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iii



iv



Acknowledgments

I would like to express my gratitude towards my teachers for guiding me
throughout my professional life. Prof. Dominique Bonvin gave me the op-

portunity to join the Laboratoire d’Automatique and allowed me to have
the right balance of professional and private life. I would like to thank him

and Prof. Bala Srinivasan for all the helpful discussions we had and ideas
they gave me during my doctoral studies. Dr. Zoltán K. Nagy introduced
me to the field of process control during my engineering studies at Univer-

sitatea Babeş-Bolyai and had a great influence on my decision to continue
my studies at the doctoral level. Cseresznyés Éva and Schwartz István,
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Abstract

State estimation is a necessary component of advanced monitoring and con-

trol techniques, since these techniques often require information that is too
expensive or impossible to obtain from direct measurements. The objective

of estimation is the reconstruction of the missing information from both
the available measurements and prior knowledge in the form of a dynamic
model.

Usually, full-state estimation is considered because of the close link be-
tween estimation and the state feedback literature. By having an accurate
estimate of all states, the entire system can be controlled, provided the sys-

tem is controllable. However, since in some cases the goal is to control only
a subset of the states, knowledge of all states is not required. The objective

of this thesis is to estimate accurately a vector of preferred variables, whose
dimension is much lower than that of the full state vector, while paying no

attention to the accuracy of the estimates of the remaining variables. Such
a problem might arise, for example, when optimizing a process by tracking

active constraints.

Biased estimates are often obtained due to the presence of plant-model
mismatch. This mismatch can be regarded as a deterministic disturbance.

In addition, the measurements of key variables might be available less fre-
quently than the output measurements. The problem of preferential esti-
mation (PE) is formulated as that of eliminating the bias in the estimates

of the preferred variables using their infrequent measurements and a full-
order model. Hence, the measurements are handled at two time scales.

Such a concept has been studied thoroughly in the literature for the pur-
pose of standard estimation, i.e. estimating all states accurately, for which

infrequent measurements of all states are needed. The advantage of PE is
to require a smaller number of measurements, despite using the full-order
model.
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The following observer structures are studied in the thesis:

• Proportional observer. This structure contains a correction term pro-
portional to errors obtained from the frequent measurements of the out-
put variables. The gains corresponding to this term are computed from

the infrequent measurements of the preferred variables, thus leading to
a calibration-type approach. It is shown that bias can be eliminated

in the preferred variables by an appropriate choice of the gains. Due
to the observer structure, a different set of gains is required for each

disturbance value. Hence, the gains have to be retuned each time the
disturbances change or, since the disturbances are not measurable, each
time a new measurement of the preferred variables becomes available.

• Integral observer. In addition to the proportional term based on the
frequent measurements of the output variables, this structure contains

an integral term based on the infrequent measurements of the preferred
variables. Hence, this observer has a dual-rate structure. The presence

of the integral term guarantees bias elimination in the preferred vari-
ables even for varying disturbances, provided the observer is stable. It

is shown that stability can be guaranteed, and a procedure for tuning
the observer gains is provided. The design parameters in this procedure
can also be determined using a calibration-type approach.

To simplify the mathematical developments, PE is formulated for linear
time-invariant (LTI) systems. Its performance is investigated both analyt-

ically and through simulation. Though the analysis is restricted to LTI
systems, the idea extends to more general systems, which is demonstrated

via the estimation of biomass and enzyme concentrations in a pilot-scale
filamentous fungal fermentation.

Keywords: Estimation, deterministic disturbances, proportional observer,
integral observer, filamentous fungal fermentation.
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Version abrégée

L’estimation d’état est une composante vitale des techniques de réglage et

de surveillance. Toutefois, ces techniques nécessitent des informations qui
sont obtenues, soit de manière trop onéreuse, soit manière indirecte et non

propice à une utilisation adéquate. Le but de l’estimation est la recon-
struction des ces informations manquantes à partir des mesures disponibles
en tenant compte au mieux des connaissances a priori formulés comme un

modèle dynamique.

De manière générale, l’estimation nécessite la reconstruction de tous les
états nécessaires à l’élaboration de la loi de commande. L’obtention de

l’ensemble de toutes les variables de l’état conduit, dans la plupart des cas,
à un comportement adéquat de la boucle commandée lorsque le système

est commandable et que le régulateur est synthétisé de manière adéquate.
Cependant, dans certains cas, il est avantageux de ne considérer que la

sous partie de l’état réellement nécessaire pour le bon comportement du
système bouclé. Ainsi, il est souvent possible d’estimer qu’une partie réduite

de l’état. L’objectif de cette thèse est de déduire cet ensemble de vari-
ables en observant une collection de variables (dites préférentielles) qui sont
inférieurs en nombre par rapport au nombre de variables d’état du système.

L’idée mâıtresse est de négliger la précision d’estimation des variables
complémentaires. Un exemple d’application de cette technique se situe par

exemple dans les problèmes d’estimation lors de l’optimisation d’un procédé
par la technique de poursuite des conditions nécessaires d’optimalité.

Remarquons que le modèle dynamique disponible fournit souvent des

prédictions biaisés en raison de la présence d’erreurs de modélisation. Ces
erreurs apparaissent comme des perturbations déterministes. Par ailleurs,

les mesures des variables clés sont disponibles à des cadences inférieures à la
mesure des variables de sortie. Le problème d’estimation préférentielle (EP)
est formulé comme l’élimination du biais dans les estimations des variables

ix



préférentielles en utilisant leur mesure respective peu fréquente, ainsi q’un

modèle d’état complet. Par conséquant, des mesures disponibles à deux
échelles de temps sont utilisés. Un tel concept est abondamment discuté
dans la litterature du point de vue de l’estimation standard (ES), c.à.d. du

point de vue de l’estimation précise de l’ensemble des états. Cependant,
des mesures peu fréquentes de tous les états sont nécessaires pour l’ES.

L’avantage de l’EP est qu’elles nécessitent qu’un faible nombre de variables
mesurés, malgré l’utilisation d’un modèle d’état complet.

Les observateurs suivants sont étudiés dans cette thèse:

• Les observateurs de type proportionnel. Cette structure contient un

seul terme de correction qui est proportionnel à l’erreur obtenue à
partir des mesures fréquentes des variables de sortie. Les gains cor-

respondants sont calculés en se basant sur des mesures peu fréquentes
des variables préférentielles. Ceci conduit à une approche similaire au

concept de calibrage. Il est démontré que le biais peut être éliminé
dans les variables préférentielles avec un choix de gains appropriés. De
part la structure même de l’observateur, chaque perturbation nécessite

des gains différents. En conséquence, l’observateur doit être réajusté
chaque fois que la perturbation change, ou, lorsque la perturbation

n’est pas mesurable, à l’arrivé de chaque nouvelle mesure des variables
préférentielles.

• Les observateurs à effet intégral. En plus du terme proportionnel
basé sur les mesures de sortie disponibles à l’échelle de temps rapide,

cette structure contient un terme intégral basé sur les mesures peu
fréquentes des variables préférentielles. Le résultat est une structure

d’observateur à deux échelles de temps. La présence du terme intégral
garantit l’elimination du biais dans les variables préférentielles, même

lorsque les perturbations changent (pour autant que l’observateur soit
stable). Il est toutefois démontré que la stabilité peut être garantie,
et une procédure d’ajustage de gains d’observateur est fournie. Les

paramètres d’ajustage sont dans ce cas également déterminés à l’aide
d’une approche de calibrage.

Pour simplifier les développements mathématiques, l’EP est formulée
pour des systèmes linéaires stationnaires. Sa performance est, d’une part
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étudié analytiquement, et d’autre part vérifiée à l’aide de simulations. Bien

que l’analyse soit restreinte au cas des systèmes stationnaires, l’idé s’étend
également à des systémes plus généraux. Cette généralisation est illustrée
et démontrée sur l’estimation des concentrations de biomasse et d’enzyme

dans une fermentation de fongus filamenteux exploité dans une installation
pilote.

Mots clés: estimation, perturbations déterministes, observateur proportion-

nel, observateur intégral, fermentation de fongus filamenteux.
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ē Sum of the absolute value of biases

xviii



N Set of natural numbers

� Space of real numbers
�i Space of real i-dimensional vectors
�i×j Space of real (i × j) - dimensional matrices

A State propagation matrix of the state space model
Ac Closed-loop error propagation matrix (Ac = A −

KyH)
B Input matrix of the state space model

D Unknown input matrix
dk Deterministic disturbance vector

ei Estimation error of the variable i
H Measurement matrix of the state space model
Ii i-dimensional identity matrix

J Mean-square estimation error
K Observer gain

Ky Gain of the term proportional to the error in y
Kz Gain of the term proportional to the error in z

Kα Gain of the integral state α
Kβ Gain of the integral state β

ki Number of iterations
L Projection matrix from states to preferred variables
m Number of preferred variables

n Number of states
N(a, A) Normal probability distribution with mean a and

variance A
nd Number of unknown inputs

nu Number of inputs
P Mean-square estimation error
p Number of ouputs

Q Process noise covariance
R Output measurement noise covariance

r Ratio of large and small sampling times
T Similarity transformation matrix

tk Small sampling time
tl Large sampling time

xix



uk Input vector

vk Output measurement noise
W Weighting matrix
wk Process noise

xk State vector
yk Output vector

Z Covariance of the measurement noise associated
with the preferred variable

zl Vector of preferred variables

xx



List of Figures

2.1 Multirate estimation scheme. The yk measurements are avail-

able at the discrete time instants k, k = 0, . . . , r, r + 1, . . . .
The zl measurements are taken at the time instants l, l =

0, 1, 2, . . . for which k = lr. The zl measurements are in-
dicated by circles and become available at the time instants
marked by crosses, i.e. with a delay of θ small sampling periods. 30

2.2 Comparison of open-loop model prediction and Luenberger
observer in Simulation 1. Plant – dash-dotted line (black);

open-loop model – solid line (blue); Luenberger observer –
dashed line (red). . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Comparison of Luenberger and integral observers in Simula-
tion 2. Plant – dash-dotted line (black); Luenberger observer
– solid line (blue); Integral observer – dashed line (red). . . . 37

2.4 Comparison of Luenberger observer and Kalman filter in Sim-
ulation 3 for one realization of the noises. Plant – dash-dotted

line (black); Luenberger observer – solid line (blue); Kalman
filter – dashed line (red). . . . . . . . . . . . . . . . . . . . . 39

2.5 Comparison of KF and combined state and parameter esti-
mation using a KF extended with integrators in Simulation 5
for one realization. Plant – dash-dotted line (black); Kalman

filter – solid line (blue); Parameter estimation using the KF
– dashed line (red). . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Comparison of KF extended with integrators based on in-
frequent measurements in Simulation 4 for one realization.

Plant – dash-dotted line (black); KF-Integral-ZOH observer
– solid line (blue); KF-Integral-Switch observer – dashed line
(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xxi



3.1 Comparison of the KF-ZOH and KF-Switch observers in Sim-

ulation 6 for one realization. Plant – dash-dotted line (black);
KF-Switch observer – solid line (blue); KF-ZOH observer –
dashed line (red). . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Illustration of the best P y observer on Simulation 6 for
k ∈ [0, 200] for one realization (x2 and x3 are the preferred

variables). Plant – dash-dotted line (black); KF-ZOH ob-
server – solid line (blue); P y − Ky observer – dashed line
(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Comparison of P y − Ky and the retuned P y − Ky observer
in Simulation 8 for one realization. Plant – dash-dotted line
(black); P y − Ky observer – solid line (blue); P y − Ky −
retuned observer – dashed line (red). . . . . . . . . . . . . . 64

3.4 Comparison of KF-ZOH and retuned P y − Ky observer in
Simulation 9 for one realization. Plant – dash-dotted line

(black); KF-ZOH observer – solid line (blue); P y − Ky −
retuned observer – dashed line (red). . . . . . . . . . . . . . 66

4.1 Comparison of the KF-Integral-Switch and the P yP zIz − λ
observers in Simulation 6 (observer tuning) for one realiza-
tion. Plant – dash-dotted line (black); KF - Integral - Switch

observer – solid line (blue); P yP zIz − λ observer – dashed
line (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Comparison of the KF-Integral-Switch and P yP zIz − λ ob-

servers in Simulation 8 for one realization. Plant – dash-
dotted line (black); KF-Integral-Switch observer – solid line

(blue); P yP zIz − λ observer – dashed line (red). . . . . . . . 90

4.3 Comparison of the P yP zIz − λ and retuned P y − Ky ob-
servers in Simulation 9 for one realization. Plant – dash-

dotted line (black); P y − Ky − retuned observer – solid line
(blue); P yP zIz − λ observer – dashed line (red). . . . . . . . 92

5.1 Experiment I - Current operation with three phases: Batch

operation - biomass growth; Linearly-increasing feed - avoid-
ing oxygen limitation; Constant feed - enzyme production. . 97

5.2 Morphological division of the biomass [1]. . . . . . . . . . . . 101

xxii



5.3 Open-loop model prediction for Experiment I. Plant – solid

line and dots (black); Model – dashed line (red). . . . . . . . 112
5.4 Open-loop model prediction for Experiment II. Plant – solid

line and dots (black); Model – dashed line (red). . . . . . . . 113

5.5 Estimates given by the EKF-ZOH for Experiment II. Plant –
solid line and dots (black); EKF-ZOH observer – dashed line

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.6 Estimates given by the P y − Ky observer for Experiment II.

Plant – solid line and dots (black); P y observer – dashed line
(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Estimates given by the P y−Ky−retuned observer for Experi-
ment II. Plant – solid line and dots (black); P y−Ky−retuned
observer – dashed line (red). . . . . . . . . . . . . . . . . . . 116

5.8 Estimates given by the Iz observer for Experiment II. Plant
– solid line and dots (black); Iz observer – dashed line (red). 117

5.9 Estimates given by the Iz − LT observer for Experiment II.
Plant – solid line and dots (black); Iz−LT observer – dashed

line (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.10 Estimates given by the Iz −LT observer with manual tuning

for Experiment II. Plant – solid line and dots (black); Iz−LT

observer with manual tuning – dashed line (red). . . . . . . . 120

xxiii



xxiv



List of Tables

2.1 Simulation scenarios considered for illustrating the single-
rate observers. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Measurement model and noise covariance used in the dual-
rate observers for Simu-lation 4 in Table 2.1. . . . . . . . . . 34

2.3 Performance of Luenberger and integral observers in Simula-
tion 2 for k ∈ [60, 200]. . . . . . . . . . . . . . . . . . . . . . 36

2.4 Performance of Luenberger observer and Kalman filter in
Simulation 3 for k ∈ [60, 200] over 10 realizations. . . . . . . 38

2.5 Performance of KF, integral observer and KF extended with
integrators in Simulation 4 for k ∈ [60, 200] over 10 realizations. 40

2.6 Performance of KF extended with integrators, based on in-

frequent measurements in Simulation 4 for k ∈ [60, 200] over
10 realizations. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Simulation scenarios considered for the P y observer. . . . . . 58

3.2 Performance of various P y observers for Simulation 6 in Table

3.1 for k ∈ [60, 200] over 10 realizations. . . . . . . . . . . . . 61

3.3 Performance of the KF-ZOH and P y −Ky observers in Sim-

ulation 7 for k ∈ [60, 200] over 10 realizations. . . . . . . . . 64

3.4 Performance of the KF-ZOH, P y −Ky and retuned P y −Ky

observers in Simulation 8 for k ∈ [0, 200] over 10 realizations. 65

4.1 Performance of the KF-Integral-Switch observer and the in-

tegral observers P yP zIz−man., P yP zIz−λ and P yP zIz−Kz

in Simulation 6 for k ∈ [60, 200] over 10 realizations. . . . . . 89

4.2 Performance of the KF-Integral-Switch, P y − Ky and
P yP zIz − λ observers in Simulation 7 for k ∈ [60, 200] over
10 realizations. . . . . . . . . . . . . . . . . . . . . . . . . . 89

xxv



4.3 Performance of the KF-Integral-Switch, P y − Ky − retuned

and P yP zIz − λ observers in Simulation 8 for k ∈ [0, 200]
over 10 realizations. . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Performance of the KF-Integral-Switch, P y − Ky − retuned

and P yP zIz − λ observers in Simulation 9 for k ∈ [0, 200]
over 10 realizations. . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Comparison of observer performances for Experiments I and
II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1 Model parameter values . . . . . . . . . . . . . . . . . . . . 128

xxvi



Chapter 1

Introduction

A basic, if not the basic, characteristic of human beings is the desire to
dominate the environment in which they are living, in order to increase

the quality of their own life. For this reason, farmers are forcing the land
to grow useful plants for food production, teachers are educating children

in order to shape human society, engineers are forcing machines to work
for humans, politicians and managers are fooling or forcing other people to

work for them. The first step in achieving the goal of forcing the system
(land, child, machine, people) to behave in the desired manner (control)
is to acquire sufficient information (measurement), in order to be able to

figure out its current properties. For example, it is important for the farmer
to know the weather patterns, for the teacher to discuss with the child and

observe its behavior in order to understand its personality, for the engi-
neer to measure the physical and chemical properties of the system, for the

politician to make polls and surveys, for the manager to conduct marketing
studies. Unfortunately, the available measurements do not always contain

all the required information about the system. Sticking to the example of
the teacher and child, the child is not able to tell the teacher explicitly
its personality type. The teacher can only observe signs such as: playing

alone, being quiet and passive, never speaking spontaneously, or shouting,
always moving, never being able to concentrate, just to mention two extreme

cases. However, even with these implicit or incomplete signs (available mea-
surements), the teacher can understand rather well the personality of that

particular child by using his own knowledge and previous experience with
children (a model of the system). Within the field of control engineering,
the method of combining available measurements with a model of the sys-

1
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tem in order to obtain an accurate description of the current properties of

the system is called estimation and constitutes the subject of this thesis.

1.1 A brief historical overview of estimation

The first work related to estimation is credited to Karl Gauss, a German

mathematician, and dates back to 1795 [29, 73]. He invented the least-
squares estimation method (LSE) that plays a central role in estimation

theory. He used his method to determine the parameters describing the
motion of planets and comets from noisy telescopic measurements. The

essence of the method is to find the parameters that minimize the square
of the deviation of the position predicted by the motion equations and the

position measured by a telescope.

Another technique, the maximum likelihood estimation (MLE), was in-
troduced by Ronald Fisher, a British statistician and biologist, in 1912
[27, 58]. In this method, the parameters are determined by maximizing a

predefined probability (likelihood) function. The main idea is to find the pa-
rameters that are most likely to have produced the data, instead of finding

the parameters that describe the data most accurately, as in LSE.

The two aforementioned methods focus on estimating parameters. How-
ever, with the technological advances from the beginning of the 20th century,

such as telephone and radio, estimating signals, i.e. separating noise from
the useful signal (voice), has become increasingly important. In 1941, An-

drei Kolmogorov, a Russian mathematician, and in 1942 Norbert Wiener, an
American mathematician, independently developed a least-squares estima-
tion technique for signal filtering, which is commonly known as the Wiener

filter [83, 73]. This method is based on the original least-squares idea of
Gauss, however it incorporates modern mathematics about the description

of signals as random processes.

In 1960, Rudolf Kalman, a Hungarian - American system theorist, ex-
tended the Wiener filter to the newly developed state-space formulation

of systems [48, 47]. Compared to the Wiener filter, the Kalman filter deals
with the entire system (states) rather than with the measured signals alone.
Besides, in its original formulation, the Kalman filter (KF) uses difference
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equations instead of the integral equations of the Wiener filter, thus pro-

viding a form more suitable for digital computer implementation. For these
reasons, the KF has become a milestone in estimation and, even today,
constitutes the backbone of the discipline.

However, least-squares methods are not the only way of reconstructing
signals. In 1964, David Luenberger, an American engineer, developed an
estimator that, instead of minimizing the squared error at each time instant,

as is done in the KF, reduces the estimation error with time until it even-
tually completely disappears at infinity [53, 6]. The Luenberger observer

(LO) was the first one in a series of asymptotic observers, which have since
evolved significantly. In general, they are designed to cope with systematic

(deterministic) disturbances instead of random (stochastic) ones.

Over the last four decades, a large number of estimation techniques have
been developed on the basis of the aforementioned methods [24, 75]. The

motivation has been the need to eliminate the effect of both stochastic and
deterministic disturbances in the most efficient way possible.

1.2 Motivation and related work

Usually, full-state estimation is considered in the literature because of the

close link between estimation theory and full-state feedback [16, 19, 46, 56].
By having an estimate of all states, the entire system can be controlled.

However, since in some cases the goal is to control only a subset of the
states, knowledge of all states is not required. The objective of this thesis
is to estimate accurately a vector of preferred variables, whose dimension

is much lower than that of the full-state vector, while paying no attention
to the accuracy of the estimates of the remaining variables [11, 12]. Such a

problem might arise, for example, when optimizing a process via the track-
ing of the necessary conditions of optimality (NCO) [77, 76]. This tracking

consists of enforcing constraints on states or pushing state-dependent gra-
dients to zero. Usually, at a given time instant only one constraint is active,
or only one gradient has to be forced to zero, i.e. the knowledge of only

one state or gradient is required, while the estimation accuracy of the other
variables is of lesser importance.

For cases where only some of the state variables have to be estimated,
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two main approaches are used in the literature, as discussed below.

Reduced-order observers

Reduced-order observers have been proposed mainly for easing the com-
putational burden [44]. In each observer structure, two main steps require

most of the computation: i) prediction, where the equations of a dynamic
model are propagated in time; and ii) correction, where the observer gains

are computed, which may comprise matrix multiplications and inversions.
Reduced-order observers have the advantage of being computationally less

expensive in one or both of these steps. The following reduction methods
are proposed in the literature:

• Reducing the model order. The model used for prediction is simplified,
thus leading to a model of smaller order for the prediction step. Then,

an observer of the same order as the simplified model is used in the cor-
rection step. This way, the computational burden is eased in both the

prediction and correction steps. There are two main ways of reducing
the model order:

– Replacing states by their measurements. In this approach, the or-
der is reduced by simply replacing the measurable states with their

measurements and dropping the corresponding equations [52]. The
order of such estimators typically corresponds to the difference be-

tween the system order and the number of measurements. These
techniques have been applied succesfully to chemical reactors [74]
and utilized for inferential control purposes [25]. The main draw-

back is that the reduction in the number of variables to be es-
timated is generally not significant, due to the small number of

measured variables.

– Projection. These methods achieve a much larger reduction in the
order of the model than the previous approach [54, 41]. These

methods rely on the fact that the most important dynamic char-
acteristics (for a specific purpose) of a complex system can be

described by the dominant subspace. Thus, the system can be
represented by a dynamic model of dimension equal to that of the
dominant subspace. A significant reduction has been reported for
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various applications [35]. However, the projection methods often

need to be tailored to the application, and there are insufficient
guidelines for selecting the appropriate method for a particular
application.

A particular case of projection is decoupling. Its main idea is to
decouple completely the dynamics of a functional of the states, i.e.
a particular combination of the states of interest, from that of the

rest of the states. Such observers are called functional observers in
the literature [2, 22, 39, 78, 86]. However, their existence depends

on the possibility of decoupling, which is generally an algebraic
matrix equality constraint. Unfortunately, since this condition is

often difficult to meet, the applicability of such observers is limited.

• Reducing the estimator order. The full-order model is used for predic-
tion. However, the order of the observer used in the correction step

is reduced. In this way, the computation of the observer gain is less
expensive [9, 36, 40, 60, 71]. Additionally, the prediction step is also

made computationally less expensive when the observer structure re-
quires covariance propagation. Thus, reducing the order of the observer

might ease the computations in both steps.

However, in such observers, not all states of the full-order model used
for prediction are corrected, since only a reduced-order observer is used

in the correction step. Moreover, in contrast to the model-order reduc-
tion presented above, reducing the order of the observer alone is not

motivated by any physical consideration, such as the presence of a dom-
inant subspace or the possibility of decoupling, but is solely to decrease
the computational burden. Hence, the approximations for reducing the

order of the estimator are imposed artificially, thereby leading to sub-
optimal estimates. Though the estimator gains are optimized in order

to provide the smallest estimation error in the least-squares sense [44],
suboptimality is still present and is manifested in a systematic estima-

tion error called bias.

Hence, each order reduction technique discussed above has some disad-
vantages that do not allow for accurate estimation of the preferred variables.
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Full-order observers

Another way of estimating the preferred variables is to estimate the en-

tire state vector using standard full-state techniques such as Kalman filter-
ing [48, 45, 32] and single out the preferred variables via projection. The

drawback of this approach is that the focus is on the accuracy of the en-
tire state vector rather than that of the preferred variables. Consequently,
the preferred variables will inherit the accuracy of the state vector, though

they could probably be estimated more accurately if attention were focused
exclusively on them.

The objective of preferential estimation (PE) is to estimate certain vari-
ables more accurately than can be done by state-of-the-art full-state esti-

mation followed by projection. Note that in the case of linear systems with
perfect model information and gaussian measurement noise, the optimal

solution for estimation problems is the Kalman filter [32]. In such a case,
preferential estimation techniques cannot improve the accuracy of the esti-

mates of the selected variables, since the Kalman filter is optimal for the
full-state vector and, consequently, also for the preferred variables.

However, systems with perfectly known models and excusively gaussian
perturbations are rarely found in the real world. Most often, uncertainty is
present in the form of uncertain model parameters, unmodeled dynamics or

exogenous disturbance signals. The effect of this uncertainty on the system
can be considered as that of unknown inputs. As a result, the estimated

states are biased, and the Kalman filter is no longer optimal. To reduce this
bias, the following techniques have typically been proposed in the literature:

• Minimax approach. This is the classical robust estimation technique,
where the estimator is designed for the worst-case scenario in terms of
the norm of the uncertainty. It consists in determining (i) the bounds

on the unknown inputs that cause maximal bias, and (ii) the estimates
that minimize that bias [3, 21, 69]. This is the underlying idea behind

interval observers, for which two observers based on the upper and
lower bounds of the uncertainty are used [8, 31, 24]. It is guaranteed

that the true estimate lies between the values given by the two ob-
servers, that is, within the interval defined by them. The disadvantage
of the minimax approach is the conservatism caused by the use of a
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bound on a signal instead of the signal value itself.

• Estimation of unknown inputs. To reduce the conservatism of the pre-

vious approach, the unknown inputs can be estimated and used in the
state observer. Usually, unknown inputs are estimated by augmenting

the state vector with additional state variables and describing their
evolution using, for example, random walks. These additional state

variables can (i) represent uncertain parameters in cases where it is
known which parameters are uncertain, or (ii) directly represent the
unknown inputs that are approximated by constants. This approach

has been given various names over the decades: Bias estimation [28, 34],
garbage collector [23], integral observer [5, 7, 18, 62]. The last of these

names is probably the most appropriate, since the way the system is
augmented corresponds to adding integrators to the model equations.

• Decoupling from unknown inputs. In this approach, an observer,

termed unknown input observer, is designed to decouple the dynamics
of the states from those of the unknown inputs [20, 33, 38, 65, 79, 82].

The idea is the same as for functional observers. Actually, functional
observers can be considered as unknown input observers, where the

role of the unknown inputs is played by the dynamics of the ’unde-
sired’ states. The same limitation as for functional observers applies.

The study of full-order integral observers capable of rejecting determin-

istic disturbances in the preferred variables constitutes the focus of this
thesis. Elimination of bias in the entire state space, as in SE, requires as

many integrators as there are states affected by uncertainty, which, in the
worst case, means that n integrators are needed for n states [72, 85]. To
implement these integrators requires measurement of all the states affected

by disturbances. In contrast, PE will only require as many integrators and
measurements as there are preferred states.

Since measurements of the preferred variables can be difficult to obtain

at the frequency of the output measurements, they are considered here to
be available infrequently, possibly via off-line sensing techniques. Hence,

a multirate estimation scheme is studied [75]. In such a scheme, some of
the measurements are available less frequently (slow time scale) than the
estimates are needed (fast time scale). One way of handling two-time-
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scale dynamic systems is to extrapolate the slow measurements for the fast

time scale by using some kind of approximations, e.g. zero-order hold or
polynomial approximations, and then use a single-rate estimation technique
[80, 81, 84, 85]. Another approach is to update the estimates only when the

slow measurements become available and meanwhile use the predictions
given by the process model corrected with the available fast measurements

[4, 63, 67]. In this thesis, the second approach is considered, since it is not
influenced by approximation errors.

1.3 Contributions made by this thesis

Formulation of the preferential estimation problem

As was discussed in the previous section, the aim of PE is to improve

the accuracy of certain state variables in the presence of uncertainty that
can be expressed as deterministic disturbances. However, this improvement
is not sought via order reduction as in functional estimation, which is the

method found in the literature having the same objective. The reason is to
avoid the errors induced by order reduction. PE uses full-order observers

that use the most accurate full-order model available. These full-order ob-
servers are constructed to provide precise estimates of only the preferred

variables, while neglecting the accuracy of the other estimates. To the au-
thor’s knowledge, this concept has not been studied in the literature and

constitutes the main contribution of the thesis, since it avoids the errors
associated with order reduction.

In order to ensure the feasibility of PE, infrequent measurements of the
preferred variables are assumed to be available, while frequent estimates of

these variables are needed. This dual-rate concept is well studied in the
literature for the purpose of standard estimation (SE), that is, estimating

all states accurately. However, infrequent measurements of all states are
needed in SE. Proving the convergence of an observer structure where not

all state variables are measurable is another contribution of this thesis. The
advantage of PE is a less stringent assumption on the number of available
infrequent measurements.

To simplify the mathematical developments, PE is formulated for linear
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time-invariant (LTI) systems. The study of linear systems has already re-

vealed the usefulness of PE, and the ideas extend to more general systems
as well, as shown by the application.

Observer design for preferential estimation
Two observer types will be considered:

• Proportional observer. This is the classical structure consisting of a

single term proportional to the output error obtained from frequent
measurements. The information available from the infrequent mea-

surements of preferred variables is used uniquely to choose the observer
gains.

A first contribution is to show that it is possible to eliminate the bias
completely in the preferred variables by an appropriate choice of gains.

A second contribution is to find these gains via numerical optimization,
based on the available infrequent measurements. This is analogous to

the concept of calibration used in chemometrics.

Due to the structure of the observer, for each value of the deterministic

disturbances a different set of gains is needed to eliminate the bias. As
a consequence, each time a new measurement becomes available, the
observer gains have to be retuned.

• Integral observer. In addition to the proportional term based on output

measurements, an integral term based on the infrequent measurements
of the preferred variables is introduced. Hence, a dual-rate estimator

structure is obtained.

The contribution compared to the work existing in the literature is

to prove the convergence of an observer structure where not all state
variables are measurable infrequently. Also, a tuning procedure that

ensures the convergence of the observer is provided. The available
degrees of freedom within this tuning procedure are also made via

numerical optimization, using the same calibration-type approach as
for the proportional observer.

Due to the presence of the integral term, the stability of the observer
implies bias elimination in the preferred variables. Hence, retuning of
the integral observer is not needed.
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Application to experimental data

The proposed observers are applied to a pilot-scale filamentous fungal
fermentation operated at Novozymes A/S, Bagsvaerd, Denmark. The ob-

jective is to estimate accurately the biomass and product concentrations,
two key quantities that are measurable only infrequently. Both observers

are capable of improving the accuracy of these estimates compared to open-
loop model prediction. While the proportional observer requires continuous

retuning to cope with time-varying deterministic disturbances, a properly
tuned integral observer does not. The gains of the observers are succesfully
determined by the calibration-based approach. Due to the use of constant

gains, the tuning and implementation of these observers is computationally
less expensive than that of a Kalman filter.

1.4 Organization of the thesis

This thesis is organized as follows:

Chapter 2: Preliminaries. The notions of stability and observability, as

well as several single-rate and dual-rate observer structures are introduced.
The objective of this chapter is to recall those well-known concepts available
in the literature that will be used in later chapters.

Chapter 3: Proportional observer for preferential estimation.
First, the problem of PE is formulated and the proposed observer struc-
tures are detailed. Next, the properties of the proportional observer P y are

analyzed. It is shown that for each value of the constant disturbances, a dif-
ferent observer gain is needed to eliminate the bias in the preferred variables.

Chapter 4: Integral observer for preferential estimation. Due to
the introduction of the integral term, a time-invariant observer can follow
variations in the value of the disturbances. Nevertheless, exact mathemati-

cal results can only be obtained for piecewise-constant disturbances.

Chapter 5: Application. PE is applied to an experimental setup. The
results obtained on this nonlinear system with time-varying disturbances
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confirm the ideas of the previous chapters.

Chapter 6: Conclusions. The results are summarized and possible new
research topics discussed.
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Chapter 2

Preliminaries

This chapter introduces the notions of stability and observability as well as
the common observers found in the literature. The objective is to discuss

in detail these observers, since they will be used as benchmarks in later
chapters. Single-rate, full-state observers are presented first and illustrated

for the following types of uncertainty:

• For the case where only errors in the initial conditions affect the system,

a Luenberger observer can be used;

• Compensating for the effect of deterministic disturbances can be done

with an integral observer;

• Noise filtering can be achieved with Kalman filtering;

• Simultaneous noise filtering and compensating for the effect of deter-
ministic disturbances can be achieved by extending the Kalman filter

with integrators.

Next, the use of dual-rate measurements in the above observers is discussed.
Most of the proofs are omitted since they can be easily found in the litera-
ture. Bibliographical references are provided each time a result is stated.

13
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2.1 Plant description

Consider a plant described by the following linear time-invariant (LTI) dis-
crete state-space equations:

xk+1 = Axk + Buk + dk + wk, x0 = xo (2.1)

yk = Hxk + vk

where uk ∈ �nu is the input vector, xk ∈ �n the state vector with unknown
initial value xo, yk ∈ �p the measured output vector, dk ∈ �n the distur-

bance vector, wk the process noise, and vk the measurement noise. The
matrix A is the state propagation matrix, B describes the effect of the in-

puts on the states and H is the measurement model. The noise sequences wk

and vk are assumed to be zero-mean, white sequences with covariance ma-
trices Q and R, respectively. In addition, the noise sequences are supposed

to be uncorrelated with each other.
The vector dk corresponds to deterministic disturbances, without

stochastic effects. Note that dk can incorporate a combination of several
disturbances usually present in the real world such as [20]:

• Parametric uncertainty – The order and the structure of the model
are correctly chosen. However, the matrices A and B are erroneous,

thus not able to describe the plant behavior accurately. The effect
of inaccurate knowledge of these matrices, denoted by ΔA and ΔB,

can be represented as a time-varying, deterministic disturbance vector
dk = ΔAxk + ΔBuk.

• Unmodeled dynamics – Neither the order of the model nor the math-

ematical expressions are selected appropriately. For example, a linear
representation is used for a nonlinear plant or a time-varying plant is

represented as a time-invariant model, thus giving rise to the time-
varying disturbance vector dk. This category also encompasses the

disturbances due to model reduction.

• Exogenous deterministic inputs – There are unmodeled deterministic

disturbances, or unknown inputs, ωk that affect the plant operation.
Their effect can be represented in the model equations as dk = Dωk,
where D ∈ �n×nd, ωk ∈ �nd. A particular type of this unknown input
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appears when non-zero mean stochastic disturbances affect the plant.

In this case the mean of the stochastic disturbance can be regarded as
the deterministic disturbance dk, while the stochastic part of the dis-
turbance, after removing the mean, corresponds to the noise sequence

wk.

2.2 Notions of stability and observability

Throughout Section 2.2, deterministic and stochastic disturbances are con-
sidered to be zero, i.e. dk = 0, wk = 0 and vk = 0. Hence, the state-space

description (2.1) becomes:

xk+1 = Axk + Buk, x0 = xo (2.2)

yk = Hxk

The system (2.2) is only excited by the input and the initial condition.

The notions of stability and observability are taken from [19].

2.2.1 Asymptotic stability

Definition 2.1 Consider uk = 0. The state equation (2.2) is asymptotically

stable if every finite initial state xo generates a bounded response xk, which,
in addition, approaches 0 as k → ∞.

Definition 2.1 shows that asymptotic stability is an internal property of
the state-space model, that is, it does not refer to the input-output behavior

of the system.

Theorem 2.1 The state equation (2.2) is asymptotically stable if and only
if all eigenvalues of A have magnitudes less than 1.

Definition 2.2 A matrix whose eigenvalues have magnitudes less than 1 is
said to be Schur stable.
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Steady state

For an asymptotically stable state equation with a non-zero input, uk �=
0, the state xk will not converge to zero. For the case of a constant input,
uk = ū, the state converges to a constant value xk → x̄ as k → ∞, which is

called the steady-state value, and the system is said to be at a steady state.
If uk varies, the state xk does not converge.

2.2.2 Observability

Definition 2.3 The model (2.2), or the pair (A, H), is said to be observable
if for any unknown initial state x0 there exists a finite integer k1 > 0 such
that knowledge of the input sequence uk and output sequence yk from k =

0, . . . , k1 suffices to determine uniquely the initial state x0. Otherwise, the
state-space model is said to be unobservable.

Theorem 2.2 The following statements are equivalent:

1. The pair (A, H) is observable.

2. The np × n observability matrix

O =

⎡
⎢⎢⎢⎣

H

HA
...

HAn−1

⎤
⎥⎥⎥⎦ (2.3)

has rank n, that is, full-column rank.

3. The (n + p) × n matrix

[
A − λiI

H

]
(2.4)

has full-column rank n for each eigenvalue, λi, of A, where i =
1, 2, . . . , n.

The property of observability indicates whether all states can be recov-
ered from the available measurements. In other words, it shows whether
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all states have a measurable effect on the output. This is reflected most

explicitly by Condition 3 in Theorem 2.2. Each direction defined by the
eigenvalues of the matrix A has to be projected by the matrix H to the
output y. In turn, this means that the unobservable directions simply do

not influence the output of the system.
Note that, in the case rank(H) = n (all state directions are measurable),

the pair (A, H) is observable. For this case, both in (2.3) and (2.4) there is
a submatrix, H itself, which is of rank n.

2.3 Luenberger observer

2.3.1 Observer structure

Consider the plant model (2.2) for which the only perturbation is the error

in the initial condition, i.e. only an estimate of the initial condition is
available.

Consider the following linear proportional observer P y:

x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk), x̂0 = E (xo) (2.5)

ŷk = Hx̂k

where the symbol (̂·) denotes the estimate of a variable, Ky ∈ �n×p is the
observer gain matrix and E (·) is the mathematical expectation operator.

Using (2.2) and (2.5), the error dynamics ex,k = xk − x̂k can be written

as:

ex,k+1 = Acex,k, ex,0 = xo − E (xo) (2.6)

with

Ac = A − KyH (2.7)

Equation (2.6) is a dynamic equation with no input. Its asymptotic sta-
bility is guaranteed by the condition |eig(Ac)| < 1. The observer guaran-
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teeing asymptotic stability of (2.6) is called the Luenberger observer (LO).

Note that, even though the error dynamics (2.6) converge to zero, the es-
timated state x̂k in (2.5) does not necessarily converge, for example if uk

varies.

2.3.2 Pole placement

Theorem 2.3 All eigenvalues of Ac can be assigned arbitrarily (provided
complex conjugate eigenvalues are assigned in pairs) by selecting a real con-
stant gain matrix Ky if and only if (A, H) is observable.

Assigning the eigenvalues of the matrix Ac by selecting the observer gain

matrix Ky is referred to as pole placement [19]. Note that placing the poles
of Ac for observer design is the dual of the pole placement of (A − BKy)

for controller design. For multivariable systems, the choice of the gain Ky

is not unique.

There are several pole-placement methods available implemented in soft-

ware packages. The one implemented in both Matlab [42] and Mathematica
[43] is the Kautsky-Nichols-Van Dooren algorithm (KNVD) [49]. This al-

gorithm optimizes the available degrees of freedom in Ky in order to avoid
numerical ill-conditioning.

Choice of pole locations

The choice of fast poles (close to the origin) yields fast convergence, but

also large gains leading to aggressive correction. On the other hand, poles
close to the unit circle result in slow convergence, but smaller values of
the gains. In a noise-free scenario, fast gains are preferred; however, when

measurement noise is present, large gains can amplify the noise considerably.
Hence, in practical situations where noise is present, the choice of pole

locations has to reflect the best compromise between convergence speed
and noise attenuation. For noise-corrupted scenarios, a particular tuning

method, labeled Kalman filter, is available. The KF finds the optimal gains,
or pole locations, that minimize the estimation error covariance. This tuning
procedure is discussed in Section 2.5.
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2.4 Integral observer

2.4.1 Need for an integral term

It will be shown next that, in the presence of deterministic disturbances,

the proportional observer (2.5) cannot eliminate the estimation error, thus
motivating the need for an integral observer.

Consider the plant (2.1) without stochastic disturbances (wk = 0, vk = 0)
and a non-zero deterministic disturbance vector dk:

xk+1 = Axk + Buk + dk, x0 = xo (2.8)

yk = Hxk

The error dynamics using a proportional observer are:

ex,k+1 = Acex,k + dk, ex,0 = xo − E (xo) (2.9)

Depending on the disturbance vector dk, the following situations might
occur:

1. dk = 0 – This is the case for which a Luenberger observer can be applied
(Section 2.3). The error dynamics (2.9) converge to zero provided Ac

is stable.

2. dk is constant (dk = d̄, ∀k) – The error dynamics (2.9) converge to
a non-zero steady state. An additional term that corresponds to the

integral of the output error has to be added to the observer structure in
order to reach zero steady-state error. This integral observer structure
is studied in this section.

3. dk is time varying – The error dynamics (2.9) do not reach steady state

at all. There is no solution to this estimation problem. As a rule
of thumb, an integral observer much faster than the dynamics of dk

should be chosen. Through this choice, the disturbances become quasi
constant from the point of view of the observer, thereby leading back
to Case 2.
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Remark - Piecewise-constant disturbances. This is a special case of

time-varying disturbances with dk approximated by a sequence of j
disturbances, d̃, each of which is constant for a large number of itera-
tions ki 	 0, where i = 1, 2, . . . , j and j ∈ N .

d̃ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d̄1 for k ∈ [0, k1]
d̄2 for k ∈ [k1 + 1, k1 + k2]
...

d̄j for k ∈
[

j−1∑
i=1

ki + 1,

j∑
i=1

ki

] (2.10)

This case corresponds to Case 2 above, given that each ki is large

enough for the error dynamics to reach (quasi) steady state.

In order to show the advantage of the integral observer over the propor-
tional observer, consider the error dynamics (2.9) with dk = d̄:

ex,k+1 = Acex,k + d̄, ex,0 = xo − E (xo) (2.11)

Due to the constant disturbance vector d̄, the above equation reaches steady

state:

ēx = Acēx + d̄ (2.12)

that can be rewritten as:

ēx = (I − Ac)
−1d̄ (2.13)

The objective of estimation is to force this error to zero, that is to esti-
mate accurately all states:

ēx = (I − Ac)
−1d̄

!
= 0 (2.14)

This can be achieved if the disturbances are zero, d̄ = 0, or the matrix

(I − Ac)
−1 and the vector d̄ are orthogonal to each other. However, the

matrix (I−Ac) is considered to be invertible, or full rank, and consequently

(I − Ac)
−1 is also full rank, i.e. without a null space. Hence, proportional

observers cannot eliminate the bias in the state estimates x̂k in the presence
of non-zero deterministic disturbances.
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In contrast, integral observers are able to eliminate bias by introducing

an additional term Gk, leading to the following correction term: Ky(yk −
ŷk) + Gk. Thus, the integral observer aims at zero steady-state error using
the following structure:

ēx = (I − Ac)
−1(d̄ − Ḡ)

!
= 0 (2.15)

This objective can be satisfied with Ḡ = d̄. The integral observer presented

next meets this objective.

2.4.2 Observer structure

Consider the linear proportional-integral observer P yIy for the system (2.8):

x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk) + Kααk, x̂0 = E (xo) (2.16)

αk+1 = αk + (yk − ŷk), α0 = 0

ŷk = Hx̂k

where α ∈ �p is the integral of the output error, Ky ∈ �n×p is the propor-
tional gain matrix and Kα ∈ �n×p is the integral gain matrix.

The above system can be rewritten as:

x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk) + αK
k , x̂0 = E (xo) (2.17)

αK
k+1 = αK

k + Kα(yk − ŷk), αK
0 = 0

ŷk = Hx̂k

with αK
k = Kααk. Even though this structure has n integrators compared to

the p integrators in (2.16), i.e. it is redundant if n > p, it has the advantage

of being in the typical observer form (A−KH), as shown next.

Considering the case of a constant disturbance vector, i.e. dk = d̄, with
the observer (2.17), the estimation error in the 2n-dimensional augmented

state

[
x

αK

]
is:
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ek+1 = (A−KH) ek + U(d̄) (2.18)

ek =

[
ex,k

αK
k

]
, A =

[
A −I

0 I

]

K =

[
Ky

−Kα

]
, H =

[
H 0

]
, U(d̄) =

[
d̄
0

]

2.4.3 Integral observability

Given a constant input U(d̄), the error dynamics (2.18) converge to a steady
state if the matrix (A − KH) is stable. The condition ensuring arbitrary

pole placement for (A−KH) is called integral observability [85, 72].

Definition 2.4 The system (2.8) is integral observable if the pair (A,H)
in (2.18) is observable.

Theorem 2.4 The pair (A,H) is observable if and only if rank(H) = n.

For a constant disturbance d̄, the next theorem gives the condition for

having a zero steady-state estimation error.

Theorem 2.5 For the case of a constant disturbance d̄, the integral observer
(2.18) leads to zero steady-state error in all state directions if and only if

rank(H) = n.

Proof. At steady-state, (2.18) becomes:

ēx = Acēx + d̄ − ᾱK (2.19)

ᾱK = ᾱK + KαHēx

that can be rewritten as:
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ēx = (I − Ac)
−1 (d̄ − ᾱK

)
(2.20)

0 = KαHēx

The second equation indicates that ēx = 0 if and only if rank(H) = n.
Given (I −Ac) is invertible, therefore from the first equation ᾱK = d̄. Note

that the rank of (I −Ac) can be influenced through the eigenvalues of Ac if
the pair (A, H) is observable. �

The objective of the P yIy observer is to force convergence of the error

dynamics (2.18) to zero. The first step in achieving this is to ensure asymp-
totic stability of the error dynamics. As explained in Section 2.3.2, stability

can be ensured by placing the poles of (A − KH) within the unit circle.
These poles can be placed arbitrarily if rank(H) = n.

The same condition, rank(H) = n, ensures zero estimation error. Hence,
if all state directions are measurable, the P yIy observer is able to cancel the
effect of the deterministic disturbance via the Ḡ = ᾱK = d̄ term discussed

in (2.15). Note that rank(H) = n implies observability of the pair (A, H)
(Theorem 2.2), but the converse is not true. Obviously, this rank condition

is more restrictive than the observability requirement on the pair (A, H)
needed by the Luenberger observer. It is intuitively correct to say that

coping with deterministic disturbances is more demanding in terms of the
amount of information required about the system than just coping with

initial errors alone.

2.5 Kalman filter

Consider the plant (2.1) without deterministic disturbances, i.e. dk = 0.

xk+1 = Axk + Buk + wk, x0 = xo (2.21)

yk = Hxk + vk

Using the proportional observer P y (2.5), the error dynamics read:
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ex,k+1 = Acex,k + wk + Kyvk, ex,0 = xo − E (xo) (2.22)

Taking the mean of this error gives:

E (ex,k+1) = AcE (ex,k) , ex,0 = xo − E (xo) (2.23)

since wk and vk are zero-mean.

Observe from (2.22) and (2.23) that any gain matrix giving a stable

error dynamics, as in the LO, ensures asymptotic convergence of the error
mean to zero. However, since noise is present, the second-order statistics

of the estimation error also need to be taken into account. The tuning
that minimizes the estimation error covariance, while ensuring asymptotic

convergence of the error mean, is the Kalman filter (KF) [32].

2.5.1 Observer structure

The Kalman filter proposes to minimize the estimation error covariance Pk

by using a proportional observer with time-varying gain:

min
Ky

k

Pk = E
(
ex,ke

T
x,k

)
(2.24)

s.t. x̂k+1 = Ax̂k + Buk + Ky
k(yk − ŷk), x̂0 = E (xo)

ŷk = Hx̂k

If the pair (A, H) is observable, the above problem can be solved by the
following n-dimensional recursion:

P−
k = APk−1A

T + Q P0 = E
(
ex,0e

T
x,0

)
(2.25)

Ky
k = P−

k HT
(
HP−

k HT + R
)−1

Pk = (In − Ky
kH) P−

k

The observer gain Ky
k given by the above recursion converges to the
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constant value Ky, which is determined by the ’ratio’ of the noise covari-

ance matrices Q and R. P0 is the initial estimate of the estimation error
covariance that influences the number of iterations needed for convergence.

The covariance matrices Q and R have to be determined prior to the

implementation of the filter. R can be determined off-line from the available
measurements. However, Q cannot be inferred from measured variables. In

general, Q is a tuning parameter that expresses the confidence of the user in
the model. If the model is good, a low Q can be chosen, whereas if the model

is poor, a high Q is more appropriate. As a function of the relative values
of Q and R, the filter will give more or less weight to the measurements
compared to the model predictions.

In other words, while the Kalman filter uses the same observer structure
as the LO, that is a proportional term based on the output error, the pole

location is determined by (2.25). The advantage of the KF over the LO is
the presence of this analytical expression, which provides the optimal gains,
or poles, as a function of the physically interpretable quantities Q and R.

However, the Kalman filter can also be difficult to tune, since the choice of
these quantities may not always be trivial.

Note that, for the LTI system considered above, the recursive computa-
tion of the gain Ky

k is independent of the measurements. Thus, the gain can
be computed off-line prior to the filter implementation.

2.5.2 Kalman filter extended with integrators

Consider the plant (2.1) with stochastic disturbances and a constant deter-
ministic disturbance vector, dk = d̄:

xk+1 = Axk + Buk + d̄ + wk, x0 = xo (2.26)

yk = Hxk + vk

The idea is to use the P yIy observer structure (2.17) with the gain K =[
Ky

Kα

]
given by a Kalman filter. The equations (2.24)-(2.25) are extended

to the augmented state

[
x

αK

]
from (2.18), leading to:
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min
Kk

Pk = E
(
eke

T
k

)
(2.27)

s.t. x̂k+1 = Ax̂k + Buk + Ky
k(yk − ŷk) + αK

k , x̂0 = E (xo)

αK
k+1 = αK

k + Kα
k (yk − ŷk), αK

0 = 0

ŷk = Hx̂k

If the integral observability condition of the pair (A,H) holds, that is

rank(H) = n, the solution to the above problem is given by the following
2n-dimensional recursion:

P−
k = AkPk−1AT

k + Q, P0 =

[
E
(
ex,0e

T
x,0

)
0

0 P0,α

]
(2.28)

Kk = P−
k HT

(HP−
k HT + R

)−1

Pk = (I2n −KkH)P−
k

In (2.27) and (2.28) A, H, K and ek are the same as in (2.18) and

Q =

[
Q 0

0 Qα

]
. P0,α > 0 and Qα > 0 are diagonal matrices of tuning

parameters. P0,α influences the rate of convergence of the integral gains to
their steady-state values. Qα determines the steady-state values to which

the integral gains converge. These gains determine the dynamics of the
integral states.

Using this observer, both elimination of disturbance and optimal noise
filtering can be achieved. The price to pay, however, is to require both the
condition rank(H) = n specific to the integral observer, and the knowledge

of the noise statistics Q and R specific to the Kalman filter. Additionally,
the tuning parameters P0,α and Qα have to be determined.

Combined state and parameter estimation

The extension of the Kalman filter with integrators is widely used in the
literature to compensate for parametric errors [24], which are a particular
type of time-varying disturbance dk as explained in Section 2.1.
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Consider the parametric error

ΔA =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
... . . . ... . . . ...
0 · · · δa · · · 0
... . . . ... . . . ...
0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ (2.29)

that is, only one element of the matrix A is uncertain. δa ∈ � is the additive
error affecting this parameter.

For this case, the system (2.26) can be rewritten as:

xk+1 = Axk + Buk + ΔAxk + wk, x0 = xo (2.30)

yk = Hxk + vk

and the observer structure (2.17) as:

x̂k+1 = Ax̂k + Buk + Ky
k(yk − ŷk) + ΔÂkx̂k, x̂0 = E (xo) (2.31)

δâk+1 = δâk + Kδa
k (yk − ŷk), δâ0 = 0

ŷk = Hx̂k

where ΔÂk is obtained from ΔA in (2.29) by replacing δa with δâ.

In equation (2.30), ΔAxk plays the role of the time-varying disturbance
vector dk. However, its structure is known and can be incorporated in the
observer (2.31). Using this structure, only one integral state corresponding

to the uncertain parameter is needed. In the case where there are several
unknown parameters, a separate integrator has to be introduced for each

unknown parameter. In order to be able to estimate all unknown parame-
ters accurately, persistence of excitation is needed, a notion defined in the

system identification literature [51]. In other words, in this case, the strict
condition of integral observability is not required. However, the available

measurements must be sufficiently rich in information to reveal the true
values of the parameters.

Note that (2.31) is nonlinear due to the term ΔÂx̂k which involves the
terms δâk and x̂k. Thus, the linear Kalman filter has to be extended (EKF)
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to nonlinear systems by using a linear time-varying (LTV) approximation

of nonlinear systems that is based on Taylor series expansion [32]. The
word extended here refers to extending a linear filter to the nonlinear case,
not extending the filter with integrators. Note also that the observability

measures defined in Section 2.2.2 are not valid for nonlinear systems.

The idea of the EKF is to use:

• The nonlinear model from observer structure (2.31) for prediction:

ξ̂k+1 = f(ξ̂k) + Buk + KkH(ξk − ξ̂k) (2.32)

where

ξ̂k =

[
x̂k

δâk

]
, f(ξ̂k) =

[
Ax̂k + ΔÂkx̂k

δâk

]

H =
[

H 0
]
, Kk =

[
Ky

k

−Kδa
k

]
B =

[
B
0

]

• A linear time-varying approximation (Taylor series) of the model in
the recursion (2.28), leading to a (n + 1)-dimensional recursion in this

specific case:

P−
k = AkPk−1AT

k + Q, P0 =

[
E
(
ex,0e

T
x,0

)
0

0 P0,α

]
(2.33)

Kk = P−
k HT

(HP−
k HT + R

)−1

Pk = (In+1 −KkH)P−
k

with
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Ak =
∂f

∂ξ̂

∣∣∣∣
ξ̂k

=

[
A + ΔÂk Ix̂k

0 1

]

I =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
... . . . ... . . . ...

0 · · · 1 · · · 0
... . . . ... . . . ...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ Q =

[
Q 0
0 Qα

]

2.6 Dual-rate observers

In addition to measurements of the output variables considered in (2.1),

measurements of other less frequently available variables are considered in
this section. Hence, (2.1) can be rewritten as:

xk+1 = Axk + Buk + dk + wk, x0 = xo (2.34)

yk = Hxk + vk

zl = Lxlr + νl

where L ∈ �m×n is the measurement model and νl is the measurement noise,
with zero mean covariance Z, associated with the infrequent measurements

zl. The subscripts (·)k and (·)l indicate that the corresponding quantities
are considered at the small sampling time tk and the large sampling time tl,
respectively. The sampling time tl is considered to be an integer multiple

of tk, i.e. tl = tkr with r ≥ 1. Thus, the relationship between the indices k
and l at the time of the z measurements is k = lr. In addition, a delay of

θ small sampling periods is considered in the availability of the infrequent
measurements, θ being an integer with 0 ≤ θ < r (Figure 2.1).

The sampling frequency must be adapted to the frequency of the signal
to be sampled. Usually, it is recommended to choose a sampling period

between one-fifth and one-tenth of the dominant time constant of the sys-
tem [64, 70]. This is the requirement that the fast sampling of the output
yk must satisfy. However, the sampling of the variables zl is (much) less
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r r+1 r+θ 2r 2r+1

1 2

  2r+θ 3r

3

l - slow time scale

k - fast time scale

o x o x o

o - sampling of z

x - availability of zl measurements

Figure 2.1: Multirate estimation scheme. The yk measurements are available at the discrete
time instants k, k = 0, . . . , r, r+1, . . . . The zl measurements are taken at the time instants l,
l = 0, 1, 2, . . . for which k = lr. The zl measurements are indicated by circles and become
available at the time instants marked by crosses, i.e. with a delay of θ small sampling
periods.

frequent. Thus, it cannot be assumed that the slow sampling captures the

main dynamics of the system. However, the role of the additional infre-
quent measurements is rather to compensate for the deterministic distur-
bances dk affecting the system. Hence, the sampling of zl must capture

the dynamics of this disturbance. This can be easily met for constant d̄
or piecewise-constant d̃ disturbances. For arbitrary time-varying determin-

istic disturbances dk, this cannot be guaranteed. As a rule of thumb, the
use of zl measurements for estimation purposes is beneficial only when slow

sampling is appropriate for the disturbance to be eliminated.

The above system is of dual-rate nature, since measurements at two time
scales are available. For estimation purposes, the infrequent measurements

can be used for correction at two scales:

• at the fast time scale, by extrapolating the infrequent measurements
to this scale, thereby leading to the single-rate estimation scheme dis-

cussed in previous sections, or

• at the slow time scale, that is using a hierarchical observer structure,
where at the lower level an estimator based on the frequent measure-

ments is used, while at the higher level the frequent estimates provided
by the lower level estimator are corrected based on the infrequent mea-
surements only when these become available.
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These two possibilities are discussed next.

2.6.1 Fast-time-scale correction

Extrapolation of the infrequent measurements to the fast time scale can be
done via poly-nomial approximations [85]. For example, by using a zero-

order hold (ZOH) approximation and taking into account the measurement
delay, (2.34) can be rewritten as:

xk+1 = Axk + Buk + dk + wk, x0 = xo (2.35)

yk = Hxk + vk

zk =

{
Lxlr + νl if k+r−θ

r ∈ N
zk−1 otherwise

The single-rate observers presented before can be applied to the above

system by considering the augmented measurement vector ζk =

[
yk

zk

]
,

model H =

[
H

L

]
and covariance R =

[
R 0

0 Z

]
. The disadvantage, how-

ever, is the error induced by the polynomial extrapolations, as well as by
assuming that the noise properties of the extrapolated measurements do not

change upon applying the polynomial approximations.

2.6.2 Slow-time-scale correction

The gains corresponding to the terms based on infrequent measurements

are set to zero between two slow sampling instants. However, at the slow
sampling instants, these gains are nonzero. The advantage of this method is

to avoid polynomial extrapolations. The disadvantage is that the correction
is made infrequently, and thus higher gains might be needed, leading to a
possibly more aggressive behavior.

When using a Kalman filter for either frequent or infrequent corrections,
the augmented measurement vector, model and covariance have to be used.
However, the gains can be set to zero by choosing a very large Z (Z = ∞)
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between two slow sampling instants. Since the inverse of R is used for gain

computation, the elements of the resulting gain matrix that correspond
to Z become zero. Additionally, the measurement model corresponding
to the infrequent measurements is set to zero, L = 0, between two slow

sampling instants. Hence, the measurement model and the measurement
noise covariance become periodic, and the filter will converge to a periodic

solution [67]:

H =

[
H

ckL

]

R =

[
R 0

0 1
ck

Z

]
(2.36)

ck =

{
1 if k+r−θ

r ∈ N
0 otherwise

2.7 Illustration

A 4th-order discrete-time linear system is considered as an illustrative ex-

ample throughout the thesis. All the results are obtained by computer
simulation using the MATLAB software. Both single-rate and dual-rate

systems are considered.

Single-rate system

Consider the plant (2.1) with deterministic and stochastic disturbances:

xk+1 = Axk + Buk + dk + wk, x0 = xo

yk = Hxk + vk

with:

A =

⎡
⎢⎢⎣

0.91 0 0.11 0

0 0.66 0.13 −0.06
0 −0.06 0.75 0.02

0.10 0.05 0 0.80

⎤
⎥⎥⎦



33

Table 2.1: Simulation scenarios considered for illustrating the single-rate observers.
Simulation 1 - no 2 - determ. 3 - stoch. 4 - determ. & 5 - param. error

disturb. disturb. disturb. stoch. disturb. & stoch. disturb.
dk 0 d̄ 0 d̄ ΔAxk

wk 0 0 N(0, Q) N(0, Q) N(0, Q)
vk 0 0 N(0, R) N(0, R) N(0, R)
x̂0 xo,e xo,e xo,e xo,e xo,e

H H1 H2 H1 H2 H1

Appropriate LO Integral KF KF-Integral KF with
observer param. est.

(2.5) (2.17) (2.24)-(2.25) (2.27) - (2.28) (2.32) - (2.33)
Observer for
comparison - LO LO Integral; KF KF

B =
[ −0.05 0.05 0.1 −0.1

]T
xo =

[
40 −60 100 −60

]T
uk = −0.005k − 16 sin 0.1k + 200

and k = 0, 1, . . . , 200. The disturbance vector and the measurement model
are given in Table 2.1 for various simulation scenarios. Each of these sce-

narios corresponds to a single-rate observer presented in previous sections.
Additionally, the performances of these observers are compared to each
other, as indicated by the last row in this table. Note that different mea-

surement models are used for different scenarios, depending on the observer
requirements.

The values of some quantities in Table 2.1 are:

xo,e =
[ −20 30 −50 30

]T
, d̄ =

[
3 6 4.5 0.6

]T

ΔA =

⎡
⎢⎢⎣

0 0 0 0

0 0 0 0
0 0.3 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q =

⎡
⎢⎢⎣

2 0 0 0

0 3 0 0
0 0 5 0
0 0 0 3

⎤
⎥⎥⎦
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Table 2.2: Measurement model and noise covariance used in the dual-rate observers for
Simu-lation 4 in Table 2.1.

Observer KF-Integral-ZOH KF-Integral-Switch
Section 2.6.1 using (2.27) - (2.28) Section 2.6.2 using (2.27) - (2.28)

H

[
H1

L

] [
H1

ckL

]

R
[

R 0
0 Z

] [
R 0
0 1

ck
Z

]

R =

{
2 for H1

Q for H2

H1 =
[

1 0 0 0
]
, H2 = I4

Note that the pair (A, H) is observable and the matrix A is stable with

eigenvalues:

λ =
[

9.2387 · 10−1 7.6346 · 10−1 7.1634 · 10−1 ± 9.5074 · 10−2i
]T

Dual-rate system

The single-rate system above is considered with the infrequent measure-
ments:

zl = Lxlr + νl

For this system the disturbances in Simulation 4 from Table 2.1 are
considered. The two dual-rate observers from Section 2.6 are applied with

the measurement models and noise covariance given in Table 2.2. The values
of the quantities in Table 2.2 are the same as in Table 2.1 except for:

L =

[
0 1 0 0
0 0 1 0

]
, Z =

[
3 0
0 5

]

ck =

{
1 if k+r−θ

r ∈ N
0 otherwise

r = 10, θ = 9
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Performance measures

In order to compare the performance of the various estimation methods
in the sequel, Monte-Carlo simulations are carried out. 10 realizations1 that

use different noise sequences wk and vk are considered. The following quan-
tities are computed from the estimation error at the kth sampling instant,

ek = xk − x̂k:

• ēk = E (ek) - the bias, n-dimensional. This is the mean of the estima-

tion error for each state over the realizations.

• Vek
= diag

(
E
(
(ek − E (ek))(ek − E (ek))

T
))

- the error variance, n-
dimensional. This results from the process and measurement noises

considered in the simulation.

• Πek
= diag

(
E
(
eke

T
k

))
- the mean square error (MSE), n-dimensional.

• ΣΠek
=
∑n

i=1 Πei,k
- the total MSE, a scalar. This represents the sum

of the MSE over its n states.

Additionally, to have a global indication of the performance of the ob-
server for the entire time interval considered, the above quantities are simply

summed up over the index k to give:

ē =
∑

k

|ēk|, Ve =
∑

k

Vek
, Πe =

∑
k

Πek
, ΣΠe

=
∑

k

ΣΠek

Simulation 1 - Luenberger observer

Consider the observer (2.5), the single-rate system and Simulation 1
in Table 2.1. Since the matrix A is stable and only the initial condi-

tions are unknown, the open-loop model prediction converges to the true
values. By closing the loop, i.e. using the observer (2.5), the rate of

convergence can be increased by choosing poles closer to the origin, e.g.

λLO =
[

0.55 0.40 0.50 0.80
]T

, as illustrated in Figure 2.2. Since this a

noise-free scenario, no Monte-Carlo simulations are required.

1Such a small number of realizations does not allow accurate statistical properties to be computed. How-
ever, sufficiently good approximations of these properties can be obtained for comparing the performance
of different observers, with minimal computational effort.
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Table 2.3: Performance of Luenberger and integral observers in Simulation 2 for k ∈
[60, 200].

Open loop LO Integral

ē

⎡
⎢⎢⎣

5.3480 · 101

1.7893 · 101

1.6446 · 101

3.4229 · 101

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.6667
1.0000 · 101

9.0000
3.0000

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.1259 · 10−16

−2.5019 · 10−16

−2.5019 · 10−17

1.5574 · 10−15

⎤
⎥⎥⎦
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Figure 2.2: Comparison of open-loop model prediction and Luenberger observer in Simu-
lation 1. Plant – dash-dotted line (black); open-loop model – solid line (blue); Luenberger
observer – dashed line (red).
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Figure 2.3: Comparison of Luenberger and integral observers in Simulation 2. Plant – dash-
dotted line (black); Luenberger observer – solid line (blue); Integral observer – dashed line
(red).

Simulation 2 - Integral observer

Consider the observer (2.17), the single-rate system and Simulation 2
in Table 2.1. In order to ensure zero-mean estimation error for a non-zero
disturbance d̄, it is required that rank(H) = n. Thus, H2 is used for all

observers discussed here. As can be seen in Figure 2.3, the LO does not
ensure zero-mean estimation error, while the integral observer (2.17) is able

to eliminate the bias upon convergence. However, the LO is able to reduce
this bias compared to the open-loop prediction, as shown in Table 2.3. Since

a noise-free scenario is considered, no Monte-Carlo simulations are carried
out and only the error mean is compared in Table 2.3. As shown in Figure

2.3, the integral observer overshoots due to the choice of a rather aggressive
(close to the origin) set of poles:

λI =
[

0.55 0.40 0.50 0.30 0.35 0.45 0.20 0.10
]T

.

Simulation 3 - Kalman filter

Consider the observer (2.24)-(2.25), the single-rate system and Simula-
tion 3 in Table 2.1. The observer given by (2.24)-(2.25) is used with P0 = In.
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Table 2.4: Performance of Luenberger observer and Kalman filter in Simulation 3 for
k ∈ [60, 200] over 10 realizations.

Open loop LO KF

ē

⎡
⎢⎢⎣

7.9598 · 101

9.0758 · 101

8.9710 · 101

1.1328 · 102

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.2913 · 101

8.7658 · 101

1.3858 · 102

1.2103 · 102

⎤
⎥⎥⎦

⎡
⎢⎢⎣

7.5059 · 101

9.0100 · 101

9.0625 · 101

1.1418 · 102

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

2.0689 · 103

9.5495 · 102

1.3916 · 103

1.3133 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.6633 · 102

1.0337 · 103

2.3933 · 103

1.4215 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.2541 · 103

9.5457 · 102

1.3686 · 103

1.1622 · 103

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

2.1393 · 103

1.0422 · 103

1.4847 · 103

1.4572 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.1213 · 102

1.1177 · 103

2.6113 · 103

1.5786 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.3153 · 103

1.0405 · 103

1.4631 · 103

1.3111 · 103

⎤
⎥⎥⎦

ΣΠe 6.1233 · 103 5.9197 · 103 5.1300 · 103

Upon convergence, the gains of the Kalman filter are optimal for balancing
the uncertain predictions given by the model and the noisy measurements.
In other words, the Kalman filter does not only ensure convergence of the

estimator to the true values, as the Luenberger observer does, but it also
finds the most appropriate set of poles in order to ensure measurement noise

attenuation. These poles are determined by the recursion (2.25) using the
prior knowledge of the noise covariances Q and R.

The results upon convergence, presented in Table 2.4, show that the
total MSE is smaller for KF than for LO (compare the blue numbers). This

performance is achieved through variance reduction, by having closed-loop
poles (after convergence) in between those of the open-loop system (λ) and

LO (λLO):

λKF =
[

8.7143 · 10−1 7.5349 · 10−1 7.1919 · 10−1 ± 9.9263 · 10−2i
]T

.

Due to slower poles, the KF gives less weight to the measurement in
comparison to the LO. Since x1 is the measured variable, the MSE in x1

is larger for KF than for LO (compare the green numbers). However, by
relying more on the model predictions, the KF gives a smoother estimate, as

shown by the reduced variance in x2, x3 and x4 (compare the red numbers).
This is also confirmed by Figure 2.4, which is an enlargement of a specific
region for better visibility of the curves.
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Figure 2.4: Comparison of Luenberger observer and Kalman filter in Simulation 3 for one
realization of the noises. Plant – dash-dotted line (black); Luenberger observer – solid line
(blue); Kalman filter – dashed line (red).

Simulation 4 - Kalman filter extended with integrators

Consider the observer (2.27) - (2.28), the single-rate system and Simu-
lation 4 in Table 2.1. The measurement model H2 is used for all observers

discussed here. The observer structure (2.17) is used with the gain K given
by the recursion (2.28). This recursion is extended to the augmented state[

x

αK

]
from (2.18) by using:

H =
[

In 0
]
, A =

[
A −In

0 In

]

Q =

[
Q 0
0 0n×n

]
, R = Q, P0 = 20 I2n

The results in Table 2.5 show that the total MSE is smallest with the

Kalman filter extended with integrators ( compare the blue numbers). This
performance is achieved through both variance reduction compared to the
integral observer (red numbers) and bias reduction compared to the stan-
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Table 2.5: Performance of KF, integral observer and KF extended with integrators in
Simulation 4 for k ∈ [60, 200] over 10 realizations.

Open loop KF Integral observer KF-Integral

ē

⎡
⎢⎢⎣

7.5796 · 103

2.5412 · 103

2.3623 · 103

4.8597 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3.9896 · 103

2.5507 · 103

1.7667 · 103

2.3927 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.1613 · 102

7.5411 · 101

1.1707 · 102

9.9926 · 101

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.5730 · 102

8.2630 · 101

1.1444 · 102

1.2280 · 102

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

1.7698 · 103

8.1284 · 102

1.5136 · 103

1.5003 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.0764 · 103

7.6566 · 102

1.4048 · 103

1.1335 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.4277 · 103

7.9516 · 102

1.6707 · 103

8.4536 · 102

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.1047 · 103

7.8692 · 102

1.4038 · 103

1.1289 · 103

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

4.0661 · 105

4.6373 · 104

4.0960 · 104

1.6793 · 105

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.1333 · 105

4.6658 · 104

2.3527 · 104

4.1552 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.5818 · 103

8.6530 · 102

1.8183 · 103

9.4637 · 102

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.3498 · 103

8.6393 · 102

1.5484 · 103

1.2938 · 103

⎤
⎥⎥⎦

ΣΠe 6.6187 · 105 2.2507 · 105 5.2118 · 103 5.0559 · 103

dard Kalman filter (magenta numbers). Note that, in this case as well, the

estimation error of the measured state x4 is smallest in the observer with
the fastest poles, i.e. the integral observer (compare the green numbers).

The poles upon convergence are:

λKF−I =
[

6.9761 · 10−1 ± 1.0036 · 10−1i 7.3953 · 10−1 8.5944 · 10−1

9.9477 · 10−1 9.9494 · 10−1 9.9501 · 10−1 9.9498 · 10−1
]T

The moduli of the first 4 poles are close to those of the standard Kalman

filter, while the remaining poles, corresponding to the integral states, are
near the unit circle since Qα = 0n×n is used. Nevertheless, the resulting

dynamics of the integral states are fast enough to compensate for the effect
of d̄.

Simulation 5 - Kalman filter with parameter estimation

In order to illustrate the extension of the Kalman filter with integrators
for parameter estimation, consider the observer (2.32) - (2.33), the single-
rate system and Simulation 5 in Table 2.1 with:
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Figure 2.5: Comparison of KF and combined state and parameter estimation using a KF
extended with integrators in Simulation 5 for one realization. Plant – dash-dotted line
(black); Kalman filter – solid line (blue); Parameter estimation using the KF – dashed line
(red).

ΔÂk =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0 δâk 0 0
0 0 0 0

⎤
⎥⎥⎦

I =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0 1 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q =

[
Q 0

0 0

]

P0 =

⎡
⎢⎢⎢⎢⎣

100 0 0 0 0
0 20 0 0 0

0 0 300 0 0
0 0 0 100 0

0 0 0 0 0.05

⎤
⎥⎥⎥⎥⎦
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Figure 2.5 compares the performance of the combined state and param-

eter estimation with that of the standard Kalman filter. P0 is chosen to
ensure smooth convergence. Note that, due to the LTV approximation
used in the EKF, the recursion (2.33) does not converge. Hence, the gains

of the filter will continue to vary with time.

Dual-rate Kalman filters

The dual-rate system with the disturbances as in Simulation 4 from Table

2.1 are considered. The observer (2.27) - (2.28) using infrequent measure-
ments as described in Section 2.6.1 (KF-Integral-ZOH) and in Section 2.6.2

(KF-Integral-Switch) is used.

The measurement model and noise covariances are taken from Table 2.2
with:

H =
[

H 0
]
, A =

[
A −In

0 In

]

Q =

[
Q 0

0 In

]
, P0 = 20 I2n

Note that rank(H) < n. This means that, since the condition of integral

observability is not satisfied, arbitrary pole placement is not possible. The
KF-Integral-ZOH observer has one pole on the unit circle. This is due to

the redundant structure of the observer, that is, having more integrators (4)
than ’augmented’ measurements (3). The pole on the unit circle corresponds
to that extra integrator:

λKF−I−ZOH =
[

7.1867 · 10−1 ± 3.0584 · 10−1i 6.7028 · 10−1 ± 2.5251 · 10−1i

7.3073 · 10−1 ± 1.6536 · 10−1i 7.9466 · 10−1 1.0000
]T

Note that the same also holds for the KF-Integral-Switch, with the dif-

ference that, between two slow sampling instants, there is only one measure-
ment for 4 integrators. Hence, 3 poles are on the unit circle. Note also that,

due to the varying noise covariance matrix, the gains of the KF-Integral-
Switch are periodic. In this case, Qα = In is used to ensure fast reaction of
the observer to the infrequent measurements.
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Table 2.6: Performance of KF extended with integrators, based on infrequent measurements
in Simulation 4 for k ∈ [60, 200] over 10 realizations.

Open loop KF-Integral KF-Integral-ZOH KF-Integral-Switch
Rate - single dual dual

H - H2

[
H1

L

] [
H1

ckL

]

ē

⎡
⎢⎢⎣

7.5796 · 103

2.5412 · 103

2.3623 · 103

4.8597 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.5730 · 102

8.2630 · 101

1.1444 · 102

1.2280 · 102

⎤
⎥⎥⎦

⎡
⎢⎢⎣

9.3012 · 101

7.9252 · 102

7.3814 · 102

3.3016 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

8.7249 · 101

4.8556 · 102

4.7936 · 102

2.7168 · 103

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

1.7698 · 103

8.1284 · 102

1.5136 · 103

1.5003 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.1047 · 103

7.8692 · 102

1.4038 · 103

1.1289 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.2552 · 102

2.0565 · 103

3.0443 · 103

1.6723 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.1558 · 102

1.7710 · 103

2.6791 · 103

2.6712 · 103

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

4.0661 · 105

4.6373 · 104

4.0960 · 104

1.6793 · 105

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.3498 · 103

8.6393 · 102

1.5484 · 103

1.2938 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

7.2473 · 102

8.9704 · 103

8.7794 · 103

7.6784 · 106

⎤
⎥⎥⎦

⎡
⎢⎢⎣

7.0313 · 102

4.2693 · 103

4.9842 · 103

5.4790 · 104

⎤
⎥⎥⎦

ΣΠe 6.6187 · 105 5.0559 · 103 7.6969 · 106 6.4747 · 104

As can be seen in Figure 2.6, by using both dual-rate observer structures
the bias can be eliminated in the three measured states. The error in the

4th direction, however, is out of control since, as shown in Theorem 2.5,
only the bias in the measured directions can be eliminated with integral

observers. The large initial overshoot is due to the rather aggressive tuning
(Qα = In).

As expected, the performance of these observers is worse than that of the
Kalman filter extended with integrators using H2, that is, frequent measure-

ments of all states (Table 2.6 - compare the blue numbers). This perfor-
mance is especially worse in x4, the state whose measurement is not avail-
able at all for the dual-rate observers (compare the red numbers). What is

interesting to note, however, is the somewhat better performance of the KF-
Integral-Switch compared to that of the KF-Integral-ZOH (green numbers).

This is due to the absence of approximations in the KF-Integral-Switch.
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Figure 2.6: Comparison of KF extended with integrators based on infrequent measurements
in Simulation 4 for one realization. Plant – dash-dotted line (black); KF-Integral-ZOH
observer – solid line (blue); KF-Integral-Switch observer – dashed line (red).



Chapter 3

Proportional observer for preferential
estimation

The problem of preferential estimation is formulated in Section 3.1.1, while
two observer structures are proposed in Section 3.1.2. The first structure,

a proportional observer based on the output measurements, is discussed in
Section 3.2. The second structure, which in addition has a proportional and

an integral term based on measurements of the preferred variables, will be
the subject of Chapter 4.

3.1 Preferential estimation

3.1.1 Problem formulation

Consider the plant described by (2.34):

xk+1 = Axk + Buk + dk + wk, x0 = xo (3.1)

yk = Hxk + vk

zl = Lxlr + νl

The concept of PE consists in restricting attention to certain linear com-

binations of states, termed preferred variables, while using a full-order model
to avoid errors related to order reduction. The preferred variables are de-

noted by z ∈ �m, with L being an m × n projection matrix, m < n and
rank(L) = m. The preferred variables z are typically defined by the prob-
lem at hand and thus given a priori. The same also holds for L. Note that

45
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a different index l is used for the preferred variables, that is their measure-

ments are available less frequently than that of the outputs yk, as detailed
in Section 2.6.

Preferential estimation is formulated as the minimization of the mean-

square estimation error J of the preferred variables zl:

min
K

J =
∑

l

E
(
(zl − ẑl)

T (zl − ẑl)
)

(3.2)

s.t. x̂k+1 = Ax̂k + Buk + Φ(K, ey,k, ez,l), x̂0 = E (xo)

ŷk = Hx̂k

ẑl = Lx̂lr

where Φ comprises the correction terms, ey,k = yk − ŷk, the estimation

error in y at the sampling instant k and ez,l = zl − ẑl, the estimation error
in z at the sampling instant k = lr. Constant gains K are considered to
simplify the optimization problem.

Note that the objective function in (3.2) is the mean-square error (a
scalar) and not the covariance matrix that is typically used in estimation

problems [32]. The reason for choosing a scalar objective function rather
than a matrix is that, except for the special case of linear systems without

deterministic disturbance, there exists no unique estimator gain that min-
imizes every element of the matrix. Thus, a weighted sum of the various

elements of the matrix is necessary to define the solution. The mean-square
estimation error E

(
(zl − ẑl)

T (zl − ẑl)
)
, which is the trace of the matrix

E
(
(zl − ẑl)(zl − ẑl)

T
)
, represents one such possible weighting. Additionally,

these MSEs are added up over all the data points available, l = 0, 1, . . . , N .

3.1.2 Observers for preferential estimation

In Section 2.4, the effect of a constant deterministic disturbance dk = d̄

is discussed. It is shown that the bias introduced by d̄ �= 0 cannot be
eliminated by a P y observer. However, a P yIy observer with Φ = Ky(yk −
ŷk) + Gk is able to eliminate the bias thanks to the integral term Gk = αK

k
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based on yk measurements, which at steady state gives:

ēx = (I − Ac)
−1(d̄ − Ḡ)

However, the condition of integral observability has to be satisfied to ensure

Ḡ = d̄. This condition implies that it is possible to measure all state
variables, rank(H) = n.

Since the objective of PE is accurate estimation of the preferred variables

zl, the error ēz is forced to zero:

ēz = L(I − Ac)
−1(d̄ − Ḡ)

!
= 0 (3.3)

Note that, while the matrix (I−Ac)
−1 has full rank, the matrix L(I−Ac)

−1

does not due to the rank condition imposed on L in PE. This makes it
possible to have ēz = 0 by having the matrix L(I − Ac)

−1 and the vector

d̄−Ḡ orthogonal to each other, without all state variables being measurable
or, in other words, without satisfying the condition of integral observability.

Candidate observers to satisfy (3.3) include:

1. Proportional observer - P y

Consider (3.2) with Φ = Ky(yk − ŷk), that is, only a correction term
proportional to the error in ey is used, with Gk = 0. The observer

dynamics at the fast time scale can be written as:

x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk), x̂0 = E (xo) (3.4)

ŷk = Hx̂k

The steady-state error is:

ēz = L(I − Ac)
−1d̄ (3.5)

The main idea is to choose Ky such that the matrix L(I−Ac)
−1, which

has a null space, is orthogonal to the disturbance vector d̄. However,

the information contained in the yk measurements does not allow de-
termination of the value of Ky satisfying (3.5). This information has
to come from the zl measurements themselves. Hence, Ky is found by
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solving Optimization problem (3.2) with the objective function J being

evaluated based on these zl measurements.

2. Integral observer based on zl measurements - P yP zIz

The idea is to determine the observer gains such that the resulting

term (d̄− Ḡ) is orthogonal to the matrix L(I −Ac)
−1. The term Gk is

based on the integral states βk driven by the infrequent measurements

of the preferred variables. The P yP zIz observer has proportional terms
based on both yk and zl measurements and an integral term based on

the zl measurements. Hence, Φ = Ky(yk − ŷk) + Gk + ckK
z,x(zl − ẑl),

with Gk = Kββk where βk is the integral state driven by the infrequent
measurements of the preferred variables. The observer is:

x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk) + Kββk + ckK
z,x(zl − ẑl),

x̂0 = E (xo)

βk+1 = βk + ckK
z,β(zl − ẑl), β0 = 0

ŷk = Hx̂k, (3.6)

ẑl = Lx̂lr

ck =

{
1 if k+r−θ

r ∈ N
0 otherwise

Considering this observer structure at the slow time scale, (3.3) be-
comes:

ēz = L(I − Ac + Kz,xL)−1(d̄ − Kββ̄)
!
= 0 (3.7)

rank
(
L(I − Ac + Kz,xL)−1

)
< n and it is possible to have ēz = 0

without satisfying the condition of integral observability.

In this observer structure, there are only m integrators, in contrast to

the P yIy observer (2.17) with n integrators. That is, the form (2.16) is
used, with an n×m dimensional gain matrix Kβ in the state equation.

In addition to this, the gain matrix Kz,β is considered in the integral
state equation. The advantage of using such a structure is that, under
some Assumptions, the error dynamics can be transformed into the



49

typical linear form A−KH with K =

[
Kz,x

−Kz,β

]
. In order to stabilize

this structure, only the observability of the pair (A, H) is required, as

will be shown in Section 4.3. This is a less restrictive condition than
that of integral observability (rank(H) = n), discussed in Section 2.4.3.

Note that the integral states βk are updated only when the zl measure-

ments, delayed by θ small sampling periods, become available (Figure
2.1). This update law is implemented via the switching coefficient ck,

as explained in Section 2.6.

3.2 Proportional observer Py

Observers containing a term proportional to the output error ey are fre-

quently used in the field of estimation, e.g. the Kalman filter and Luen-
berger observer [47]. In this section, their use for preferential estimation

purposes is studied.

In Section 3.1.2, a P y observer is proposed to cancel the effect of the
constant deterministic disturbance d̄, by exploiting the fact that only a

subspace of the states has to be estimated in PE. P y observers are mainly
used in the literature for noise filtering [73]. Hence, with the same propor-
tional term, two objectives have to be met simultaneously: bias elimination

and noise filtering. Additionally, stable observer dynamics are required,
thus constraining the choice of the gain Ky.

This section aims at designing a P y observer that tries to minimize both

the bias and the variance of the estimates, while ensuring a stable behavior.
This is achieved by tuning the P y observer based on the zl measurements

that are available up to date, either off-line or on-line, through solving an
optimization problem numerically. Once the observer gains have been deter-
mined, they are used for estimation purposes, thus leading to a calibration-

like two-step approach.

In order to adapt the P y observer to time-varying disturbances, the tun-
ing step would have to be repeated for each value of dk or, since dk is not

measurable, each time a new zl measurement becomes available. However,
solving the proposed optimization problem repeatedly may not be feasible
in practice, due to the high computational load.
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In Section 3.2.1, the structure of the observer and some necessary As-

sumptions are presented. Section 3.2.2 discusses the convergence of this ob-
server. The possibility of eliminating bias is studied in Section 3.2.3, while
the tradeoff between bias and variance is analyzed in Section 3.2.4. Section

3.2.5 presents the tuning procedure for the P y observer, while Section 3.2.6
illustrates the performance of the observer. The results are discussed in

Section 3.2.7.

3.2.1 Observer structure

Considering a P y observer, the optimization problem (3.2) specialized to
the plant (3.1) reads:

min
Ky

J =
∑

l

E
(
(zl − ẑl)

T (zl − ẑl)
)

(3.8)

s.t. x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk), x̂0 = E (xo)

ŷk = Hx̂k,

ẑl = Lx̂lr

Note that the P y observer does not contain any terms based on zl measure-
ments.

In order to ease analysis of PE using the P y observer, the following is
assumed:

A.1 Constant, non-zero deterministic disturbance dk = d̄ �= 0;

A.2 The pair (A, H) is observable, that is, the state x is observable from

the output y.

3.2.2 Convergence of the error dynamics

From (3.1) and (3.8) and with Assumption A.1, the dynamics of the state
estimation error ex,k = xk − x̂k and of its mean over the noise, E (ex,k), can
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be written as:

ex,k+1 = xk+1 − x̂k+1 = A(xk − x̂k) − Ky(yk − ŷk) + d̄ + wk

= Acex,k + d̄ + wk − Kyvk (3.9)

E (ex,k+1) = AcE (ex,k) + d̄ (3.10)

With Assumption A.2, the poles of the observers can be placed arbitrar-
ily. There are several numerically efficient algorithms suitable for this task
[19, 49] (Section 2.3).

By having a constant disturbance and stable observer dynamics, the

mean estimation error reaches a steady-state value, E (ex,k) → ēx. Note
that the estimate x̂k does not reach steady state, only the error dynamics

converge to a constant value. The expression (3.5) is obtained for the esti-
mation error in the preferred variables. Section 3.2.3 considers whether it
is possible to eliminate the bias ēz. The effect of the noise terms in (3.9) is

discussed in Section 3.2.4.

3.2.3 Estimation bias

The impossibility to eliminating bias in all states

This subsection addresses the question of whether using the P y observer in

the presence of constant deterministic disturbances it is possible to elimi-
nate the bias in all states (rank(L) = n), that is for the case of standard

estimation (SE) discussed in Section 2.4.1.

Theorem 3.1 Consider the plant (3.1) and the observer (3.8). Assume

A.1 and A.2. If rank(L) = n, then there exists no finite Ky that leads to
ēz = 0.

Proof. A possible solution to ēz = 0 from (3.5) is (I −Ac)
−1 = 0, which

is equivalent to Ky → ∞. However, if a finite value of Ky is sought, ēz

cannot be pushed to zero since (I − Ac)
−1 and L are both of rank n. �

This theorem, though simple, illustrates important features of estimation
with deterministic disturbances. Firstly, the bias can never be eliminated
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in all states with a finite-gain P y observer. Secondly, high-gain observers

can be used to reduce the bias [17, 30, 26].

In the above theorem, dk = d̄ �= 0 from Assumption A.1, which is re-

quired to avoid the trivial case of no deterministic disturbance, for which
the theorem is falsified. Assumption A.2 is needed to ensure that the poles

of the observers can be placed arbitrarily and, thus, the observer is stable
and a steady state is reached (see Section 3.2.2).

The possibility of eliminating bias in preferred states

This subsection investigates the conditions under which the P y observer,

for the case of non-zero constant deterministic disturbances, can eliminate
the bias in given preferred variables.

Theorem 3.2 Consider the plant (3.1) and the observer (3.8). Assume A.1

and A.2. If rank(L) < n and rank

[
H
L

]
> rank(L), then, for each value of

d̄, there exists infinitely many values of Ky that lead to ēz = 0. Additionally,
for each value of d̄, a different set of Ky values leads to ēz = 0.

Proof.

If rank(L) < n, the matrix L has a null space. If, in addition,

rank

[
H
L

]
> rank(L), then there exists a (n × 1) dimensional vector q

in the null space of L such that Lq = 0m×1 and Hq �= 0p×1. This implies

that there exists at least one row in H, denoted by h, for which hq �= 0.

Equation (3.5) can be rewritten as:

ēz = LM−1d̄ = 0

with M = (I − A + KyH). Therefore M−1d̄ should be in the null space

of L to satisfy ēz = 0. For example, M−1d̄ = 1
γq, where γ ∈ �, will do.

Multiplying M−1d̄ = 1
γq by γM on the left gives:

KyHq = γd̄ − (I − A)q
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One of the solutions of the above equation is:

Ky =
[

1
hq(γd̄ − (I − A)q) 0

]
(3.11)

and infinitely many solutions can be obtained by changing γ. Besides, the

solution Ky depends on d̄, that is, for each d̄ a different set of Ky values
solves (3.5). �

Theorem 3.2 shows that, for an observable system, the effect of a con-

stant deterministic disturbance can be eliminated in the preferred variables
through an appropriate choice of the gains of a P y observer. However,

to eliminate the bias, it is not sufficient to have the classical observabil-
ity condition from the measured outputs. The effect of the deterministic

disturbances cannot be eliminated in the traditional way by ensuring the
stability of the error dynamics by placing the poles of Ac = A−KyH within

the unit circle. In addition to this condition, rank

[
H

L

]
> rank(L) has to

be satisfied. An intuitive interpretation of this condition is that, to influ-
ence the null space (M−1d) of the matrix L, it is necessary that the handles

(KyH) lie outside its range space.

3.2.4 Bias - variance tradeoff

This section analyzes in more detail the bias and the variance of the estima-

tion error in relation to the optimization problem (3.8). J can be rewritten
as:

J =
∑

l

E
(
(zl − ẑl)

T (zl − ẑl)
)

=
∑

l

tr E
(
L(xlr − x̂lr)(xlr − x̂lr)

TLT
)

=
∑

l

tr (LPlrL
T ) (3.12)

where Plr = E
(
(xlr − x̂lr)(xlr − x̂lr)

T
)

is the matrix of the mean-square
error and not the covariance of the estimation error:
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Plr = E
(
eT
x,lrex,lr

)
= tr E

(
ex,lre

T
x,lr

)
= (3.13)

= tr E
(
ēx,lrē

T
x,lr

)
+ tr E

(
(ex,lr − ēx,lr)(ex,lr − ēx,lr)

T
)

where ex,lr = xlr − x̂lr, ēx,lr is the error mean (or bias) that is non-zero in

the presence of deterministic disturbances, tr E
(
ēx,lrē

T
x,lr

)
is the bias term,

and E
(
(ex,lr − ēx,lr)(ex,lr − ēx,lr)

T
)

is the covariance caused by the stochastic

disturbance. Thus, the objective function (3.12) contains both a bias term,
due to the deterministic disturbances, and a covariance term, caused by the

stochastic noises.

A recursive equation for Pk will be derived. From (3.9), one can write:

E
(
ex,k+1e

T
x,k+1

)
= AcE

(
ex,ke

T
x,k

)
Ac

T + KyE
(
vkv

T
k

)
KyT + E

(
wkw

T
k

)
+ d̄d̄T + E

(
d̄eT

x,k

)
Ac

T + AcE
(
ex,kd̄

T
)

(3.14)

Since d̄ is a deterministic variable, E
(
d̄eT

x,k

)
= d̄E

(
eT
x,k

)
. Moreover,

considering that the time interval for which the objective function J is

evaluated is much larger than the dominant time constant of the observer,
E
(
eT
x,k

)
can be approximated by its steady-state value E

(
eT
x,k

) ≈ ēT
x .

Using the following notations:

R = E
(
vkv

T
k

)
, Q = E

(
wkw

T
k

)
, M = I − Ac

Q̄ = Q + KyRKyT + AcM
−1d̄d̄T + d̄d̄TM−TAc

T + d̄d̄T

(3.14) can be written in the following recursive form:

Pk+1 = AcPkAc
T + Q̄ (3.15)

Note that, due to Assumptions A.1 and A.2, Pk converges to P̄ , and (3.15)
becomes a discrete Lyapunov equation.

In (3.15), Q̄ contains the variance terms Q and KyRKyT along with
several bias terms (the terms containing d̄). The estimator gain Ky has to
be chosen so as to minimize not only the bias but also the variance in order
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to minimize tr(LPlrL
T ). Thus, (3.15) expresses a bias-variance tradeoff

that is due to the fact that the same estimator gains are used for both bias

elimination and noise filtering.

3.2.5 Calibration-based tuning

Sections 3.2.2 - 3.2.4 presented different objectives to be met by adjusting

the gain Ky:

1. The eigenvalues of the matrix Ac = A − KyH have to be within the
unit circle in order to ensure stability. Due to Assumption A.2, efficient

numerical algorithms, e.g. the KNVD algorithm (see Section 2.3.2
), can be used to achieve this objective. However, the optimal pole

location remains an open question.

2. The proportional gain Ky =
[

1
hq(γd̄ − (I − A)q) 0

]
ensures zero bias

in the preferred direction. This equation, however, involves the un-

known disturbance vector d̄. Additionally, the variance due to stochas-
tic noise is ignored. As a consequence, (3.11) cannot be used to com-
pute the gain Ky. This equation is just a mathematical guarantee

that, given the conditions of Theorem 3.2, the observer structure is
appropriate for the purpose of PE.

3. The scalar tr(LPlrL
T ) has to be minimized in order to achieve good

noise filtering in addition to bias reduction. This can be done by solving

the recursion (3.15), which again contains the unknown d̄. However,
the mathematical equivalent of tr(LPlrL

T ), E
(
(zl − ẑl)

T (zl − ẑl)
)
, can

be evaluated from experimental data, i.e. from the measurements of
zl.

Hence, only objectives 1 and 3 can be evaluated from the available in-
formation. In order to meet these objectives, the following optimization
problem is proposed:
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min
λ∗

1,...,λ
∗
n

J =
∑

l

E
(
(zl − ẑl)

T (zl − ẑl)
)

(3.16)

s.t. x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk), x̂0 = E (xo)

ŷk = Hx̂k,

ẑl = Lx̂lr

KNV D algorithm to compute Ky

|λ∗
i | < 1

where λ∗
i , i = 1, · · · , n are the desired eigenvalues of the matrix A−KyH.

The gains Ky are computed from λ∗ via the KNVD algorithm [49] (Section
2.3).

The above optimization problem does not guarantee bias elimination,

since it does not contain the condition Ky =
[

1
hq(γd̄ − (I − A)q) 0

]
that

cannot be evaluated in practice. But, even if this condition could be evalu-
ated, there would be no guarantee that it could be satisfied simultaneously

with the constraint |eig(A− KyH)| < 1. There are systems where actually
it is impossible to satisfy the two conditions simultaneously. Hence, for ar-

bitrary systems, complete bias elimination and stability cannot be ensured
at the same time. However, there are exceptions as shown in the illustration

considered in the next section.

The resulting gains minimize the objective function J , which is the sum

of bias and variance terms and, consequently, express the compromise be-
tween bias elimination and variance minimization in the preferred directions.

Stability is guaranteed by imposing the constraint |λ∗
i | < 1.

Note that the optimization problem (3.8) could have been extended with

the constraint |eig(A − KyH)| < 1 without changing the decision variable
from Ky to λ∗. However, the feasibility of the solution, i.e. a value of Ky

that satisfies the constraint |eig(A−KyH)| < 1, would not have been guar-
anteed by the KNVD algorithm, as this is the case in optimization problem

(3.16). Nevertheless, using Ky as the decision variable is computationally
less expensive, and could be preferred to (3.16) in some situations, as shown
in the next section.
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In order to determine the observer gains, a numerical optimization is

performed based on the available infrequent measurements of zl. Thus,
preferential estimation consists of two steps: (a) the tuning step, where
(3.16) is solved; and (b) the estimation step, where the gains obtained from

step (a) are used for estimating ẑ. The tuning step can be carried out off-
line, based on measurements available prior to the implementation of the

estimator. This approach is analogous to calibration that is used extensively
in the field of chemometrics [55].

Unfortunately, the P y observer is not able to follow time-varying deter-
ministic disturbances. Optimization problem (3.16) has a different solution
for each disturbance d̄, as was indicated in Theorem 3.2. Thus, for the P y

observer to work properly, the disturbance d̄ is required to be the same in
both the tuning and estimation steps.

3.2.6 Illustration

The aim of this section is to illustrate the performance of the P y observer
for several types of deterministic disturbances: constant, piecewise-constant

and continuously varying. Several tuning procedures are compared. The
most effective one consists of solving Optimization problem (3.8) extended

with the constraint |eig(A − KyH)| < 1. For time-varying disturbances,
retuning is required for each newly available measurement of z. However,

there is no guarantee that retuning is able to cope with any time-varying
disturbance. Several simulation scenarios are considered, as detailed in the
example below.

In order to quantify the performance of the observer, the same perfor-
mance measures as in Section 2.7 are computed based on Monte-Carlo sim-

ulations. Consider the LTI discrete-time plant (3.1) specialized to a 4-
dimensional system with A, B, xo, H = H1, the number of iterations, L, r
and θ as in the dual-rate system in Section 2.7, and with:
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Table 3.1: Simulation scenarios considered for the P y observer.
Simulation 6 - tuning, 7 - test, 8 - test, piecewise- 9 -test, time-

constant disturb. constant disturb. constant disturb. varying disturb.

dk d̄ d̄ d̃ ΔAxk + uexo,k

x̂0 xtune,o xtest,o xtest,o xtest,o

uk utune,k utest,k utest,k utest,k

wk → N(0, Q), vk → N(0, R), νl → N(0, Z)

Q =

⎡
⎢⎢⎣

2 0 0 0
0 3 0 0

0 0 5 0
0 0 0 3

⎤
⎥⎥⎦ , R = 2, Z =

[
3 0

0 5

]

The simulation scenarios presented in Table 3.1 are considered, with:

d̄ =
[

3 6 4.5 0.6
]T

d̃ =

{
d̄1 =

[
3 6 4.5 0.6

]T
for k ∈ [0, 99]

d̄2 =
[

3.9 −6 −6 −2.4
]T

for k ∈ [100, 200]

ΔA =

⎡
⎢⎢⎣

−0.0150 0.0450 −0.0150 0.0150
0.0300 0.2100 −0.0450 0.0300
−0.0150 −0.0300 0.1500 −0.0750

0.0075 0 −0.0750 0.1500

⎤
⎥⎥⎦

xtune,o =
[

20 −30 50 −30
]T

, xtest,o = −xtune,o

uexo,k =
[ −0.13 0.2 0.5 0.08

]T
(−30 + 2.5(0.1k)1.7)

utune,k =
0.5(0.1k)2.2 + 20 sin 0.05k − 20

e0.005k
− 100

utest,k = −0.005k2 − 16 sin 0.1k + 200

Note that the input sequence and the initial conditions are different for
observer tuning and performance testing. Note also that the pairs (A, H)
and (A, L) are both observable.
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Simulation 6 – Observer tuning

Several tuning methods are available for determining the gains of a P y

observer, resulting in the following observers:

• P y − λ

Optimization problem (3.16) is solved based on data generated by the

first simulation in Table 3.1. To have the minimal number of decision
variables, only real eigenvalues are allowed. In this way, there are 4
decision variables instead of 8. Additionally, the KNVD algorithm

requires that the multiplicity of an eigenvalue be at most the rank of
H, which is 1. Hence, the constraint |λ∗

i | < |λ∗
i+1| is added, in order

to ensure 4 different eigenvalues. The following optimal solution is
obtained:

λ∗
λ =

[
2.8486 · 10−1 3.3486 · 10−1 6.1666 · 10−1 8.3709 · 10−1

]T
• P y − Ky

As mentioned in Section 3.2.5, an alternative to (3.16) is to extend the
optimization problem (3.8) with the constraint |eig(A − KyH)| < 1:

min
Ky

J =
∑

l

E
(
(zl − ẑl)

T (zl − ẑl)
)

(3.17)

s.t. x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk), x̂0 = E (xo)

ŷk = Hx̂k,

ẑl = Lx̂lr

|eig(A − KyH)| < 1

without the guarantee of feasibility. In the above problem, complex
eigenvalues can also be reached by using the same number of decision

variables as for the P y − λ tuning. For the example considered here,
Optimization problem (3.17) is feasible, and the solution found leads
to the closed-loop eigenvalues:
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λ∗
Ky =

[
7.3540 · 10−1 ± 1.1501 · 10−1i 8.7789 · 10−1 7.8570 · 10−1

]T
• P y − Th

The disturbance d̄ is known in simulation. Thus, the observer gains
can be determined from the theoretical result (3.11), as discussed in

Section 3.2.5. Since the parameter γ in (3.11) can be assigned freely,
the following optimization problem is proposed to achieve both stable

behavior and minimum variance while ensuring bias elimination:

min
γ

J =
∑

l

E
(
(zl − ẑl)

T (zl − ẑl)
)

(3.18)

s.t. x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk), x̂0 = E (xo)

ŷk = Hx̂k,

ẑl = Lx̂lr

Ky =
1

hq
(γd̄ − (I − A)q)

|eig(A − KyH)| < 1

where q =
[

1 0 0 0
]T

and h = H.

This optimization problem is feasible and the optimal γ value yields
the closed-loop eigenvalues:

λ∗
Th =

[
7.1760 · 10−1 ± 1.1295 · 10−1i 8.5049 · 10−1 ± 2.3541 · 10−2i

]T
In this particular example, both bias elimination and satisfactory noise

filtering can be ensured through assigning γ, that is, through assigning
the observer gains.

The performance of the observers tuned above are compared to a bench-

mark proportional observer, the Kalman filter. To ensure a fair compar-
ison, both the frequent y and the infrequent z measurements are used in
the Kalman filter. Two structures are tested, which differ in the use of
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Table 3.2: Performance of various P y observers for Simulation 6 in Table 3.1 for k ∈
[60, 200] over 10 realizations.

KF-ZOH P y − Th P y − λ P y − Ky

(2.24) - (2.25) (3.18) (3.16) (3.17)

ē

⎡
⎢⎢⎣

7.4563 · 102

1.3001 · 103

9.7782 · 102

1.2417 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.6903 · 103

1.2572 · 102

1.1682 · 102

1.0863 · 102

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4.0701 · 102

2.5592 · 102

4.2214 · 102

7.1399 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.5361 · 103

1.2151 · 102

1.1336 · 102

3.2733 · 103

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

5.1690 · 102

1.3956 · 103

2.7285 · 103

1.2685 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.9485 · 103

1.1337 · 103

1.6430 · 103

1.2741 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.7555 · 102

1.7447 · 103

3.2990 · 103

1.0800 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.8687 · 103

1.1321 · 103

1.6401 · 103

1.5917 · 103

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

4.4723 · 103

1.4024 · 104

9.8097 · 103

1.2266 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.3009 · 105

1.3052 · 103

1.7880 · 103

1.4111 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.9031 · 103

2.3862 · 103

4.8105 · 103

3.7069 · 105

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.1782 · 105

1.2919 · 103

1.7803 · 103

7.7169 · 104

⎤
⎥⎥⎦

ΣΠe 4.0572 · 104 2.3459 · 105 3.7979 · 105 2.9806 · 105

the infrequent measurements. In the first filter, the measurements are used
for fast time-scale correction using a ZOH extrapolation (Section 2.6.1),

while in the second filter the measurements are used for slow time-scale
correction via a switching structure (Section 2.6.2). The performance of the

KF-ZOH and KF-Switch are presented in Figure 3.1. As can be observed,
the KF-ZOH is performing better, which is clearly seen in x2. Note that the

observers give similar estimates for the time instants when the z measure-
ments become available. However, at the fast time scale, the prediction of
the KF-ZOH is much smoother. In order to account for the presence of the

deterministic disturbance, the KF-ZOH uses a frequent correction based on
the ZOH extrapolations of the z measurements, i.e. frequent but small cor-

rections. In contrast, the infrequent corrections in the KF-Switch result in
important deviations in-between the z measurements that, in turn, require

more aggressive correction when the z measurements become available. It
is interesting to note that, when using the KF-Integral-Switch observer in

Section 2.7, these aggressive corrections were not present at the time in-
stants when the z measurements became available. This can be explained
by the use of the integral term αk that actually ensures frequent correction

of the states, even if this term is updated only infrequently.

The simulation results are presented in Table 3.2. The best performance
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Figure 3.1: Comparison of the KF-ZOH and KF-Switch observers in Simulation 6 for
one realization. Plant – dash-dotted line (black); KF-Switch observer – solid line (blue);
KF-ZOH observer – dashed line (red).

in the preferred variables x2 and x3 is given by the observer P y −Ky (com-

pare the green numbers). In this particular case, the P y − Th observer
also performs well, being able to eliminate bias, reduce variance and ensure

stable dynamics (compare the blue and red numbers). The observer P y −λ
suffers from the restricted choice of poles, that is from the fact that only

real eigenvalues are allowed (compare the green numbers). The benchmark
observer, the Kalman filter with zero-order hold extrapolation (KF-ZOH),
does not properly take into account the deterministic disturbances. Even

though the KF-ZOH observer uses the z measurements, which provide in-
formation on the deterministic disturbances, the observer is not tuned for

eliminating the effect of these disturbances. As a result, the KF-ZOH ob-
server yields a higher bias (compare the blue numbers). Figure 3.2 shows

the better performance in the preferred variables of the P y − Ky observer
compared to the KF-ZOH. The accuracy of the other states, however, is
much worse in the case of the P y − Ky, since it is not considered at all.
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Figure 3.2: Illustration of the best P y observer on Simulation 6 for k ∈ [0, 200] for one
realization (x2 and x3 are the preferred variables). Plant – dash-dotted line (black); KF-
ZOH observer – solid line (blue); P y − Ky observer – dashed line (red).

Simulation 7 – Test with the same disturbances as for tuning

The second simulation is carried out using the previously tuned P y −Ky

observer. The bias is reduced compared to the KF-ZOH in this case as well,
as illustrated in Table 3.3 with blue numbers. In spite of different operating

conditions, the P y observer performs the same way as in Simulation 6, since
the same value of the deterministic disturbance is used in Simulations 6 and

7.

Simulation 8 – Test with piecewise-constant disturbances

The same P y − Ky observer as in Simulation 7 is used for piecewise-
constant disturbances (Figure 3.3). The observer is able to eliminate the
bias when the value of the disturbance is the same as in the tuning data set.

However, the observer is not able to compensate for bias caused by another
disturbance value.

Hence, retuning of the observer is required. Once the disturbance changes
at k = 100, Optimization (3.17) is repeated each time a new measurement
of z becomes available, using all the z measurements available from iteration
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Table 3.3: Performance of the KF-ZOH and P y − Ky observers in Simulation 7 for k ∈
[60, 200] over 10 realizations.

KF-ZOH P y − Ky

(2.24) - (2.25) (3.17)

ē

⎡
⎢⎢⎣

6.1937 · 102

4.9663 · 102

3.7551 · 102

1.0734 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.4865 · 103

9.0314 · 10
1.0859 · 102

3.2442 · 103

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

4.9065 · 102

1.5630 · 103

2.7567 · 103

1.2163 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.7960 · 103

1.1450 · 103

1.6440 · 103

1.3582 · 103

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

3.2550 · 103

4.1234 · 103

4.4919 · 103

9.4639 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.1386 · 105

1.2322 · 103

1.7886 · 103

7.5598 · 104

⎤
⎥⎥⎦

ΣΠe 2.1334 · 104 2.9248 · 105
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Figure 3.3: Comparison of P y − Ky and the retuned P y − Ky observer in Simulation 8
for one realization. Plant – dash-dotted line (black); P y − Ky observer – solid line (blue);
P y − Ky − retuned observer – dashed line (red).
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Table 3.4: Performance of the KF-ZOH, P y − Ky and retuned P y − Ky observers in
Simulation 8 for k ∈ [0, 200] over 10 realizations.

KF-ZOH P y − Ky P y − Ky − retuned
(2.24) - (2.25) (3.17) (3.17)

ē

⎡
⎢⎢⎣

8.6036 · 102

3.5769 · 103

2.1308 · 103

2.6927 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.5314 · 103

3.5975 · 103

3.2439 · 103

3.6073 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.9539 · 103

1.7577 · 103

1.7405 · 103

8.4165 · 103

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

6.9706 · 102

1.9667 · 103

3.2669 · 103

1.7147 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3.1519 · 103

1.7907 · 103

2.1899 · 103

2.0380 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3.6689 · 103

2.6298 · 103

3.1938 · 103

1.5733 · 104

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

7.9933 · 103

1.8146 · 105

5.6580 · 104

6.1420 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.7828 · 105

1.1608 · 105

1.1626 · 105

8.6851 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.9531 · 105

5.4422 · 104

7.4100 · 104

5.5980 · 105

⎤
⎥⎥⎦

ΣΠe 3.0745 · 105 5.9747 · 105 9.8363 · 105

k = 100 onwards (Figure 3.3). In this way, the estimator is able to adapt to

the new disturbance and perform comparably to the KF-ZOH (Table 3.4 -
compare the blue numbers). Note that here the performance over the entire

time interval is compared, since both the disturbance and the observer gain
vary with time. The disadvantage of retuning is that it might not be feasible

in real-time applications due to the high computational load.

Simulation 9 – Test with time-varying disturbances caused by
parametric errors and an exogenous input

Figure 3.4 shows that the retuned P y − Ky observer does not improve

the accuracy in x3 compared to the KF-ZOH. Hence, retuning cannot cope
with arbitrary varying disturbances, even when it is feasible to repeat the

optimization. Nevertheless, it can improve the estimation error, which in
this case is visible in the accuracy of x2. Note that the peak around iteration
50 is due to the optimization being caught in a local minimum.

3.2.7 Discussion

An analysis of the bias and variance properties of the P y observer for PE
has been performed. However, the resulting expressions cannot be used
for observer tuning since they involve the disturbance vector d̄, which is
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Figure 3.4: Comparison of KF-ZOH and retuned P y − Ky observer in Simulation 9 for
one realization. Plant – dash-dotted line (black); KF-ZOH observer – solid line (blue);
P y − Ky − retuned observer – dashed line (red).

unknown. Nevertheless, these equations give considerable insight into the

problem of PE using the P y observer. It has been shown that, in principle,
it is possible to eliminate bias in the preferred variables by taking into ac-
count only the mean of the error, i.e. neglecting the stochastic disturbances

(Section 3.2.3). However, when such disturbances are present, the gains Ky

have to cope with both bias elimination and noise filtering simultaneously.

Since there is no theoretical guarantee that these two objectives can be
satisfied simultaneously, in general, there is a bias-variance compromise, as

explained in Section 3.2.4. To solve this compromise while respecting the
stability constraint of the observer, optimization problem (3.16) has been

proposed. It is shown in Section 3.2.6 that, from an implementation point
of view, optimization problem (3.17) is more appropriate.

To derive the aformentioned analytical results, several Assumptions were
introduced in Section 3.2.1. Assumption A.2 on system observability is the

standard Assumption for implementing a proportional observer. However,
Assumption A.1 that considers constant deterministic disturbances is a re-
strictive one. Hence, for the chosen observer structure P y, the tuning pro-
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cedure proposed in Section 3.2.5 would have to be repeated for each value of

dk. Since numerical optimization is time consuming, continuous retuning of
the observer might not be feasible in practice. Convergence of the continu-
ously retuned P y observer is not guaranteed either. Moreover, for arbitrary

disturbances, the performance of a retuned P y observer is not significantly
better than that of a Kalman filter using the same amount of information,

as shown in Section 3.2.6 (see the accuracy of x3 given by the retuned
P y − Ky observer in Simulation 9). Therefore, the applicability of the P y

observer tuned in the preferential way is limited to constant disturbance d̄
or to piecewise-constant disturbance d̃ at best. This motivates the use of an

observer structure with an integral term that can follow the changes in the
deterministic disturbances. Such an observer will be discussed in the next
chapter.
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Chapter 4

Integral observer for preferential
estimation

Integral observers are proposed in the literature to eliminate the effect of
deterministic disturbances [72, 85]. This chapter studies the conditions
under which they can be used successfully for PE purposes.

The main result of this chapter is to show that integral observers can elim-
inate bias in the preferred variables for any value of a piecewise-constant

disturbance vector without having to be retuned. Due to the integral term
based on the zl measurements, the estimation error in the preferred variables
converges to zero. The role of the observer gains is to ensure convergence.

This makes these observers suitable for practical implementation and rep-
resents a clear advantage over the P y observer discussed in Section 3.

However, the price to pay for this capability is a more sophisticated
structure. The integral observer proposed in this section is a dual-rate ob-
server with a P y observer based on the frequent yk measurements, and a

proportional and an integral term (P zIz) based on the infrequent zl mea-
surements. The dynamics of this structure are studied at the slow time

scale corresponding to the availability of the zl measurements.

In the proposed structure, the condition of bias elimination is the asymp-
totic stability of the observer structure. Stability can be guaranteed by an

appropriate tuning procedure, given the model is observable from the fast
measurements. The tuning parameters can be chosen to reduce the variance.

Therefore, there is no bias-variance compromise in the integral observer.

Section 4.1 presents the structure of the P yP zIz observer. Section 4.3
discusses its convergence. The possibility of eliminating bias is studied

69
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in Section 4.4. Section 4.5 presents the tuning procedure for the P yP zIz

observer. Section 4.6 illustrates the performance of the observer, while a
final discussion is included in Section 4.7.

4.1 Observer structure PyP zIz

Consider the plant (3.1) with dk = d̃:

xk+1 = Axk + Buk + d̃ + wk, x0 = xo (4.1)

yk = Hxk + vk

zl = Lxlr + νl

with k = lr used to indicate the time of the infrequent z measurements.

Consider a P yP zIz observer based on the yk and zl measurements, re-
spectively (see Section 3.1.2). The optimization problem (3.2) specialized

to the plant (4.1) gives:

min
Ky,Kβ ,Kz,x,Kz,β

J =
∑

l

E
(
(zl − ẑl)

T (zl − ẑl)
)

(4.2)

s.t. x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk) + Kββk + ckK
z,x(zl − ẑl),

x̂0 = E (xo)

βk+1 = βk + ckK
z,β(zl − ẑl), β0 = 0

ŷk = Hx̂k,

ẑl = Lx̂lr

ck =

{
1 if k+r−θ

r
∈ N

0 otherwise

The role of the integral states β is to ensure asymptotic convergence of
ẑ to z, i.e. bias elimination in the vector of preferred variables. Note that

the integral states βk are updated only when the zl measurement, delayed
by θ small sampling periods (Figure 2.1), is available. This update scheme
is implemented via the switching coefficient ck.

Since measurements are available at two time scales, the problem (4.2)
represents a dual-rate estimation scheme. The dynamic behavior of the
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system formed by the plant (4.1) and the P yP zIz observer from (4.2) is

studied at the slow time scale corresponding to the index l, i.e. the quanti-
ties available at the fast sampling are only considered at the instants k = lr,
l = 0, 1, 2, . . . .

For the study of the P yP zIz observer the following Assumptions are
introduced:

A.2 The pair (A, H) is observable, that is, the state x is observable from

the output y;

A.3 Piecewise-constant, deterministic disturbance

dk = d̃ =
{
d̄1, d̄2, . . . , d̄j

}
as defined in (2.10), where each constant piece lasts for a time interval
kjtk 	 0;

A.4 kjtk is much larger than the dominant time constant of the observer.

The above Assumptions are needed in order to prove the stability of the
observer in Theorem 4.1 and to ensure bias elimination for each constant
piece of d̃ in Theorem 4.2.

4.2 Observability from the z measurements

Before discussing the convergence conditions of the error dynamics using the
P yP zIz observer, the observability from z measurements of both a single-

rate and a dual-rate system using a P y observer is discussed. This will be
needed in the proof of Theorem 4.1.

4.2.1 Observability of a single-rate system (r = 1)

from z

Consider the single-rate system with a proportional observer based on y
measurements:
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E (ex,k+1) = AcE (ex,k) + d̃ (4.3)

E (ez,k) = LE (ex,k)

where Ac = A − KyH. This is the ’open-loop’ system on which observers
based on z measurements can be applied. In order to ease the mathematical

transformations, it is first considered that the z and y measurements are
available at the same rate, i.e. r = 1. Consider the ’closed-loop’ system
with a P z term:

E (ex,k+1) = AcE (ex,k) − Kz,xLE (ex,k) + d̃ (4.4)

where Kz,x is the gain of the term proportional to the z error.

Stabilization of (4.4) requires that the pair (Ac, L) be observable. Ac-

cording to Assumption A.2, the eigenvalues of the matrix Ac can be chosen
arbitrarily. This implies that in the (nm × n)-dimensional observability

matrix of the pair (Ac, L):

O =

⎡
⎢⎢⎢⎢⎢⎣

L

LAc

LA2
c

...
LAn−1

c

⎤
⎥⎥⎥⎥⎥⎦ (4.5)

it is possible to find an (n × n)-dimensional submatrix OS , whose determi-

nant is a finite-order polynomial in Ky. Hence, by choosing Ky it is possible
to have det(OS) �= 0 for any non-zero L.

4.2.2 Observability of a dual-rate system (r > 1) from

z

Consider the system (4.3) in a dual-rate scenario by considering infrequent

z measurements. The dynamics of the system are studied at the slow time
scale, without considering measurement delays. In order to find the general
expression, first (4.3) is rewritten at the l = 1 and l = 2 time instants. For
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this, consider the corresponding iterations at the fast time scale k ∈ [r, 2r−1]

(see Figure 2.1):

• k = r

E (ex,r+1) = AcE (ex,r) + d̃ (4.6)

• k = r + 1

E (ex,r+2) = AcE (ex,r+1) + d̃

Substituting E (ex,r+1) from (4.6), results in:

E (ex,r+2) = A2
cE (ex,r) + Acd̃ + d̃ (4.7)

• k = 2r − 1

E (ex,2r) = AcE (ex,2r−1) + d̃

which can be rewritten as a function of E (ex,r)

E (ex,2r) = Ar
cE (ex,r) + Ar−1

c d̃ + · · · + d̃

= Ar
cE (ex,r) +

r−1∑
i=0

Ai
cd̃ (4.8)

Thus, from (4.8), the dynamics of the system (4.3) at the slow time scale

can be written as:

E
(
ex,(l+1)r

)
= Ar

cE (ex,lr) +
r−1∑
i=0

Ai
cd̃ (4.9)

E (ez,lr) = LE (ex,lr)

By using a P z observer, the following error dynamics are obtained:

E
(
ex,(l+1)r

)
= Ar

cE (ex,lr) − Kz,xLE (ex,lr) +

r−1∑
i=0

Ai
cd̃ (4.10)
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In order to guarantee the convergence of these error dynamics, the pair

(Ar
c, L) must be observable. Following the same reasoning as for the single-

rate system, the observability matrix of the pair (Ar
c, L),

Or =

⎡
⎢⎢⎢⎢⎢⎣

L

LAr
c

LA2r
c

...

LA
(n−1)r
c

⎤
⎥⎥⎥⎥⎥⎦ (4.11)

can be made full rank by an appropriate choice of the Ky matrix.

In other words, both O and Or have an (n × n)-dimensional submatrix
whose determinant is a finite-order polynomial in Ky. These polynomials

have a finite number of real roots. Since the elements of Ky are free decision
variables in the infinite set �, it is always possible to find a value of Ky

that is not a solution of either det(OS) = 0 or det(Or
S) = 0. Hence, the

observability of both the single-rate system and its dual-rate counterpart
can be ensured simultaneously.

4.3 Convergence of the error dynamics

Using Assumption A.3, the dynamics of the error ex,lr = xlr− x̂lr and of the
integral state βlr, l = 1, 2, · · · , at the slow time scale, can be obtained from

(4.1) and (4.2) as:

ex,(l+1)r =

(
Ar

c − Ar−1−θ
c Kz,xL −

r−2−θ∑
i=0

Ai
cK

βKz,βL

)
ex,lr (4.12)

−
r−1∑
i=0

Ai
cK

ββlr +
r−1∑
i=0

Ai
c

(
d̃ + w(l+1)r−(i+1) − Kyv(l+1)r−(i+1)

)

−
r−2−θ∑

i=0

Ai
cK

βLνl

β(l+1)r = βlr + Kz,βLex,lr + νl (4.13)
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Considering the fact that w, v and ν are zero-mean, the mean of the

error over the noise is:

E
(
ex,(l+1)r

)
=

(
Ar

c − Ar−1−θ
c Kz,xL −

r−2−θ∑
i=0

Ai
cK

βKz,βL

)
E (ex,lr)

−
r−1∑
i=0

Ai
cK

βE (βlr) +
r−1∑
i=0

Ai
cd̃ (4.14)

E
(
β(l+1)r

)
= E (βlr) + Kz,βLE (ex,lr) (4.15)

In matrix form, (4.14) reads:

E
(
e(l+1)r

)
= (A−KH)E (elr) + U(d̃) (4.16)

with

E (elr) =

[
E (ex,lr)
E (βlr)

]
, A =

⎡
⎢⎣ Ar

c −
r−1∑
i=0

Ai
cK

β

0m×n Im

⎤
⎥⎦

K =

⎡
⎢⎣ −Ar−1−θ

c Kz,x −
r−2−θ∑

i=0

Ai
cK

βKz,β

−Kz,β

⎤
⎥⎦

H =
[

L 0m×m

]
, U =

⎡
⎢⎣

r−1∑
i=0

Ai
cd̃

0m×1

⎤
⎥⎦

Note that in the above expression the measurement delay is taken into
account explicitly, i.e. no Assumption is made in this respect. By using the
notation:
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P =

⎡
⎢⎣ −Ar−1−θ

c −
r−2−θ∑

i=0

Ai
cK

β

0 −Im

⎤
⎥⎦

Kz =

[
Kz,x

Kz,β

]

K simplifies to:

K = PKz (4.17)

The error dynamics (4.16) are in the usual form of a linear estimator,
since choosing K is equivalent to choosing Kz, due to the fact that P is a

full-rank matrix by construction. The condition for these error dynamics
to converge is the observability of the pair (A,H). Note that this condition

is the dual-rate equivalent of the integral observability condition in Section
2.4.3. Since the condition rank(H) = n cannot be satisfied due to the
definition of the problem PE (m < n), a different condition for guaranteeing

the observability of this pair is given in Theorem 4.1. This condition is based
on the dual-rate observability discussed in Section 4.2.

Theorem 4.1 Assumptions A.2 to A.4 hold. The eigenvalues of (A−KH)

in (4.16) can be placed anywhere within the unit circle if and only if the pair
(Ar

c, L) is observable.

Proof. The eigenvalues of (A − KH) can be placed arbitrarily if and
only if the pair (A,H) is observable. The observability matrix reads:

O =

⎡
⎢⎢⎢⎢⎢⎣

H
HA
HA2

...
HAn+m−1

⎤
⎥⎥⎥⎥⎥⎦ =
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L 0

LAr
c −L

r−1∑
i=0

Ai
cK

β

LA2r
c −L (Ar

c + I)

r−1∑
i=0

Ai
cK

β

LA3r
c −L

(
A2r

c + Ar
c + I

) r−1∑
i=0

Ai
cK

β

...
...

LA
(n+m−1)r
c −L

(
A

(n+m−2)r
c + · · · + Ar

c + I
) r−1∑

i=0

Ai
cK

β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The rank of O must be n + m for the pair (A,H) to be observable. The
(n+m)m×n+m matrix O can be rewritten as the product of two matrices

of dimensions (n + m)m × n + 2m and n + 2m × n + m, respectively:

O = (4.18)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Im 0

L 0 −L

r−1∑
i=0

Ai
cK

β

LAr
c 0 −L (Ar

c + I)
r−1∑
i=0

Ai
cK

β

LA2r
c 0 −L

(
A2r

c + Ar
c + I

) r−1∑
i=0

Ai
cK

β

...
...

...

LA
(n+m−2)r
c 0 −L

(
A

(n+m−2)r
c + · · · + Ar

c + I
) r−1∑

i=0

Ai
cK

β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ Ar

c 0

L 0
0 Im

⎤
⎦

It can be observed that the second matrix is of rank (n + m) since the
rank of Ar

c is n. Note that rank(Ar
c) = n can be guaranteed from Assump-
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tion A.2, which ensures that arbitrary eigenvalues for the matrix Ac (and

consequently Ar
c) can be chosen. For the product of the two matrices from

(4.18) to be of rank (n + m), it is sufficient to show that the intersection of
the null space of the first matrix and the range space of the second matrix

is the empty set. In other words, it has to be shown that linear combina-
tions of the columns of the second matrix cannot be null vectors of the first

matrix.

To show that a given vector is not a null vector of the first matrix in
(4.18):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Im 0

L 0 −L
r−1∑
i=0

Ai
cK

β

LAr
c 0 −L (Ar

c + I)

r−1∑
i=0

Ai
cK

β

LA2r
c 0 −L

(
A2r

c + Ar
c + I

) r−1∑
i=0

Ai
cK

β

...
...

...

LA
(n+m−2)r
c 0 −L

(
A

(n+m−2)r
c + · · · + Ar

c + I
) r−1∑

i=0

Ai
cK

β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

it is sufficient to find one row in M whose product with that vector is
non-zero.

Combining linearly the columns of the n + 2m × m matrix

⎡
⎣ 0

0

Im

⎤
⎦ with

an n + 2m × m dimensional subset

⎡
⎣ Ac,S

LS

0

⎤
⎦ of

⎡
⎣ Ar

c

L
0

⎤
⎦ leads to

V =

⎡
⎣ γ1Ac,S

γ1LS

γ2Im

⎤
⎦

where γ1, γ2 ∈ � are arbitrary constants.
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• For γ2 �= 0, it is possible to choose Kβ such that this matrix is nonsin-
gular for any γ1.

Given Assumption A.2, it is possible to have rank(Ac) =

rank

(
r−1∑
i=0

Ai
c

)
= n and rank(Ac,S) = rank(LAc,S) = m.

Let Kβ =

(
r−1∑
i=0

Ai
c

)−1

Ac,S.

Multiplying the second row of M with V gives:

γ1LAc,S − γ2L

r−1∑
i=0

Ai
cK

β = γ1LAc,S − γ2LAc,S = (γ1 − γ2)LAc,S

Observe that for ∀ γ1 �= γ2 the above product is full rank: rank((γ1 −
γ2)LAc,S) = m.

Multiplying the third row of M with V gives:

γ1LAr
cAc,S − γ2L (Ar

c + I)
r−1∑
i=0

Ai
cK

β = γ1LAr
cAc,S − γ2L (Ar

c + I)Ac,S

In the case γ1 = γ2 = γ, the above expression becomes:

−γLAc,S

which is also of rank m. Hence, for ∀ γ1, γ2 ∈ � there is a row in M

that multiplied by V yields a rank m matrix, given that the same Ac,S

is used both in V and Kβ.

If a different subset of Ar
c is considered:

V ′ =

⎡
⎣ γ1A

′
c,S

γ1L
′
S

γ2Im

⎤
⎦
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multiplication with the second row of M gives:

γ1LA′
c,S − γ2L

r−1∑
i=0

Ai
cK

β = γ1LA′
c,S − γ2LAc,S = γ2

(
γ1

γ2
LA′

c,S − LAc,S

)

By using the notation γ3 = γ1

γ2
and since γ2 �= 0 (γ2 = 0 is a different

case, which is discussed below), the determinant of the above expression
becomes an m-order polynomial in γ3.

Similarly, multiplying the third row of M with V ′ will lead to another
expression whose determinant is an m-order polynomial in γ3. Since,
Ar

c and LAc,S are full rank, this polynomial will be different from that

resulting from the multiplication of the second row of M with V ′. Be-
sides, the other rows of the matrix M can also be used to show that V ′

is not a null vector. Overall, there are (n+m−2) different polynomials
of order m in γ3, which certainly cannot be made simultaneously zero.

Hence, neither V nor V ′ are null vectors of M with the choice of Kβ =(
r−1∑
i=0

Ai
c

)−1

Ac,S. Note that the choice of Kβ is not unique. The above

choice simplifies the proof considerably. However, other choices might

also lead to an observable pair (A,H).

• For γ2 = 0, Kβ will no longer be a handle. In this case, however, it

is sufficient to show that the column

⎡
⎣ Ar

c

L
0

⎤
⎦ is not a null vector of

the first matrix in (4.18). For this, multiply the first matrix with the

column

⎡
⎣ Ar

c

L
0

⎤
⎦. The result is:
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⎢⎢⎢⎢⎢⎢⎢⎣

L

LAr
c

LA2r
c

LA3r
c

...

LA
(m+n−1)r
c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

which contains the observability matrix of the pair

(Ar
c, L). Hence, this matrix is of full-column rank if the pair (Ar

c, L)

is observable, which is assumed to be the case. So,

⎡
⎣ Ar

c

L

0

⎤
⎦ does not

belong to the null space of the first matrix.

�

The following observations can be made:

• The condition rank(H) = n is not required, in contrast to the condi-
tion for integral observability in Section 2.4. This can be explained by

the non-redundant structure of the integral observer proposed in this
chapter. In the P yP zIz observer, only as many integrators are used as

there are preferred variables, in contrast to the integral observer dis-
cussed in Section 2.4, where n integrators are used even if less variables
are measured.

• The P yP zIz observer contains additional degrees of freedom compared
to the integral observer of Section 2.4. These are the gains Kβ and

Ky that are both used to ensure observability of the pair (A,H): the

gain Kβ must be chosen as Kβ =

(
r−1∑
i=0

Ai
c

)−1

Ac,S, while the gain Ky

has to ensure observability of the pair (Ar
c, L), for the case where Kβ

cannot be used as a handle.

4.4 Estimation bias

The objective of this section is to show that, for constant or piecewise-
constant non-zero deterministic disturbances, the mean of the estimation
error for the preferred variables converges asymptotically to zero.
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Theorem 4.2 Consider the error dynamics (4.16) and the Assumptions

A.2 to A.4. The mean of the steady-state error in z vanishes for any value
of the piecewise-constant disturbances d̃ within the interval Δtj if and only
if (A−KH) is Schur stable.

Proof.

For piecewise-constant deterministic disturbances considered (Assump-

tion A.4), the term U(d̃) in (4.16) is constant in an interval kjtk, and plays
the role of a constant exogenous input. Since kjtk is sufficiently long (As-

sumption A.4), steady state is reached if and only if the system is stable,
i.e. the matrix (A−KH) has all eigenvalues within the unit circle.

At steady state, (4.16) gives:

0 = Kz,βLēx (4.19)

The fact that the matrix (A−KH) is Schur stable guarantees that Kz,β

is full rank (otherwise there would be at least one eigenvalue at 1). This

means that the proposed observer leads to Lēx = 0, i.e. to a zero-mean
steady-state error in z, for any value of d̃. �

Remark. From Theorem 4.1, (A − KH) can be made Schur stable if

the pair (Ar
c, L) is observable. This observability condition can always be

satisfied by an appropriate choice of the gain matrix Ky, given Assumption

A.2 (see Section 4.2).

4.5 Calibration-based tuning

Theorem 4.2 shows that, for any value of d̃, bias in z can be eliminated

provided the matrix (A − KH) is stable. A procedure for constructing a
stable matrix (A−KH) can be inferred from the proof of Theorem 4.1. The

procedure involves the following steps:

1. Choose Ky.

2. Check the observability of the pair (Ar
c, L). If it is not observable, go

back to Step 1.
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3. Choose Kβ =

(
r−1∑
i=0

Ai
c

)−1

Ac,S, which guarantees the observability of

the pair (A,H). Note that this choice is not unique, since other Kβ

values could also lead to an observable pair (A,H).

4. Choose the desired poles λ∗
i , i = 1, · · · , n + m, to lie within the unit

circle.

5. Choose Kz by the KNVD algorithm such that (A−KH) has the desired

poles λ∗
i .

The above procedure does not give information regarding the choice of

either the coefficients in Steps 1 and 3 or the desired poles in Step 4, except
that the poles have to be within the unit circle. This is because only the

mean of the estimation error is used in (4.16), while its variance related
to the process and measurement noises is not considered. However, the
degrees of freedom available in Steps 1, 3 and 4 can be used to shape this

variance and express the compromise between convergence speed and noise-
filtering capabilities, while still respecting the stability condition, which is

equivalent to bias elimination. Note that zero bias is guaranteed even when
the available degrees of freedom are chosen to reduce the variance. Thus, a

bias-variance compromise does not exist in the sense that was discussed in
the case of the P y observer in Section 3.2.4.

Although there are available degrees of freedom in Steps 1 and 3, Steps
4-5 alone ensure arbitrary pole placement. Thus, it is not necessary to

consider the gains Ky in Step 1 as decision variables.

Consequently, it is proposed to leave out Steps 1-3 from the optimization
problem used for observer tuning. They could be carried out manually.

Only the degrees of freedom available in Step 4, which are sufficient for
arbitrary pole placement, are used for variance reduction in the numerical
optimization problem:
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min
λ∗

1,··· ,λ∗
n+m

J =
∑

l

E
(
(zl − ẑl)

T (zl − ẑl)
)

(4.20)

s.t. x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk) + Kββk + ckK
z,x(zl − ẑl),

x̂0 = E (xo)

βk+1 = βk + ckK
z,β(zl − ẑl), β0 = 0

ŷk = Hx̂k

ẑl = Lx̂lr

ck =

{
1 if k+r−θ

r ∈ N
0 otherwise

KNV D algorithm to compute Kz,x and Kz,β

|λ∗
i | < 1

This optimization problem is similar to that in (4.2) except for the de-
cision variables and for the stability constraint |λ∗

i | < 1 that is considered

explicitly here. Note that the optimization problem (4.2) could also have
been extended with the stability constraint |eig(A − KH)| < 1; however,

there would not have been any guarantee of the existence of a feasible solu-
tion, that is, of a set of gains {Ky, Kβ, Kz,x, Kz,β} satisfying this constraint.

In contrast, in the optimization problem (4.20), feasibility is guaranteed by
the tuning procedure resulting from Theorem 4.1.

Optimization problem (4.20) can be solved numerically based on his-
torical data, thereby leading to a calibration-based tuning as discussed in

Section 3.2.5. This optimization problem yields a stable estimator. Since
convergence is the only condition for bias elimination, the P yP zIz observer
does not have to be retuned when d̃ changes. Thus, the repeatability con-

dition, needed in Section 3.2.5 for the P y observer to work, is not required
here.

4.6 Illustration

The aim of this section is to illustrate the performance of the integral ob-
server P yP zIz on the same dual-rate system and for the same simulation
scenarios as in Section 3.2.6. Here again, several tuning procedures are



85

compared. These yield observers of similar efficiency, which can only be

explained by the presence of the integral term. Hence, tuning of integral
observers is much easier than that of P y observers. Additionally, integral
observers can better follow variations in deterministic disturbances, even

without retuning.

Simulation 6 – Observer tuning

The tuning procedure in Section 4.5 is applied. Steps 1-3 are carried
out manually. Ky in Step 1 is chosen to be the gain after convergence of a

Kalman filter using the y measurements:

Ky =
[

5.6693 · 10−2 3.9472 · 10−3 1.2375 · 10−2 1.7781 · 10−2
]T

(4.21)

With this choice, the pair (Ac, L) is observable. The pair (Ar
c, L) is also

observable, satisfying the requirement of Step 2. In Step 3, the gain Kβ is
chosen to be:

Kβ =

⎡
⎢⎢⎣

0 0

0.1 0
0 0.1

0 0

⎤
⎥⎥⎦ (4.22)

leading to an observable pair (A,H).

The gain Kz is tuned in three different ways:

• P yP zIz − man.

The gain K = Kz in (4.17) is fixed manually to:

Kz =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

0 0
0 0

−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.23)

The eigenvalues of the matrix (A− KzH) in (4.16) are:
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λP yIz =
[

6.1493 · 10−1 ± 2.9943 · 10−1i 1.1245 · 10−1

2.0018 · 10−1 3.9257 · 10−1 ± 2.4355 · 10−1i
]T

Thus, without any theoretical considerations supporting this choice of
gains, a stable closed-loop system is obtained.

• P yP zIz − λ

The optimal pole location can be found by solving Optimization prob-
lem (4.20) using Ky from (4.21) and Kβ from (4.22). Since the above

observer is expected to deal with time-varying disturbances as well,
its dynamics need to be rather fast. Thus, eigenvalues |λ∗

i | < 0.6 are

required. Only real eigenvalues are allowed, just as in Section 4.6. The
result is:

λP yP zIz−λ =
[

1.5019 · 10−1 2.0019 · 10−1 2.5019 · 10−1

3.3296 · 10−1 3.8296 · 10−1 5.4000 · 10−1
]T

• P yP zIz − Kz

Similar to the P y observer in Section 4.6, Optimization problem (4.2)

can be modified by including a constraint on the eigenvalues, however,
without any guarantee of feasibility. Ky and Kβ from (4.21) and (4.22)
are used. This leads to the optimization problem:
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min
Kz

J =
∑

l

E
(
(zl − ẑl)

T (zl − ẑl)
)

(4.24)

s.t. x̂k+1 = Ax̂k + Buk + Ky(yk − ŷk) + Kββk + ckK
z,x(zl − ẑl),

x̂0 = E (xo)

βk+1 = βk + ckK
z,β(zl − ẑl), β0 = 0

ŷk = Hx̂k,

ẑl = Lx̂lr

ck =

{
1 if k+r−θ

r ∈ N
0 otherwise

|eig(A− KzH)| < 0.6

The resulting observer gains and eigenvalues are:

Kz =

⎡
⎢⎢⎢⎢⎢⎢⎣

6.2754 · 10−1 −1.1196
4.5425 · 10−1 1.1111 · 10−2

2.1053 · 10−1 −1.3300 · 10−2

1.5204 2.8329 · 10−1

−1.8068 4.1838 · 10−1

−9.4115 · 10−1 −3.4140 · 10−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.25)

λP yP zIz−Kz =
[ −1.1100 · 10−1 1.7406 · 10−1 ± 1.9807 · 10−1i

5.5138 · 10−1 ± 3.1489 · 10−3i 5.4680 · 10−1
]T

The performance of the three observers is compared in Table 4.1 to the
performance of the KF-Integral-Switch from Section 2.6.2, tuned as in Sec-
tion 2.7. It can be observed that the accuracy in the preferred variables is

similar for the three P yP zIz observers (compare the blue numbers), which
is better than that of the KF-Integral-Switch observer. Additionally, the

performance of these three observers is comparable to, though not as good
as, the one given by the P y − Ky observer tuned in the preferential way

(Table 4.1 - green numbers). This shows that a simple manual tuning of
the P yP zIz observer can provide results similar to the P y observer tuned
in the preferential way.
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Figure 4.1: Comparison of the KF-Integral-Switch and the P yP zIz−λ observers in Simula-
tion 6 (observer tuning) for one realization. Plant – dash-dotted line (black); KF - Integral
- Switch observer – solid line (blue); P yP zIz − λ observer – dashed line (red).

In the sequel, the P yP zIz −λ observer is chosen for illustration purposes

to parallel the theoretical developments of this chapter. The P yP zIz − λ
observer is compared to the KF-Integral-Switch observer in Figure 4.1. The

KF-Integral-Switch observer results in a large initial overshoot, which is
due to the aggressive tuning used in Section 2.7. But, just as in the case

of the P yP zIz − λ observer, fast dynamics are required for coping with
time-varying deterministic disturbances.

Simulation 7 – Test with the constant disturbances used for tuning

Table 4.2 shows that the P y−Ky observer provides the best performance

(compare the blue numbers). A possible explanation is that the performance
of the integral observers is affected more by the change in the initial condi-

tions compared to those used in the tuning step (the disturbances are the
same for tuning and test).

Simulation 8 – Test with piecewise-constant disturbances

The KF-Integral-Switch still yields a large initial overshoot (Figure 4.2 -
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Table 4.1: Performance of the KF-Integral-Switch observer and the integral observers
P yP zIz − man., P yP zIz − λ and P yP zIz − Kz in Simulation 6 for k ∈ [60, 200] over 10
realizations.

KF-Integral-Switch P yP zIz − man. P yP zIz − λ P yP zIz − Kz

Section 2.6.2 (4.23) (4.20) (4.24)

ē

⎡
⎢⎢⎣

7.1331 · 101

3.5845 · 102

2.9064 · 102

1.1793 · 102

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.8284 · 103

1.3900 · 102

1.0631 · 102

1.6072 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.8398 · 103

1.2184 · 102

1.1589 · 102

1.6166 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.8086 · 103

1.2431 · 102

1.0441 · 102

1.6060 · 103

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

7.3079 · 102

1.8278 · 103

3.2153 · 103

2.4691 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.7469 · 103

1.4806 · 103

2.5764 · 103

1.5494 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.6351 · 103

1.3699 · 103

2.2036 · 103

1.5442 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3.4454 · 103

1.4464 · 103

2.0947 · 103

2.5354 · 103

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

7.8148 · 102

3.2349 · 103

4.0889 · 103

2.6259 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.8209 · 104

1.6826 · 103

2.7032 · 103

1.9860 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.8547 · 104

1.5235 · 103

2.3425 · 103

2.0080 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.9089 · 104

1.6031 · 103

2.2171 · 103

2.0860 · 104

⎤
⎥⎥⎦

ΣΠe 1.0731 · 104 8.2454 · 104 8.2493 · 104 8.3770 · 104

Table 4.2: Performance of the KF-Integral-Switch, P y − Ky and P yP zIz − λ observers in
Simulation 7 for k ∈ [60, 200] over 10 realizations.

KF-Integral-Switch P y − Ky P yP zIz − λ
Section 2.6.2 (3.17) (4.20)

ē

⎡
⎢⎢⎣

5.9228 · 101

5.2925 · 102

5.3962 · 102

2.5859 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.4865 · 103

9.0314 · 10
1.0859 · 102

3.2442 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.8343 · 103

9.6257 · 10
1.3143 · 102

1.6173 · 103

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

6.4687 · 102

1.9742 · 103

3.1168 · 103

3.0996 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.7960 · 103

1.1450 · 103

1.6440 · 103

1.3582 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.3357 · 103

1.4638 · 103

1.9684 · 103

1.3171 · 103

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

6.8566 · 102

4.9244 · 103

5.7475 · 103

5.0277 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.1386 · 105

1.2322 · 103

1.7886 · 103

7.5598 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.7977 · 104

1.5671 · 103

2.1673 · 103

1.9857 · 104

⎤
⎥⎥⎦

ΣΠe 6.1635 · 104 2.9248 · 105 8.1568 · 104
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Figure 4.2: Comparison of the KF-Integral-Switch and P yP zIz −λ observers in Simulation
8 for one realization. Plant – dash-dotted line (black); KF-Integral-Switch observer – solid
line (blue); P yP zIz − λ observer – dashed line (red).

compare the blue numbers), but for the rest its performance is comparable

to that of the P yP zIz−λ observer. The performance of the retuned P y−Ky

observer is still better than that of the integral observers (Table 4.3), but

the latter do not require retuning.

Simulation 9 – Test with time-varying disturbances caused by
parametric errors and an exogenous input

For this scenario, the performance of the two integral observers are rather

close when looking at the sum of the MSEs in x2 and x3 (Figure 4.3 and
Table 4.4 - compare the blue numbers). The error is slightly smaller for the
KF-Integral-Switch, which is due to its faster dynamics that, in this case,

not only result in an initial overshoot but also in a better tracking later on.

Both integral observers provide better results than the retuned P y −
Ky observer. Hence, although the disturbances are varying continuously,

integral observers are able to compensate their effect to a certain extent,
given that their dynamics are sufficiently fast with respect to the dynamics
of the disturbances. In this case, this is ensured for the P yP zIz−λ observer
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Table 4.3: Performance of the KF-Integral-Switch, P y − Ky − retuned and P yP zIz − λ
observers in Simulation 8 for k ∈ [0, 200] over 10 realizations.

KF-Integral-Switch P y − Ky − retuned P yP zIz − λ
Section 2.6.2 (3.17) (4.20)

ē

⎡
⎢⎢⎣

3.4945 · 102

2.6001 · 103

4.9228 · 103

6.4624 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6.9539 · 103

1.7577 · 103

1.7405 · 103

8.4165 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.0242 · 103

1.7248 · 103

1.8942 · 103

1.9398 · 103

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

9.9673 · 102

2.5536 · 103

5.1615 · 103

3.2605 · 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3.6689 · 103

2.6298 · 103

3.1938 · 103

1.5733 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.3224 · 103

1.7179 · 103

2.7239 · 103

2.1019 · 103

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

8.5061 · 103

1.2269 · 105

8.1204 · 105

2.4927 · 105

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2.9531 · 105

5.4422 · 104

7.4100 · 104

5.5980 · 105

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.6075 · 105

5.5370 · 104

8.5644 · 104

4.2885 · 104

⎤
⎥⎥⎦

ΣΠe 1.1925 · 106 9.8363 · 105 3.4465 · 105

by the constraint |λ∗
i | < 0.6, and for the KF-Integral-Switch by the choice

of Qα = In.

4.7 Discussion

The observer structure P yP zIz has been studied in this chapter. The ana-
lytical results show that it is possible to eliminate bias in the preferred direc-

tions for piecewise-constant deterministic disturbances d̃. This is due to the
presence of the integral states based on the infrequent z measurements. The
condition for bias elimination is stability of the observer structure, which

can be guaranteed by an appropriate choice of the observer gains. However,
since not all the degrees of freedom associated with these gains are needed

for ensuring stability, the remaining ones can be used to reduce the variance
of the estimation error. The tuning of the observers can be carried out via

numerical optimization, which, in addition to leading to a stable observer
structure, also minimizes the estimation variance.

Several Assumptions are needed to show the above results. Assumption

A.2 is needed to ensure the observability of the pair (Ar
c, L) in Section

4.2. This is the Assumption commonly seen in the estimation literature.
Assumptions A.3 and A.4 ensure that, given the observer is stable, steady
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Figure 4.3: Comparison of the P yP zIz − λ and retuned P y − Ky observers in Simulation
9 for one realization. Plant – dash-dotted line (black); P y −Ky − retuned observer – solid
line (blue); P yP zIz − λ observer – dashed line (red).

Table 4.4: Performance of the KF-Integral-Switch, P y − Ky − retuned and P yP zIz − λ
observers in Simulation 9 for k ∈ [0, 200] over 10 realizations.

KF-Integral-Switch P y − retuned P yP zIz − λ
Section 2.6.2 (3.17) (4.20)

ē

⎡
⎢⎢⎣

4.2403 · 102

1.1335 · 104

1.0175 · 104

6.2409 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4.4166 · 103

7.9304 · 103

2.1324 · 104

8.7400 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

5.2816 · 103

1.5574 · 104

1.1416 · 104

5.1692 · 104

⎤
⎥⎥⎦

Ve

⎡
⎢⎢⎣

1.0890 · 103

9.2861 · 103

1.5138 · 104

1.5516 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.9169 · 103

1.2337 · 105

4.7513 · 104

6.9576 · 104

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3.3804 · 103

7.0344 · 103

9.9937 · 103

1.0059 · 104

⎤
⎥⎥⎦

Πe

⎡
⎢⎢⎣

8.3908 · 103

7.6199 · 105

1.0035 · 106

3.2195 · 107

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.8639 · 105

6.0565 · 105

3.4001 · 106

6.3908 · 107

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.8927 · 105

1.3297 · 106

7.9789 · 105

2.1332 · 107

⎤
⎥⎥⎦

ΣΠe 3.3969 · 107 6.8100 · 107 2.3649 · 107
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state is reached for each value of the piecewise-constant disturbances d̃. In

this way, the steady-state performance of the observers is studied for various
constant input values.

Note that the mathematical proof of observer performance in Theorem
4.2 requires Assumptions A.3 and A.4, that is, to have the integrator con-

verge to steady state. However, since in a more general framework the dis-
turbance dk might be varying continuously, these two Assumptions might

not be satisfied. Nevertheless, by choosing the observer dynamics signif-
icantly faster than the disturbance dynamics, integral observers will help
to reduce the estimation bias. This rule of thumb has been illustrated in

Section 4.6, where eigenvalues with absolute values smaller than 0.6 were
imposed in the optimization problems (4.20) and (4.24). As a result, the

integral observer is able to track the continuously varying disturbance rel-
atively well (Simulation 9). The next chapter will also illustrate the effec-

tiveness of this rule of thumb.

Performance similar to that of the P yP zIz observer is obtained with a

Kalman filter extended with integrators. Since not all state directions can
be measured in the illustration example (rank(H) < n), there are redundant
integrators in the KF-Integral-Switch observer. The eigenvalues correspond-

ing to these integrators cannot be influenced and are on the unit circle. As
a consequence, the poles of the Kalman filter extended with integrators

cannot be chosen arbitrarily and there is no theoretical guarantee that the
dynamics of this observer can be made arbitrarily fast. The contribution

of this chapter is to provide an observer structure (P yP zIz) for which arbi-
trary pole placement can be guaranteed. This is ensured by the use of only
as many integrators as there are preferred variables, which eliminates the

redundancy and the poles that are on the unit circle.

However, in practice, ensuring arbitrary pole placement in the P yP zIz

observer does not lead to a better estimation performance compared to
the Kalman filter extended with integrators, which is already available in

the literature. From an implementation point of view, the advantage of
the P yP zIz observer is its simpler structure compared to the KF-Integral-

Switch observer. In preferential estimation, the error caused by determin-
istic disturbances is more important than the error caused by stochastic
ones. Hence, the Kalman recursion designed for noise filtering can be omit-
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ted. In this way, the performance loss in the estimates is minimal. Addi-

tionally, there are no redundant integrators in the P yP zIz observer. As a
consequence, significantly less computation is needed for both tuning and
implementation, due to the constant gains and non-redundant structure of

the P yP zIz observer. This advantage is illustrated in the next chapter.



Chapter 5

Experimental study of a fed-batch
filamentous fungal fermentation

Filamentous fungi are among the most frequently used cell factories in the
fermentation industry. Their success is due to the relatively well-established

fermentation technology and the versatility of strains available, thus allow-
ing the production of a wide variety of products: primary metabolites,
antibiotics, enzymes, and proteins [57].

Traditionally, filamentous fungal fermentations are operated in fed-batch

mode. As a result of the filamentous structure of the biomass, its concentra-
tion is considerably higher than in other biological processes. High biomass

concentration induces high viscosity, which makes oxygen transfer difficult
[50]. Insufficient concentrations of dissolved oxygen, however, can lower the

performance of the microorganisms and, thus, production. Hence, it is im-
portant to monitor and control the biomass and product concentrations as

accurately as possible. In general, these quantities are measurable only at
low frequency, due to the complex operations involved in the measurement
process [59, 61]. One possibility to extrapolate these measurements to a

time scale appropriate for control is to estimate these quantities based on a
process model.

The filamentous fungal considered here is an α-amylase producing strain

of Aspergillus oryzae used in the pilot plant of Novozymes A/S, Bagsvaerd,
Denmark. A first-principles model of this filamentous fungal fermentation

process is proposed in [1, 14], while a data-driven model is described in
[68]. Here, the first-principles model from [14] is used, which provides a
description of biomass, glucose and enzyme concentrations, as well as the

95
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influence on these concentrations of limiting dissolved oxygen. However,

although the model was fitted on experimental data, its extrapolative power
for operating conditions different from those used for fitting remains poor.
The accuracy of the model is especially sensitive to variations in the initial

substrate concentration.

This bioprocess is considered to be a case study for preferential esti-

mation. The objective is to estimate accurately the biomass and enzyme
concentrations (preferred variables) on the basis of a first-principles model

with an important model-plant mismatch under certain operating conditions
(deterministic disturbances) and infrequent measurements of the preferred
variables.

Section 5.1 describes the process under consideration and its operation
in industry. Section 5.2 details a first-principles model of filamentous fungal

fermentation. Section 5.3 presents the observer structures used for prefer-
ential estimation. Results based on experimental data from the pilot plant
at Novozymes are shown in Section 5.4. A discussion closes the chapter in

Section 5.5

5.1 Process description and industrial prac-
tice

Fungal fermentation

The process studied in this paper is the α-amylase production by Aspergillus

oryzae. The same substrate is consumed for both biomass growth and en-
zyme production. The main difficulty with this process is oxygen limitation
in the liquid phase. This depletion is usually caused by high biomass con-

centration, which, due to its filamentous structure, increases the viscosity
and makes oxygen transfer difficult.

5.1.1 Current operation

The fermentation at Novozymes Pilot Plant, (Bagsvaerd, Denmark) is car-
ried out in a 2500 L stirred vessel. pH is controlled through dosing ammonia
(gas) and phosphoric acid. The fermenter is aerated at the constant rate
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Figure 5.1: Experiment I - Current operation with three phases: Batch operation - biomass
growth; Linearly-increasing feed - avoiding oxygen limitation; Constant feed - enzyme
production.
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of 1 vvm and agitation speed of 275 rpm. Temperature and pressure are

kept at a constant level by the process control system DeltaV from Fisher
Rosemount.

The typical way of operating the fermentation process is presented in Fig-

ure 5.1. For the sake of confidentiality, the experimental results have been
normalized and thus no measurement units are presented. The substrate

feeding policy consists of:

1. A batch phase, during which the substrate concentration is reduced

from a high initial value, favorable to biomass growth, to its operational
range,

2. A linearly-increasing feed rate whose role is to avoid oxygen limitation

in the early phase of the fed-batch, and

3. A ’constant’ feed rate that is chosen in order to keep the substrate

concentration at a low level, favorable to product formation, and keep
the dissolved oxygen above the limiting region (< 25%).

Note that, in the third phase of the batch, the feed rate deviates from the

constant value of 0.5. This is done on purpose to excite the oxygen dynamics
and provide a data set rich in information for parameter identification.

As can be seen in Figure 5.1, the measurements of the total biomass and
enzyme are available infrequently. Additionally, the biomass measurements

are not always reliable, as can be seen at time instant 0.3. Hence, frequent
estimates of total biomass and enzyme are required in order to be able
to implement a control law maximizing production while avoiding oxygen

limitation.

5.1.2 Measurements

The measurements available on-line are the volume V , the viscosity η,

the dissolved oxygen concentration DO, the aeration rate Qg, the amount
of oxygen consumed Δ[O2], and the amount of carbon dioxide produced

Δ[CO2].

The volume is calculated from mass measurements, assuming constant
density throughout the fermentation. The viscosity is determined by a
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viscosimeter from Hydramotion, York, England. DO is determined by an

Ingold electrode from Mettler Toledo. The oxygen and carbon dioxide con-
centrations in the exhaust gases are determined by a mass spectrometer
(VG Prima dB) from Thermo.

The oxygen uptake rate OUR and the carbon dioxide evolution rate
CER are determined from gas analysis. The inlet flow rate is measured, as

are the mass fractions of oxygen and carbon dioxide in the inlet and the
outlet flows. By using these quantities and a nitrogen (inert) balance, the

volumetric output gas flow rate Gout can be determined as follows:

Gout yN2,out = Gin yN2,in (5.1)

Gout = Gin
1 − yO2,in − yCO2,in

1 − yO2,out − yCO2,out − yW,out
(5.2)

where

Gout – volumetric flow rate of the output gas (nL/h)

yN2,out – mass fraction of nitrogen in output

Gin – volumetric flow rate of the input gas (nL/h)

yN2,in – mass fraction of nitrogen in input

yO2,in – mass fraction of oxygen in input

yO2,out – mass fraction of oxygen in output

yCO2,out – mass fraction of carbon dioxide in output

yW,out – mass fraction of water in output

The mass fraction of water in the output can be calculated from measure-

ment of the dilution of oxygen by purging the reactor without any reaction
[37]:

yW,out = yO2,in − yO2,out (5.3)
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Once the output gas flow rate has been computed, OUR and CER can

be determined from balance equations without accumulation terms:

OUR =
Gin yO2,in − Gout yO2,out

V

ρ

MO2

(5.4)

CER =
Gout yCO2,out − Gin yCO2,in

V

ρ

MCO2

(5.5)

where ρ is the average density of the gas flow, while MO2
and MCO2

are
the molecular weights for oxygen and carbon dioxide, respectively.

Note that, in general, an acceptable approximation is to simply consider
OUR ≈ OTR, since the solubility of oxygen is very low [66]. Typically,

the same does not hold for CER and CTR as the solubility of carbon diox-
ide depends on the physical and chemical properties of the medium, such
as temperature and pH. However, since here the fermentor is operated at

constant temperature, pressure and pH in the fed-batch phase, it can be
assumed that the rate at which CO2 is formed by microbial metabolism

corresponds to the carbon dioxide transfer rate and thus CER ≈ CTR.

The infrequent measurements available are the biomass dry weight and

the enzyme activity. In order to determine the biomass dry weight, a separa-
tion step using centrifugation is needed first. Then, the wet biomass is dried
and its mass measured. The enzyme activity is measured by the amount

of starch it hydrolyzes within a given time interval. The methods used for
measuring biomass and enzyme are described in [1]. All these operations

are time consuming, resulting in a large ratio of slow to fast sampling times
r = 72. Additionally, a delay of θ = r − 1 = 71 fast sampling periods is

considered in the availability of the infrequent measurements. This value of
the delay is the maximum possible, corresponding to the worst case scenario
the observer has to face.
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Figure 5.2: Morphological division of the biomass [1].

5.2 Filamentous fungal fermentation model

5.2.1 Morphology and rate expressions

Growth kinetics. The morphologically structured model is based on the
division of the biomass into three different compartments (Figure 5.2) [1]:

• Active region (Xa) - responsible for the uptake of substrate and growth
of the hyphal elements. It is assumed that only the active region is

responsible for enzyme production.

• Extension region (Xe) - responsible for new cell wall generation and

extension.

• Hyphal region (Xh) - the degenerated part of the hyphal elements that

is inactive.

The macroscopic reactions for growth and production can be expressed

as:

S + O2
Xa→ Xe (5.6)

S + O2
Xe→ Xa (5.7)

Xa → Xh (5.8)

S + O2
Xa→ P (5.9)

where S stands for the substrate (glucose), O2 for the dissolved oxygen
and P for the product (α-amylase).
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The corresponding kinetic expressions read:

Branching (Equation (5.6)):

q1 = xa
DO

DO + KDO

k1s

at(s + Ks1)
(5.10)

Growth of the active region (Equation (5.7)):

q2 = atxe
DO

DO + KDO

k2s

s + Ks2
(5.11)

Differentiation (Equation (5.8)):

q3 = k3xa (5.12)

The specific growth rate of total biomass is:

μ =
q2

xt
(5.13)

where xt = xe + xa + xh represents the total biomass concentration, xe,

xa and xh are the concentrations of the extension, active and hyphal zones,
respectively, s and DO are the substrate and dissolved oxygen concentra-

tions, at represents the number of tips per unit mass of the extension zones.
The parameter at is described as a function of μ (see [1, 10] for details con-

cerning the morphological model). The kinetic expressions and the model
parameters are presented in Appendices A.1 - A.2.

Specific rate of enzyme production. Enzyme production in filamentous

fungi is a classical example of growth-associated product formation. The
enzyme production is subject to glucose (substrate) inhibition and oxygen

limitation:

rps =

(
μ0s

Ks + s + s2

KI

+ kc
s

s + Kcor

)
DO

DO + KDO
(5.14)

A Haldane expression is used to describe the substrate inhibition. The
parameter kc quantifies the constitutive level of enzyme production at high
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glucose concentrations (during the batch phase).

The specific rate of dissolved oxygen consumption is expressed as:

rDO = YXO
q2

xt
+ YPOrps

xa

xt
+ mo

DO

DO + KDO
(5.15)

where YXO and YPO are the yield coefficients of dissolved oxygen con-
sumption for growth and enzyme production, respectively, and mo is the

maintenance coefficient that represents the oxygen consumption of the
biomass.

The specific rate of substrate consumption is expressed as:

rs = YXS
q2

xt
+ YPSrps

xa

xt
+ ms

DO

DO + KDO
(5.16)

where YXS and YPS are the yield coefficients of substrate consumption

for growth and enzyme production, respectively, and ms is the maintenance
coefficient (based on the total amount of biomass).

The oxygen uptake rate is modeled as:

OUR = λrDOxtV σ (5.17)

where σ is the solubility of oxygen in water while λ is a proportionality
constant.

The carbon evolution rate is computed as:

CER = YXCq2 (5.18)

where YXC is the yield coefficient of carbon dioxide formation by the

microorganisms.

5.2.2 Mass balance equations

Morphological states xe, xa and xh

ẋe = q1 − F
V xe, xe(0) = xe0

ẋa = q2 − q1 − q3 − F
V xa, xa(0) = xa0

ẋh = q3 − F
V
xh, xh(0) = xh0

(5.19)
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Glucose concentration s

ṡ = −rsxt +
F

V
(sf − s), s(0) = s0 (5.20)

Enzyme concentration p

ṗ = rpsxa − F
V p, p(0) = p0 (5.21)

Dissolved oxygen concentration DO

ḊO = −rDOxt + kLa(DO∗ − DO) − F

V
DO, DO(0) = DO0 (5.22)

Carbon dioxide concentration nCO2

ṅCO2
= CER, nCO2

(0) = nCO2,0 (5.23)

Volume V

V̇ = F − Fevap, V (0) = V0 (5.24)

In these equations, F represents the substrate feeding rate, sf is the
substrate concentration in the feed, Fevap is the evaporation rate, kLa the
specific gas-liquid mass transfer coefficient for oxygen, and DO∗ the oxygen

saturation concentration.

5.2.3 Oxygen transfer

A linear empirical relationship between kLa and viscosity is given in [14]:

kLa = c0 − c1η (5.25)

where η represents the on-line measurement of viscosity, and c0 and c1 are
linear regression coefficients.

Also, a linear empirical relationship is used to describe the viscosity as a
function of total biomass and dissolved oxygen:

η = η0 + aXxt − aDODO (5.26)

where η0, aX , and aDO are linear regression coefficients.
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The model parameters were fitted and validated on experimental data

from Novozymes [14]. Their numerical values are given in Appendix A.2.

5.2.4 State-space model used for preferential estima-

tion

The model of the filamentous fungal fermentation presented before can be

rewritten in the state-space form:

ẋ = f(x, u, π), x(0) = x0 (5.27)

y = g(x, u, π)

z = Lx

where

x =
[

xe xa xh s p DO nCO2
V
]T

u = F

y =
[

DO V OUR CER η
]T

z =
[

xt p
]

L =

[
1 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0

]

f(x, u, π) are the nonlinear state equations given by (5.19) - (5.24). The

first two elements of the measurement vector y are simply two elements of
x, while the last three are given by (5.17), (5.18) and (5.26). Hence the

measurement model g(x, u, π) is also nonlinear. The values of the param-
eters π are given in Table A.1. The preferred variables are chosen to be

xt and p, and they are given by a linear relationship, using the projection
matrix L.

5.3 Observer design

The observers discussed in the previous chapters are implemented, that is
a P y and a P yP zIz observer tuned in the preferential way. Since the model
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(5.27) is nonlinear and described in continuous time, approximations have

to be made in order to use the linear and discrete observers proposed in
this thesis. To minimize the errors induced by these approximations, the
nonlinear continuous model is used for prediction between two fast sam-

pling instants, while the update with measurements is made at the discrete
sampling instants. This continuous-discrete update will be detailed in the

next subsections.

In order to quantify the performance of these observers, they should
be compared to some benchmark observer. In the previous chapters, the

KF-ZOH and KF-Integral-Switch observers were used as benchmarks. To
implement these observers, the same continuous-discrete update is used to

ensure a fair comparison. As will be discussed in the next subsection, proper
tuning of the KF-ZOH is extremely time consuming, while a simple tuning

based on an educated guess provides unsatisfactory results. Hence, the
benchmark observers based on the KF are not appropriate for this particular

case study due to the overwhelming amount of computation required for
their tuning. This confirms one of the advantages of the observer structures
proposed in this thesis, i.e. their straightforward structure that yields a

computationally less expensive tuning and implementation.

5.3.1 Extended Kalman filter based on yk and zl mea-

surements – EKF-ZOH

Filter structure

The EKF is the extension of the linear Kalman filter to nonlinear systems

by a LTV approximation based on Taylor series expansion [32]. When a
continous nonlinear model and discrete measurements are available, the

continuous-discrete extended Kalman filter can be used [15]. In addition,
the zl measurements are also used. Since these measurements are available
infrequently, they are extrapolated to the fast time scale by a zero-order hold

approximation. As a consequence, an augmented measurement matrix H
and a measurement noise covariance R are introduced. The filter equations

are:

• Prediction in continuous time. The prediction of the state and co-
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variance values to the time instant t = (k + 1)tk is carried out by

integrating the continuous nonlinear model (5.27) and the continuous
version of the covariance propagation equation [32], within the time
interval ktk ≤ t ≤ (k + 1)tk:

˙̂x− = f(x̂−, u, π), x̂−(ktk) = x̂k (5.28)

Ṗ− = AP− + P−AT − P−HTR−1HP− + Q, P−(ktk) = Pk

where

A =
∂f(x, u, π)

∂x

∣∣∣∣
x̂−,u

H =

[
∂g(x,u,π)

∂x

∣∣∣
x̂−,u

L

]

R =

[
R 0

0 Z

]

• Correction in discrete time. The predictions x̂−
k+1 at t = (k + 1)tk

given by the continuous model are corrected by the measurements at

iteration k, using the discrete Kalman filter equations:

x̂k+1 = x̂−
k+1 + Ky

k

[
yk − ŷk

zk − ẑk

]
, x̂0 = E(xo) (5.29)

ŷk = g(x̂k, uk, π)

ẑk = Lx̂k

zk =

{
zl if k+1

r ∈ N
zk−1 otherwise

Ky
k = P−

k HT
k

(HkP
−
k HT

k + R)−1

Pk = (In −Ky
kHk) P−

k
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where

Hk =

[
∂g(x,u,π)

∂x

∣∣∣
x̂k,uk

L

]

The advantage of the above observer is the use of the nonlinear contin-
uous model equations f(x, u, π) for prediction, without discretization and

linearization. However, since the covariance propagation as well as the cor-
rection steps are based on the linearized Kalman filter, linearization errors

are introduced by this structure. In addition, errors associated with the
ZOH extrapolation of the zl measurement are also introduced.

Filter tuning

In order to initialize the EKF-ZOH, it is necessary to determine the

initial values E(xo), the measurement noise covariance matrices R and Z,
the process noise covariance Q and the initial estimation error covariance

P0. The initial concentrations were provided by Novozymes along with the
measured data, while R and Z could be inferred from the measurements.

In general, the determination of Q and P0 is not straightforward, since
they express the confidence of the user in the model [32]. To ensure a fair
comparison of EKF-ZOH with the P y and P yP zIz observers that are tuned

based on experimental data, it was attempted to tune Q and P0 of the
EKF-ZOH observer based on experimental data. All information available

about the system, that is measurements of the both outputs yk and preferred
variables zl from Experiment I (Figure 5.1), are used to determine Q and

P0 through the following optimization problem:

min
diag(Q), diag(P0)

J =
1

Ny

∑
k

E
(
(yk − ŷk)

TWy(yk − ŷk)
)

+ (5.30)

1

Nz

∑
l

E
(
(zl − ẑl)

TWz(zl − ẑl)
)

s.t. (5.28)− (5.29)

where Ny and Nz are the number of data points available for the outputs
and preferred variables, respectively. Wy and Wz are diagonal weighting



109

matrices for y and z, respectively. In order to decrease the number of

decision variables involved, Q and P0 are taken to be diagonal.

Since the estimation error in all the measured variables is minimized
and there are measurements available at two time scales, it is necessary
to make the total MSEs in y and z comparable. Hence, the respective

quantities are divided by the number of available data points at each time
scale. Additionally, the errors are weighted to compute the total MSEs.

5.3.2 Proportional observer based on yk measure-

ments – P y

Observer structure

The observer structure from Section 3.2 is used. The continuous-discrete

update discussed previously is used here as well:

• Prediction in continuous time

ktk ≤ t ≤ (k + 1)tk

˙̂x− = f(x̂−, u, π), x̂−(ktk) = x̂k (5.31)

• Correction in discrete time

t = (k + 1)tk

x̂k+1 = x̂−
k+1 + Ky(yk − ŷk) x̂0 = E(xo) (5.32)

ŷk = g(x̂k, uk, π)

ẑl = Lx̂lr

In contrast to the EKF-ZOH, neither linearization nor extrapolation is

required by the above structure.

Observer tuning

The tuning parameters are Ky. As in Optimization problem (3.17), only

the error in the preferred variables z is minimized by considering the gain
matrix Ky as the decision variable. Data from Experiment I is used to
evaluate the objective function:
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min
Ky

J =
∑

l

E
(
(zl − ẑl)

TWz(zl − ẑl)
)

(5.33)

s.t. (5.31)− (5.32)

5.3.3 Proportional - Proportional Integral observer

based on yk and zl measurements – P yP zIz

Observer structure

The observer structure from Section 4.1 is used. The continuous-discrete
update is used:

• Prediction in continuous time

ktk ≤ t ≤ (k + 1)tk

˙̂x− = f(x̂−, u, π), x̂−(ktk) = x̂k (5.34)

• Correction in discrete time

t = (k + 1)tk

x̂k+1 = x̂−
k+1 + Ky(yk − ŷk) + Kββk + ckK

z,x(zl − ẑl), (5.35)

x̂0 = E(xo)

βk+1 = βk + ckK
z,β(zl − ẑl), β0 = 0

ŷk = g(x̂k, uk, π)

ẑl = Lx̂lr

ck =

{
1 if k+r−θ

r
∈ N

0 otherwise

There is neither linearization nor extrapolation in the above structure.

Observer tuning

The tuning parameters are Ky, Kβ and Kz =

[
Kz,x

Kz,β

]
. The tuning

procedure proposed in Section 4.5 cannot be applied since the model process
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considered here is nonlinear. As a consequence, it is proposed to use all the

gain matrices as decision variables in the optimization problem:

min
Ky, Kβ, Kz

J =
∑

l

E
(
(zl − ẑl)

TWz(zl − ẑl)
)

(5.36)

s.t. (5.34)− (5.35)

Data from Experiment I is used.

5.4 Experimental results

In order to compare the performance of the various observers, the sum of
the total MSEs ΣΠey

and ΣΠez
for the output and preferred variables, respec-

tively, are computed. These quantities are computed using the weighting
matrices Wy and Wz. Note that the mean and variance values used in Sec-

tion 2.7 cannot be computed, since only one experiment for a given set of
initial conditions and inputs is available.

5.4.1 Model open-loop prediction capability

The prediction capability of the open-loop nonlinear model (5.27) on the

data from Experiment I is presented in Figure 5.3. It can be seen that,
although there are some inaccuracies in the dissolved oxygen and total

biomass, the model is able to follow the dynamics of the plant. This good
performance is due to the fact that the same operating conditions, except
for the feed rate, were used in Experiment I as in the experiments used for

model fitting and validation.

However, in Experiment II, the initial substrate concentration is reduced

by a factor of 11, which is a major perturbation. Consequently, the open-
loop prediction is much less accurate, as shown in Figure 5.4. This can be

explained as follows. With so much less substrate to consume in the initial
batch phase, the development of the biomass is greatly affected. Not only

less biomass is formed, which is rather well predicted by the model, but
the fraction of active biomass is also smaller. This leads to reduced enzyme
production and different oxygen consumption. Even the evaporation rate is
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Figure 5.3: Open-loop model prediction for Experiment I. Plant – solid line and dots
(black); Model – dashed line (red).

different, thus leading to a greater volume than predicted.

Hence, for the operating conditions of Experiment II, there is an impor-
tant plant-model mismatch that can be interpreted as a source of deter-

ministic disturbances. In order to improve the estimation accuracy of the
preferred variables, the observers discussed previously are applied.

5.4.2 EKF-ZOH

The observer (5.28) - (5.29) is tuned by solving Optimization problem (5.30)
based on data from Experiment I. Unfortunately, solving this optimization
problem using the available MATLAB code would have taken several weeks
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Figure 5.4: Open-loop model prediction for Experiment II. Plant – solid line and dots
(black); Model – dashed line (red).

Table 5.1: Comparison of observer performances for Experiments I and II.
ΣΠey

ΣΠez
ΣΠey

ΣΠez

Experiment I I II II
Model prediction 7.4876 · 102 2.8420 3.5293 · 103 1.1391 · 101

EKF-ZOH 2.3449 · 103 7.0788 · 10−1 1.8329 · 103 3.7070
P y − Ky 6.5604 · 103 4.6949 · 10−1 5.3314 · 104 2.1889 · 101

P y − Ky − retuned – – 1.3913 · 104 5.7903 · 10−1

Iz 6.7082 · 102 2.2161 5.9265 · 103 4.1978
Iz − LT 1.6562 · 103 1.9057 4.2074 · 103 2.1323
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Figure 5.5: Estimates given by the EKF-ZOH for Experiment II. Plant – solid line and
dots (black); EKF-ZOH observer – dashed line (red).

of computational time. Hence, this tuning method was abandoned. It was
observed that the computationally most expensive step is the evaluation of

the jacobians, which is repeated at each time instant. To ease the compu-
tational burden, constant jacobians are used in the tuning of the filter. The

so-obtained Q and P0 matrices are then implemented in the EKF-ZOH that
updates the jacobians at each time instant. This observer is applied to data

from Experiment II (Figure 5.5). The results presented in Table 5.1 show
that, compared to the open-loop model prediction, the EKF-ZOH provides
much better estimates. However, its tuning is not straightforward.



115

0 0.5 1
0

50

100

D
is

so
lv

ed
 o

xy
ge

n

time

0 0.5 1

0.6

0.8

1

V
ol

um
e

time

0 0.5 1
0

0.5

1

F
ee

d 
flo

w
 r

at
e

time

0 0.5 1
0

0.5

1

T
ot

al
 b

io
m

as
s

time

0 0.5 1
0

0.5

1

E
nz

ym
e

time

Figure 5.6: Estimates given by the P y −Ky observer for Experiment II. Plant – solid line
and dots (black); P y observer – dashed line (red).

5.4.3 P y

The observer (5.31)-(5.32) is tuned by solving Optimization problem (5.33)
based on data from Experiment I. As in Section 3.2.6, this observer is labeled

P y − Ky. As shown in Table 5.1, the estimation accuracy of the preferred
variables is improved, while that of the outputs deteriorates. Then, the

same observer is applied to the data from Experiment II, with the results
presented in Figure 5.6 and Table 5.1. It can be seen that this observer is

inappropriate for Experiment II. This can be explained by the presence of
deterministic disturbances in Experiment II which are ’unfamiliar’ to the
observer gains obtained based on data from Experiment I.
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Figure 5.7: Estimates given by the P y − Ky − retuned observer for Experiment II. Plant
– solid line and dots (black); P y − Ky − retuned observer – dashed line (red).

Hence, for Experiment II, it is proposed to repeat the optimization (5.33)
online, each time a new z measurement becomes available. The results ob-

tained with the retuned P y − Ky observer are presented in Figure 5.6 and
Table 5.1. The biomass concentration is estimated less accurately at the

beginning when only a few data points are available for tuning, but the es-
timates improve later on. Additionally, the continuously retuned and, thus,

changing gains result in a non-smooth behavior. Nevertheless, a particularly
good estimate is obtained for the enzyme concentration, which explains the
smallest error in the z estimates in Table 5.1.
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Figure 5.8: Estimates given by the Iz observer for Experiment II. Plant – solid line and
dots (black); Iz observer – dashed line (red).

5.4.4 P yP zIz

In Section 5.3.3 it is proposed to tune the observer (5.34) - (5.35) by solving
Optimization problem (5.36) based on data from Experiment I. However, as

seen in the previous subsection, a proportional observer with a gain matrix
Ky that is tuned based on data from Experiment I is inappropriate for

Experiment II, due to the change in the deterministic disturbances. Hence,
retuning is needed. But, since the main advantage of an integral observer

is its ability to cope with varying disturbances, the tuning of the P yP zIz

observer is not repeated online for the conditions of Experiment II. Hence,
it is better to leave out the P y term by choosing Ky = 0n×p.
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Figure 5.9: Estimates given by the Iz − LT observer for Experiment II. Plant – solid line
and dots (black); Iz − LT observer – dashed line (red).

Additionally, it was seen in Section 4.6 that simple manual tuning of

the P yP zIz observer is able to provide good estimates. By fixing Kz =[
Kz,x

−Kz,β

]
=

[
0n×m

−Im

]
and by an appropriate choice of Kβ, results similar

to those of the P yP zIz observer tuned in the preferential way are obtained.

Note that by using Kz,x = 0n×m the P z term is also eliminated. A nonzero
Kz,β is needed for the integral term to work. As a consequence, the gain

matrices Ky = 0n×p, Kz,x = 0n×m and Kz,β = In are used for this application
as well. This tuning corresponds to a simple Iz observer. Optimization
problem (5.36) reduces to:
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min
Kβ

J =
∑

l

E
(
(zl − ẑl)

TWz(zl − ẑl)
)

(5.37)

s.t. (5.34)− (5.35)

Ky = 0n×p, Kz,x = 0n×m, Kz,β = In

The performance of the Iz observer is not fully satisfactory (Table 5.1
and Figure 5.8). A possible cause might be the higher number of parameters

to tune (n · m = 16 in the matrix Kβ) than the number of measured data
points available in Experiment I (11, see Figure (5.3)). As a consequence,

the optimal values of these gains cannot be found.

Thus, it is proposed to reduce the number of tuning knobs even further.
Simple intuition suggests the use of the integral states β to correct only

the preferred variables. In other words, the gain matrix Kβ could have the
sparse structure of LT , that is, all elements in Kβ that correspond to a zero

element in LT should also be fixed to zero. Hence, Optimization problem
(5.37) becomes:

min
kβ
1 ,...,kβ

4

J =
∑

l

E
(
(zl − ẑl)

TWz(zl − ẑl)
)

(5.38)

s.t. (5.34)− (5.35)

Ky = 0n×p, Kz,x = 0n×m, Kz,β = In

Kβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kβ
1 0

kβ
2 0

kβ
3 0

0 0

0 kβ
4

0 0
0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The resulting observer is denoted as Iz − LT and the results are shown
in Table 5.1 and Figure 5.9. Its performance is the second best after
the retuned P y − Ky observer. However, it provides smoother estimates,
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Figure 5.10: Estimates given by the Iz − LT observer with manual tuning for Experiment
II. Plant – solid line and dots (black); Iz − LT observer with manual tuning – dashed line
(red).

with a simple off-line tuning. Note that manual tuning of the knobs, e.g.

kβ
1 = · · · = kβ

4 = 0.01, yields an oscillatory behavior (Figure 5.10), thus
demonstrating the usefulness of the calibration-based tuning given by (5.38).

5.5 Discussion

The concept of preferential estimation has been illustrated through the ex-

perimental case study of a pilot-scale fed-batch filamentous fungal fermen-
tation. The objective is to estimate accurately the biomass and product
concentrations for which only rare (r = 72) measurements are available.
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Several observer structures have been implemented and their performance

compared. The results confirm the insights gained from the theoretical
developments in the previous chapters.

A proportional observer tuned in the preferential way P y−Ky is not able

to compensate for the bias caused by deterministic disturbances not present
in the tuning data. Hence, although the P y −Ky observer improves the es-
timation performance in Experiment I, it is not able to do so in Experiment

II. However, on-line retuning of the P y − Ky observer based on data from
Experiment II can eliminate the bias. The price to pay is a high compu-

tational load and a non-smooth estimate due to the continuously varying
observer gain.

An integral observer can provide good estimates without being retuned.

Additionally, these estimates are smoother. It was observed that the simple
structure Iz can already provide improved estimation performance com-

pared to open-loop model prediction. In this particular case, by simplifying
the observer structure further and by updating only the preferred variables,
even better results can be obtained (Iz−LT observer). This can be explained

by the low number of data points available for tuning, which does not allow
for good tuning of the numerous parameters of the full Kβ gain matrix.

The tuning of the Iz − LT observer is the most straightforward. However,
a simple educated guess of the integral gain may not be sufficient. It is

important to use the available data for calibration-based observer tuning.

The performance of the integral observers is not significantly better than
that of a Kalman filter. This can be explained by the presence of a time-
varying gain in the EKF-ZOH, due to the use of a time-varying linear model.

By re-evaluating the jacobians using the current estimates, which are based
on the z measurements, the gain of the EKF-ZOH is ’adapted’ to the dis-

turbance. In this particular case this adaptation is sufficient for bias elim-
ination, hence, extending the Kalman filter with integrators is not needed.

However, the tuning of such a filter is very time consuming, and for this
case study some ad-hoc approximations had to be introduced to ease the

computational burden (constant jacobians for tuning). On the contrary,
using the same implementation and code, the tuning of integral observers
is fast, which is an additional advantage of their simple structure.

Thus, simple guidelines for implementing preferential estimation can be
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given:

1. Use an Iz term, possibly with the simplest structure Iz − LT .

2. Tune the observer by a calibration-based approach, using experimental
data.

3. If the resulting Iz observer is under-performing, introduce additional
proportional terms, P y and/or P z, and repeat the calibration.



Chapter 6

Conclusions

6.1 Summary

This thesis has introduced the concept of preferential estimation. The prob-
lem of estimating accurately a subset of states has been treated in the lit-
erature either by reducing the order of the estimator to that of the subset,

or by estimating all the states as accurately as possible, including the sub-
set of interest. The novelty of preferential estimation is to use a full-order

estimator to estimate the preferred subset accurately, without paying any
attention to the complementary subset. This way, errors induced by order

reduction are avoided.

It is shown that preferential estimation reduces or eliminates the effect
of deterministic disturbances through the use of infrequent measurements

of the preferred variables. The following observer structures have been
proposed and studied:

• P y

This is the classical observer structure containing a term proportional
to the frequent output measurements. Theoretical results show its

ability to eliminate the effect of a constant deterministic disturbance in
the preferred variables by appropriate choice of the gain Ky. The gains

can be determined by numerical optimization based on the infrequent
measurements of the preferred variables, thus leading to a calibration-

based tuning. Since, in general, there are not enough degrees of freedom
for simultaneous bias elimination and noise filtering, the P y observer
finds a compromise between the two objectives.

123
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The advantage of this observer is its simplicity, since it contains the

smallest number of tuning parameters. The disadvantage is that the
observer has to be retuned for each disturbance dk.

• P yP zIz

In order to have an observer that can adapt to variations of the deter-
ministic disturbance, an integral term based on the infrequent measure-

ment is introduced. Additionally, a term proportional to the infrequent
measurements is also introduced to ensure stability of the structure. It
is shown that the stability of the observer is the condition for elimi-

nating bias in the preferred variables, for any value of the piecewise-
constant disturbance d̃. An analytical method for choosing the observer

gains is presented. Since this observer contains more tuning parameters
than needed for bias elimination, the additional degrees of freedom can

be used to minimize variance. These additional parameters are found
via numerical optimization based on the infrequent measurements, that
is, the same calibration-based tuning approach as for the P y observer.

The advantage of this observer is that the integral state can follow
the variations of the disturbances. Nevertheless, there is no proof that

the P yP zIz observer can eliminate bias for an arbitrary continuously-
varying deterministic disturbance. However, as a rule of thumb, this

observer reduces the effect of time-varying disturbances provided the
observer dynamics are significantly faster than the disturbance dynam-
ics.

Both observer structures have been applied to a pilot-scale fed-batch fila-
mentous fungal fermentation. The experimental results show that retuning

of the P y observer is indeed necessary when the deterministic disturbances
change. In contrast, such retuning is not necessary when using an integral

observer. Also, it is demonstrated that a properly tuned integral observer
is able to compensate for time-varying deterministic disturbances. The ob-

server gains can be determined efficiently by the proposed calibration-based
tuning. However, the noise filtering capabilities of these observers could not
be assessed due to the limited amount of experimental data available.



125

6.2 Perspectives

The problem of preferential estimation involves three major components:
the plant, the observer and the disturbances. The discussions in this thesis

are limited to only some particular cases of these components: linear time-
invariant plant, P y or P yP zIz observers and constant or piecewise-constant

disturbances. Hence, the logical continuation of the work carried out here
is to extend this study to more general cases of the components of the PE

problem.

• Nonlinear plants. The theoretical results of this thesis should be ex-

tended, first to linear and time-varying plants and, next, to nonlinear
plants. A great amount of work has been carried out and reported in

the literature on observers for nonlinear systems [24]. The concepts de-
veloped in this thesis could be combined with the nonlinear techniques

already available.

• P yIz observer. In Sections 4.6 and 5.4.4, a particular tuning of the
P yP zIz observer is used, with the choice of the gain matrix Kz =[

Kz,x

−Kz,β

]
=

[
0n×m

−Im

]
, which can be interpreted as dropping the P z

term in the observer. The resulting P yIz observer was successfully
applied, and even an Iz observer worked satisfactorily. Hence, the use

of these observers for PE should be analyzed in more detail. Some
results have shown that a P yIz observer is able to eliminate bias for

single-output and mono-dimensional z plants [13]. It is desirable to
extend these results to multi-output and multi-dimensional z systems

as well.

• Time-varying disturbances. As a rule of thumb, integral observers
can cope with time-varying disturbances, provided their dynamics are

faster than the disturbance dynamics. This rule of thumb should be
quantified. First, this would involve characterization of the distur-
bance. So far, only zero-order dynamics, i.e. constant disturbances,

have been considered. Higher-order dynamics could be considered, and
a relationship between the parameters of the disturbance model and

the poles of the integral observers could be determined.
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Appendix A

Kinetic expressions, model
parameters and notations used in the
fed-batch filamentous fermentation
model

A.1 Kinetic expressions

k1 =
kbran · 104

π
4 (d · 10−4)2(1 − w)fρ

(A.1)

at =

(
1

2

(
1

2
d · 10−4

)3
4π

3
(1 − w)ρ

)−1

(A.2)

k2 = ktip,max · 10−4π

4

(
d · 10−4)2

(1 − w)fρ (A.3)

d =
1.1 +

√
1.21 +

135ktip,maxfsxe

(s+Ks2)(xe+xa+xh)

2
(A.4)

A.2 Model parameters
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Table A.1: Model parameter values
Parameter Value Measurement unit

aDO 0.04 kg/(m s %)
ax 0.094 kg DW kg/(g m s)
c0 67.2 h−1

c1 4.3816 m s/(kg h)
DO∗ 100 %
η0 4.185 kg/(m s)
f 80 %

Fevap 1.25 L/h
k3 0.08 h−1

kbran 0.0017 tip / (μm h)
kc 8 FAU kg DW/(L g h)

Kcor 10−6 g/L
KI 1.5 · 10−3 g glucose/L

KDO 2.5 %
KS 0.0211 g glucose /L
Ks1 0.003 g glucose /L
Ks2 0.006 g glucose /L

ktip,max 49 μm / (tip h)
λ 0.01 1 / L
mo 0.01 % kg DW/(g h)
ms 0.01 kg DW g glucose /(g L h)
μ0 227 FAU kg DW/(L g h)
ρ 1 g/cm3

sf 430 g glucose / L
σ 1.16 mmol / L
w 0.67 g/kg DW

YXS 1.75 g glucose kg DW / L g
YPS 1.88 · 10−4 g glucose / FAU
YXO 57 % kg DW / g
YPO 35 % L / FAU
YXC 57 mmol kg DW / L g
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A.3 Notations

at – number of tips per unit mass (tips/(kg DW))

aDO – regression coefficient (kg/(m s %))

ax – regression coefficient (kg DW kg/(g m s))

CER – Carbon Evolution Rate (mmol/(L h))

c0 – regression coefficient (h−1)

c1 – regression coefficient (m s/ (kg h) )

d – hyphal diameter (μ m)

Δ[CO2] – change in carbon dioxide concentration over the reactor (%)

Δ[O2] – change in oxygen concentration over the reactor (%)

DO – dissolved oxygen concentration (%)

DO∗ – dissolved oxygen concentration at equilibrium (%)

η – viscosity (kg/(m s))

η0 – regression coefficient (kg/(m s))

f – fraction of the active region (%)

F – feed flow rate (L/h)

FAU – 1 FAU is the amount of enzyme that hydrolyzes 5.26 g starch/h

at 30 ◦C

Fevap – evaporation rate (L/h)

k1 – specific branching frequency (tips/(kg DW h))

k2 – maximal tip extension rate (kg DW/(tips h))

k3 – rate constant (h−1)

kbran – specific branching frequency determined by image analysis
(tip/(μ m h))
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kc – constitutive α-amylase production rate (FAU kg DW/(L g h))

Kcor – correction constant for product formation (g glucose/L)

KDO – limit value of concentration of dissolved oxygen, below which

oxygen limitation occurs (%)

KI – Haldane parameter (g glucose/L)

kLa – specific gas-liquid mass transfer coefficient (1/(L h))

KS – Haldane parameter (g glucose/L)

Ks1 – saturation constant for branching (g glucose /L)

Ks2 – saturation constant for tip extension (g glucose /L)

ktip,max – maximal tip extension rate determined by image analysis (μm
/ (tip h))

λ – proportionality coefficient (1/L)

mo – maintenance coefficient (% kg DW/(g h))

ms – maintenance coefficient (kg DW g glucose /(g L h))

μ0 – Haldane parameter (FAU kg DW/(L g h))

nCO2 – carbon dioxide concentration (mmol / L)

OUR – Oxygen Uptake Rate (mmol/(L h))

p – α-amylase concentration (FAU / L)

pref – reference pressure (atm)

q1 – rate of branching (g/(kg DW h))

q2 – growth rate of the active region (g/(kg DW h))

q3 – rate of hyphal cell formation (g/(kg DW h))

R – universal gas constant (L atm/(mmol K))

rDO – oxygen consumption rate (kg DW/(g h))
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rps – specific α-amylase formation rate (FAU kg DW/(L g h))

rs – substrate consumption rate (kg DW g glucose /(g L h))

ρ – hyphal density (g/cm3)

s – substrate concentration (g glucose / L)

sf – feed substrate concentration (g glucose / L)

σ – solubility of oxygen in water (mmol / L)

Tref – reference temeprature (K)

V – volume (L)

w – hyphal water content (g/kg DW)

xa – concentration of active region (g/kg DW)

xe – concentration of extension zone (g/kg DW)

xh – concentration of hyphal region (g/kg DW)

YPO – yield coefficient for oxygen consumption for product formation
(% L / FAU)

YXO – yield coefficient for oxygen consumption for growth (% kg DW
/ g)

YPS – yield coefficient for substrate consumption for product formation

(g glucose / FAU)

YXS – yield coefficient for substrate consumption for growth (g glucose

kg DW / L g)

YXC – yield coefficient for carbon dioxide formation by the biomass

(mmol kg DW / L g)
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