βPS decreases in magnitude, breaking a trend where
it has been increasing in magnitude for the models EC1 and EC2 compared
to the PSL model. It is possible that the EC3 model better captures indi-
viduals’ perception of overlapping paths than EC1 and EC2. The behavioral
aspect that the PS attribute captures in models EC1 and EC2 is therefore
captured within the error structure of EC3. This would explain the decreased
magnitude of the βPS value.

All the covariance parameter estimates, except for σR50S , are significant
in the EC3 model. The assumption that the perception of correlated alterna-
tives on the subnetwork is individual specific and that the taste is constant
over choice situations seems to correspond to the observations.

Due to the small number of individuals there is a systematic loss in sig-
nificance for all parameters in EC3 compared to EC2. In spite of this, there
is a noticeable increase in model fit (see Table 3.4) compared to EC2.

Forecasting Results

Route choice models are often used to predict individual behavior. It is
therefore important to compare models, not only in terms of model fit, but
also regarding the performance of predicting choice probabilities.

In order to test the prediction power of the different models, we estimate
models based on subsets of the data saving the rest to validate the predicted
probabilities. The data selection is based on origin-destination (OD) pairs.
More precisely, 80% of the OD pairs are randomly selected and all observa-
tions associated with these OD pairs are included in the estimation data set.
This test is particularly challenging since the models predict choice proba-
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Parameters MNL PSL EC1 EC′

1 EC2 EC′

2 EC3

Path Size -0.28 -0.49 -0.53 -0.32

Scaled estimate -0.33 -0.53 -0.56 -0.36

Rob. std 0.07 0.09 0.09 0.19
Rob. t-test 0 -4.05 -5.61 -5.91 -1.65
Avg Link Length 3.85 4.15 4.98 4.45 5.06 4.50 4.75

Scaled estimate 3.85 4.85 5.35 3.86 5.39 3.82 5.29

Rob. std 0.53 0.55 0.60 0.55 0.61 0.56 1.21
Rob. t-test 0 7.32 7.58 8.32 8.05 8.28 8.00 3.92
Estimated Time -0.46 -0.40 -0.43 -0.54 -0.44 -0.55 -0.42

Scaled estimate -0.46 -0.46 -0.46 -0.46 -0.46 -0.46 -0.46

Rob. std 0.05 0.05 0.06 0.06 0.06 0.06 0.10
Rob. t-test 0 -9.61 -7.85 -7.47 -8.74 -7.51 -8.76 -4.37
Nb. Left turns -0.31 -0.32 -0.33 -0.31 -0.33 -0.31 -0.33

Scaled estimate -0.31 -0.37 -0.35 -0.27 -0.35 -0.27 -0.36

Rob. std 0.02 0.02 0.02 0.02 0.02 0.02 0.04
Rob. t-test 0 -15.72 -15.73 -15.62 -15.49 -15.59 -15.39 -9.16
Nb. Speed Bumps -0.19 -0.23 -0.22 -0.15 -0.23 -0.15 -0.22

Scaled estimate -0.19 -0.27 -0.24 -0.13 -0.24 -0.13 -0.24

Rob. std 0.06 0.07 0.07 0.06 0.07 0.06 0.19
Rob. t-test 0 -3.04 -3.52 -3.14 -2.50 -3.14 -2.44 -1.11
σ 1.44 1.09

Scaled estimate 1.55 0.94

Rob. std 0.19 0.18
Rob. t-test 0 7.57 6.02
σR50N 1.07 0.70 1.78

Scaled estimate 1.14 0.60 1.99

Rob. std 0.32 0.42 0.67
Rob. t-test 0 3.28 1.68 2.66
σR50S 0.27 0.18 0.69

Scaled estimate 0.28 0.15 0.77

Rob. std 0.69 0.89 0.60
Rob. t-test 0 0.39 0.20 1.16
σR70N 2.04 1.53 0.65

Scaled estimate 2.17 1.30 0.73

Rob. std 0.39 0.39 0.26
Rob. t-test 0 5.16 3.91 2.55
σR70S 1.52 1.19 0.83

Scaled estimate 1.62 1.01 0.93

Rob. std 0.22 0.20 0.20
Rob. t-test 0 7.08 5.80 4.07
σRC 2.02 1.48 1.19

Scaled estimate 2.14 1.25 1.33

Rob. std 0.66 0.75 0.32
Rob. t-test 0 3.05 1.96 3.75

Table 3.3: Estimation Results
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Model Nb. σ Nb. Estimated Final Adjusted
Estimates Parameters L-L Rho-Square

MNL - 12 -4186.07 0.152
PSL - 13 -4174.72 0.154
EC1 1 14 -4142.40 0.161
EC′

1
1 13 -4165.59 0.156

EC2 5 18 -4136.92 0.161
EC′

2 5 17 -4162.74 0.156
EC3 5 18 -4109.73 0.166
1000 pseudo-random draws for Maximum Simulated Likelihood estimation
2978 observations
Null log likelihood: -4951.11
BIOGEME (biogeme.epfl.ch) has been used for all model estimations
(Bierlaire, 2003, Bierlaire, 2007).

Table 3.4: Model Fit Measures

Model 1 Model 2 Test Threshold (5%)
MNL PSL 22.70 3.84
PSL EC1 64.64 3.84
PSL EC2 75.60 11.07
EC1 EC2 10.96 9.49
EC′

1
EC1 46.38 3.84

EC′

2
EC2 51.64 3.84

Table 3.5: Likelihood Ratio Test
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Estimation Forecast
Sample Size Null L-L Sample Size Null L-L

Data 1 2386 -3944.28 592 -1006.84
Data 2 2359 -3905.29 619 -1045.82
Data 3 2409 -3982.19 569 -968.918
Data 4 2328 -3952.23 650 -998.886
Data 5 2385 -4013.04 593 -938.078

Table 3.6: Information on Datasets used for Forecasting

bilities for OD pairs whose choice sets have not been used for estimating the
models.

Five datasets have been generated. The size and null log likelihood for
each of them are reported in Table 3.6. Since, in general, there is only one
observation per OD pair, all the datasets have more or less the same size.

The same models as in the previous section are estimated (except EC3).
The model fit measures and the likelihood ratio tests are reported in Ta-
ble 3.7. The general interpretation of the estimation results for all datasets
remains the same as for the models estimated on the complete dataset. The
conclusions regarding the model fit measures are also the same here as for
the estimations based on the full dataset, with the only exception that the
EC′

2 model is not significantly better than the EC′
1 model for dataset five.

We compare the performance of the different models using the log like-
lihood of the predicted probabilities computed on the data not used for es-
timation. The log likelihood values for all models and datasets are reported
in Figure 3.7, which shows that the EC models are superior to the MNL and
the PSL models. The EC′

1 and EC′
2 models are performing better than MNL

and PSL for all datasets. The EC1 and EC2 models outperform all other
models for all datasets except the fourth one. The prediction performance of
the PSL and MNL models are very similar, while the fit of estimated data is
better for the PSL model.

The results for the fourth dataset show that the MNL model performs
better than the PSL, EC1 and EC2 models. The EC′

1 and EC′
2 are however

good for forecasting in spite of the fact that they have worse model fit than the
PSL model and the other two EC models. In this particular case, even though
the models including a PS attribute have in general better model fit, they
have poor prediction performance. This illustrates the general statement
that the best model fit does not necessarily identify the best model, and
comparing prediction performances is important.
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MNL PSL EC1 EC′

1 EC2 EC′

2

Nb. of estimated 12 13 14 13 18 17
parameters
Data 1 Final L-L -3279.23 -3270.68 -3248.00 -3265.14 -3243.94 -3262.44

ρ̄2 0.166 0.167 0.173 0.169 0.173 0.169
Data 2 Final L-L -3313.27 -3305.81 -3279.57 -3298.17 -3273.73 -3294.58

ρ̄2 0.149 0.150 0.157 0.152 0.157 0.152
Data 3 Final L-L -3361.90 -3353.01 -3336.46 -3350.86 -3331.16 -3347.37

ρ̄2 0.153 0.155 0.159 0.155 0.159 0.155
Data 4 Final L-L -3358.66 -3338.48 -3311.16 -3342.87 -3306.56 -3340.68

ρ̄2 0.147 0.152 0.159 0.151 0.159 0.150
Data 5 Final L-L -3408.82 -3397.29 -3373.37 -3394.89 -3370.63 -3393.43

ρ̄2 0.148 0.150 0.156 0.151 0.156 0.150

Table 3.7: Model Fit Measures (Forecasting Models)
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Figure 3.7: Log likelihood Values for Predicted Probabilities
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3.3 Conclusions and Future Work

In this chapter we justify the use of the original Path Size formulation (or
the recently proposed Path Size Correction factor) among the deterministic
corrections of the i.i.d. assumption on the random terms in a MNL model.
These are the formulations that both have a theoretical support and show
intuitive results for the correction of the independence assumption on the
random terms. Moreover, we have presented estimation results that suggest
a behavioral interpretation of the Path Size attribute. Namely, overlap can be
attractive for travelers since it provides the possibility of switching between
different routes.

We propose a novel modeling approach based on subnetworks designed
to enhance the performance of simple models with a limited increase in com-
plexity. Estimation results show that this approach is significantly better
than a simple Path Size Logit model. A subnetwork is a set of subnetwork
components. Alternatives are assumed to be correlated if they use the same
subnetwork component. This correlation is captured within a factor ana-
lytic specification of an Error Component model. The estimation results are
promising and the estimates of the covariance parameters suggest that the
specification captures an important correlation structure. Moreover, predic-
tion tests are presented that clearly show the superiority of the Error Com-
ponent model compared to Multinomial Logit and Path Size Logit models.

We believe that this model will open new perspectives for route choice
modeling. It is a flexible approach where the trade-off between complexity
and behavioral realism can be controlled by the analyst with the definition
of the subnetwork.

More analysis is required in order to assess the sensitivity of the results
with regard to the definition of the subnetwork. Both with respect to the
choice and definition of components and with respect to different network
topologies and datasets. In future work it would also be interesting to per-
form more thorough prediction tests using a higher number of samples.



Chapter 4

Route Choice Modeling with

Network-free Data

The concept of path, which is the core of a route choice model, is usually
too abstract for a reliable data collection process. Real data, in their original
format, rarely correspond to path definitions. A typical example is GPS data,
which are more and more available (see Section 2.1 for a literature review). As
GPS devices do not explicitly use the transportation network, the coordinates
of data points cannot be directly used and data manipulation is required in
order to reconstruct paths. In the literature, such data manipulation involves
map matching, trip end identification and assumptions on missing data.

Another context is when respondents are asked to describe a path that
they have followed during a given trip. They are in general able to identify
a sequence of locations that they have traversed, but have difficulties de-
scribing a full path in detail. For instance, Ramming (2001) estimated route
choice models based on data collected in Boston. The respondents described
chosen routes by naming street segments. In case of incomplete or ambigu-
ous descriptions, the routes were reconstructed by taking the shortest path
between known street segments.

We advocate that the data manipulation required by the underlying net-
work model introduces biases and errors, and should be avoided. We propose
a general modeling scheme that reconciles network-free data (such as GPS
data or partially reported itineraries) with a network based model without
such manipulations. The concept that bridges the gap between the data
and the model is called Domain of Data Relevance (DDR) and corresponds
to a physical area in the network where a given piece of data is relevant.
The framework allows for several paths to correspond to a same observation.
Fewer assumptions are therefore needed in the case of ambiguous data.

Note that some approaches have been proposed in the literature where

47
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the link between the concept of path and the data has been loosened, either
in order to simplify the choice context, or because the observed choices are
based on underlying latent choices. Ben-Akiva et al. (1984) construct latent
alternatives in order to simplify the choice set definition in a route choice
model. Instead of modeling the choice of routes where there are many feasi-
ble alternatives, they model the choice of labels, such as, fastest route, most
scenic route, shortest route etc. The exact route choices are observed and
used to estimate the model. Choudhury (2007) presents a general method-
ology for modeling choice behavior that is based on choices of plans. These
underlying choices may not be observed. Both the choice of plan and ob-
served choices are explicitly modeled in a multi-dimensional approach. She
applies the methodology to freeway lane changing and merging from an on-
ramp (see also Ben-Akiva et al., 2006a, and Ben-Akiva et al., 2006b).

In the following section we introduce the concept of DDR and illustrate
the framework on simple examples for two different types of data (GPS data
and reported trips). Moreover, we present estimation results (Section 4.4) of
Path Size Logit and Subnetwork models based on a dataset of reported trips
collected in Switzerland. The network is to our knowledge the largest one
used in the literature for route choice analysis based on revealed preferences
data.

4.1 Domain of Data Relevance

The common reference of our modeling scheme is a finite two-dimensional
region with an appropriate coordinate system, typically longitude, latitude1.
In general, it is simply the region of interest such as a city, or a country.

We define an observation as a sequence of individual pieces of data related
to an itinerary, such as a sequence of GPS points or reported locations. For a
given piece of data, the Domain of Data Relevance is defined as the physical
area where the piece of data is relevant. Its exact definition depends on the
context. For example, consider a GPS reporting coordinates (x, y). Due to
the intrinsic technological limitations of the device, we can identify a 95%
confidence interval around a point (x, y). This would be the DDR of this
piece of data. An example of GPS data is shown in Figure 4.1 where the
GPS points are represented by small circles and their corresponding DDR
with dashed lines. The size of the DDR areas vary depending on the accuracy
(e.g. quality of satellite signals) of each piece of data.

1Using a three-dimensional reference is possible and relatively straightforward. How-
ever, it would bring an unnecessary level of complexity to our model.
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Figure 4.1: Example of GPS Data

In the context of reported paths, notions such as “downtown”, “next
to the Eiffel Tower” or “intersection of Massachusetts Avenue and Newbury
Street” can easily be associated with a DDR. The size of the DDR is inversely
proportional to the fuzziness of the concept. It may be unambiguous (such
as the area corresponding to “downtown”), or ambiguous and left to the
modeler’s judgment (such as “next to the Eiffel Tower”). An example is
shown in Figure 4.2 where the reported locations are “home”, “intersection
Main St and Cross St”, “city center” and “mall”. The home and intersection
correspond to exact locations in the network and the areas of the associated
DDRs (dashed lines) are therefore small; they contain only one node. The
two other reported locations are more fuzzy and the areas of the associated
DDRs are therefore larger, in this case the DDRs contain two nodes.

In summary, the DDR is a modeling element whose exact definition is left
to the analyst and depends on the data collection process and the network

1

Home

2

Intersection
Main St and Cross St

3

4

5

6

City center 7 8

9
Mall

Figure 4.2: Example of a Reported Trip
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topology. We now formally relate the DDR of each piece of data with the
various network elements (that is, nodes and links). We define an indicator
function δ(d, e) which is 1 if network element e is related with the DDR of
data d, and 0 otherwise. In general, the definition of this indicator function
is straightforward. If e is a node representing an intersection, it is easy to
verify if it lies in the area of the DDR or not. If e is a node representing the
centroid of a zone, we simply check if the zone intersects with the DDR area.
Similarly, if e is a link representing a road segment, we identify if it crosses
the DDR area. A node can also be associated with a DDR if it is the source
or the sink node of a link crossing the DDR.

In practice, we generate for each piece of data a list of relevant network
elements, which bridges the gap between the network-free data and the net-
work model.

4.2 Model Specification

We aim at estimating the unknown parameters β of a route choice model
P (p|Cn(s); β) where Cn(s) is the set of paths linking origin-destination (OD)
pair s considered by traveler n and p is a path in Cn(s)2.

Let S be the set of all OD pairs in the network. For a given observation i of
traveler n, that is a sequence of pieces of data (d1, d2, . . . , dk), we first identify
the set Si of relevant OD pairs, that is OD pairs s such that the observation’s
origin node is related to the DDR of first data and the destination node is
related to the last, that is

Si = {s ∈ S | δ(d1, so)δ(dk, sd) = 1}.

At least one relevant OD pair must exist and the set Si must therefore be
non empty. If it is empty, the definitions of the DDRs must be revised.

We derive the probability Pn(i|Si) of reproducing observation i of traveler
n given Si. It can be decomposed in the following way

Pn(i|Si) =
∑

s∈Si

Pn(s|Si)
∑

p∈Cn(s)

Pn(i|p)Pn(p|Cn(s); β), (4.1)

where

• Pn(s|Si) is the probability that the actual OD pair is s given the set of
relevant OD pairs Si,

2Several choice sets can correspond to a same observation. Throughout this chapter
we therefore explicitly note which OD pair a choice set corresponds to.
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• Pn(i|p) is the measurement equation, giving the probability of observing
i if the actual path is p, and

• Pn(p|Cn(s); β) is the route choice model giving the probability that
individual n selects path p within choice set Cn(s). The model depends
on unknown parameters β which must be estimated. See Section 2.3
for a review of route choice models.

Since several paths can correspond to the same observation, the measure-
ment equation plays a key role in this framework. It takes a value greater
than zero if observation i corresponds to path p that is composed by links
(ℓ1, . . . , ℓP ). This is the case if

• there is at least one link in the path related to each DDR, that is, for
any m = 1, . . . , k, there exists q, 1 ≤ q ≤ P , such that δ(dm, ℓq) = 1,

• the sequence of reported locations is consistent with the order of the
links in the path, that is, for any m1 ≤ m2, if δ(dm1 , ℓq1) = 1 and
δ(dm2 , ℓq2) = 1, then q1 ≤ q2.

We illustrate the measurement equation using the two data collection pro-
cesses mentioned above.

In the context of reported trips a simple measurement equation can be
defined since either the path goes through all reported locations or not. The
measurement equation therefore takes the value 1 if this is the case and 0
otherwise.

For GPS collected data a more complex model may be necessary. For
example, the probability that the observation i is generated by the real path
p may be defined as a function of the distance between i and p. This distance
can be computed since, unlike reported trips, each piece of data d is a coordi-
nate in the network. We define a function ∆(d, ℓ) which maps the euclidean
distance from d to the closest point on link ℓ. The distance between a piece
of data d and a path p is D(d, p) = minℓ∈Apd

∆(d, ℓ) where Apd is the set
of links that are part of path p and are located within the DDR of data d,
Apd = {ℓ ∈ ℓ1, . . . , ℓP | δ(d, ℓ) = 1}. The global distance D(i, p) between the
observation i and the path p can be evaluated in several ways. For example,
the sum of D(d, p) for each piece of data in i or the average distance. A
distributional assumption on D(i, p) then defines the measurement equation
P (i|p). The evaluation of D(i, p) and its distribution depend on the specific
context and should be defined on a case to case basis.

If there is at least one observation i for which |Si| > 1 then a model for
Pn(s|Si) needs to be defined. Different formulations are possible depend-
ing on the available information where the most simple one assigns equal
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probabilities to all OD pairs, that is

Pn(s|Si) =
1

|Si|
∀s ∈ Si. (4.2)

If additional information is available, a more sophisticated model can be
specified. For instance, high probabilities can be assigned to OD pairs that
include home and work locations.

As discussed in the previous section, the role of the DDR is to link the
network-free data to the network. Special care must be taken to define the
DDRs. Although no general instructions can be provided, as the exact def-
inition is problem dependent, we emphasize two issues to consider in this
process. First, the DDR of a data d cannot be empty. If δ(d, e) = 0 ∀e,
meaning that no network element correspond to this piece of data, the DDR
is not properly defined and a new specification is necessary. A possible solu-
tion is to increase the size of the DDR so that at least one link crosses the
DDR. Second, if the DDRs are too large and encompass a high number of
relevant network elements, the model may not be identified. Moreover, the
dimensionality of the sums involved in Equation (4.1) may increase exponen-
tially. We advice to design the DDRs in order to reflect as close as possible
the data uncertainty. For instance, in the case of GPS data, the error ellipse
can be used. In the case of reported data the underlying zoning system is a
natural choice.

Finally we note that the route choice model is only identifiable if at least
one of the routes in Cn(s) corresponds to the observation and at least one of
the routes in Cn(s) does not correspond to the observation.

Maximum likelihood estimation of model (4.1) can be performed with
BIOGEME (Bierlaire, 2003, Bierlaire, 2007, biogeme.epfl.ch).

4.3 Illustrative Examples

We illustrate the modeling framework on the two examples used previously.
We start with the reported trip shown in Figure 4.2. The exact origin node
is known (“home” node) but there are two possible destination nodes (8 and
9 corresponding to “mall”). The set of relevant OD pairs for this observation
i is therefore Si = {(1, 8), (1, 9)} (referred to as s1 and s2). No additional
information is available, so we assume that the OD pairs are equally probable,
that is P (s1|Si) = P (s2|Si) = 0.5. There are two routes connecting the first
OD pair, C(s1) = {(1, 2, 4, 5, 7, 8), (1, 2, 4, 6, 7, 8)}, that we denote p1 and
p2 respectively. Note that we omit the notation for individual n since we
only have one observation here. The observation corresponds to both routes



4.4. CASE STUDY 53

and consequently P (i|p1) = P (i|p2) = 1. Four routes connect the second
OD pair C(s2) = {(1, 2, 4, 5, 7, 9), (1, 2, 4, 6, 7, 9), (1, 2, 3, 9), (1, 3, 9)} (denoted
p3, . . . , p6, respectively) but the observation only corresponds to the first two,
that is P (i|p3) = P (i|p4) = 1 and P (i|p5) = P (i|p6) = 0. For this example,
Equation (4.1) is therefore defined as

P (i|Si) =
1

2

[
P (p1|C(s1); β) + P (p2|C(s1); β)

]
+

1

2

[
P (p3|C(s2); β) + P (p4|C(s2); β)

]

where P (pg|C(sh); β) (g = 1, . . . , 4 and h = 1, 2) is the network based route
choice model to be estimated.

We now turn our attention to the example on GPS data shown in Fig-
ure 4.1. There is one relevant origin node but the DDR of the last piece
of data does not contain any node. We therefore consider the sink node of
the link that crosses this DDR. Hence, there is one relevant OD pair for this
observation i, Si = {(1, 9)}, that we denote s. Similar to the example on the
reported trip, there are four routes in the choice set, C(s) = {(1, 2, 4, 5, 7, 9),
(1, 2, 4, 6, 7, 9), (1, 2, 3, 9), (1, 3, 9)}, now denoted p1, . . . , p4. The observation
corresponds to the first two routes and therefore P (i|p3) = P (i|p4) = 0.
P (i|p1) and P (i|p2) can be defined as a function of the distances between
the observed locations and the path. In Figure 4.3 we show how the dis-
tance between the fourth piece of data and the paths could be computed.
The figure shows links (2, 4), (4, 5) and (4, 6) that all cross the DDR of d4

(see Figure 4.1). Since both p1 and p2 use link (2, 4) and ∆(d4, (4, 5)) =
∆(d4, (4, 6)) > ∆(d4, (2, 4)) the distance between d4 and the paths p1 and p2

is ∆(d4, (2, 4)). For this example the model given by Equation (4.1) is

P (i|s) = P (i|p1)P (p1|C(s); β) + P (i|p2)P (p2|C(s); β).

4.4 Case Study

In this section we illustrate the modeling framework on a dataset collected
in Switzerland. The data concern long distance route choice behavior and
were collected via telephone interviews (Vrtic et al., 2006). The respondents
were asked to describe their last long distance trip with the names of the
origin and destination cities as well as maximum three intermediate cities or
locations that they passed through. An example is shown in Figure 4.4 where
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Figure 4.3: Example of GPS Data (Continued)

a traveler went from Belmont-sur-Lausanne to Vandoeuvres passing through
Morges, Aubonne and Nyon. 940 reported trips are available for route choice
analysis.

In this context, the DDR of each reported location is defined by the
corresponding zip code. The size of the zip code areas vary (average 3.8 km2)
depending on their location. Zip codes in rural regions can cover a large area
whereas zip code areas in urban regions can be small. When linking the
network-free data with the network through the DDRs it is important to
make sure that the precision level of the observations corresponds to the
precision level of the network. Since the descriptions of the observations
are approximate, we use a simplified transportation network (Swiss national
model, Vrtic et al., 2005). This network covers all regions in Switzerland and
contains 39411 unidirectional links and 14841 nodes (to be compared with the
Swiss TeleAtlas network that contains approximately 1 million unidirectional
links and half a million nodes). Very small roads are not considered which
simplifies the network especially in urban areas. To our knowledge, this is the
largest network used for estimation of route choice models based on revealed
preferences data presented in the literature.

In order to estimate a route choice model we need to specify P (s|Si) and
choice sets Cn(s) ∀s ∈ S. The observations contain no information on relevant
OD pairs. Due to the computationally demanding choice set generation as
well as memory constraints, we do not consider all possible OD pairs for
each observation but randomly choose two OD pairs (if more than one is
available) and use the probability model given by Equation (4.2). For each
OD pair we generate a choice set of 45 routes using a stochastic choice set
generation approach (Bierlaire and Frejinger, 2007). After the choice set
generation there are 780 observations available for model estimation. 160
observations are not considered because either all or none of the generated
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Figure 4.4: Example of an Observation

routes correspond to the observation.
We estimate two different types of route choice models Pn(p|Cn(s); β): one

Path Size Logit (PSL) model (Ben-Akiva and Ramming, 1998, and Ben-Akiva
and Bierlaire, 1999b) and one Subnetwork model (Frejinger and Bierlaire,
2007, described in Chapter 3). With the latter, we explicitly model the
correlation among paths on a subnetwork using an Error Component model.
Here we create a subnetwork composed of all main freeways. We estimate
one covariance parameter which is assumed proportional to the length by
which the paths overlap with the subnetwork. The transportation network
is shown in Figure 4.5 where the subnetwork is marked with bold lines.

Finally, we specify the deterministic utility functions using the attributes
reported in Table 4.1. Namely, Path Size, free-flow travel time and road
type attributes. Note that departure time is unknown, we therefore use free-
flow travel time as an approximation of travel time. The type of road is
defined according to an existing hierarchy of the links. We define four road
types; freeway (FW), cantonal/national (CN), main and small roads. The
cantonal/national roads connect different regions in Switzerland but have a
lower capacity and speed limit than freeways. Main roads refer to fast local
roads in urban or rural areas and small roads are the remaining ones.

Both models have the same linear-in-parameters specifications. More pre-
cisely, a piecewise linear specification of free-flow travel time (measured in
hours) is used in order to capture travelers’ sensitivity to changes in travel
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Figure 4.5: Swiss National Network

Attribute Min Average Max
Path Size 0.02 0.17 0.96
ln(Path Size) -3.74 -1.95 -0.04
Proportion of free-flow time on freeway 0.00 0.29 1.00
Proportion of free-flow time on CN 0.00 0.27 1.00
Proportion of free-flow time on main 0.00 0.23 1.00
Proportion of free-flow time on small 0.00 0.21 1.00
Free-flow travel time [minutes] 8 49.00 523

Table 4.1: Statistics on Routes Corresponding to Observations
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time in different ranges of the variable. After systematic testing of different
endpoints for the ranges we have defined a specific piecewise linear approx-
imation of the contribution to utility of free-flow travel time for each of the
four road types. The utility functions also include a Path Size attribute and
the four variables representing the proportion of the total travel time on each
type of road.
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Figure 4.6: Piecewise Linear Specification - PSL Model

In Figure 4.6 we illustrate the piecewise linear specification of the free-
flow travel time by graphically visualizing the estimates for the PSL model.
The coefficient estimates for all the explanatory variables are reported in
Table 4.2. The coefficients have their expected signs and are significantly
different from zero. The estimates indicate that travelers are more sensitive
to an increase in travel time on freeways than on other road types for travel
times greater than one hour. This may be due to the free-flow travel time
approximation underestimating the actual travel time on cantonal/national
roads. For small and main roads there are few observations and the esti-
mates can therefore not be considered reliable for this time interval. The
advantage of a piecewise-linear approximation is that we can estimate with
good precision coefficients for different intervals of the variable, provided that
there are enough observations. In this case, more observations are needed
for travel times greater than one hour on each road type in order to have
reliable coefficient estimates.

We provide scaled coefficient estimates in order to facilitate the compari-
son of the two models. The scaling is based on the “freeway free-flow time 0-
30 min” coefficient. The magnitude of the scaled estimate for this coefficient
is hence the same for both models. The scaled estimates have comparable
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magnitudes for the two models. This is also the case for the robust standard
errors and the t-test statistics are therefore similar. We conclude that the
estimation results are stable for the different model structures.

The model fit measures and the coefficients related to the correlation
structure are reported in Table 4.3. The Path Size coefficient estimates are
positive which is consistent with theory (Frejinger and Bierlaire, 2007, and
Chapter 3). Indeed, this results in a negative correction of the utility for
overlapping paths. The covariance estimate is significantly different from
zero which can be interpreted as there is a significant correlation among paths
using freeways. Furthermore, the Subnetwork model has a significantly better
model fit than the Path Size Logit model (the likelihood ratio test statistic
is 6.756 to be compared with χ2

0.05,1 = 3.84) which is also consistent with the
findings in Frejinger and Bierlaire (2007), described in Chapter 3.

4.5 Conclusions and Future Work

Link-by-link descriptions of chosen routes are rarely directly available and
data manipulation is necessary in order to obtain network compliant paths
for the estimation of route choice models. We argue that data manipulation
introduces biases and errors and should be avoided. We propose a general
modeling framework that reconciles network-free data (for example partially
reported trips and GPS data) with a network based model without such ma-
nipulations. The concept that bridges the gap between the data and the
model is called Domain of Data Relevance and corresponds to a physical
area in the network where a given piece of data is relevant. The DDR allows
to avoid additional arbitrary assumptions. For instance, when there is ambi-
guity about the chosen path, the DDR allows to maintain the ambiguity in
the model rather than assuming an “observed” path.

In this framework any existing route choice model can be estimated based
on observations that are defined by sequences of individual pieces of data
(estimation is available in BIOGEME). We illustrate the framework with
simple examples for two different types of data: GPS data and reported trips.
Moreover, we provide estimation results of Path Size Logit and Subnetwork
models based on a real dataset of reported trips. The network is to our
knowledge the largest one used in the literature for route choice analysis
based on revealed preferences data.

We believe that this approach makes the route choice modeling results
more accurate. Moreover, it makes the estimation of the models easier since
the complex data manipulation can be limited to a minimum. We provide
the methodology for estimating models based on GPS data. Since no GPS
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Coefficient PSL Subnetwork

Freeway free-flow time 0-30 min -7.12 -7.45
Scaled Estimate -7.12 -7.12

(Rob. Std. Error) Rob. t-test (0.877) -8.12 (0.984) -7.57

Freeway free-flow time 30min - 1 hour -1.69 -2.26
Scaled Estimate -1.69 -2.16

(Rob. Std. Error) Rob. t-test (0.875) -1.93 (1.03) -2.19

Freeway free-flow time 1 hour + -4.98 -5.64
Scaled Estimate -4.98 -5.39

(Rob. Std. Error) Rob. t-test (0.772) -6.45 (1.00) -5.61

CN free-flow time 0-30 min -6.03 -6.25
Scaled Estimate -6.03 -5.97

(Rob. Std. Error) Rob. t-test (0.882) -6.84 (0.975) -6.41

CN free-flow time 30 min + -1.87 -2.16
Scaled Estimate -1.87 -2.06

(Rob. Std. Error) Rob. t-test (0.331) -5.64 (0.384) -5.63

Main free-flow travel time 10 min + -2.03 -2.46
Scaled Estimate -2.03 -2.35

(Rob. Std. Error) Rob. t-test (0.502) -4.05 (0.624) -3.95

Small free-flow travel time -2.16 -2.75
Scaled Estimate -2.16 -2.63

(Rob. Std. Error) Rob. t-test (0.685) -3.16 (0.804) -3.42

Proportion of time on freeways -2.20 -2.31
Scaled Estimate -2.20 -2.21

(Rob. Std. Error) Rob. t-test (0.812) -2.71 (0.865) -2.67

Proportion of time on CN 0 fixed 0 fixed

Proportion of time on main -4.43 -4.40
Scaled Estimate -4.43 -4.21

(Rob. Std. Error) Rob. t-test (0.752) -5.88 (0.800) -5.51

Proportion of time on small -6.23 -6.02
Scaled Estimate -6.23 -5.75

(Rob. Std. Error) Rob. t-test (0.992) -6.28 (1.03) -5.83

Table 4.2: Estimation Results
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Coefficient PSL Subnetwork

ln(Path Size) based on free-flow time 1.04 1.10
Scaled Estimate 1.04 1.05

(Rob. Std. Error) Rob. t-test (0.134) 7.81 (0.141) 7.78

Covariance 0.217
Scaled Estimate 0.205

(Rob. Std. Error) Rob. t-test (0.0543) 4.00

Number of simulation draws - 1000
Number of parameters 11 12
Final log likelihood -1164.850 -1161.472
Adjusted rho square 0.145 0.147

Sample size: 780, Null log likelihood: -1375.851
BIOGEME (Bierlaire, 2003, Bierlaire, 2007) has been used for all model
estimations

Table 4.3: Estimation Results (Continued)

dataset in its original form (sequences of GPS points) is at our disposal, the
estimation based on this type of data is left for future research.



Chapter 5

Sampling of Paths

In this chapter we present a new paradigm for choice set generation and route
choice modeling. Existing approaches assume that actual choice sets are
generated. Empirical results suggest however that this is not true. Indeed,
we are unaware of any real application where all observed paths are generated
(see studies on coverage, discussed in Section 2.2.3) which clearly leads to the
suspicion that not all alternatives are found by path generation algorithms.

Instead of focusing on finding alternatives actually considered by trav-
elers, which is nearly impossible to evaluate (Section 2.2.3), we propose an
approach where we focus on obtaining unbiased parameter estimates. We
assume that actual choice sets are the sets of all paths connecting each origin-
destination pair. Although this is behaviorally questionable, we expect this
assumption to avoid bias in the econometric model. The sets of all paths are
however impossible to generate explicitly and we propose a stochastic path
generation algorithm based on an importance sampling approach. The path
utilities must then be corrected according to the used sampling protocol in
order to obtain unbiased parameter estimates. We derive such a sampling
correction for the proposed algorithm. Furthermore, based on the assump-
tion that actual choice sets contain all paths, we argue that Path Size (or
Commonality Factor) attributes should be computed based on the universal
choice set in order to reflect the true correlation structure. Since this is not
possible in a real application, we propose a heuristic for computing an Ex-
tended Path Size attribute. We therefore use two different sets of paths: one
for the model estimation and one, larger, for the Path Size computation.

In the following section we describe the proposed algorithm and we con-
tinue by deriving the sampling correction in Section 5.2. Note that existing
stochastic path generation approaches (Section 2.2) may also be viewed as
importance sampling approaches. We are however unaware of how to com-
pute in a straightforward way the sampling correction for these algorithms.

61
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In Section 5.3 we present numerical results based on synthetic data and de-
scribe the Extended Path Size heuristic.

5.1 A Stochastic Path Generation Approach

This stochastic path generation approach is flexible and can be used in var-
ious algorithms including those presented in the literature. We start by
describing the general approach and then focus on a specific instance based
on a biased random walk.

For a given origin-destination pair (so, sd), the general approach associates
a weight ω(ℓ|b1, b2) with each link ℓ = (v, w) based on its distance to the short-
est path according to a given generalized cost. More precisely, ω(ℓ|b1, b2) is
defined by the double bounded Kumaraswamy distribution (Kumaraswamy,
1980), that is

ω(ℓ|b1, b2) = 1 − (1 − xℓ
b1)b2 . (5.1)

b1 and b2 are shape parameters and xℓ ∈ [0, 1] represents a measure of distance
to the shortest path and is defined as

xℓ =
SP (so, sd)

SP (so, v) + C(ℓ) + SP (w, sd)
, (5.2)

where C(ℓ) is the generalized cost of link ℓ, and SP (v1, v2) is the generalized
cost of the shortest path between nodes v1 and v2. Note that xℓ equals one if
ℓ is part of the shortest path and xℓ → 0 as C(ℓ) → ∞. In Figure 5.1 we show
the cumulative distribution function for different values of b1 when b2 = 1.
The weights assigned to the links can be controlled by the definition of the
distribution parameters. High values of b1 when b2 = 1 yield low weights for
links with high cost. Low values of b1 have the opposite effect.

Note that other distributions with suitable properties can be used. It is
also worth mentioning that this idea presents similarities in its nature with
the approach proposed by Dial (1971).

Once a weight has been assigned to each link, various methods can be
applied. Bierlaire and Frejinger (2007) propose a gateway approach, used by
Bierlaire and Frejinger (to appear) for modeling long distance route choice
behavior in Switzerland. Note also that the method can be generalized to
subpaths instead of links, in order to better reflect behavioral perceptions
(see Frejinger and Bierlaire, 2007).

In this chapter, we use a biased random walk algorithm which is appro-
priate for an importance sampling approach. First, it generates any path
in U with non-zero probability. Second, path selection probabilities can be
computed in a straightforward way.
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Figure 5.1: Kumaraswamy Distribution: Cumulative Distribution Function

Given an origin so and a destination sd, an ordered set of links Γ is
generated as follows:

Initialize v = so, Γ = ∅

Loop While v 6= sd perform the following

Weights For each link ℓ = (v, w) ∈ Ev, where Ev is the set of outgoing
links from v, we compute the weights based on (5.1) where xℓ is
defined by

xℓ =
SP (v, sd)

C(ℓ) + SP (w, sd)
. (5.3)

Note that this is equivalent to (5.2) as v is considered the origin.

Probability For each link ℓ = (v, w) ∈ Ev, we compute

q(ℓ|Ev, b1, b2) =
ω(ℓ|b1, b2)∑

m∈Ev
ω(m|b1, b2)

(5.4)

Draw Randomly select a link (v, w∗) in Ev based on the above proba-
bility distribution.

Update path Γ = Γ ∪ (v, w∗)

Next node v = w∗.
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The algorithm biases the random walk towards the shortest path in a
way controlled by the parameters of the distribution. The algorithm corre-
sponds to a simple random walk if a uniform distribution (special case of
Kumaraswamy distribution with b1 = 1 and b2 = 1) is used. Note however
that a simple random walk does not generate a simple random sample of
paths.

The probability q(j) of generating a path j is the probability of selecting
the ordered sequence of links Γj

q(j) =
∏

ℓ∈Γj

q(ℓ|Ev, b1, b2), (5.5)

where q(ℓ|Ev, b1, b2) is defined by (5.4).
With this algorithm, it is easy to compute path selection probabilities

and it is not computationally demanding since at most |V|2, where V is the
number of nodes in the network, shortest path computations are needed for
any number of observations.

5.2 Sampling Correction

As discussed in Section 2.4, the correction terms q(Cn|j) ∀ j ∈ Cn must
be defined for this type of sampling protocol in order to obtain unbiased
parameter estimates. It is worth mentioning that if alternative specific con-
stants are estimated, all parameter estimates except the constants would be
unbiased even if the correction is not included in the utilities (Manski and
Lerman, 1977). In a route choice context it is in general not possible to es-
timate alternative specific constants due to the large number of alternatives
and the correction for sampling is therefore essential.

We define a sampling protocol for path generation as follows: a set C̃n is
generated by drawing Ψn paths with replacement from the universal set of
paths U using the biased random walk method described before, and then
adding the chosen path to it (|C̃n| = Ψn + 1). We assume without loss of
generality that U is bounded with size J . Note that J is unknown in practice.
Each path j ∈ U has sampling probability q(j) defined by (5.5).

The outcome of this protocol is (k̃1n, k̃2n, . . . , k̃Jn) where k̃jn is the number
of times alternative j is drawn (

∑
j∈U k̃jn = Ψn). Following Ben-Akiva (1993)

we derive q(Cn|j) for this sampling protocol. The probability of an outcome
is given by the multinomial distribution

P (k̃1n, k̃2n, . . . , k̃Jn) =
Ψn!

∏
j∈U k̃jn!

∏

j∈U

q(j)
ekjn. (5.6)
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The number of times alternative j appears in C̃n is kjn = k̃jn + δjc, where c
denotes the index of the chosen alternative and δjc equals one if j = c and
zero otherwise. Let Cn be the set containing all alternatives corresponding
to the Ψn draws (Cn = {j ∈ U | kjn > 0}). The size of Cn ranges from one
to Ψn + 1; |Cn| = 1 if only duplicates of the chosen alternative were drawn
and |Cn| = Ψn + 1 if the chosen alternative was not drawn nor were any
duplicates.

The probability of drawing Cn given the chosen alternative i (randomly
drawn kin − 1 times) can be defined using Equation (5.6) as

q(Cn|i) = q(C̃n|i) =
Ψn!

(kin − 1)!
∏

j∈Cn

j 6=i

kjn!
q(i)kin−1

∏

j∈Cn

j 6=i

q(j)kjn (5.7)

where the products now are over all elements in Cn since the terms for al-
ternatives that are not drawn (kjn = 0) equal one. Equation (5.7) can be
reformulated as

q(Cn|i) =
Ψn!

1

kin

∏

j∈Cn

kjn!

1

q(i)

∏

j∈Cn

q(j)kjn = KCn

kin

q(i)
(5.8)

where

KCn
=

Ψn!∏

j∈Cn

kjn!

∏

j∈Cn

q(j)kjn .

Note that the positive conditioning property is trivially verified, that is

q(Cn|i) > 0 ⇒ q(Cn|j) > 0 ∀ j ∈ Cn.

We can now define the probability (2.6) that an individual chooses alter-
native i in Cn as

P (i|Cn) =
eVin+ln( kin

q(i))

∑

j∈Cn

e
Vjn+ln

“
kjn
q(j)

” , (5.9)

where KCn
in Equation (5.8) cancels out since it is constant for all alternatives

in Cn. When using the previously presented biased random walk algorithm
we consequently only need to count the number of times a given path j is
generated as well as its sampling probability given by Equation (5.5) which
are both straightforward to compute.
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5.3 Numerical Results

The numerical results presented in this section aim at evaluating the impact
on estimation results of

• the sampling correction,

• the definition of the Path Size (PS) attribute and

• the biased random walk algorithm parameters.

Synthetic data are used for which the true model structure and parameter
values are known. Based on these data we then evaluate different model
specifications with the t-test values of the parameter estimates with respect
to (w.r.t.) their corresponding true values. In the following we refer to a
parameter estimate as biased if it is significantly different from its true value
at 5% significance level (critical value: 1.96).

5.3.1 Synthetic Data

The network is shown in Figure 5.2 and is composed of 38 nodes and 64 links.
It is a network without loops and the universal choice set U can therefore
be enumerated (|U| = 170). The length of the links is proportional to the
length in the figure and some links have a speed bump (SB).

Observations are generated with a postulated model. In this case we use a
Path Size Logit (PSL) model (Ben-Akiva and Ramming, 1998, and Ben-Akiva
and Bierlaire, 1999b), and we specify a utility function for each alternative i
and observation n: Uin = βPS ln PSU

i + βLLengthi + βSBNbSBi + εin, where
βPS = 1, βL = −0.3, βSB = −0.1 and εin is distributed Extreme Value with
scale 1 and location 0. The PS attribute is defined by

PSU
i =

∑

a∈Γi

La

Li

1∑

j∈U

δaj

(5.10)

where Γi is the set of links in path i, La is the length of link a, Li the length
of path i and δaj equals one if path j contains link a, zero otherwise. Note
that we explicitly index U to emphasize on which path set it is computed.
3000 synthetic observations have been generated by simulation, associating
a choice with the alternative having the highest utility.
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Figure 5.2: Example Network

Sampling Correction
Without With

Path
Size

C MNoCorr
PS(C) MCorr

PS(C)

U MNoCorr
PS(U) MCorr

PS(U)

Table 5.1: Model Specifications
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5.3.2 Model Specifications

Table 5.1 present the four different model specifications that are used in
order to evaluate both the PS attribute and the sampling correction. For
each of these models we specify the deterministic term of the utility function
as follows

MNoCorr
PS(C) Vin = µ

(
βPS ln PSC

in − 0.3Lengthi + βSBNbSBi

)

MCorr
PS(C) Vin = µ

(
βPS ln PSC

in − 0.3Lengthi + βSBNbSBi

)
+ ln(

kin

q(i)
)

MNoCorr
PS(U) Vi = µ

(
βPS ln PSU

i − 0.3Lengthi + βSBNbSBi

)

MCorr
PS(U) Vin = µ

(
βPS ln PSU

i − 0.3Lengthi + βSBNbSBi

)
+ ln(

kin

q(i)
).

The PS attribute based on sampled paths is defined by

PSC
in =

∑

a∈Γi

La

Li

1∑

j∈Cn

δaj

. (5.11)

Note that the two first specifications are based on (5.11) and the two last
on (5.10). βL is fixed to its true value and we estimate µ, βPS and βSB. In
this way the scale of the parameters is the same for all models and we can
compute the t-tests w.r.t. the corresponding true values.

5.3.3 Estimation Results

For a specific parameter setting of the biased random walk algorithm (10
draws, Kumaraswamy parameters b1 = 5 and b2 = 1, length is used as
generalized cost for the shortest path computations), we generate one choice
set per observation and estimate the models. The corresponding estimation
results are reported in Table 5.2. The t-test values show that only the model
including a sampling correction and PS computed based on U (MCorr

PS(U)) has
unbiased parameter estimates.

The models including sampling correction have smaller variance of the
random terms compared to the models without correction. (Recall that µ2

is inversely proportional to the variance.) The standard errors of the param-
eter estimates are also in general smaller indicating more efficient estimates.
Moreover, the model fit is remarkably better for the models with correction
compared to those without. Despite of this the model with PS computed
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True MNoCorr
PS(C) MCorr

PS(C) MNoCorr
PS(U) MCorr

PS(U)

PSL PSL PSL PSL PSL
βL fixed -0.3 -0.3 -0.3 -0.3 -0.3

µ̂ 1 0.182 0.923 0.141 0.977

standard error 0.0277 0.0246 0.0263 0.0254
t-test w.r.t. 1 -29.54 -3.13 -32.64 -0.91
β̂PS 1 1.94 0.308 -1.02 1.02

standard error 0.428 0.0736 0.383 0.0539
t-test w.r.t. 1 2.20 -9.40 -5.27 0.37
β̂SB -0.1 -1.91 -0.139 -2.82 -0.0951

standard error 0.25 0.0232 0.428 0.024
t-test w.r.t. -0.1 -7.24 -1.68 -6.36 0.20
Final log likelihood -6660.45 -6147.79 -6666.82 -5933.62
Adj. rho-square 0.018 0.093 0.017 0.125
Null log likelihood: -6784.96, 3000 observations
Algorithm parameters: 10 draws, b1 = 5, b2 = 1, C(ℓ) = Lℓ

Average size of sampled choice sets: 9.66
BIOGEME (Bierlaire, 2007, and Bierlaire, 2003) has been used for all
model estimations

Table 5.2: Path Size Logit Estimation Results

based on sampled choice sets (MCorr
PS(C)) has biased estimates of the scale and

PS parameters. Hence, these results support the hypothesis that the PS
should be computed based on the true correlation structure, otherwise the
attribute biases the results. In a real application it is however not possible
to compute PS based on the true correlation structure since U cannot be
explicitly generated. This is further discussed in the following section.

We now analyze the estimation results as a function of two of the biased
random walk algorithm parameters: the Kumaraswamy distribution param-
eter b1 and the number of draws. First we note from Figure 5.3 that, as
expected, the number of generated paths increase with the number of draws
but decrease as b1 increase. Recall from Figure 5.1 that the higher the value
of b1 the more the biased random walk is oriented towards the shortest path.
Figure 5.4 shows the absolute value of the t-tests w.r.t. the true values for
the MCorr

PS(U) model. With one exception the parameters are unbiased for both
10 and 40 draws and for all values of b1. (A line is shown at the critical value
1.96.) These results indicate that for this example the estimation results are
robust w.r.t. to the algorithm parameter settings.

With only two exceptions, the other three model specifications (MNoCorr
PS(C) ,
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MCorr
PS(C) and MNoCorr

PS(U) ) have biased estimates for at least one parameter for all
values of b1 and for all number of draws. MCorr

PS(C) has unbiased estimates for
5 and 10 draws when b1 = 30. For these two models the parameter estimates
are however not efficient having high standard deviations. The detailed t-test
values are presented in the Appendix (from page 101).
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Figure 5.3: Average Number of Paths in Choice Sets

5.3.4 Heuristic for Extended Path Size

In a real application where U cannot be generated it is not possible to com-
pute the PS attribute on the true correlation structure. It is however impor-
tant to compute it based on a set of paths larger than the sampled set Cn.
It is therefore interesting to first study, for the previous example, how many
paths are needed in order to obtain unbiased parameter estimates. Second,
we propose an heuristic for computing a PS attribute that approximates the
true correlation structure.

We generate an extended choice set, Cextended
n , for each observation in the

network shown in Figure 5.2. This choice set is only used for computing
the PS attribute. In addition to all paths in Cn we randomly draw (uni-
form distribution) a number of paths from U\Cn and add these to Cextended

n .
The deterministic utilities for a model including sampling correction are now
defined as

Vin = µ
(
βPS ln PSCextended

in − 0.3Lengthi + βSBNbSBi

)
+ ln(

kin

q(i)
) (5.12)
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where

PSCextended
in =

∑

a∈Γi

La

Li

1∑
j∈Cextended

n
δaj

.

The estimation results as a function of the average size of Cextended
n are shown

in Figure 5.5 where the x-axis ranges from the average number of paths in Cn

(9.66) up to |U| = 170. For each parameter estimate we report the absolute
value of the t-test w.r.t. its true value. An important improvement of the t-
test value for the PS parameter can be noted after only 20 additional paths in
Cextended

n and it is unbiased from 70 additional paths. The scale parameter is
unbiased from 80 additional paths (except for the sample with 140 additional
paths). Even though many paths (average number in Cextended

n approximately
0.5|U|) are needed in order for all parameter estimates to be unbiased, the
estimates can be significantly improved by using an extended choice set for
the PS computation.

Note that the purpose of the results presented in Figure 5.5 is to have
an indication of the parameter estimates when the PS attribute is computed
on more paths than those in Cn. Each data point correspond to one random
sample of paths. More samples would be needed in order to perform a deeper
analysis, but this is already a clear indication on the need for using larger
sets for computing the PS attribute.
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Figure 5.5: Estimation Results for Corrected Model as a Function of the
Cextended

n Average Size

In order to use an extended choice set for the PS computation in a real
network, we need to generate paths such that the true correlation structure
is approximated. That is, the number of paths in the extended choice set
using each link in the network should reflect the number of paths in U using
each link. For this purpose we propose a recursive gateway algorithm that
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uses the general stochastic approach presented in Section 5.1. An extended
choice set Cextended is defined for each origin-destination pair as follows:

• For each link in the network we generate a path and add it to Cextended

if it is not already present.

• A path is generated by recursively drawing links based on probabilities
defined by the Kumaraswamy distribution using Equation (5.2).

• In order to avoid selecting links scattered over the network, we update
so, sd, v and w in Equation (5.2) each draw so that higher probabilities
are assigned to links close to already selected links than those further
away.

The Extended PS attribute for alternative j and observation n is then com-
puted based on Cextended

n = Cextended ∪ Cn.
We illustrate the heuristic with a small network in Figure 5.6 where we

generate a path (dashed links in part IV) for link (2, D) (bold link in part
I). The weight for a link ℓ = (v, w) in the first iteration is given by

ω(ℓ) =
SP (O, 2)

SP (O, v) + C(ℓ) + SP (w, 2)

and the first link to be drawn is (O, 3) (part II). The weights are then updated
according to

ω(ℓ) =
SP (3, 2)

SP (3, v) + C(ℓ) + SP (w, 2)

where only one link is possible, namely (3, 2) (part III).
The heuristic has been tested on the example network (Figure 5.2) and

the average size of Cextended
n is 57 paths using b1 = 1 and b2 = 1 for the

Kumaraswamy distribution. The estimation results, of deterministic utility
specifications given by Equation (5.12), are reported in Table 5.3 where the
reference model M corr

PS(C) from Table 5.2 is also shown. µ̂ and β̂SB are unbiased
and improved in M corr

PS(Cextended)
compared to M corr

PS(C). The PS coefficient is
biased, this is however expected since Cextended

n is only an approximation of
U . Moreover, this approximation does not have the nice properties of a
simple random sample and poorer β̂PS than the results reported in Figure 5.5
seems reasonable. Finally we note that the model fit is remarkably better
for M corr

PS(Cextended)
.
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Figure 5.6: Illustration of Heuristic for Extended Path Size

True M corr
PS(Cextended)

M corr
PS(C)

PSL PSL PSL

β̂L fixed -0.3 -0.3 -0.3

µ̂ 1 1.02 0.923

Standard error 0.0275 0.0246
t-test w.r.t. 1 0.073 -3.13
β̂PS 1 1.62 0.308

Standard error 0.106 0.0736
t-test w.r.t. 1 5.85 -9.40
β̂SB -0.1 -0.076 -0.139

Standard error 0.0253 0.0232
t-test w.r.t. -0.1 0.95 -1.68
Adj. Rho-Squared 0.113 0.093
Final Log-likelihood -6015.94 -6147.79

Table 5.3: Estimation Results for Extended Path Size
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5.4 Conclusions and Future Work

This chapter presents a new paradigm for choice set generation and route
choice modeling. We view path generation as an importance sampling ap-
proach and derive a sampling correction to be added to the path utilities.
We hypothesize that the true choice set is the set of all paths connecting an
origin-destination pair. Accordingly, we propose to compute the Path Size
attribute based on an approximation of the true correlation structure.

We present numerical results based on synthetic data which clearly show
the strength of the approach. Models including a sampling correction are
remarkably better than the ones that do not. Moreover, unbiased estimation
results are obtained if the Path Size attribute is computed based on all paths
and not on generated choice sets. This is completely different from route
choice modeling praxis where generated choice sets are assumed to correspond
to the true ones and Path Size (or Commonality Factor for the C-Logit model
proposed by Cascetta et al., 1996) is computed on these generated path sets.
Since it is not possible in real networks to compute these attributes on all
paths we study how many paths are needed in order to obtain unbiased
estimates and we propose an heuristic for generating extended choice sets.

It is important to note that the proposed sampling approach can be used
with Multinomial Logit (MNL) based models (Path Size Logit and C-Logit).
A consistent estimator for mixture of MNL (MMNL) models based on sam-
ples of alternatives does not exist but is available for Multivariate Extreme
Value models (see Nerella and Bhat, 2004, for an empirical study of the bias
in MMNL models when estimated on samples of alternatives).

Since the purpose of this chapter is to illustrate the proposed method-
ology, it is appropriate to use synthetic data for which the actual model is
known. This allows to test the parameter estimates against their true values.
A natural next step is to test the approach on real data.

Route choice models are often used for prediction. This has not been
addressed in this chapter. Ben-Akiva and Lerman (1985) discuss prediction
when samples of alternatives have been used for estimation. The correc-
tion for prediction is rather straightforward but it is important to take into
account if chosen alternatives have been added to the sampled choice sets.

While we in this chapter focus on obtaining unbiased parameter estimates,
the goal in prediction is to e.g. obtain representative traffic flows. It raises
the issue of how many paths should be sampled for prediction. Furthermore,
in a dynamic network as opposed to the static setting assumed here, the
generalized cost values vary over time and consequently so do the sampling
corrections. These two topics are important to investigate in future research.





Chapter 6

Adaptive Route Choice Models

in Stochastic-Time Dependent

Networks

This chapter is based on joint work with Moshe Ben-Akiva and Song Gao
(Gao et al., 2007 and Gao et al., 2008).

Travel time and traffic conditions are inherently uncertain in transportation
networks. Some of the uncertainty is introduced by design (e.g. traffic lights)
and other due to disturbances such as incidents, vehicle breakdowns, weather
conditions, special events and so forth. Real-time information in various for-
mats are available, from personal observations, websites, variable message
signs (VMS), radio broadcasts and cell phones to personal in-vehicle sys-
tems. Such information can reduce the uncertainty and therefore potentially
help travelers make better route choice decisions. Information about traffic
conditions can usually be obtained at various decision points during a trip,
and route choice decisions can be updated according to the perception of
the network state. This dynamic process of a series of route choices is of
great interest since it is crucial for the evaluation of real-time information
systems. Existing route choice models (such as the ones discussed in previ-
ous chapters) assume that travelers make their complete path choice at the
origin. The fact that route choices can be adjusted during trips in response
to revealed traffic conditions is therefore ignored. Throughout this chapter
we refer to these models as non-adaptive path choice models.

In this chapter we study adaptive route choice models and the estimation
of such models based on observations of chosen paths. Two types of adaptive
route choice models are explored: an adaptive path model where a sequence

77
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of (non-adaptive) path choice models are applied at intermediate decision
nodes, and a routing policy choice model where the alternatives correspond
to routing policies rather than paths at the origin. (See Section 2.5 for a
description of the routing policy concept.) We propose an estimator for the
routing policy choice model and demonstrate the estimation feasibility based
on synthetic data.

In the following section, we give a background on adaptive path choice
and routing policy choice together with an example to illustrate the difference
between the two. In Section 6.2 we present the model specifications and in
Section 6.3 numerical results. Finally, we give some conclusions and discuss
future work.

6.1 Background

The adaptive path choice model assumes that, at any given intermediate
decision node, travelers choose a non-adaptive path from a choice set. When
the traveler arrives at the next decision node (with random arrival time),
he/she makes another choice out of a new set of non-adaptive paths, and so
forth until the destination is reached. The choice sets as well as the path
attributes are time dependent. This model therefore appears superior to a
non-adaptive path choice model which ignores information on actual arrival
times at intermediate nodes, but yet the choice is short-sighted. At each
decision node, the next link is chosen based on a non-adaptive path, and
thus the fact that travelers can be adaptive at subsequent decision points is
not taken into account.

On the contrary, the routing policy choice model fully considers future
adaptive choices. In this chapter we use the most simple definition of a
routing policy assuming that the only available information to travelers are
the arrival times at each node. The routing policy is therefore a mapping
(v, t) → ℓ from any node v at any arrival time t to next link ℓ ∈ Ev where Ev

is the set of outgoing links of node v.
In order to clarify the concepts, we illustrate in the following section

adaptive path choice and routing policy choice with a small example. The
same example is used for the numerical results presented in Section 6.3.

6.1.1 Illustrative Example

Figure 6.1 gives the topology of a small stochastic and time-dependent net-
work. T̃ℓ denotes the random variable of the travel time on link ℓ, and Tℓ a
travel time. The travel times on links 0 and 1 at departure time t = 0 are
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random variables and a probability mass function (PMF) is given for each
of the links. For example, the travel time for link 0 is x0 with probability
(w.p.) 1 − P0 and y0 w.p. P0. It is assumed that the two random variables,
T̃0 and T̃1, are independent of each other. The travel times on links 2 and
4 are deterministic but dependent on the arrival time at the source node
of the links. Links 3 and 5 both have deterministic travel times which are
independent of the arrival times at the source nodes.

Travelers are going from A to D at departure time 0. The possible (node,
time) pairs a traveler could encounter during the trip are (A, 0), (B, x0),
(B, y0), (C, x1) and (C, y1). Furthermore, the sets of outgoing links for each
decision node are EA = {0, 1}, EB = {2, 3} and EC = {4, 5}.

A D

B

C

T̃0 =

{
x0, w.p. 1 − P0

y0, w.p. P0
, t = 0

T2 =

{
a, t = x0

b, t = y0

T3 = c ∀ t

T̃1 =

{
x1, w.p. 1 − P1

y1, w.p. P1
, t = 0

T4 =

{
f, t = x1

d, t = y1

T5 = e ∀ t

Figure 6.1: General Representation of Example Network

Recall that a routing policy is defined as a mapping from states to de-
cisions. The concept therefore allows for mappings that are not interesting
from a practical point of view. For this small example there are theoretically
25 routing policies since there are 5 possible (node, time) pairs and each
pair can be mapped to two possible next links. However, once a traveler is
at node B, the mapping at node C does not affect the remaining trip and
therefore does not need to be specified. The same argument can be made
at node C where the mapping at node B is not needed. There are hence 8
routing policies as shown in Figure 6.2. Note that a path is a special case of
a routing policy such that the mapping from a (node, time) pair is the same
regardless of the arrival time. For this example, four of the routing policies
correspond to paths.

We now analyze a specific setting of this example, shown in Figure 6.3.
The situation where link 0 or 1 has a travel time of x is referred to as the
normal case and that where link 0 or 1 has a travel time of y as the incident
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A D
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Policy 8 (Path 4)

A D

B

C

if y1

if x1

Policy 7

A D

B

C

Policy 5 (Path 3)

A D

B

C

if x1

if y1

Policy 6

A D

B

C

Policy 4 (Path 2)

A D

B

C

if y0

if x0

Policy 3

A D

B

C

Policy 1 (Path 1)

A D

B

C

if x0

if y0

Policy 2

Figure 6.2: Routing Policies corresponding to Example Network
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case. A later arrival time at node B (alternatively C) leads to longer travel
time on link 2 (alternatively 4). This could be due to the fact that travelers
who arrive late (t = y) are caught in peak traffic, while those with an earlier
arrival (t = x) avoid it. Moreover, the peak traffic condition on link 4 is
more severe than that on link 2. However, both links have diversions. Link
5 is the diversion of link 4 and is superior to link 3 which is the diversion of
link 2.

A D

B

C

T̃0 =

{
x = 5, w.p. 0.5
y = 8, w.p. 0.5

, t = 0
T2 =

{
a = 4, t = x

b = 10, t = y

T3 = c = 9 ∀ t

T̃1 =

{
x = 5, w.p. 0.5
y = 8, w.p. 0.5

, t = 0
T4 =

{
f = 4, t = x

d = 12, t = y

T5 = e = 8 ∀ t

Figure 6.3: Specific Setting of Example Network

We now study the choice process for the two adaptive models in this
network. A traveler is assumed to have a priori knowledge of the time-
dependent link travel time PMFs of all links in the network before a trip
starts. During the trip, he/she obtains additional online information on the
actual arrival time at the second node (x or y). Depending on the arrival
time, the traveler chooses the next link that minimizes his/her expected
travel time.

Consider first the route choice process for an adaptive path model. At
node A, four paths are available each with an expected travel time (ETT)
as follows: ETT(Path1) = (x + a + y + b)/2 = 13.5, ETT(Path2) = (x +
y)/2+ c = 15.5, ETT(Path3) = (x+ f + y + d)/2 = 14.5 and ETT(Path4) =
(x+ y)/2+ e = 14.5. A traveler minimizing expected travel time takes link 0
which is the first link in path 1. The traveler then arrives at node B at either
time x or y, each with probability 0.5. If the arrival time is x (off peak), the
traveler takes link 2 with a travel time of a = 4, and if the arrival time is y
(peak), the traveler takes the detour link 3 with a travel time of c = 9. The
minimum expected travel time from node A to node D by making successive
path choices is therefore (x + a + y + c)/2 = 13.

Next we consider the choice process for a routing policy model. At node
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A, the traveler compares the attractiveness of links 0 and 1. The traveler
knows that once arriving at the next node, the choice is based on realized
arrival time and therefore considers all the possible diversions. The optimal
routing policy from node B is to take the faster of links 2 and 3: if arrival
time is x, take link 2 with a travel time a = 4 and if arrival time is y, take
link 3 with a travel time c = 9. Similarly, the optimal routing policy at
node C is to take the faster of links 4 and 5: if arrival time is x, take link
4 with a travel time f = 4 and if arrival time is y, take link 5 with a travel
time e = 8. With this at hand, taking link 1 at node A is optimal since
(x + f + y + e)/2 = 12.5 < (x + a + y + c)/2 = 13 (expected travel time
of routing policy 6 compared to routing policy 2). Recall that the expected
travel time for adaptive path choice is 13. The optimal routing policy is thus
more efficient as a result of considering future adaptive possibilities.

We refer the reader to Gao and Chabini (2006) and Gao (2005) for a
detailed discussion on optimal routing policy problems in stochastic time-
dependent networks.

6.2 Model Specifications

In this section we present discrete choice model specifications for the previ-
ously discussed adaptive path and routing policy choice models. The models
are designed for estimation based on path observations where each observa-
tion i is defined by an ordered set of links Ii. We assume that the departure
time as well as the arrival time at the source node of each link ℓ ∈ Ii are
known. Such information are available, for example, from Global Positioning
System (GPS) data.

6.2.1 Adaptive Path Choice Model

Recall that this model assumes that a traveler chooses at the source node v
of each observed link ℓ ∈ Ii a path p from v to the destination. We therefore
define an individual and time specific choice set Cvtn of paths from v to the
destination. Hence, for each observation there are as many choice sets as
there are links in the observed path.

The probability of an observation is defined as the product of the proba-
bilities of choosing each link ℓ in the observed path, conditional on the arrival
time t at v

Pn(i) =
∏

ℓ∈Ii

Pn(ℓ|t, v) =
∏

ℓ∈Ii

∑

p∈Cvtn

P (ℓ|p)P (p|Cvtn; β). (6.1)
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Pn(ℓ|t, v) is defined by the sum of the probabilities for each path that begins
with ℓ. The path choice model P (p|Cvtn; β), where β denotes the vector of
parameters to be estimated, is therefore multiplied with a binary variable
P (ℓ|p) that equals one if the first link in path p is ℓ and zero otherwise. Note
that any existing non-adaptive path choice model can be used in this context.

The estimation of this type of model is rather straightforward. We view
each link in the observed paths as an individual observation. Model (6.1)
is then a special case of model (4.1) (developed for modeling network-free
data in Chapter 4) and BIOGEME (Bierlaire, 2007) can be used for the
estimation.

6.2.2 Routing Policy Choice Model

As opposed to the model for adaptive path choice which is sequential, the
routing policy choice model is global. However, the choice of routing policy
is latent and only the manifested path is observable. Although a traveler is
not aware of the realized support point at the origin, we may assume that
it is known to the modeler. Recall, that a support point is fully defined
by the realized travel times on all random links. This information could
be obtained through, for example, adequately dispersed GPS observations
or probe vehicles that cover all random links. The probability of a path
observation i of individual n, conditional on support point r and choice set
of routing policies Gn is defined as

P (i|r,Gn) =
∑

γ∈Gn

P (i|γ, r)P (γ|Gn), (6.2)

where γ is a routing policy. A routing policy is manifested as a path for
a given support point. However, several different routing policies can be
manifested as the same path. We therefore sum over all routing policies
in Gn and multiply the routing policy choice model P (γ|Gn) with a binary
variable P (i|γ, r) that equals one if i corresponds to γ for support point r and
zero otherwise. P (γ|Gn) can be modeled with the Policy Size Logit model
(Gao, 2005) described in Section 2.5. In the same way as the adaptive path
choice model, this model is a special case of (4.1) and BIOGEME can be
used for the estimation.

For prediction the support point may be unknown to the modeler. In this
case, a path cannot be unambiguously matched with a given routing policy.
The model presented in Equation (6.2) can then be generalized to

P (i|Gn) =
∑

γ∈Gn

P (i|γ)P (γ|Gn) =
∑

γ∈Gn

R∑

r=1

P (i|γ, r)P (r)P (γ|Gn) (6.3)
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taking all possible support points into account.

6.3 Numerical Results

In this section we present numerical results of the proposed adaptive route
choice models on a hypothetical network. There are two main objectives.
First, to demonstrate the feasibility of estimating the two adaptive route
choice models. Second, to gain insights into the adaptive route choice models
by analyzing prediction results and comparing them with the results of a non-
adaptive path choice model.

We use the example network shown in Figure 6.1 for which there are
eight routing policies and four paths (see Figure 6.2). Three attributes can
be computed for routing policies: expected travel time, standard deviation
of travel time and Policy Size (PoS). The travel time for each routing policy
is a random variable with two possible values. For example, the travel time
of routing policy 6 is either x1 + f or y1 + e, with probability 1 − P1 and
P1 respectively. The routing policies’ expected travel time and standard
deviation are therefore straightforward to compute.

The calculation of the PoS attribute is more involved because it is nec-
essary to know how many routing policies use each link. Recall from Equa-
tion (2.7) that PoS is the expected value of Path Sizes over all support points
of the random network

PoSγn =
R∑

r=1



∑

a∈Ir
γ

(
T r

a

T r
γ

)
1

M r
an


P (r).

In order to compute M r
an we define, for each support point, the path that

corresponds to each routing policy. Since there are two random links in
the network each with two possible realizations of travel times, there are
altogether four support points. Let (T0, T1) represent a support point where
T0 and T1 are realized travel times on links 0 and 1 respectively. The four
support points are then (x0, x1), (x0, y1), (y0, x1), (y0, y1). As an example,
routing policy 2 takes link 2 at node B for support point (x0, x1) and is
therefore manifested as path 1. In the same way, we obtain the manifestation
of all routing policies for support point (x0, x1): γ1 → p1, γ2 → p1, γ3 → p2,
γ4 → p2, γ5 → p3, γ6 → p3, γ7 → p4, γ8 → p4. Hence, for this support
point, four routing policies (γ1, γ2, γ3, γ4) use link 0, four routing policies
(γ1, γ2, γ3, γ4) use link 1 and so forth. This is done for all support points and
the PoS attribute can then be computed.
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The non-adaptive and adaptive path choice models use a Path Size at-
tribute given by Equation (2.1) that is computed based on expected travel
times.

6.3.1 Observation Generation

A synthetic dataset of 6000 path observations is generated with a postulated
model. Since the Policy Size Logit is the most complex model that best takes
adaptive route choice behavior into account, we use this model to generate
the observations. The probability of a routing policy γ is then defined as

P (γ|Gn) =
eVγn

∑

k∈Gn

eVkn

(6.4)

where Vγn = βPoS ln PoSγn + βExpTimeExpTimeγn + βStdTimeStdTimeγn with
βPoS = 1, βExpTime = −0.4 and βStdTime = −0.1. The choice set Gn contains
the same eight routing policy alternatives for all observations but the link
travel times vary.

Each path observation is generated in three main steps. First we sample
link travel times (x0, y0, x1, y1, a, b, c, d, e and f) from a uniform distri-
bution between 10 and 40 as well as link travel time probabilities (P0 and
P1) from a uniform distribution [0, 1]. Second, we compute the probability
P (γ|Gn) ∀ γ ∈ Gn using Equation (6.4) and randomly draw one routing pol-
icy that is labeled as chosen. Third, we sample a support point from the set
of all support points based on their probabilities and associate a path with
the chosen routing policy.

6.3.2 Estimation

Three models are estimated based on the generated path observations:

1. a routing policy model (6.2) with Policy Size Logit,

2. an adaptive path model (6.1) with Path Size Logit, and

3. a non-adaptive path model with Path Size Logit.

The deterministic utility functions have a linear-in-parameters specification
of the same attributes as the true model including expected travel time, travel
time standard deviation and a Path (or Policy) Size attribute. This corre-
sponds to an ideal setting where all explanatory variables of the true utility
function are included in the model. It is however convenient to validate the
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model estimation. For this case, the coefficient estimates in the routing pol-
icy model should not be significantly different from the postulated coefficient
values.

The estimation results are shown in Table 6.1. The results confirm that
a routing policy choice model can be estimated based on path observations.
Indeed, the t-test values with respect to the true values are 0.07, -0.25 and
-0.93 for β̂PoS, β̂ExpTime and β̂StdTime respectively. The coefficient estimates
of the other two models have their appropriate signs and are significantly
different from zero.

In the following section we compare the three models in terms of predic-
tion performance.

Routing Adaptive Non-adaptive
Policy path path

β̂PoS/β̂PS 1.03 1.23 2.75
std error 0.452 0.437 0.344
t-test 2.28 2.80 8.00
β̂ExpTime -0.402 -0.28 -0.265
std error 0.00805 0.00467 0.0049
t-test -49.97 -60.00 -54.02
β̂StdTime -0.108 -0.071 -0.0451
std error 0.00857 0.00923 0.00643
t-test -12.60 -7.69 -7.02
Final log likelihood -3257.097 -3536.324 -3932.998
Adj. rho-square 0.608 0.574 0.527
Number of observed paths: 6000
Null log likelihood: -8317.766
BIOGEME Bierlaire, 2003, and Bierlaire, 2007, has been
used for all model estimations

Table 6.1: Estimation Results

6.3.3 Prediction

The three estimated models are applied to predict route choices in the same
topological network, but with a fixed set of hypothetical link travel times as
shown in Figure 6.4. The value of P is a parameter of the prediction test and
varies from 0 to 1, with an increment of 0.1. Similar to the network setting
discussed in Section 6.1.1, path 1 is the minimum expected travel time path.
Links 2 and 4 have the same travel time under normal condition and link 4 is
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more congested than link 2 under incident condition. Moreover, links 3 and
5 are diversions for links 2 and 4, where link 5 is a better diversion than link
3.

A D

B

C

T̃0 =

{
x = 14, w.p. 1 − P

y = 18, w.p. P
, t = 0

T2 =

{
a = 10, t = x

b = 30, t = y

T3 = 26 ∀ t

T̃1 =

{
x = 14, w.p. 1 − P

y = 18, w.p. P
, t = 0

T4 =

{
f = 10, t = x

d = 38, t = y

T5 = 22 ∀ t

Figure 6.4: Network used for Prediction

Since the network is stochastic with all the support points known, we
obtain distributions of variables such as path shares, path travel times, origin-
destination travel time and so forth. We take expectations of these variables
over the four support points, where the probability of each support is a
function of P . In the following, we present the summary statistics (mean
and/or standard deviation) to gain a clear understanding of the results.

Figure 6.5 shows the expected shares for each of the paths where the
results from the three models are plotted as functions of incident probability
P . Recall that paths 1 and 3 contain the links that can be affected by
incidents due to the time-dependency of their travel times, while paths 2 and
4 contain the respective diversion links that are not affected by the incidents.
It is therefore intuitive that, for all three models, the shares of paths 1 and
3 are decreasing functions of P , while shares of paths 2 and 4 are increasing
functions of P .

In order to better appreciate the differences between the three models,
we aggregate the results to obtain the expected shares for a left and a right
turn at the origin. The shares of paths 1 and 2 respectively paths 3 and
4 are therefore put together and the corresponding results are reported in
Figure 6.6. Recall that the right branch has a better diversion (link 5) than
the left branch. In the routing policy model, as P increases, the importance
of diversion becomes more important and consequently more flow goes to
the right. In the two path based models, as P increases, the left share first
increases and then decreases. This is because when P = 0, both paths 1
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Figure 6.5: Expected Path Shares
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and 3 (belonging to the left and right branches respectively) have the same
minimum travel time and zero standard deviation. When P increases, path
1 has higher utility than path 3 and therefore gains a higher share. However,
when P is larger than a certain value (approximately 0.3), path 4 has the
highest utility, and thus the right share starts to increase.

Note that although the left-right shares of the non-adaptive and the adap-
tive path models are similar, the distribution of the flows at the second nodes
are different. This is because the adaptive path model redistributes flows de-
pending on the actual arrival times. Moreover, both the adaptive path and
non-adaptive path model predict more flow taking the left branch than the
routing policy model does. Future diversion possibility is not considered in
either of the models and the branch with the least expected travel time (path
1) is therefore favored although link 3 is a worse diversion. In another words,
the routing policy model better captures the option value of diversion than
the adaptive path model.
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Figure 6.6: Expected Shares for Left and Right at Origin

Finally, we aggregate the results of all paths (weighted by path shares)
and analyze the expected value and standard deviation of average path travel
time. The results are reported in Figure 6.7 and show that, in terms of ex-
pected average travel time, the two adaptive models and the non-adaptive
model are the most different when P is close to 0.5. This is in accordance with
the intuition that being adaptive is of higher importance when the network is
the most uncertain. We can also note that adaptive path and routing policy
models have similar expected average travel time but their standard devia-
tions are quite different. Since the adaptive path model predicts more flow to
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the left branch (worse diversion) than the routing policy model, it has longer
travel time under incident condition but shorter travel time under normal
condition. Hence both models predict roughly the same expected average
travel time, but the adaptive path model has larger standard deviation.
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Figure 6.7: Average Time (Expected Value and Standard Deviation)

6.4 Conclusions

In this chapter we propose an estimator for a routing policy choice model
and demonstrate the feasibility of estimating the model based on path ob-
servations. The concept of routing policy explicitly captures travelers’ route
choice adjustments according to information on realized network conditions
in stochastic time-dependent networks. A routing policy can incorporate var-
ious assumptions about available information but in this chapter we assume
that travelers only know the arrival times at intermediate nodes.

The routing policy choice model is compared to an adaptive path model
which is a sequence of non-adaptive path choice models applied at interme-
diate decision nodes. Prediction results show that the routing policy model
better captures the option value of diversion than the adaptive path model
because of the foresight of a routing policy. The difference between the two
adaptive models and the non-adaptive model is larger in terms of expected
travel time in a highly stochastic network compared to a less stochastic net-
work. As expected, this result indicates that being adaptive is of greater
importance in uncertain networks.
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6.5 Future Directions

The results presented in this chapter are very promising. A number of is-
sues must however be addressed in order to estimate a routing policy choice
model on data collected in a real network. We are currently working on the
estimation based on the Borlänge GPS dataset described Chapter 3. In the
following we discuss the issues related to making the routing policy model
operational for real applications.

First of all, the model is based on a stochastic and time-dependent net-
work. The definition of such a network is not straightforward and requires a
considerable amount of data.

The path observations must at least contain information about departure
time as well as the arrival times at each intermediate node. Such information
is available for GPS data but not for reported trips. In order to fully exploit
the capacity of the routing policy concept the travelers’ information access is
of importance. For example, whether they use an in-vehicle information sys-
tem, listen to radio broadcasts or pass by variable message signs. Depending
on the type of information access, the modeler can make hypotheses about
the realized link travel times that are known to a given traveler at a given
time. For instance, a variable message sign only gives information about
downstream links while radio broadcasts can give information about links
scattered in the network. For future route choice data collection, it would be
interesting to combine passive monitoring of vehicles with a traffic informa-
tion system that can store information about disturbances in the network as
well as information that is broadcasted to travelers though various channels.

Routing policy choice set generation has not been discussed in this chap-
ter but is an important issue. Gao (2005) proposes algorithms to compute the
optimal routing policy under various information access assumptions. Such
algorithms can be used in a similar way as shortest path algorithms for path
choice set generation (see Section 2.2 for a review). Since the goal of this
research is to study travelers’ responses to real-time information, choice sets
corresponding to different information access assumptions should be gen-
erated. In this context it is important to note that the complexity of the
optimal routing policy algorithm is dependent on the information assump-
tion.

Finally, we note that the routing policy choice model estimator proposed
in this chapter does not consider choice sets based on different information
access assumptions. This must be addressed in future research.





Chapter 7

Conclusions

This thesis is based on a collection of papers and the chapters are therefore
rather independent of each other. In this chapter we give an overview of the
main results and some directions for future research.

Correlation in route choice models is discussed in Chapter 3. First, we
present an in-depth analysis of the commonly used Path Size Logit model and
show how the Path Size attribute can be derived from the theory on aggregate
alternatives. Several different formulations have been used in the literature
and this research motivates the use of the original Path Size formulation, or
the recently proposed Path Size Correction factor (Bovy, 2007a). Second,
we propose the Subnetwork approach that allows the analyst to control the
trade-off between the simplicity of the model and the level of realism. This
model can be viewed as an extension to the one presented by Bekhor et al.
(2002) but where we make the assumption that all links in the paths are
not equally important for the correlation structure. The empirical results,
based on a real GPS dataset, are very promising and show that this approach
outperforms the more simple Path Size Logit.

The framework for modeling route choice with network-free data, pre-
sented in Chapter 4, addresses the data processing issue. The proposed
framework allows the estimation of any existing route choice model based
on original descriptions of trip observations that are defined by sequences of
pieces of data. The concept that bridges the gap between the data and the
model is called Domain of Data Relevance and corresponds to a physical area
in the network where a given piece of data is relevant. First, we illustrate the
approach on small examples for two types of data: reported trips and GPS
data. Second, a real dataset of reported long distance trips in Switzerland
is used for estimation. The precision of the route choice descriptions in this
dataset is very low. Moreover, the network is to our knowledge the largest
one used in the literature for route choice analysis based on revealed prefer-
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ences data. These observations are therefore particularly challenging for the
proposed framework. We present estimation results for Path Size Logit and
Subnetwork models that illustrate the feasibility of the approach. Note that
it is necessary to adapt the precision of the network to the precision of the
trip descriptions. The framework allows to estimate models based on even
low precision observations but can of course not add information that is not
in the data.

The methodology and results presented in Chapter 5 provide a novel
paradigm for choice set generation in particular and route choice modeling
in general. One difficult aspect of route choice analysis is the generation of the
choice sets. It is known that different choice sets lead to different estimation
results, it is however difficult to analyze which choice set is the most appro-
priate. This problem is addressed in this thesis by a sampling approach. We
consider that the true choice sets contain all paths for each origin-destination
pair. We propose a stochastic path generation algorithm based on an impor-
tance sampling protocol and derive the corresponding sampling correction to
be added to the path utilities. Estimation results of Path Size Logit models
based on synthetic data clearly show the strength of this approach. Models
including a sampling correction are remarkably better than the ones that
do not. The results also show that the Path Size attribute should be com-
puted based on the true correlation structure, that is the set of all paths. As
opposed to route choice modeling practice where the Path Size attribute is
computed based on generated choice sets only. Since this is not possible for
a real application we propose a heuristic for computing an Extended Path
Size attribute that approximates the true correlation structure.

It is important to note that the proposed sampling approach can be used
with Multinomial Logit (MNL) based models (Path Size Logit and C-Logit).
A consistent estimator for mixture of MNL (MMNL) models based on sam-
ples of alternatives does not exist (but is available for Multivariate Extreme
Value models). The Subnetwork approach is therefore not appropriate in
this context.

In Chapter 6 we study adaptive route choice behavior in stochastic and
time-dependent networks and present an estimator for a routing policy choice
model. The concept of routing policy explicitly captures travelers’ route
choice adjustments according to information on realized network conditions.
Modeling travelers’ response to en-route information is of great interest since
it is crucial for the evaluation of real-time information systems. Optimal
adaptive routing problems have been studied in the literature but the es-
timation of such choice models based on disaggregate revealed preferences
data is a new area. We estimate two models capturing adaptive behavior
based on a synthetic data set: an adaptive path model where a sequence of
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non-adaptive path choice models are applied at intermediate nodes, and a
routing policy model. We compare the prediction performance of these mod-
els to the performance of a non-adaptive path model in an example network.
The results show that the routing policy model better captures the option
value of diversion than the adaptive path model because of the foresight of
the routing policy concept. The difference between the two adaptive mod-
els and the non-adaptive model is larger in terms of expected travel time
in a highly stochastic network compared to a less stochastic network. As
expected, this result indicates that being adaptive is of higher importance in
uncertain networks.

In the following discussion we focus on future work related to extensions
and improvements of the research presented in this thesis. Since route choice
modeling based on GPS data involves a considerable amount of data process-
ing, we believe that the network-free data modeling approach is particularly
suitable in this context. It would therefore be interesting to test the approach
on a GPS dataset where the original logging coordinates are available. Such
a dataset could also be map matched so that a comparison in terms of esti-
mation and prediction results between the two approaches can be performed.

The proposed sampling approach for choice set generation questions the
traditional route choice modeling process; not only how choice sets are mod-
eled but also how the correlation among alternatives should be defined. This
opens up for research questions that are not addressed, or only partly ad-
dressed, in this thesis. We use synthetic data to test the proposed methodol-
ogy which is an important step since the true model is known and the bias in
parameter estimates hence can be evaluated. It is however essential to test
the stochastic path generation algorithm and the heuristic for the Extended
Path Size in a real network. Moreover, a comparison of models estimated
with, respectively without, sampling correction based on real data should be
performed.

Sampling paths for prediction has not been discussed in this thesis and is
an important topic for future research. A sampling correction for prediction
must be derived. Moreover, it is necessary to evaluate the characteristics
and number of generated paths to be included in the choice sets used for
prediction.

Given the uncertainty related to travel times and traffic conditions in
transport systems and that real-time information systems become more and
more available, we believe that route choice modeling in this context is an
important direction for future research. This thesis, based on joint work with
Moshe Ben-Akiva and Song Gao, presents some pioneer work on the estima-
tion of such models based on revealed preferences route choice data. This
research is however still in its starting phase. As discussed in Section 6.5, sev-



96 CHAPTER 7. CONCLUSIONS

eral issues need to be addressed in order to make the models operational for
real applications. The models are also data demanding and advanced tech-
niques for collecting trip data and combining them with various information
sources on traffic conditions need to be developed.

The contributions of this thesis to the state of the art in route choice
modeling for uni-modal networks are manifold. The developed methodology
is general and it would be interesting to investigate how it can be extended
for modeling route choice behavior in other contexts.

A first, closely related field of research is route choice modeling in multi-
modal networks where we believe that most of the approaches presented in
this thesis can potentially be used.

Models of pedestrian movements is another research area of great impor-
tance. The main difference with car route choice is that pedestrians are not
limited to a network but rather in a two or three dimensional environment.
It would be interesting to investigate how the network-free data modeling
approach can be extended to this context.



Notations

Shorthand

CF : Commonality Factor
CNL : Cross-Nested Logit
DDR : Domain of Data Relevance
EC : Error Component
GEV : Generalized Extreme Value
GPS : Global Positioning System
IIA : Independence from Irrelevant Alternatives
i.i.d. : independent and identically distributed
LNL : Link-Nested Logit
MEV : Multivariate Extreme Value
MMNL : Mixture of Multinomial Logit
MNL : Multinomial Logit
MNP : Multinomial Probit
OD : Origin-destination pair
PDF : Probability density function
PMF : Probability mass function
PoS : Policy Size
PS : Path Size
PSC : Path Size Correction
PSL : Path Size Logit
VMS : Variable message sign
w.r.t. : with respect to

Notations

n : index for individuals
N : number of individuals in sample
i,j,p : path alternative (in Chapter 4 i refers to an

observation and in Chapter 6 to a path ob-
servation)
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Uin = Vin + εin : utility of alternative i for individual n
Vin : deterministic part of Uin

εin : error term of Uin

β : vector of unknown parameters
β̂ : vector of parameters estimates
νn : vector of Extreme Value distributed random

variables
µ : scale parameter of the Extreme Value distri-

bution
ζn : vector of Normal distributed random vari-

ables
σ : covariance parameter of the Normal distribu-

tion
Fn : factor loading matrix for individual n
P (i|Cn) : probability of individual n choosing alterna-

tive i within choice set Cn

ϕ : parameter in Generalized Path Size formula-
tion, Equation (2.3)

Lij : length (generalized cost) of links common to
paths i and j

Γj : ordered set of all links in path j

Network

E : set of links in a network
V : set of nodes in a network
ℓ = (v, w) : a link with source node v and sink node w
a : index for links
Ev : set of outgoing links from node v
Lℓ, C(ℓ) : generalized cost of link ℓ
s : origin-destination pair
so : origin node
sd : destination node
S : set of origin-destination pairs



99

Choice sets and paths

U : universal choice set of paths
J : number of paths in U
M : subset of U
Mn : subset of U specific to individual n
Hn : all non empty subsets of Mn

Cn(s) : choice set of paths of individual n and origin-
destination pair s, Cn is used if there is no
ambiguity as to which s it refers to

Jn : number of paths in Cn(s)
Mn : number of links in Cn(s)
Man : number paths in Cn(s) using link a

Network-free Data

d : piece of data
e : network element (link or node)
i : observation (sequence of data)
δ(d, e) : indicator function; equals one if e is related

with the DDR of d and zero otherwise
p : path alternative

Sampling of Paths

b1, b2 : parameters of the Kumaraswamy distribu-
tion

ω(ℓ|b1, b2) : weight associated with a link ℓ given by the
Kumaraswamy distribution

q(ℓ|Ev, b1, b2) : probability of selecting link ℓ = (v, w) given
a set of outgoing links Ev and Kumaraswamy
distribution parameters b1 and b2

q(j) : probability of generating (sampling) path j
q(Cn|j) : probability of generating (sampling) choice

set Cn given that j is the chosen path
C̃n : set of sampled paths including duplicates
Ψn : number of draws for sampling C̃n
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k̃jn : number of times alternative j is sampled
kjn : number of times alternative j is in C̃n con-

sidering that the chosen alternative is added
after sampling

δjc : binary variable; equals one if j = c and zero
otherwise, where c denotes the index of the
chosen alternative

Adaptive Route Choice

T : set of time periods in dynamic network
P : probabilistic description of link travel times

in a stochastic network
t : time (period)
T̃ℓt : random variable of travel time for link ℓ and

time t given by a probability mass function
r : support point
R : number of support points
T r

ℓt : travel time of link ℓ at time t for support
point r

̺r : matrix of size (|T |× |E|) where each element
corresponds to a travel time T r

ℓt

I : information; set of realized link travel times
γ : routing policy alternative
Gn : choice set of routing policies for individual n
I : ordered set of links
i : path observation



Detailed Estimation Results for

Path Sampling

The following tables show the absolute value of t-test values for the four
different models discussed in section 5.3.

Kumaraswamy parameter b1

Parameter Nb. Draws 0 1 3 5

β̂SB

5 24.68 21.99 17.12 6.65
10 24.20 20.61 16.68 7.24
20 21.31 18.10 12.76 7.71
30 19.11 15.03 10.52 6.93
40 15.99 14.17 8.92 5.89

β̂PS

5 5.17 5.11 0.22 2.46
10 5.08 3.98 2.18 2.20
20 6.93 5.23 0.30 3.52
30 6.93 3.93 0.22 3.28
40 4.97 5.12 0.10 3.38

µ̂

5 0.66 6.52 18.7 29.35
10 0.27 6.47 18.34 29.54
20 0.06 5.92 18.01 27.49
30 0.53 5.75 17.45 26.51
40 0.31 5.38 16.93 25.66

Table 7.1: Model MNoCorr
PS(C) (no convergence for b1 > 5 due to µ̂ close to zero)
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Kumaraswamy parameter b1

Parameter Nb. Draws 0 1 3 5

β̂SB

5 28.02 24.67 18.92 5.63
10 29.06 25.26 19.90 6.35
20 28.38 24.93 18.78 8.20
30 28.02 23.96 17.71 9.31
40 26.81 22.88 16.47 9.83

β̂PS

5 36.35 28.19 15.18 5.34
10 37.07 28.12 14.69 5.29
20 35.01 25.84 12.05 3.98
30 32.31 23.04 9.81 2.26
40 29.17 20.50 7.80 0.94

µ̂

5 3.06 4.54 19.25 31.3
10 3.69 4.65 19.23 32.64
20 3.56 4.43 19.68 32.41
30 3.75 4.41 19.15 31.65
40 3.37 4.38 18.77 30.99

Table 7.2: Model MNoCorr
PS(U) (no convergence for b1 > 5 due to µ̂ close to zero)



Kumaraswamy parameter b1

Parameter Nb. Draws 0 1 3 5 7 10 15 20 30

β̂SB

5 4.86 3.73 2.99 3.15 1.73 1.26 0.58 0.02 0.43
10 2.81 1.32 2.47 1.68 0.91 0.32 1.60 1.60 1.66
20 0.00 0.55 1.07 0.89 0.04 0.98 2.39 2.11 2.39
30 1.51 2.88 2.77 1.86 2.75 1.44 2.35 2.58 3.58
40 3.76 3.35 3.88 2.87 1.65 2.38 2.73 2.71 3.52

β̂PS

5 8.49 8.16 5.73 6.53 7.41 5.98 4.60 4.39 1.47
10 8.40 7.53 9.62 9.41 8.38 6.88 5.09 4.13 1.22
20 9.00 8.64 7.70 8.30 10.47 9.74 7.27 5.87 4.14
30 7.95 6.49 6.82 8.39 8.28 10.27 8.79 6.98 6.22
40 5.06 7.01 5.90 7.62 10.44 10.39 9.53 8.40 7.49

µ̂

5 6.80 5.60 4.43 2.58 0.65 1.88 3.27 2.22 1.19
10 5.71 5.20 5.47 3.13 3.28 0.55 1.28 1.56 1.55
20 4.23 4.71 6.32 6.71 5.11 2.87 1.59 0.54 1.33
30 3.59 4.10 6.85 8.62 9.51 3.92 2.26 0.39 0.55
40 2.91 3.91 7.44 9.92 8.46 6.98 3.23 0.86 0.80

Table 7.3: Model MCorr
PS(C)



Kumaraswamy parameter b1

Parameter Nb. Draws 0 1 3 5 7 10 15 20 30

β̂SB

5 0.02 0.66 0.44 0.42 0.77 0.22 1.48 0.57 0.49
10 0.21 0.78 0.09 0.20 0.04 0.49 1.11 0.77 0.50
20 0.97 0.65 0.39 0.27 0.27 0.89 1.03 0.57 0.77
30 0.66 0.66 0.31 0.21 0.46 0.73 0.91 0.69 1.16
40 0.72 0.66 0.25 0.20 0.27 0.54 0.86 0.96 1.18

β̂PS

5 0.49 0.34 0.53 0.00 0.83 0.29 1.28 0.23 0.35
10 0.18 0.19 0.39 0.37 0.13 0.33 0.28 0.12 1.08
20 0.19 0.00 0.40 0.00 0.00 0.00 0.06 0.64 0.89
30 0.19 0.00 0.20 0.14 0.00 0.00 0.17 0.80 0.16
40 0.20 0.06 0.02 0.22 0.10 0.19 0.17 0.43 0.27

µ̂

5 1.46 1.45 1.34 0.90 0.69 0.68 1.93 0.97 0.71
10 1.81 1.60 2.13 0.90 1.76 0.29 0.76 0.95 1.37
20 1.50 1.95 1.73 1.36 1.80 1.24 0.19 1.25 1.31
30 1.62 1.65 1.86 1.62 1.69 0.85 0.21 1.34 0.33
40 1.36 1.61 1.91 1.64 1.77 1.41 0.05 0.92 0.36

Table 7.4: Model MCorr
PS(U)
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