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Abstract

Distributed storage systems based on commodity hardware have gained in pop-
ularity because they are cheaper, can be made more reliable and offer better
scalability than centralized storage systems. However, implementing and manag-
ing such systems is more complicated due to their distributed nature. This thesis
presents efficient and reliable distributed storage that can be read and written by
any number of clients. The focus is on atomic storage, which guarantees that from
the clients’ perspective, the distributed storage behaves exactly like a centralized
one. Three key complexity metrics – time, number of logs and throughput – are
considered. For each metric, precise performance bounds together with matching
algorithms are provided. Experimental results are used to confirm the theoretical
performance analysis wherever necessary.

(1) Time-complexity is an indication of the latency of read and write opera-
tions, i.e. the time between a client’s invocation of an operation and the response
of the storage. This thesis presents optimal fast atomic storage implementations,
namely, implementations that complete both reads and writes in 1 round-trip
between the client and the servers. Interestingly, the existence of fast imple-
mentations depends on the maximum number of clients that can read from the
storage. More precisely, it is shown that a fast implementation is possible if and
only if the number of readers is less than n/f − 2, with n servers out of which
f can fail. Furthermore, it is shown that fast implementations are impossible for
multiple writers if servers can fail.

(2) Log-complexity is an indication of the number of stable storage (hard
disk) accesses needed in every read or write operation. Stable storage is used to
log data in order to prevent data loss after a crash, in a context where servers can
crash and recover. This thesis revises the notion of atomicity for this context,
determines a lower bound on log-complexity and introduces an atomic storage
matching this bound. The optimality of the storage is also established in terms
of resilience, as well as time-complexity.

(3) Throughput measures the average number of client requests that can be
completed per time unit. In order for a distributed storage to serve a high number
of clients concurrently, high throughput is required. This thesis introduces an
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atomic storage that provides optimal read throughput for homogeneous clusters
of servers. The storage organizes servers around a ring and uses only point-to-
point communication. It is resilient to the crash failure of any number of readers
and writers as well as to the crash failure of all but one server. The storage was
evaluated on a cluster of 24 nodes.

The same storage is modified to solve the more general uniform total order
broadcast problem, which can be used to replicate any application reliably. Thus,
the first uniform total order broadcast algorithm that is throughput optimal,
regardless of message broadcast patterns, is introduced. The algorithm is based
on a ring topology, only relies on point-to-point inter-server communication, and
has a linear latency with respect to the number of processes. The implementation
was benchmarked against two of the most widely used group communication
packages and the results confirm that the algorithm is indeed throughput optimal.

Keywords: distributed storage, atomic storage, crash-recovery, total order,
complexity, throughput.



Résumé

Les systèmes de stockage répartis utilisant du matériel grand public ont gagné
en popularité parce qu’ils sont moins chers, peuvent être rendus plus fiables et
offrent un meilleur passage à l’échelle que les systèmes centralisés utilisant du
matériel spécialisé. En revanche, du fait de leur distribution, ces systèmes de
stockages sont plus complexes à implémenter et à gérer que les systèmes cen-
tralisés. Dans cette thèse, nous proposons des algorithmes permettant de con-
struire des systèmes de stockage efficaces et fiables. Ces systèmes peuvent être
lus et écrits par un nombre illimité de clients. L’accent est mis sur les systèmes
de stockage ayant une sémantique atomique. Ces derniers garantissent que, du
point de vue des clients, le système de stockage se comporte exactement comme
un système centralisé. Trois métriques de complexité clées sont étudiées: temps,
nombre d’opérations de journalisation et débit. Pour chaque métrique, nous
déterminons et prouvons des bornes précises sur les performances optimales qui
peuvent être obtenues, et nous présentons des algorithmes conformes à ces bornes.
Des résultats expérimentaux sont présentés pour confirmer les résultats théoriques
lorsque c’est nécessaire.

(1) La complexité en temps (également appelée latence) mesure le temps
moyen entre l’invocation d’une opération par un client (écriture ou lecture) et la
réponse du système de stockage. Nous présentons des algorithmes de stockages
optimaux en termes de latence. Plus précisément, ces algorithmes garantissent
que les opérations de lecture et d’écriture ne requièrent qu’un aller-retour entre le
client et les serveurs. Nous prouvons que la possibilité d’être optimal en latence
dépend du nombre maximal de clients qui peuvent faire des opérations de lecture
sur le système de stockage de faon concurrente. Plus précisement, il est montré
qu’une implémentation optimale est possible si et seulement si le nombre de
lecteurs est inférieur à n/f − 2, avec n représentant le nombre de serveurs et f le
nombre de fautes tolérées. De plus, nous montrons qu’il est impossible de réaliser
un algorithme optimal en latence tolérant à la fois de multiples écrivains et des
pannes de serveurs.

(2) La complexité en nombre d’opérations de journalisation mesure le
nombre moyen d’accès à un système de stockage persistant (disque dur) qu’il est
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nécessaire d’effectuer pour chaque opération de lecture ou d’écriture. Le système
de stockage persistant est utilisé pour journaliser des données afin d’éviter qu’elles
ne soient pas perdues suite à une panne de serveur. L’utilisation d’un système de
stockage persistant est nécessaire lorsque les serveurs tombant en panne peuvent
redémarrer. Dans cette thèse, nous révisons la notion d’atomicité dans ce cadre,
nous déterminons une borne inférieure sur la complexité en opérations de jour-
nalisation et nous proposons un algorithme permettant de réaliser un système de
stockage conforme à cette borne inférieure. L’optimalité du système de stockage
est aussi établi en termes de nombres de pannes et complexité en temps.

(3) Le débit mesure le nombre moyen de requêtes qui peuvent être effectuées
par unité de temps. Un système de stockage doit garantir un débit élevé afin
de permettre le traitement simultané d’un nombre élevé de requêtes. Nous pro-
posons un algorithme permettant de construire un système de stockage atomique
fournissant un débit optimal en lecture dans un environnement de type grappes
de serveurs homogènes. L’algorithme proposé repose sur une organisation des
serveurs en anneau, chaque serveur n’effectuant que des communications point-
à-point vers son successeur dans l’anneau. Par ailleurs, l’algorithme proposé
tolère la panne d’un nombre arbitraire de clients, et nécessite uniquement qu’un
serveur fonctionne à tout moment. Nous avons réalisé une implémentation de cet
algorithme et l’avons évalué sur une grappe de 24 noeuds.

Finalement, nous avons modifié l’algorithme précédent afin de résoudre le
problème plus général de diffusion de messages avec ordre total uniforme. Un
tel algorithme peut être utilisé pour répliquer n’importe quelle application de
façon fiable. Nous introduisons le premier algorithme de diffusion avec ordre to-
tal uniforme qui soit optimal en débit, quels que soient le nombre de serveurs
diffusant des messages. Nous avons réalisé une implémentation de cet algorithme
et l’avons comparée aux deux implémentation de référence des protocoles de dif-
fusion. Les résultats obtenus confirment que notre algorithme est en optimal en
débit.

Mots-clés: système de stockage réparti, sémantique atomique, journalisation,
ordre total, débit, complexité.
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1
Introduction

Interestingly, according to modern
astronomers, space is finite. This is a very
comforting thought – particularly for
people who can never remember where they
have left things.

Woody Allen

A growing number of software services require fast and reliable storage of large
quantities of data. Such services include stock exchange, data warehouse and e-
commerce applications where data needs to be written and read concurrently by
many clients. Traditionally, a centralized and highly specialized server is used for
mission critical storage systems. The cost of such specialized centralized storage
servers is very high, they do not offer protection against the loss of the entire
server due to unforseen consequences and they are not very scalable. Distributed
storage systems [Abd-El-Malek et al. 2005; Chun et al. 2006; Kenchammana-
Hosekote et al. 2004; Saito et al. 2004] are gaining in popularity as appealing
alternatives to their expensive centralized counterparts. A distributed storage
system relies on a cluster of cheap distributed commodity machines. The goal
of this distribution is to ensure resilience on the one hand and, on the other
hand, to provide scalability by adjusting the number of servers to the number of
clients to be served concurrently. Thus, not only are distributed storage systems
cheaper, they are also more scalable. Figure 1.1 illustrates the difference between
a centralized and a distributed storage.

At the heart of such a distributed storage system lies a storage algorithm. In
short, a distributed storage algorithm provides an abstraction, usually called a
register [Lamport 1978], that can be accessed by several clients concurrently.
Clients can perform read and write operations on the storage with the knowledge
that a read will return a recently written value. Distributed storage systems
combine multiple read/write objects, each storing its share of data, as building
blocks for a single large storage system. Not surprisingly, the performance of such
a storage system depends on the performance of the underlying storage algorithm
implementing the read/write objects.
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1 server process 3 server processes

Figure 1.1: Difference between a centralized and a distributed storage.

The focus of this thesis is on reliable distributed storage. We consider atomic
and resilient storage that can be read or written by an unbounded number of
clients. An atomic storage is convenient because it provides the illusion of in-
stantaneous execution despite concurrency: every read or write operation appears
to take effect at some individual instant within the time interval between its in-
vocation and reply events. To the clients it is as if they were accessing every
variable sequentially one after the other [Lamport 1978; Herlihy and Wing 1990].
It was recently argued [Kenchammana-Hosekote et al. 2004; Saito et al. 2004]
that atomicity is a desired property for distributed storage systems. In our con-
text, resilience means that every non-faulty client eventually gets a reply to every
(read or write) invocation, despite the failures of other clients or (a subset of the)
servers. In short, from the client’s perspective, an atomic and resilient distributed
storage behaves like a highly available and scalable centralized storage.

This thesis improves the performance of storage algorithms along three dimen-
sions which are introduced below:

1.1 Time-Complexity

Time-complexity is an indication of the latency of a single operation. The latency
is defined as the time elapsed between the invocation and the response of the
operation. A fast storage will have a low latency and conversely, a slow storage
a high latency.

Time-complexity is typically measured in communication rounds, where in each
round, every server process is supposed to:

1. compute a message at the beginning of the round,
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Invocation Response

3 round latency

Figure 1.2: Time-complexity of an operation. In this example there are 3 rounds
between the invocation and the response of the operation.

2. send (or broadcast) the message, and

3. receive all messages sent at the same round unless the sending process has
crashed.

Latency is measured when there is a single client performing a single operation.
Concurrent accesses to the storage are not taken into account.

We address the problem of designing an efficient implementation of an atomic
read-write storage in an asynchronous system, i.e. where there are no bounds on
message delays. Previous implementations tolerate the failure of any minority
of servers (i.e., f < n/2 in a system with n servers where f servers may fail by
crashing) and require 2 communication rounds (1 round-trip) for every write, and
4 communication rounds (2 round-trips) for every read. We are interested in fast
implementations, namely, implementations that complete both reads and writes
in 1 round-trip. Obviously, this represents the lowest possible time-complexity
for a distributed storage. We show that the existence of a fast implementation
depends on the maximum number of readers considered. More precisely, we
demonstrate that a fast implementation is possible if and only if the number of
readers is less that n/f−2. We also show that a fast implementation is impossible
for multiple writers.

Our results draw sharp lines between the time-complexity of regular and atomic
register implementations, as well as between single-writer and multi-writer im-
plementations. The results also lead to revisit, in a message-passing context, the
folklore theorem that “atomic reads must write”.

1.2 Log-Complexity

Obviously, in most distributed systems, servers that crash are not thrown away,
but are restarted after being fixed; sometimes they automatically recover without
manual intervention. Forcing such recovered processes to remain out of the com-
putation is not natural. Especially in long running applications, it can indeed
be advantageous to take this recovery capacity into account, hopefully providing
higher resilience for the overall system. However, a computer that crashes loses
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the contents of its volatile memory. The only way it can remember its state before
crashing is to continuously log information to its stable storage. However, logging
to stable storage has a significant cost. In our local area network of Pentium IV
workstations for instance, it takes around 0.1ms for a message to transit between
two processes located at different workstations, whereas logging a single byte on
a local disk might take twice as long; comparatively, it costs almost nothing for a
process to execute a local operation that accesses only its volatile memory. But
how do we take into account log-complexity? To illustrate this question, con-
sider the implementation of a write operation using two algorithms A and B of
Figure 1.3: 1

writer

writer
W(v)  

p2

p3

p4

W(v)  

p2

p3

p4

Algorithm A

Algorithm B

Figure 1.3: Differences in log-complexity between algorithms A and B. Logs
are represented by dots on the time line. A write operation costs
2 causally related logs (or simply logs) in algorithm A and 1 log in
algorithm B.

1. In algorithm A, the writer process first logs some information, then sends
a message to all processes. Every server process that gets the message also
logs some information, except the writer, before sending back an acknowl-
edgment (ack). Once the writer gets back all acks, it returns from the
write.

2. In algorithm B, the writer directly sends a message to all server processes.
Every server process that gets the message logs some information before

1None of these algorithms robustly implement an atomic storage, but this is irrelevant for
explaining the notion of log-complexity.
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sending back an ack. Once the writer gets back all acks, it returns from the
write.

In both algorithms, a write operation requires 2 communication steps, i.e. 1
round-trip between the writer and the rest of the processes. But how many
logs are used in each algorithm? At first glance, it might appear that both
algorithms use the same number of logs. Indeed, in both cases, all processes
must log to terminate the write. However, a closer look at the algorithms reveals
that logs are not used in the same manner. In A, the log of the writer causally
precedes [Lamport 1978] the log of the other processes, whereas in B, there is
no such causal precedence: all logs can be performed in parallel. We say that
a write operation costs 2 causally related logs (or simply logs) in algorithm A
and 1 log in algorithm B. In practice, even if distributed storage algorithms are
devised in an asynchronous model, the most frequent case for which they need
to be optimized is when the message transmission delay is within a reasonable
time period (0.1 ms in our network). If we define the communication delay as δ
and the log delay as λ, a write with A costs 2δ+ 2λ, whereas a write with B only
costs 2δ + λ.

We revisit the reasoning tools underlying atomicity in a crash-recovery model
and give a generic algorithm that implements a multi-writer/multi-reader atomic
storage in a crash-recovery model. Our algorithm is generic in the sense that it
uses an abstract notion of amnesia masking storage which can be instantiated for
several kinds of crash-recovery systems according to whether or not processes have
access to stable storage and whether we can assume that a subset of processes do
not crash in every execution.

Considering a system with n processes, including s processes with stable stor-
age, a maximum of f faulty processes that can crash permanently or keep crash-
ing and recovering forever, and u processes that do not crash, we establish the
optimality of specific instances of our algorithm by proving the following bounds:

1. Resilience: f < n/2 and u > f if s ≤ 2f .

2. Log-complexity: If s > 2f and u ≤ f , 2 logs per write and 1 per read
are necessary for a single writer/single reader and sufficient for a multi
reader/multi writer storage algorithm.

3. Time-complexity: If s = 0, more than 1 round trip per write is necessary
for a single writer and multi reader storage algorithm2. If s 6= 0 then 1
round-trip per write is sufficient for a single writer storage algorithm.

1.3 Throughput

In practice, when a high number of clients are served concurrently, low overall
latency can only be provided with high throughput. In short, under high load, the
latency perceived by clients is the sum of the time spent waiting for the operation

2The time-complexity of a read can be derived from existing results in crash-stop model [Attiya
et al. 1995; Dutta et al. 2004].
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Algorithm A
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Figure 1.4: Throughput comparison between two algorithms: A and B. Both
have the same latency but the throughput of B outperforms that
of A. Client server communication messages are represented by the
dotted lines.

to be served plus the actual service time. Clearly, when a lot of clients access the
storage concurrently, the higher the throughput, the smaller the waiting time.
Ideally, one would aim at scalability, meaning that increasing the number of
machines should improve the throughput of the storage system.

To motivate the design of our algorithm and illustrate why studying isolated la-
tency might be misleading, we compare two algorithms as presented in Figure 1.4.
A quorum-based traditional one [Attiya et al. 1995; Lynch and Shvartsman 1997]
and a less traditional one without inter-server communication. The example in-
volves three servers and clients performing read operations on the storage. Clients
always first contact a single server and communication between servers proceeds
in a round-based manner. For simplicity, we assume that sending and receiving
a message always takes the same time: one round. Therefore in each round, a
server can receive a single message and send a single message. Algorithm A is a
majority based algorithm: 2 out of 3 servers are needed to complete each opera-
tion. Upon receiving a request, server s1 contacts s2, and upon receiving a reply
from s2, replies to the client. Likewise, upon receiving client requests, s2 contacts
s3 and s3 contacts s1. Thus, the servers need 3 rounds before they can receive
a new client request. Under full load, the servers can complete 3 requests every
3 rounds, inducing a throughput of 1 read operation per round. In algorithm B
the servers do not communicate in order to complete a read request. The client
request latency is the same as that of algorithm A: 4 rounds. However, after an
initial period of 4 rounds, the servers can complete 3 read operations each round,
achieving a throughput of 3 read operations per round.

We exploit the availability of reliable failure detection in a homogeneous cluster
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environment to provide high throughput distributed storage. We provide an
atomic storage algorithm that is resilient to the crash failure of any number of
readers and writers as well as to the crash failure of all but one server. In failure-
free and synchronous periods, our algorithm has an optimal read throughput
that grows linearly with the number of available servers. This is ensured even in
the face of write contention. We organize the servers following a ring to ensure
constant write throughput and avoid collisions during concurrent writes.

The implementation of our algorithm was evaluated on a cluster of 24 machines
(dual Intel 900MHz Itanium-2 processors, 3GB of RAM) with dual fast ethernet
network interfaces (100 Mbps). We achieve 81 Mbps of write throughput and
8×90 Mbps of read throughput (with up to 8 servers). Our algorithm is the first
atomic storage algorithm to achieve a read throughput that grows linearly with
the number of available servers.

Total Order. The idea of organizing servers in a ring combined with reliable
failure detection allows us to apply the same design principles to build an even
stronger abstraction, allowing us to ensure fault tolerance through state machine
replication3. The key to making state machine replication work is a well designed
software layer that hides all the difficulties behind replication from the application
developer and renders it transparent to the clients.

Replication is typically used in replicated databases [Cecchet et al. 2004]. The
idea is that all databases process the same write queries (INSERT and UPDATE) in
the same order. Read queries (SELECT) do not change the state of the replicated
database and do not have to be performed by all replicas. It is crucial that
replicas do not execute any write query before making sure that all other replicas
will also execute it. Indeed, consider the case where a replica executes a write
request w1, subsequently answers a client’s read request r1 and fails. If the other
replicas do not execute w1, the value of r1 returned to the client will not be
consistent with the replicated database.

Replication relies on an underlying ordering mechanism which ensures that
all replicas perform the same operations on their copy in the same order, even
if they subsequently fail. This mechanism is encapsulated by a communication
abstraction called uniform total order broadcast (UTO-broadcast) [Hadzilacos and
Toueg 1993]. Uniformity prevents faulty replicas from performing operations on
their copy that will not be performed by the other (correct) replicas.

The throughput of a UTO-broadcast algorithm is crucial to the throughput
of the associated replication mechanism. Throughput measures the number of
requests that can be handled by the replicas under high load.

Numerous UTO-Broadcast algorithms have been published [Défago et al. 2004].
Algorithms relying on communication history [Peterson et al. 1989; Malhis et al.
1996; Ezhilchelvan et al. 1995; Ng 1991; Moser et al. 1993] and destination
agreement [Chandra and Toueg 1996a; Birman and Joseph 1987b; Luan and
Gligor 1990; Fritzke et al. 2001; Anceaume 1997] do not have good throughput

3State machine replication is more general than data replication. State machine replication
allows any generic application to be replicated for fault tolerance while data replication can
only be used to build a reliable storage application.
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as they rely on a quadratic number of messages and an underlying consensus
sub-algorithm. Low throughput is also the case for algorithms relying on a fixed
sequencer [Kaashoek and Tanenbaum 1996; Armstrong et al. 1992; Carr 1985;
Garcia-Molina and Spauster 1991; Birman and van Renesse 1993; Wilhelm and
Schiper 1995]. While requiring fewer messages than the previously mentioned
class of algorithms, they still exhibit bad throughput because the sequencer be-
comes a bottleneck. Algorithms using moving sequencers [Chang and Maxemchuk
1984; Whetten et al. 1994; Kim and Kim 1997; Cristian et al. 1997] have been
proposed to overcome the limitation of fixed sequencer algorithms. While signif-
icantly improving the throughput, these algorithms do nevertheless not achieve
optimal throughput due to the impossibility of piggy-backing acks in certain
broadcast patterns (e.g. 1-to-n). Finally, a class of UTO-broadcast algorithms,
called privilege-based algorithms [Friedman and Renesse 1997; Cristian 1991; Ek-
wall et al. 2004; Amir et al. 1995; Gopal and Toueg 1989], uses a ring topology
of processes and a token passed among processes to grant the privilege of broad-
casting. These algorithms are throughput optimal in the 1-to-n and n-to-n case,
but not in the k-to-n case (k 6= 1, n). For instance, when two processes simulta-
neously want to broadcast messages, for fairness reasons, the token is constantly
passed from one sender to the other, which reduces the throughput.

Our algorithm (called LCR) provides throughput optimality and fairness, re-
gardless of the type of traffic. In our context, fairness conveys the equal oppor-
tunity of processes to have their broadcast messages delivered. We give a careful
analysis of LCR’s performance and fairness. We also provide performance results
based on C and Java implementations of LCR that rely on TCP channels. The
implementations are benchmarked against Spread and JGroups on a cluster of 9
machines and we show that LCR consistently delivers the highest throughput.

Outline. Chapter 2 looks at the time-complexity of storage algorithms by deter-
mining exactly how fast operations can be. Chapter 3 studies storage algorithms
in the crash-recovery model through the notion of log-complexity. Chapter 4
looks at the throughput of storage and atomic broadcast algorithms and Chap-
ter 5 concludes the thesis.



2
Time-complexity

A man with a watch knows what time it is.
A man with two watches is never sure.

Segal’s Law

2.1 Introduction

Informally, atomicity requires that, even though each read or write operation may
take an arbitrary period of time to complete, they appear to be instantaneous at
some point in time, during their respective period of execution [Lamport 1985].
This requires ordering operations in such a way that they respect their physi-
cal order as well as the expected sequential specification of a read-write storage,
namely, a read should return the last value written. The original implementation
of [Attiya et al. 1995] maintains the required order among operations by asso-
ciating timestamps with every written value. To write some value v, the writer
increments its local timestamp, and sends v with the new timestamp ts to all
processes (in [Attiya et al. 1995], readers and servers are the same set, the writer
is one of the servers, and a minority of processes may crash). Every process, on
receiving such a message, stores v and ts and then sends an acknowledgment (an
ack) to the writer. On receiving acks from a majority, the writer terminates the
write. In a read operation, the reader first gathers value and timestamp pairs
from a majority of processes, and selects the value v with the largest timestamp
ts. Then the reader sends v and ts to all processes, and returns v on receiving
acks from a majority of processes.

Roughly speaking, the ordering is ensured by associating the value (that is
written or read) to the largest timestamp in the system, and then storing it at
a majority of processes. Since we are in a single-writer setting, and since only
the writer introduces new timestamps in the system, the writer always knows the
latest timestamp. Thus, on invoking a write operation, the writer just needs to
increment its own timestamp to get a timestamp that is higher than any existing
timestamp in the system. On the other hand, a reader does not know the latest
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timestamp in the system, and hence, needs to spend one communication round-
trip to know the latest value, and then another round-trip to send the value to a
majority of processes.

The second round-trip is “required” in the above algorithm because the latest
value learned in the first round-trip might be present at only a minority of pro-
cesses. In a sense, every read includes, in its second communication round-trip,
a “write phase”, with the input parameter being the value selected in the first
round-trip. This observation is captured by the folklore theorem that “atomic
reads must write”, which is actually borrowed from similar results in the shared-
memory model [Lamport 1985; Attiya and Welch 1998]. In particular, a theorem
from [Attiya and Welch 1998] states that, to simulate a multi-reader atomic stor-
age from single-reader atomic storage, at least one of the readers must write into
some single-reader storage. Along the same lines, when implementing atomic
storage over weaker regular ones [Lamport 1985], a process that reads a value
v also needs to write it, in order to make sure that no other process will subse-
quently read an older value v′: with a regular storage, even if a value v′ is written
before a value v, v might be read before v′, which is impossible with an atomic
storage. Recently, [Fan and Lynch 2003] has shown that, in a message-passing
system with n servers out of which f can fail, every atomic read must modify the
state of at least f servers. However, in such a system, any message received by
a server can potentially modify the server’s state. Hence, a read can modify at
least n−f > f servers (assuming a majority of correct servers) in one round-trip.
Thus [Fan and Lynch 2003] does not answer the question whether the second
round-trip is necessary. Intuitively, processes (servers) are smarter than a basic
(regular or single-reader) storage and might do more. Hence the motivation for
this chapter: to determine the time-complexity of an atomic read.

In fact, we can reduce the time-complexity of the reads in [Attiya et al. 1995]
by using a simple decentralization combined with a max-min technique. First,
the reader sends messages to all servers. Every server, on receiving such a mes-
sage, broadcasts its timestamp to all servers. On receiving timestamps from a
majority of servers, every server selects the maximum timestamp, adopts the
timestamp and its associated value, and sends the pair to the reader. On receiv-
ing such messages from a majority of servers, the reader returns the value with
the minimum timestamp. To see why this ensures atomicity, observe that, when
a write completes, its timestamp, say ts, is stored at a majority of servers. In
any subsequent read, every server sees a timestamp that is higher than ts, before
the server sends the message to the reader. Hence, the read returns a value that
is not older than the written value. On the other hand, if a read returns a value
with timestamp ts, then a majority of servers have a timestamp not lower than
ts, and no subsequent read returns an older value. But can we do better? Is there
a fast implementation where none of the operations (read or write) require more
than one communication round-trip? This would clearly be optimal in terms of
time-complexity. For example, consider the case of a fast implementation with
two readers and f < n/2. Note that in the case of a single-reader and where a
minority of servers may crash (f < n/2), it is trivial to modify the algorithm
of [Attiya et al. 1995] such that the read takes only one round-trip, i.e., does
not “write”: the read can return the latest value learned from the servers in the
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first round trip, provided it is not older than the value returned in the previous
read. Otherwise, the reader returns the same value as in the previous read. Since
there is only one reader, this clearly orders the reads in the desired fashion and
ensures atomicity. To illustrate the example with two readers, suppose the writer
writes v with timestamp 7, and the write message is received only by one server
p1. (The write is incomplete.) The first reader gets information from a majority
of servers that includes p1. The read must return v because the reader does not
know whether the write of v is complete or not, and this reader has to return the
value of the last preceding write. Now suppose the second reader invokes a read,
queries a majority of servers, and misses p1. Clearly, the second read returns a
value with a timestamp lower than 7, violating atomicity: the second read re-
turns an older value than the preceding read. At first glance, it seems impossible
to have a fast implementation with two readers. But what if we tolerate fewer
faulty servers?

2.1.1 Contributions

We show that, interestingly, the existence of a fast single-writer multi-reader
(SWMR) atomic storage implementation depends on the maximum number R of
readers. More precisely, the primary contribution is to show that there is a fast
implementation of a SWMR storage if and only if R < n/f − 2.

1. Our fast implementation is based on the following observation: if a reader
sees the latest timestamp ts at x servers, then any subsequent reader sees ts
or a higher timestamp at x− f servers; this is because, in a fast implemen-
tation, the first reader does not propagate ts, and the second reader might
miss f servers seen by the first reader. A generalization of this observation
helps determine when some reader can safely return the value associated
with the latest timestamp. This is not entirely trivial because the safety
of a value can not be simply deduced from the number of servers that has
seen the value. To determine whether a value is safe, we have every server
maintain, besides the latest value, the set of readers to which the server has
sent that value.

2. Given n and f , we prove by contradiction that there is no fast implementa-
tion with R ≥ n/f − 2. Given a fast implementation with R ≥ n/f − 2, we
consider a partial run which contains a write(1) that misses f servers, and
we append it with a read that misses f other servers. Then we delete all
the steps in the partial run that are not “visible” to the reader (basically,
the steps of the f servers that the read missed). By atomicity, the read
returns 1 in the resulting partial run. Now we iteratively append reads by
distinct readers, and delete the steps in the partial run that are not visible
to the last reader, until we exhaust all the readers. To ensure atomicity, the
last read of each partial run returns 1. In the final partial run (obtained
after exhausting all readers) the steps of write(1) are almost deleted. We
modify this partial run to construct several additional partial runs, one of
which violates atomicity.
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Our result determines the exact conditions under which “atomic reads must
write” in a message-passing system, and draws a line between the time-complexity
of regular and atomic storage implementations. Indeed, whereas there is a fast
implementation of an SWMR regular storage if and only if f < n/2, irrespective
of the number of readers (as long as this number is finite), our result states that a
fast implementation of a SWMR atomic storage exists if and only if f < n/(R+2).
The result also raises several interesting questions. One question has to do with
the impact of multiple writers [Lynch and Shvartsman 1997]: is it possible to have
a fast implementation of a MWMR atomic storage? We show that the answer
is “no” if f ≥ 1. A second question has to do with the length of the writes and
whether semi-fast implementations are possible: namely, if we allow writes to be
slow, can we have fast reads? This question raises the possibility of an interesting
trade-off. In many practical settings, reads might be more frequent than writes,
and we might like to have fast reads at the expense of slow writes. We partially
determine this trade-off by showing that there is no (semi-fast) implementation
of a SWMR storage with arbitrarily long writes and fast reads, if R ≥ n/f .

2.1.2 Roadmap

The rest of the chapter is organized as follows. Section 2.2 sketches the system
model and the necessary definitions. We present a fast implementation assuming
R < n/f − 2 in Section 2.3. We prove n/f − 2 to be a tight bound for R in
Section 2.5. Section 2.6 considers the multi-writer case and semi-fast implemen-
tations.

2.2 Model and Definitions

2.2.1 Basics

The distributed system we consider consists of three disjoint sets of processes: a
set servers of size n containing processes {p1, ..., pn}, a set writer containing a
single process {w},1 and a set readers of size R containing processes {r1, ..., rR}.
Every pair of processes communicate by message-passing using a bi-directional
reliable communication channel.

A distributed algorithm A is a collection of automata, where Ap is the automata
assigned to process p. Computation proceeds in steps of A. A step of algorithm
A is denoted by a pair of process id and a set of messages received in that step
< p,M > (M might be ∅). A run is an infinite sequence of steps of A. A partial
run is a finite prefix of some run. A (partial) run r extends some partial run pr if
pr is a prefix of r. At the end of a partial run, all messages that are sent but not
yet received are said to be in transit. In any given run, any number of readers,
the writer, and f out of n servers may crash.

1We discuss the multi-writer case in Section 2.6.
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2.2.2 Atomic storage

A sequential storage is a data structure accessed by a single process. It provides
two operations: write(v), which stores v in the storage, and read(), which returns
the last value stored. An atomic storage is a distributed data structure that may
be concurrently accessed by multiple processes and yet provides an “illusion”
of a sequential (or centralized) storage to the accessing processes. We refer the
readers to [Lamport 1985; Lynch 1996; Herlihy 1991; Herlihy and Wing 1990]
for a formal definition of an atomic storage, and we simply recall below what is
required to state and prove our results.

We assume that each process invokes at most one invocation at a time (i.e.,
does not invoke the next operation until it receives the response for the current
operation). Only readers invoke read on the storage and only the writer invokes
write on the storage. We further assume that the initial value of a storage is a
special value ⊥, which is not a valid input value for a write. In any run, we say
that an operation op1 precedes operation op2 (or op2 succeeds op1) if the response
step of op1 precedes the invocation step of op2 in that run. If neither op1 nor
op2 precedes the other, the operations are said to be concurrent. We say that an
operation is complete in a (partial) run if the run contains a response step for
that operation.

An algorithm implements a storage if every run of the algorithm satisfies termi-
nation and atomicity properties. Termination states that if a process invokes an
operation, then eventually, either the operation completes or the process crashes.
Here we give a definition of atomicity for single-writer storage.

In the single-writer setting, the writes in a run have a natural ordering which
corresponds to their physical order. Denote by wrk the kth write in a run (k ≥ 1),
and by valk the value written by the kth write. Let val0 = ⊥. We say that a
partial run satisfies atomicity if the following properties hold: (1) if a read returns
x then there is k such that valk = x, (2) if a read rd is complete and it succeeds
some write wrk (k ≥ 1), then rd returns vall such that l ≥ k, (3) if a read rd
returns valk (k ≥ 1), then wrk either precedes rd or is concurrent to rd, and (4) if
some read rd1 returns valk (k ≥ 0) and a read rd2 that succeeds rd1 returns vall,
then l ≥ k.

A history of a partial run is a sequence of invocation and response steps of
read or write operations in the same order as they appear in the partial run. An
incomplete invocation step in a history is an invocation step without a matching
response step in that history. We say that a history H1 completes history H2 if
H1 can be obtained through the following modification ofH2: for each incomplete
invocation step sp in H2, either sp is removed from H2, or any valid matching
response for that invocation is appended to the end of H2.

A run satisfies atomicity, if for every history H ′ of any of its partial runs,
there is a history H that completes H ′ and H satisfies the properties 1-3 below
(Lemma 13.16 of [Lynch 1996]). Let Π be the set of all operations in H. There
is an irreflexive partial ordering ≺ of all the operations in H such that: (1) if op1
precedes op2 in H then it is not the case that op2 ≺ op1, (2) if op1 is a write
operation in Π and op2 is any other operation in Π, then either op1 ≺ op2 or
op2 ≺ op1 in Π, and (3) the value returned by each read operation is the value
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written by the last preceding write operation according to ≺ (or ⊥ if there is no
such write operation).

2.2.3 Fast Implementations

Basically, we say that a read or a write operation is fast if it completes in one
communication round-trip. In other words, in a fast read:

1. The reader sends messages to a subset of processes in the system (possibly
all processes).

2. Processes on receiving such a message reply to the reader before receiving
any other messages. Intuitively, this requirement forbids the processes to
wait for some other message before replying to m.

3. The reader on receiving a sufficient number of such replies returns from the
read.

Recall that implementations need to tolerate the crash of the writer, any reader,
and up to f servers. Hence, in order to ensure termination, the reader cannot
wait for replies from any other reader, or writer, or more than n− f servers. We
similarly say that a write operation is fast if it completes in one round-trip.

We say that an implementation has fast reads (or writes) if every complete read
(resp. complete write) operation in every run is fast. A fast implementation is an
implementation in which both reads and writes are fast. For an implementation
that has fast reads, we can say without ambiguity that the messages sent by a
reader, on invoking a read, are of type read, and the messages sent by a process
to the reader, on receiving a read message, of type readack. Similarly, we
define write and writeack messages for fast writes.

2.3 A Fast Implementation

We describe in this section a fast implementation assuming R < n/f − 2
(Figure 2.1). For simplicity of presentation, we assume that the writer writes
timestamps, and the readers read back timestamps. We ignore the value asso-
ciated with the timestamp for now. Later we explain how to trivially modify
our algorithm such that the writer and the readers associate some value with a
timestamp.

The write procedure is similar to that of [Attiya et al. 1995]. On invoking a
write, the writer increments its timestamp and sends a write message with the
timestamp to all servers. Servers on receiving the message store the timestamp,
and send writeack messages back to the writer. The writer returns ok once it
has received writeack messages from n− f servers.

Implementing a fast read is more involved. Recall that, to maintain atomicity,
a read needs to return a timestamp that is not lower than the timestamp of the
last completed write, and has to guarantee that no subsequent read returns a
lower timestamp. Our read procedure collects timestamps from n − f servers
(by sending read messages and receiving readack messages from the servers),
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1: at the writer w
2: procedure initialization:
3: ts← 1, rCounter ← 0
4: end
5: procedure write(v)
6: send(write, ts, rCounter) to all servers
7: wait until receive(writeack, ts, ∗, rCounter) from n− f servers
8: ts← ts+ 1
9: return(ok)

10: end

11: at each reader ri
12: procedure initialization:
13: ts← 0; rCounter ← 0; maxTS ← 0
14: end
15: procedure read()
16: rCounter ← rCounter + 1; ts← maxTS
17: send(read, ts, rCounter) to all servers
18: wait until receive(readack, ∗, ∗, rCounter) from n− f servers
19: rcvMsg ← {m|ri received (readack, ∗, ∗, rCounter)}
20: maxTS ← Maximum{ts′| (readack, ts′, ∗, rCounter) ∈ rcvMsg}
21: maxTSmsg ← {m|m.ts = maxTS and m ∈ rcvMsg}
22: if there is a ∈ [1, R+ 1] and there is MS ⊆ maxTSmsg s.t., (|MS| ≥ n−af) and

(| ∩
m∈MS

m.seen| ≥ a) then
23: return(maxTS)
24: else
25: return(maxTS − 1)
26: end if
27: end

28: at each server pi

29: procedure initialization:
30: ts← 0; seen← ∅; counter[0...R]← [0...0]
31: end
32: upon receive(msgType, ts′, rCounter′) from q ∈ {w, r1, ..., rR} and rCounter′ ≥

counter[pid(q)] do
33: if ts′ > ts then
34: ts← ts′; seen← {q}
35: else
36: seen← seen ∪ {q}
37: end if
38: counter[pid(q)]← rCounter′

39: if msgType = read then
40: send(readack, ts, seen, rCounter′) to q
41: else
42: send(writeack, ts, seen, rCounter′) to q
43: end if
44: end upon

Figure 2.1: Fast SWMR atomic storage implementation with R < n/f − 2.
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and selects the highest timestamp, denoted by maxTS in Figure 2.1. Then the
reader checks if maxTS has been seen by a “sufficient” number of servers and
readers. If so, the read returns maxTS, else it returns maxTS − 1. The heart
of the algorithm is the predicate for checking whether the latest value has been
seen by a sufficient number of processes: (1) the predicate is true whenever the
write with timestamp maxTS precedes the current read, and (2) if there is no
write with a timestamp higher than maxTS, then if the predicate is true for the
current read, it is also true for all subsequent reads. In order to construct such
a predicate however, the servers need to record more information than just the
latest timestamp, as we explain below.

Consider the case of a write with timestamp ts that is followed by a read. In
the first partial run pr1, the write completes by writing ts at n−f servers, say the
set of servers be S1. Subsequently, a reader reads from a set S2 (of n− f servers)
that overlaps at n−2f servers with S1, i.e., misses f servers in S1. By atomicity,
the read returns ts. In the second partial run pr2, the write is incomplete and the
writer writes ts only to n−2f servers in S1∩S2. A subsequent reader that reads
from S2 cannot distinguish pr1 from pr2, and returns ts. If we extend each partial
run with another read by a distinct reader that misses f servers from S1∩S2, it
is easy to see that the new read has to return ts, even if it sees ts at n−3f servers
that have already replied to both the write and the first read. Thus, we see that
any reasonable predicate for fast reads must depend on the number of servers, as
well as the number of readers, that have seen the most recent timestamp. Since
any number of readers might crash, a reader cannot wait for the replies from
other readers, but rather indirectly collect information about other readers from
the servers.

Generalizing the above argument gives us the desired predicate. Along with
the latest timestamp ts, every server maintains the list of readers and writer to
which the server has replied after updating its timestamp to ts (including the
reader or the writer which updated the timestamp of the server to ts). This set is
denoted by seen in Figure 2.1. The predicate for the read procedure is as follows:
if there is a ≥ 1 such that the reader receives maxTS in at least n−af messages,
and there are at least a processes that are in the list seen of each of these n− af
messages, then the predicate is true.

In addition, every reader ri maintains a variable rCounter that counts the
number of reads of ri. The servers keep an array, counter, such that counter[i]
contains the latest value of rCounter that the server has received from ri.2 This
helps distinguish read and readack messages from different reads of the same
reader. At the writer, the variable rCounter is always 0; the messages from
different writes are distinguished by their respective timestamps.

This completes the brief description of the storage implementation. We now
describe how to modify the algorithm so as to associate values with timestamps.
In the modified algorithm, in each write, the writer attaches two tags with the
timestamp, containing the current value to be written and the value of the imme-
diately preceding write. If the reader returns maxTS in the original algorithm,
then it returns the current value attached to maxTS in the modified algorithm.

2In the algorithm, pid(q) is a function that maps the writer w to 0, and every reader ri to i.
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If the reader returns maxTS − 1 in the original algorithm, it returns the other
tag attached to maxTS in the modified algorithm.

2.4 Correctness

We prove here the correctness of the fast implementation in Figure 2.1. We do not
assume that the lines in Figure 2.1 are atomic: processes may crash in the middle
of a line or in between two lines. In particular, while sending messages to a set of
processes, the sending process may crash after sending messages to an arbitrary
subset. We assume that, if a process receives an incomplete message, the process
can detect that the message is incomplete, and ignores such a message.

It is obvious that read and write procedures complete in one round-trip. To
show atomicity, we recall that the write procedure directly writes the timestamp.
Thus the conditions in Section 2.2.2 reduce to the following: (1) if a read returns,
it returns a non-negative integer, (2) if a read rd is complete and it succeeds some
write(k), then rd returns l such that l ≥ k, (3) if a read rd returns k (k ≥ 1),
then write(k) either precedes rd or is concurrent to rd, and (4) if some read rd1
returns k (k ≥ 0) and a read rd2 that succeeds rd1 returns l, then l ≥ k. The
proofs of the first and the third conditions are trivial. Below, we show the other
two. In the proofs we refer to the global clock; however processes do not access
this global clock.

Lemma 1 If a server sets ts to x at time T , then the server never sets ts to a
value that is lower than x after time T .

Proof: Obvious from line 27.

Lemma 2 If a read() sends read messages with ts = x, then the read does not
return a value smaller than x.

Proof: Suppose read rd by ri sends a read message with ts = x. From line 27,
every readack message received by rd is with ts ≥ x. Let z be the maximum
timestamp received by rd (i.e., maxTS computed in line 17). Notice that rd
returns either z or z − 1. There are the following two cases to consider. (1) If
z > x, then clearly, the return value is not smaller than x. (2) If z = x. then
every readack message received by rd has ts = x and has pi ∈ seen. Since rd
receives n−f readack messages, the predicate in line 19 of rd holds with a = 1.
Hence, rd returns x.

Lemma 3 If a read rd is complete and it succeeds some write(k), then rd returns
l such that l ≥ k.

Proof: Suppose that write wr (by w) writes k and precedes read rd (by reader
rj). Let S1 be the set of n−f servers from which wr received writeack messages
in line 6, and let S2 be the set of n− f servers from which rd received readack
messages in line 15. Let S12 = S1∩S2. Obviously, |S12| ≥ n− 2f . Let z be the
maximum timestamp received by rd from servers in S2. Observe that rd returns
either z or z − 1.
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When a server in S1 replies to a write message from wr, its ts is k.3 From
Lemma 1, servers in S1 (and hence, in S12) reply ts ≥ k to rd because write(k)
precedes rd). Thus, the highest timestamp received by rd, z ≥ k. There are the
following two cases to consider:

1. z > k: As rd returns either z or z − 1, it follows that rd does not return a
timestamp lower than k.

2. z = k: We know that every server in S12 replies to rd with ts ≥ k, and z = k
is the maximum timestamp received by rd from servers in S2 ⊇ S12. Thus every
server in S12 replies ts = k to rd. Let MS be the set of readack messages sent
by servers in S12 to rd. Since every server in S12 replies ts = k to wr before
sending ts = k to rd, for every message m in MS, w ∈ m.seen. Furthermore,
from line 30, rj ∈ m.seen. Thus, {w, rj} ⊆ ∩m∈MSm.seen. As |S12| ≥ n− 2f , in
rd, the predicate in line 19 holds with a = 2. Consequently, rd returns z = k.

Lemma 4 if some read rd1 returns x (x ≥ 0) and a read rd2 that succeeds rd1
returns y, then y ≥ x.

Proof: Suppose that read rd1 by process rj returns x, read rd2 by process rk
returns z, and rd1 precedes rd2. Suppose rj = rk. Then, in the read immediately
after rd1, rj sends a read message with ts ≥ x, and hence, from Lemma 2, the
read returns a value greater than or equal to x. Using Lemma 2 and a simple
induction, we can derive that any read by rj which follows rd1 (including rd2)
returns ts ≥ x. So in the rest of the proof we assume that rj 6= rk.
Let S1 and S2 be the set of servers (of size n− f) from which reads rd1 and rd2,
respectively, receive n− f readack messages in line 15. Let TS1 be the highest
timestamp received by rd1 from processes in S1 (i.e., the maxTS evaluated in
line 17 of rd1). Similarly, let TS2 be the highest timestamp received by rd2 from
the processes in S2. There are the following two cases to consider:
〈1〉1. the predicate in line 17 does not hold in rd1.

It follows that x = TS1− 1. Thus some servers have sent ts = TS1 = x+ 1 to
rd1, and hence, write(x+1) has started before rd1 is completed. Thus write(x)
has completed before rd1 is completed. Since rd1 precedes rd2, it follows that
write(x) precedes rd2. From Lemma 3, rd2 returns y ≥ x.
〈1〉2. the predicate in line 17 holds in rd1.

It follows that x = TS1, and there is some a ∈ [1, R + 1] such that there is
a set MS consisting of at least n − af messages received by rd1 with ts = x
and | ∩m∈MS m.seen| ≥ a. Let S12 ⊆ S1 be the set of servers which sent the
messages that are in MS. Since a ∈ [1, R + 1] and f < n/(R + 2), |S12| =
|MS| = n− af > f . There are the following two cases to consider:
〈2〉1. y = TS2
y = TS2. Since, |S12| > f and |S2| = n− f , there is a server pi ∈ S2∩S12.
Since rd1 precedes rd2, pi first replies ts = x to rd1 then replies to rd2. From

3The server’s ts is not higher than k because, unless the writer receives writeack from all
servers in S1, it does not complete write(k), and hence, no timestamp higher than k is
present in the system until all servers in S1 reply to write(k).
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Lemma 1, it follows that pi replies to rd2 with ts ≥ x. Thus the highest ts
in S2 (i.e., TS2 = y) is greater than or equal to x.
〈2〉2. y = TS2− 1

There are the following two subcases to consider:
〈3〉1. y + 1 6= x

As in case 〈2〉1, we can show that there is a server pi ∈ S2 ∩ S12, and pi

replies to rd2 with ts ≥ x. Thus the highest ts in S2 (i.e., TS = y + 1) is
greater than or equal to x. Since y + 1 6= x, it follows that y + 1 > x, and
hence, y ≥ x.
〈3〉2. y + 1 = x

Consider the set of servers S2∩S12. As |S12| = n− af and |S2| = n− f ,
so |S2∩S12| ≥ n− (a+ 1)f ≥ 1. Since rd1 precedes rd2 and processes in
S12 replies ts = x to rd1, processes in S2 ∩ S12 reply to rd2 with ts ≥ x.
Since y + 1 is the maximum ts in S2, every process in S2 ∩ S12 replies to
rd2 with ts = x = y + 1. There are the following two cases to consider:
〈4〉1. a ≤ R

Then |S2 ∩ S12| ≥ n− (a+ 1)f > f . Let MS1 be the set of readack
messages from processes in S2∩S12 to rd1. From the definition of MS1
and MS, MS1 ⊆ MS.4 Thus, ∩m∈MS1m.seen ⊇ ∩m∈MSm.seen. Thus,
| ∩m∈MS1 m.seen| ≥ a. There are two cases to consider:
〈5〉1. rk /∈ ∩m∈MS1m.seen

Let MS2 be the set of messages received by rd2 from processes in
S2 ∩ S12. For any server pi ∈ S2 ∩ S12, let m1i and m2i be the
messages sent by pi in MS1 and MS2 respectively. We know that
m1i.ts = m2i.ts = x. Since m1i is sent before m2i and the ts is the
same in both messages, m1i.seen ⊆ m2i.seen. Thus ∩m∈MS1m.seen ⊆
∩m∈MS2m.seen. Since every process which replies to rd2, first adds
rk to its seen set, rk ∈ ∩m∈MS2m.seen. Since rk /∈ ∩m∈MS1m.seen, it
follows that | ∩m∈MS2 m.seen| ≥ | ∩m∈MS1 m.seen|+ 1 ≥ a+ 1. Since
|S2 ∩ S12| ≥ n− (a+ 1)f , the number of message in MS2 is at least
n− (a+ 1)f . As a+ 1 ≤ R+ 1, the predicate in line 19 in rd2 holds
with a + 1. Thus, the timestamp returned by rd2 is x = y + 1, a
contradiction.

〈5〉2. rk ∈ ∩m∈MS1m.seen
Thus each server pi in S2∩S12 has sent at least one readack message
with ts = x to rk, before pi sent the MS1 message to rj . Since
the messages in MS1 are sent before the completion of rd1 (and
hence, before the invocation of rd2), rk has invoked at least one read
before rd2. Let rd2a be the last read of rk which precedes rd2. Since
|S2 ∩ S12| ≥ n − (a + 1)f > f , there is at least one process pi in
S2 ∩ S12 whose readack message is received by rd2a, say message
m. Now consider the last readack message sent by pi to rk before
rd2 is invoked, say messagem′. Since we know that pi sent a readack
message with ts = x to rk before sending a MS1 message (which was
in turn sent before rd2 was invoked), from Lemma 1 it follows that m′

4See case 〈1〉2 for the definition of MS.
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was sent with ts ≥ x. We now claim that m = m′. By definition of m′,
either m = m′ or m′ is sent after m. Observe that pi checks counter[k]
before replying to rk. Thus, once m is sent by pi, counter[k] at pi is
set such that pi can only reply to those message of rk which are sent
from rd2a or a subsequent read of rk. Thus, if m′ is sent after m,
then m′ is sent in response to rd2a, or rd2, or a subsequent read of
rk. This contradicts the assumption that pi replies only once to rd2a
(because channels do not duplicate messages) and m′ is sent before
rd2 is invoked. Thus rd2a receives m = m′. We have already shown
that m′ is sent with ts ≥ x. Hence the highest ts received by rd2a is
greater than or equal to x. It follows that rd2 sends read messages
with ts ≥ x. From Lemma 2, rd2 returns a timestamp greater than
or equal to x. As x = y + 1, rd2 does not return y, a contradiction.

〈4〉2. a = R+ 1
Since |{w, r1, ..., rR}| = R+1 and |∩m∈MS m.seen| ≥ a = R+1, we have
rk ∈ ∩m∈MSm.seen. Observe that |S12| ≥ n − af > f . (Recall that
S12 is the set of processes which sent the messages that are in MS.)
Substituting MS1 by MS, and S2∩S12 by S12, in the argument for the
previous case (case 〈5〉2), we can show that rd2 returns a value greater
than or equal to x, a contradiction.

2.5 Optimality

The following proposition states that the resilience required by our fast imple-
mentation is indeed necessary.

Proposition 5 Let f ≥ 1 and R ≥ 2. If R ≥ n/f − 2, then there is no fast
atomic storage implementation.

Preliminaries. Recall first that w denotes the writer, ri for 1 ≤ i ≤ R denote the
readers, and pi for 1 ≤ i ≤ S denote the servers. Suppose by contradiction that
R ≥ n/f−2 and there is a fast implementation I of an atomic storage. Given that
f ≥ n/(R+2), we can partition the set of servers into R+2 subsets (which we call
blocks), denoted by Bi (1 ≤ i ≤ R + 2), each of size less than or equal to f . For
instance, one such partition is: for 1 ≤ i ≤ R+ 1, Bi = {pj | (b n

R+2c(i−1) + 1) ≤
j ≤ (b n

R+2ci)}, and BR+2 = {pj | (b n
R+2c(R+1)) ≤ j ≤ n}. However, if R > n−2

then the above partitioning is not possible. In that case we consider a system
where, the number of readers is n − 2 and the set readers is {r1, ..., rn−2}, and
show the impossibility. The impossibility still holds if we add more readers to
this system (i.e., R > n− 2).

Since the writer, any number of readers, and up to f servers might crash in
our model, the invoking process can only wait for reply messages from n − f
servers. Given that we assume a fast implementation, on receiving a read (or
a write) message, the servers cannot wait for messages from other processes,
before replying to the read (or the write) message. We can thus construct
partial runs of a fast implementation such that only read (or write) messages
from the invoking processes to the servers, and the replies from servers to the
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invoking processes, are delivered in those partial runs. All other messages remain
in transit. In particular, no server receives any message from other servers, and
no invoking process receives any message from other invoking processes. In our
proof, we only construct such partial runs.

We say that an incomplete invocation inv skips a set of blocks BS in a partial
run, where BS ⊆ {B1, ..., BR+2}, if (1) no server in any block Bi ∈ BS receives
any read or write message from inv in that partial run, (2) all other servers
receive the read or the write message from inv and reply to that message, and
(3) all these reply messages are in transit. We say that a complete invocation
inv skips a block Bi in a partial run, if (1) no server in Bi receives any read
or write message from inv in that partial run, (2) all servers that are not in
Bi receive the read or write message from inv and reply to that message, and
(3) the invoking process receives all these reply messages and returns from the
invocation.

Proof: To show a contradiction, we construct a partial run of the fast implemen-
tation I that violates atomicity: a partial run in which some read returns 1 and a
subsequent read returns an older value, namely, the initial value of the storage, ⊥.

Partial writes. Consider a partial run wr in which w completes write(1) on
the storage. The invocation skips BR+2. We define a series of partial runs each
of which can be extended to wr. Let wrR+2 be the partial run in which w has
invoked the write and has sent the write message to all processes, and all write
messages are in transit. For 1 ≤ i ≤ R+1, we define wri as the partial run which
contains an incomplete write(1) invocation that skips {BR+2}∪{Bj |1 ≤ j ≤ i−1}.
We make the following simple observations: (1) for 1 ≤ i ≤ R, wri and wri+1

differ only at servers in Bi, (2) wr is an extension of wr1, such that, in wr,
w receives the replies (that are in transit in wr1) and returns from the write
invocation, and hence, (3) wr and wr1 differ only at w.
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Figure 2.2: Partial runs: pri and 4pri.
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Block diagrams. We illustrate a particular instance of the proof in Figure 2.2
and Figure 2.4, where R = 3 and the set of servers are partitioned into five blocks,
B1 to B5. We depict an invocation inv through a set of rectangles, (generally)
arranged in a single column. In the column corresponding to some invocation
inv, we draw a rectangle in the ith row, if all servers in block Bi have received
the read or write message from inv and have sent reply messages, i.e., we draw
a rectangle in the ith row if inv does not skip Bi. Figure 2.3 presents a slightly
more detailed diagram of the partial writes.

wr3: detailed diagram
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wr3 : block diagram
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wr1 : block diagram
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B5 B5
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B4

B5

Figure 2.3: Partial writes: wri.

Appending reads. Partial run pr1 extends wr by appending a complete read by
r1 that skips block B1. By atomicity, the read returns 1. Observe that r1 cannot
distinguish pr1 from some partial run 4pr1, that extends wr2 by appending a
complete read by r1 that skips B1. To see why, notice that wr and wr2 differ at
w and at block B1, and r1 does not receive any message from these processes in
both runs. Thus r1’s read returns 1 in 4pr1.
Starting from 4pr1, we iteratively define the following partial runs for 2 ≤ i ≤ R.
Partial run pri extends 4pri−1 by appending a complete read by ri that skips
Bi. Partial run 4pri is constructed by deleting from pri, all steps of the servers
in block Bi. Since the last read in pri by reader ri skips block Bi, ri cannot
distinguish pri from 4pri. More precisely, partial run 4pri extends wri+1 by
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Figure 2.4: Partial runs: prA, prB , prC and prD.

appending the following i reads one after the other:5 for 1 ≤ h ≤ i, rh does a
read that skips {Bj |h ≤ j ≤ i}. Figure 2.2 depicts block diagrams of pri and
4pri with R = 3. (The deletion of steps to obtain 4pri from pri is shown by
crossing out the rectangles corresponding to the deleted steps.)
Reader r1’s read in 4pr1 returns 1. Since pr2 extends 4pr1, by atomicity, r2’s
read in pr2 returns 1. However, as r2 cannot distinguish pr2 from 4pr2, r2’s read
in4pr2 returns 1. In general, since pri extends4pri−1, and ri cannot distinguish
pri from 4pri (for all i such that 2 ≤ i ≤ R), it follows from a trivial induction
that ri’s read in 4pri returns 1. In particular, rR reads 1 in 4prR.

Partial run prA. Consider the partial run4prR: wrR+1 extended by appending
R reads by each reader rh (1 ≤ h ≤ R) such that rh’s read skips {Bj |h ≤ j ≤ R}.
The read by r1 is incomplete in4prR: only servers in BR+1 and BR+2 send replies
to r1, and those reply messages are in transit. Observe that, in 4prR, only the
servers in BR+1 receive the write message from the write(1) invocation. Con-
sider the following partial run prA which extends 4prR as follows. After 4prR,
(1) r1 receives the replies of its read messages from BR+2 (that were in transit
in 4prR), (2) the servers in B1 to BR receive the read message from r1 (that
were in transit in 4prR) and reply to r1, (3) reader r1 receives these replies from

5The first i− 1 reads are incomplete whereas the last one is complete.
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servers in B1 to BR, and then r1 returns from the read invocation. (Notice that,
r1 received replies from R+ 1 blocks, and so, must return from the read.) How-
ever, r1 does not receive the replies from servers in BR+1 (that were in transit in
4prR). Figure 2.4 depicts block diagrams for prA with R = 3.

Partial run prB. Consider another partial run prB with the same communica-
tion pattern as prA, except that write(1) is not invoked at all, and hence, servers
in BR+1 do not receive any write message (Figure 2.4). Clearly, only servers in
BR+1, the writer, and the readers r2 to rR can distinguish prA from prB. Reader
r1 cannot distinguish the two partial runs because it does not receive any message
from the servers in BR+1, the writer, or other readers. By atomicity, r1’s read
returns (the initial value of the storage) ⊥ in prB because there is no write(∗)
invocation in prB, and hence, r1’s read returns ⊥ in prA as well.

Partial runs prC and prD. Notice that, in prA, even though r1’s read returns
⊥ after rR’s read returns 1, prA does not violate atomicity, because the two reads
are concurrent. We construct two more partial runs: (1) prC is constructed by
extending prA with another complete read by r1, which skips BR+1, and (2) prD

is constructed by extending prB with another complete read by r1, which skips
BR+1 (Figure 2.4). Since r1 cannot distinguish prA from prB, and r1’s second
read skips BR+1 (i.e., the servers which can distinguish prA from prB), it follows
that r1 cannot distinguish prC from prD as well. Since there is no write(∗)
invocation in prD, r1’s second read returns ⊥ in prD, and hence, r1’s second read
in prC returns ⊥. Since prC is an extension of prA, rR’s read in prC returns 1.
Thus, in prC , r1’s second read returns ⊥ and succeeds rR’s read which returns 1.
Clearly, partial run prC violates atomicity.

2.6 Further Results

Our lower bound result (Proposition 5) opens two directions for further inves-
tigation: multi-writer fast implementations, and semi-fast implementations, i.e.,
implementations where one of the operations, read or write, may not be fast. We
present some results in these directions. Let W denote the number of writers in
the system. The following proposition states the impossibility of fault-tolerant
fast implementation, in the multi-writer case.

Proposition 6 Let f ≥ 1, W ≥ 2 and R ≥ 2. Any atomic storage implementa-
tion has a run in which some complete read or write is not fast.

The atomicity definition extends to MWMR storage as well. In the proof of
the impossibility below, we use two simple properties of MWMR atomic storage
which can be easily deduced from atomicity. In any partial run (property P1)
if a write wr that writes v, precedes some read rd, and all other writes precede
wr, then if rd returns, it returns v, and (property P2) if there are two reads such
that all writes precede both reads, then the reads do not return different values.

Proof: It is sufficient to show the impossibility in a system where W = R = 2,
and t = 1. Let the writers be w1 and w2, and the readers be r1 and r2. Let s1 to
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sS be the servers. Suppose by contradiction that there is a fast implementation of
an atomic storage in this system. To show the desired contradiction, we construct
a series of runs, each consisting of two writes followed by a read.
Since the writer, any number of readers, and up to f servers might crash in
our model, the invoking process can only wait for reply messages from n − f
servers. Given that we assume a fast implementation, on receiving a read (or
a write) message, the servers cannot wait for messages from other processes,
before replying to the read (or the write) message. We can thus construct
partial runs of a fast implementation such that only read (or write) messages
from the invoking processes to the servers, and the replies from servers to the
invoking processes, are delivered in those partial runs. All other messages remain
in transit. In particular, no server receives any message from other servers, and
no invoking process receives any message from other invoking processes. In our
proof, we only construct such partial runs.
We say that a complete invocation inv skips a server si in a partial run if every
server distinct from si receives the read or the write message from inv and
replies to that message, inv receives those replies and returns, and all other
messages are in transit. In other words, only si does not receive read or write
message from inv. Since t = 1, any complete invocation may skip at most
one server. If a complete invocation does not skip any servers, we say that the
invocation is skip-free.
Consider a partial run run1 constructed with the following three non-overlapping
invocations: (1) a skip-free write(2) by w2, that precedes (2) a skip-free write(1)
by w1, that in turn precedes (3) a skip-free read() by r1. From property P1, the
read returns 1.
We now construct a similar partial run run2 in which the order of the two writes
are interchanged: (1) a skip-free write(1) by w1, that precedes (2) a skip-free
write(2) by w2, that in turn precedes (3) a skip-free read() by r1. From prop-
erty P1, the read returns 2.
Consider a series of partial runs runi, where i varies from 1 to S + 1. We define
run1 to be run1. We iteratively define the remaining partial runs. We define
runi+1 to be identical to runi except in the following: si receives the write
message (and replies to that message) from w1 before the message from w2 (i.e.,
the replies of si are sent in the opposite order in ri+1 from that in run1). Since
servers do not receive any message from other servers in the partial runs we
construct, the only server that can distinguishes runi from runi+1 is si. Also w1,
w2 and r1 can distinguish the two partial runs. It is easy to see that no server
can distinguish runS+1 from run2, and hence, r1 can not distinguish between the
two runs as well. Thus r1 returns 2 in runS+1, and runS+1 and run2 differ only
at w1 and w2. Since r1 returns 1 in run1, 2 in rS+1, and either 1 or 2 in runi

(2 ≤ i ≤ S), there are two partial runs, runi1 and runi1+1, such that 1 ≤ i1 ≤ S
and the read by r1 returns 1 in runi1 and returns 2 in runi1+1.
Consider a partial run run′ which extends runi1 with a read by r2 that skips si1.
From property P2, it follows that r2 returns 1. Similarly we construct a partial
run run′′ which extends runi1+1 with a read by r2 that skips si1. Recall that,
only w1, w2, r1 and si1 can distinguish runi1 from runi1+1. Since r2 skips si1 in
both run′ and run′′, r2 cannot distinguish the two partial runs. Thus r2 returns
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Figure 2.5: Partial writes (K = 3, R = 4).

1 in run′′. However, r1 returns 2 in runi1+1, and hence, in returns 2 in run′′ as
well. Clearly, runi1+1 violates property P2.

To see why the above proof does not apply to the single writer case, observe that
in most partial runs in the above proof, the two writes are concurrent. However,
in our system model, a process can invoke at most one invocation at a time. Thus
we cannot construct partial runs with concurrent writes in the single-writer case.

We say than an implementation is semi-fast if the implementation has fast
reads or fast writes (not necessarily both). Semi-fast implementations might be
interesting in systems where one of the operations (say read) is more frequent
than the other. It is natural to ask, given n and f , whether we can increase
the number of readers, if we allow the writes to be slow? The proposition below
states that, at least in the single-writer case, we can hardly increase the number
of readers if we allow slower writes.

Proposition 7 Let f ≥ 1, W = 1 and R ≥ 2. If R ≥ n/f then any atomic
storage implementation has a run in which some complete read is not fast.

Proof: (Brief sketch) Suppose by contradiction that R ≥ n/f and there is an
implementation I of atomic storage with fast reads. Given that f ≥ n/R, we can
partition the set of servers into R subsets (which we call blocks), denoted by Bi

(1 ≤ i ≤ R), each of size less than or equal to f .
In all partial runs that we construct in this proof, a (partial) write is followed by
a series of fast reads by distinct readers. The general style of the proof is similar
to that for Proposition 5. However, in the present proof, the write may not be
fast, and hence, we assume that servers exchange messages during a write. (The
servers do not exchange message during reads in our partial runs, because the
reads are fast.) Since we are interested in a lower bound, in the partial runs we
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construct, we assume the most general communication pattern for the (non-fast)
write that skips a block BR. The writer sends messages to all servers, the writer,
and the servers that are not in BR, exchange messages among themselves K
times (where K is a constant), and then, the writer returns from the invocation.
Messages sent to servers in BR, by the writer and other servers, remain in transit.
We say that the message sent by the writer on invoking the write to be of order
0, and the messages in the kth exchange of the write, to be of order k-1.
We draw a single column block diagram for each read, as in the proof of Propo-
sition 5. For the write, we draw a multiple column block diagram: we draw a
rectangle in row i of column k if processes in block Bi have received the messages
of order k−1, and have sent the order k messages, in that partial run. Figure 2.5
presents block diagrams for partial writes where R = 4, K = 3 and the servers
are divided into blocks B1 to B4.
We now apply the same pattern of reads as in the proof of Proposition 5. (Recall
that the initial value of the storage is ⊥.) Consider a partial run containing a
complete write(1) that skips BR. We append the write by a series of reads done
one after the other, each read being invoked by a distinct reader, varying from r1

to rR. The read by ri skips Bi. After appending each read, we delete all steps in
the partial run that can be deleted such that the last reader cannot distinguish
between the two partial runs (before and after deleting the steps). In other
words, after appending a read by ri that skips Bi, we delete the steps of servers
in block Bi such that the deletion of steps is not “visible” to ri. However there
is an important difference from the proof of Proposition 5. We can only delete
those steps of servers in Bi, that are either in the Kth column of write(1) or are
subsequent to the Kth column of write(1). Since the servers exchange messages
in write(1), if we delete steps in column K−1, the deletion will be “visible” in all
steps in column K, and hence to the last reader. (See Figure 2.6). Additionally,
observe that, on deleting the steps of BR−1 (after appending the read by rR−1),
we also delete the step of w in which w sent the order K − 1 messages. To see
why, notice that rR−1 cannot see that step of w because all steps of the servers
in column K has been deleted. By atomicity, the last read in every constructed
partial run returns 1.
After appending R reads, we notice that we have deleted all steps in column K
of write(1) as well as, deleted all steps of the first read by r1. (See Figure 2.6.)
Thus we can again append a read by r1 (we recycle r1), and start deleting the
steps in column K − 1. On deleting all steps that are invisible to r1, we notice
that we have deleted all steps of the first read by r2, and we can recycle r2. The
pattern must be obvious by now: each appended read frees up the oldest reader
in the partial run, and we can use that reader for the next appended read. We
repeat appending reads, until we delete all steps in write(1). (This would require
repeating K times, the appending of reads by r1 to rR.) Thus the last partial run
constructed would have no steps of write(1), but still the last read by rR would
return 1, a violation of atomicity.
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Figure 2.6: Appending reads (K = 3, R = 4).
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Log-complexity

The report of my death was an
exaggeration.

New York Journal, June 2, 1897
Mark Twain

3.1 Introduction

When processes recover, they lose all information present in their local volatile
memory: they are in this sense amnesic. A process can indeed “cure” its amnesia
by using stable storage, or by communicating with other processes upon recovery,
but this adds a non negligible overhead that algorithms need to minimize. Maybe
more fundamentally, the possibility of recovery requires to revisit some basic
reasoning tools underlying the very notion of atomicity. It is thus appealing to
study the actual meaning and the cost of implementing an atomic storage in a
practical model where processes may crash and recover.

In an asynchronous message passing system where processes can fail by crash-
ing and are supposed to never recover (crash-stop model), robust (fault-tolerant)
atomic storage algorithms [Attiya et al. 1995; Lynch and Shvartsman 1997; Attiya
2000; Lynch and Shvartsman 2002] have typically assumed that, in every execu-
tion of the algorithm, a majority of the processes do not crash: robustness [Attiya
et al. 1995] means here that any read or write operation, invoked by a process p
which does not subsequently crash, eventually returns.

3.1.1 Atomicity and Histories

An atomic storage is convenient because it provides the illusion of instantaneous
execution despite concurrency: every read or write operation appears to take
effect at some individual instant within the time interval between the invocation
and reply events of these operations. i.e. as if they were accessing every variable
sequentially one after the other [Lamport 1978; Herlihy and Wing 1990].
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Figure 3.1: Completing write invocations.

A reliable atomic storage provides this illusion despite failures. Ideally, to
clients, the fact that the underlying model is crash-stop or crash-recovery should
not make any difference: atomicity semantics should stay intact.

Nevertheless, and as we elaborate in this thesis, the notion of history, key
to defining atomicity [Lamport 1985], needs to be revisited in a crash-recovery
model. In simple terms, a history is a sequence of invocation and reply events de-
picting an actual interaction between a process and a storage abstraction. Atom-
icity is traditionally defined with respect to complete histories where every invo-
cation has a matching reply1 [Lamport 1985]. As processes might crash, some
replies can be missing: their matching invocations are in this sense incomplete. It
is convenient to complete the histories by removing incomplete read invocations,
and adding hypothetical missing replies to incomplete write invocations. In a
crash-stop model, we simply append specific replies at the end of the history: in
a sense, we assume that the process received the actual reply right before crash-
ing and this is feasible because a crash event can only be the last event at a
given process. In the crash-recovery model, appending replies at the end would
make processes internally concurrent, as a process might have recovered in the
meantime and invoked further operations: this is depicted in Figure 3.1. In this
case atomicity becomes meaningless.

We propose in the thesis a specific way of completing histories which allows
us to keep the traditional notion of atomicity intact from the client’s perspec-
tive. Intuitively, this means that crashes and recoveries are transparent to the
client. However, as we will see when establishing complexity bounds, this desir-
able transparency comes at a cost.

3.1.2 Quorums and Resilience

To get an idea of the ramifications underlying implementing an atomic storage
over a crash-recovery message passing system, consider the storage algorithm
over a crash-stop message passing system described in [Lynch and Shvartsman
1997]. (This algorithm is basically the same as the seminal single-writer algorithm
of [Attiya et al. 1995] with the addition of id’s for multiple writers.)

Monotonically increasing timestamps are used to order the values written in
the storage: every process holds copies of the storage value, presumably the lat-
est written value in the storage, with an associated timestamp. Implementing

1The goal is indeed to provide the illusion of a failure-free and sequential behavior where every
invocation is immediately followed by a matching reply.
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a write operation goes as follows. First, the writer process requests the highest
timestamp from a majority of processes. The writer then increments this times-
tamp and broadcasts it, together with the value to be written, to all processes.
Every process that receives this message updates its variable with the new value
and timestamp,2 then sends back an acknowledgment (ack) to the writer. Once
the writer receives a majority of acks, it returns from the write operation (i.e.
returns an “ok” indication). A read operation consists in selecting the value with
the highest timestamp among a majority, and imposing it at a majority. The
assumption of a correct majority ensures the robustness of the implementation.
Writers and readers always access a correct process, and this ensures the persis-
tence of the information and guarantees atomicity.

Intuitively, one would require in a crash-recovery model that such majorities
always intersect at a process that is not amnesic, i.e. that could ensure the
persistence of a written value. This can be achieved by equipping a number of
processes with stable storage. Even without stable storage it is possible to ensure
persistence throughout crashes. In practice, the probability that all processes
fail at the same time during a given execution is usually quite small. This can
be used to our advantage by making the hypothesis that a certain number of
processes never crash during the duration of the execution. In this thesis, we
precisely capture this notion by introducing a general notion of amnesia masking
storage, of which we give different examples according to the underlying settings,
i.e. whether processes have access to stable storage or not, and whether it is
reasonable to assume that, in every execution, some of the processes do not
crash.

We prove resilience lower bounds for each of those settings. More precisely,
assuming that f (faulty) processes may crash permanently or keep crashing and
recovering forever, we prove that in a system of n processes, implementing an
atomic storage requires that there is a number s > 2f of processes that have
stable storage, or the number of processes u that never crash must be such that
u > f (in practice, it is enough that u processes are not crashed at the same
time).

3.1.3 Complexity

In a crash-stop message passing model, the usual way to measure time-complexity
is to count the number of inter-process communication steps needed for every read
or write operation to complete (the local computation is neglected and the time
to broadcast is assumed to be the same as the time to send a message to some
process).

In the thesis, we introduce this notion of log-complexity and we prove a tight
bound on the number of logs needed to implement write and a read operation
of an atomic storage over a crash-recovery message passing system when stable
storage is available. We also prove that the number of processes that may crash
in every execution is equal to or higher than the number of faulty processes. We
show that implementing an atomic storage in a crash-recovery model with stable

2Note that timestamps are sequence numbers (integers) associated with process ids, and these
ids help order timestamps with the same sequence number.
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storage requires at least 2 logs for a write and 1 log for a read. These lower
bounds hold even for a single-writer/single-reader atomic storage, no matter how
many messages or communication steps are used among processes.

To illustrate the issues underlying our tight bound on log complexity, consider
the crash-stop storage from [Lynch and Shvartsman 1997]. In fact, by making
some drastic adaptations, we could transform the storage to a crash-recovery
model. We could for instance require from every process that it logs each of its
updates in stable storage. The resulting algorithm would be very expensive in
terms of logs (clearly not optimal). Let us discuss below the necessity of some of
the underlying logs:

1. Before a write completes, a certain number of processes must have logged
the new value and its associated timestamp so that a subsequent reader will
be able to contact one of those processes. In other words, a write needs at
least 1 log. Otherwise there might be no way for a written value to persist
in the system and be eventually read (forgotten-value).

2. But do we need 2 logs? For instance, does the writer need to log the times-
tamp it associates with a value, before asking a majority of the processes
to adopt the value with this timestamp? This seems desirable to prevent
the case where the writer crashes and a single process adopts the new value
and timestamp. Upon recovery, the writer might otherwise use the very
same timestamp to write a different value, leading to two different values
with the same timestamp (confused-values).

3. Furthermore, does the writer need to log the very fact that it is about to
start writing some value v? Again, this seems desirable because, if the
writer crashes during a write and recovers, it might start a new operation
without finishing the previous write (orphan-value). We say that a write of
value v is finished if no subsequent read can return a value written before
v.

When not enough processes have access to stable storage, we need to assume
that a sufficient number of processes do not crash at the same time. More pre-
cisely, the number of processes that do not crash should be such that u > f .
Coming up with an algorithm in this setting that minimizes the number of com-
munication steps is also not trivial: before a write completes, enough process
must be aware of the new value and associated timestamp in order to ensure
persistence. Processes that crash and recover must be informed of the latest
value. How do we ensure that no two different values are written using the same
timestamp? How does the writer “remember” that it started a write without
logging?

3.1.4 Summary of Contributions

This thesis revisits the reasoning tools underlying atomicity in a crash-recovery
model and gives a generic algorithm that implements a multi-writer/multi-reader
atomic storage in a crash-recovery message passing model. Our algorithm is
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generic in the sense that it uses an abstract notion of amnesia masking storage
which can be instantiated for several kinds of crash-recovery systems according
to whether or not processes have access to stable storage and whether we can
assume that a subset of processes do not crash in every execution. Considering a
system with n processes, including s processes with stable storage, a maximum
of f faulty processes that can crash permanently or keep crashing and recovering
forever, and u processes that do not crash, we establish the optimality of specific
instances of our algorithm by proving the following bounds:

1. Resilience: f < n/2 and u > f if s ≤ 2f .

2. Log-complexity: If s > 2f and u ≤ f , 2 logs per write and 1 per read
are necessary for a single writer/single reader and sufficient for a multi
reader/multi writer storage algorithm.

3. Time-complexity: If s = 0, more than 1 round trip per write is necessary
for a single writer and multi reader storage algorithm3. If s 6= 0 then 1
round-trip per write is sufficient for a single writer storage algorithm.

We also discuss the impact on these results of weakening the semantics of
the distributed storage. In particular, we discuss safety and regularity as two
alternatives to atomicity [Lamport 1985].

3.1.5 Road-Map

Section 3.2 describes the basic elements of a crash-recovery model. Section 3.3
revisits the essential tools needed to reason about atomicity in that model. Sec-
tion 3.4 defines the notion of amnesia masking storage. Section 3.5 presents our
generic storage algorithm based on that notion. Section 3.6 proves bounds on
the resilience, log- and time-complexity of an atomic storage and derives the
optimality of specific instances of our generic storage algorithm. Finally, Sec-
tion 3.7 revisits our assumptions, discusses the impact of weakening the storage
abstraction and looks at the performance of different instances of our storage.

3.2 Model

We consider an asynchronous message passing model, without any assumptions
on communication delay or relative process speeds. To simplify the presentation
of our algorithms, we assume the existence of a global clock. This clock however
is a fictional device outside of the control of the processes.

The set of processes N , |N | = n, is static and every process executes a deter-
ministic algorithm assigned to it, unless it crashes. The process does not behave
maliciously. If it crashes, the process simply stops executing any computation,
unless it possibly recovers, in which case the process executes a recovery procedure
which is part of the algorithm assigned to it. Note that in this case we assume
that the process is aware that it had crashed and recovered.

3The time-complexity of a read can be derived from existing results in crash-stop model [Attiya
et al. 1995; Dutta et al. 2004].
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Every process has a volatile storage and some processes may also have a stable
storage. If a process crashes and recovers, the content of its volatile storage is lost
but not the content of its stable storage. after recovering from a crash are its id
and the value of its local clock. Each process has a local clock which provides an
interface for retrieving a timestamp. The clock guarantees that each timestamp is
unique and that the sequence of timestamps are monotonically increasing despite
crashes and recoveries.4

By default, whenever a process updates one of its variables, it does so in its
volatile storage. The process can decide to store information in its stable storage
(if it has one) using a specific primitive store: we also say that the process logs
the information. The process retrieves the information logged using the primitive
retrieve. The processes with stable storage belong to a set denoted S, S ⊆ N .
There are a total number of 0 ≤ |S| = s ≤ n processes with stable storage.

Whereas the sets N and S are static for all executions, the sets of processes
that we will define now are not: they might be different for each execution (and
unknown in advance). These sets are defined for an infinite execution, i.e. the sets
can only be evaluated by an external observer of the system looking at infinite
executions. The sets are defined in the same way as in [Aguilera et al. 1998].
Processes that crash at least once, always recover after a crash and eventually
do not crash are eventually-up and belong to a set denoted C, |C| = c. These
might crash (and recover) a large (but finite) number of times. A process is faulty
(the process belongs to a set denoted F , |F | = f) if there is a time after which
the process crashes and never recovers or it crashes infinitely many times. We
also consider a set of processes that are always-up U , |U | = u (in that given
execution). Considering n = c+ f + u, a number c+ f processes can crash and
c eventually recover.

We assume underlying fair-lossy channels [Lynch 1996], which are defined as
follows: if a process pi sends a message m to a non-faulty process pj an infinite
number of times, then pj receives m an infinite number of times. Furthermore, if
a process pj receives some message m, then some process pi has sent m. On top
of these channels we can easily implement more useful stubborn communication
procedures which are used to send and receive messages reliably [Boichat and
Guerraoui 2005]. More precisely, if a process pi calls the procedure s-send to send
a message m to a process pj , then pj will eventually s-receive m if pi and pj are
non-faulty. We assume in this thesis that processes communicate using s-send
and s-receive.

Any read or write invocation of the storage is translated into messages ex-
changed between processes. We say that an operation (read or write) invoked by
a process p contacts a set of processes Q if, in the algorithm implementing the
operation in our crash-recovery message passing model, p sends messages to at
least |Q| processes after the invocation of the operation and subsequently receives
|Q| causally dependent [Lamport 1978] responses, from |Q| different processes,
before returning from the operation.

4Almost all modern computers are equipped with a battery powered clock that keeps time even
when the computer is switched off.
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3.3 Atomicity

Roughly speaking, atomicity provides the illusion that the storage appears to be
accessed in a failure-free and sequential way. We consider robust storage where
a process that invokes a read or write operation, and does not crash after that
invocation, eventually returns from the operation [Attiya et al. 1995; Herlihy
1991].

In the following section, we extend the traditional tools used to reason about
the notion of atomic storage in the crash-stop model to encompass the crash-
recovery model. Ideally, to the user of an atomic storage, it should make no
difference if the model is crash-stop or crash-recovery. Formally however, and as
we discuss below, we need to reason about histories to define atomicity and the
concept of a history needs to be revisited in a crash-recovery model.

We first introduce basic elements underlying this concept. A history is a total
order of events of four kinds: invocations, replies, crashes and recoveries. Every
such event is modeled to take place at a given time of the global clock, and no
two events are supposed to take place at the same time. Every invocation and
every reply is associated with exactly one process and one object. A reply is
said to match an invocation if both are associated with the same process and the
same object: such a pair defines an operation execution (sometimes we simply say
operation when there is no ambiguity). Invocations and replies are called object
events. In our context, operations are either read or write. An invocation with
no matching reply in a history is said to be pending in that history. An operation
op is said to precede an operation op′ in a history if the reply of op precedes the
invocation of op′ in that history. An operation op is said to immediately precede
an operation op′ in a history if the reply of op precedes the invocation of op′ in
that history and such that no operation op′′ precedes op′ where op precedes op′′.

A local history is a sequence of events associated with the same process. A local
history is said to be well-formed if: (a) its first event is either an invocation or a
crash, (b) a crash is followed by a matching recovery event or is not followed by
any event, and (c) an invocation is followed by a crash or a reply event. A history
is said to be well-formed if all its local histories are well-formed. Two histories
H and H ′ are said to be equivalent if, for every process p, the local history H
restricted to p has the same object events as the local history H ′ restricted to p.

To define atomicity, we reason about histories that are complete. These are his-
tories without any crash or recovery events where every invocation has a matching
reply. In a crash-stop model, pending invocations are completed by appending
a matching reply at the end of the history [Herlihy 1991]. In a crash-recovery
model however, a pending invocation can be followed immediately by another
invocation (i.e. if the process has recovered in the meantime), thus the need for
changing the way histories are completed. In our crash-recovery model, given
any well-formed history H1, we say that H2 completes H1 if H2 does not contain
any crash or recovery events and is made of the very same object events in the
same order as in H1, with one exception: any pending invocation in H1 is either
absent in H2, or has a matching reply that appears in H2 before the subsequent
invocation of the same process. A completed operation has a pending invocation
in H1 that has a matching reply that appears in H2 before the subsequent invo-
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Figure 3.2: Completing and sequentializing a history.

cation of the same process. A history is said to be sequential if it is complete and
every invocation is followed by a matching reply.

Every shared object has a sequential specification, defined by a set of sequential
histories involving only events associated with that object. Roughly speaking,
the sequential specification captures the acceptable behavior of the object in the
absence of concurrency and failures. In our context, we are concerned with storage
objects whose sequential specifications simply stipulate that a read returns the
last written value. A sequential history is said to be legal if each of its restrictions
to any object involved in the history belongs to the sequential specification of that
object. A history H is said to be atomic if it can be completed to a history that
is equivalent to some legal sequential history. An example is shown in Figure 3.2.
We say that an algorithm implements an atomic storage if every history generated
by the algorithm is atomic.

Our definition of atomicity ensures that all operations are linearized and that
the linearization point is always in between the operation invocation and the
response.

3.4 Amnesia Masking Storage

In this section we define the amnesia masking storage abstraction (AMS). Our
generic atomic shared memory emulation algorithm presented in the subsequent
section builds on this abstraction.

3.4.1 Properties

Our storage abstraction is shared by all processes and exports two procedures:
WriteAMS(v, ts) that takes as input a value-timestamp pair and simply returns
”ok” upon completion, and ReadAMS() that returns a set of value-timestamp
pairs V . The notation X.WriteAMS(v, ts) and X.ReadAMS() means that the am-
nesia masking storage instance X is accessed. The WriteAMS() and ReadAMS()
procedures satisfy the following properties:
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• Property P1:

consider a set of value-timestamp pairs [vi, tsi], each value vi being associ-
ated with a timestamp tsi. If ReadAMS() successfully completes and returns
a set V of value-timestamp pairs, then V includes the value-timestamp pair
[vh, tsh], where tsh is the highest timestamp among all WriteAMS(vi, tsi)
invocations that successfully completed before the ReadAMS() invocation.

• Property P2: when a process invokes a WriteAMS() or ReadAMS() proce-
dure, a matching reply is eventually returned unless the invoking process
crashes.

Intuitively, to satisfy property P1, any implementation of the storage abstrac-
tion must ensure that the information vi is stored at enough processes such that
it will persist through crashes. If every WriteAMS() and ReadAMS() invocation
contacts a set of processes that overlap at least one process, which is furthermore
not amnesic, we can satisfy P1. This means that every WriteAMS() invocation
must contact either enough processes with stable storage or enough processes
that do not crash. We denote the set of processes contacted by a WriteAMS()
invocation by QW and the set of processes contacted by ReadAMS() by QR.

Figures 3.3 and 3.4 describe WriteAMS() and ReadAMS() implementations. We
give two implementations, they both share the top level Initialize, WriteAMS() and
ReadAMS() procedures. However, they have separate low level subroutines for
processes with stable storage and without. During an execution, some process
might have access to stable storage and others not, therefore each process executes
the appropriate subroutine depending on whether it has access to stable storage
or not.

The basic idea is to write a value by sending the value-timestamp to all pro-
cesses and waiting for a number of replies that is equal to |QW |. Upon receiving
such a WriteAMS() message, the other processes locally store the value-timestamp
pair (in stable storage or volatile memory) if the received timestamp is higher
than the one currently stored. During the recovery phase, the value-timestamp
pairs are retrieved from stable storage. When a process without stable storage re-
covers, it sets its amnesic variable to true, which means that the process does not
reply to any ReadAMS() request until after it has stored a new value-timestamp
using WriteAMS().

We make the following assumptions on QW and QR:

1. |QW | > n− u or if s > 2f then |QW | > n− s+ f

2. |QW | ≤ n− f

3. |QR| > 0

4. |QR| ≤ n− f − c or if s > 2f then |QR| ≤ s− f

5. |QW |+ |QR| > n

We will show in Section 3.6 that these bounds are tight.
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1: procedure Initialize
2: ts := 0, v :=⊥, lts := 0
3: amnesic := false {Variable is set to true if a process loses the contents of its volatile

memory by crashing.}
4: end

5: function WriteAMS([v, ts]) at pw

6: s-send(W, [v, ts]) to all processes
7: wait until received (W.ACK, [v, ts]) from |QW | processes
8: return ok

9: function ReadAMS() at pr

10: lts := getT ime() {returns the local time}
11: s-send(R,lts) to all processes
12: wait until received (R.ACK, [v, ts], pi, ltsi) from |QR| processes where pi = pr∧ltsi =

lts
13: V ← {m|pr received (R.ACK, [v, ts])}
14: return V {return the set of all received value timestamp pairs}

Figure 3.3: Amnesia masking storage procedures.

Lemma 1 QW always contains at least one eventually-up process with stable
storage or one process that is always-up if |QW | > n − u or |QW | > n − s + f
when s > 2f .

Proof: There are two cases to consider:

• s ≤ 2f . In this case |QW | > n−u and thus QW will always contain at least
one process that is always-up.

• s > 2f . In this case |QW | > n − s + f . At worst we have u = 0 and
therefore QW can at worst contain n − s eventually-up processes without
stable storage and f faulty processes with stable storage. The remaining
processes in QW are therefore eventually-up with stable storage.

2

Lemma 2 QW and QR always overlap in at least one eventually-up process with
stable storage or one process that is always-up.

Proof: Because of Lemma 1, QW always contains at least one eventually-up
process with stable storage or one process that is always-up. In our implemen-
tation, processes without stable storage that crash do not reply to read requests
(Figure 3.4, second box, line 9) and since by assumption QW and QR overlap in
at least one process and |QR| > 0 the lemma is satisfied. 2

Lemma 3 The wait statement of line 7 eventually ends if |QW | ≤ n− f .

Proof: All processes in the implementation of Figures 3.3 and 3.4 reply when
contacted and there are no wait statements (second and third box). Since |QW | ≤
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Reception and recovery with stable storage:

1: upon s-receive(W, [v′, ts′]) from pw do
2: if ts′ > ts then
3: [v, ts] := [v′, ts′]
4: store([v, ts])
5: end if
6: s-send(W.ACK, [v′, ts′]) to pw

7: end upon

8: upon s-receive(R,lts) from pi do
9: s-send(R.ACK, [v, ts], pi, lts) to pi

10: end upon

11: procedure Recovery
12: [v, ts] := retrieve()
13: end

Reception and recovery without stable storage:

1: upon s-receive(W, [v′, ts′]) from pw do
2: if ts′ > ts then
3: [v, ts] := [v′, ts′]
4: amnesic := false
5: end if
6: s-send(W.ACK, [v′, ts′]) to pw

7: end upon

8: upon s-receive(R,lts) from pi do
9: if ¬amnesic then

10: s-send(R.ACK, [v, ts], pi, lts) to pi

11: end if
12: end upon

13: procedure Recovery
14: amnesic := true
15: ts := 0
16: v :=⊥
17: end

Figure 3.4: Amnesia masking storage reception and recovery procedures.
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n − f all eventually-up processes that crash eventually recover (by hypothesis,
see Section 3.2) and all processes in QW eventually reply when contacted. 2

Lemma 4 The wait statements of line 12 eventually ends if |QR| ≤ u or |QR| ≤
s− f when s > 2f .

Proof: All processes that do not have their amnesic variable to true in the
implementation of Figures 3.3 and 3.3 reply when contacted and there are no
wait statements (second and third box). There are two cases to consider:

• If |QR| ≤ u at least u always-up processes in QR eventually reply when
contacted.

• If |QR| ≤ s − f when s > 2f then there are at least s − f eventually-up
processes with stable storage in QR that eventually reply when contacted.

2

We now show that the implementation in Figures 3.3 and 3.4 satisfy properties
P1 and P2.

Lemma 5 The amnesia masking storage implementation in Figures 3.3 and 3.4
satisfy property P1.

Proof: We must show that in any execution, given a sequence of k complete
WriteAMS(vi, tsi) invocations (with 1 ≤ i ≤ k), any ReadAMS() that comes after
the response of WriteAMS(vk, tsk) returns {[vh, tsh] ∈ V |tsh = max (ts)∀ts ∈ V }.
When WriteAMS(vi, tsi) is invoked, [vi, tsi] is sent to all processes (Figure 3.3,
line 6) and acknowledged by |QW | processes (first box, line 7). The processes that
receive this value-timestamp pair store it only if the timestamp is higher than
the currently stored timestamp. The processes with stable storage log the value.
This mechanism ensures that after a sequence of k complete WriteAMS(vi, tsi)
invocations, at least |QW | processes have the timestamp-value pair with the high-
est timestamp stored locally. Because of Lemma 1, at least one process in QW

will preserve this information indefinitely. The ReadAMS() that comes after the
sequence of k complete WriteAMS(vi, tsi) invocations reads the value-timestamp
pairs from |QR| processes (first box, line 12). Because each ReadAMS() request
is uniquely identified by a local timestamp and the id of the reader, no “old
messages” can be returned by such a request. Furthermore, because of Lemma 2
we know that QW and QR always overlap in at least one eventually-up process
with stable storage or one process that is always-up. It will therefore return a
set of value-timestamp pairs V which includes [vh, tsh], where tsh is the highest
timestamp among the k complete WriteAMS(vi, tsi) invocations. 2

Lemma 6 The amnesia masking storage implementation in Figures 3.3 and 3.4
satisfies property P2.
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Figure 3.5: Example of amnesia masking storage configurations.

Proof: The implementation for the WriteAMS() procedure (Figure 3.3) sends
write messages to all processes and waits for |QW | responses, therefore contacting
all processes in set QW . The ReadAMS() procedure (Figure 3.3) sends read
messages to all processes and waits for |QR| responses, therefore contacting all
processes in set QR. The implementation contains no other wait statements or
loops and due to Lemmas 3 and 4 it satisfies property P2. 2

3.4.2 Instantiation Examples

The implementations of Figures 3.3 and 3.4 are very general and many different
instantiations are possible, some of which we illustrate here. For all examples
below, we consider a system with 9 processes (n = 9) and up to 3 faulty processes
(f = 3).

• If we take u = n−f = 6 (processes that do not crash), s = 0 (no stable stor-
age) and |QW | = |QR| = 6, we revert to a normal crash-stop model [Attiya
et al. 1995].

• With s = 0 and u = 4, we have |QW | = 6 and |QR| = 4. The advantage of
this setup is that despite possible crashes and recoveries, no stable storage
accesses are needed at all.

• On the other hand, if we consider a system where all processes can po-
tentially crash (u = 0), it is possible to implement the amnesia masking
storage when all processes have stable storage: s = 9 and |QW | = |QR| = 5
for instance.

• Illustrated in Figure 3.5 is the case where not all processes have access to
stable storage (s = 6) and four processes do not crash (u = 4). The size of
QW must be bounded by: n − u < |QW | ≤ n − f ⇐⇒ 9 − 4 < |QW | ≤
9 − 3 ⇐⇒ 5 < |QW | ≤ 6 ⇐⇒ |QW | = 6. Since QR must overlap with
QW we can take |QR| = 4. By looking at the left drawing of Figure 3.5,
it is easy to see why u must be bigger than 3: QW contains the top six
processes, the top three can crash permanently and the middle three have
no stable storage. In Section 3.6, we prove a lower bound on the minimum
number of processes that must not crash.
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3.5 The Generic Emulation Algorithm

3.5.1 Description

We now describe an algorithm that implements an atomic storage, i.e. that im-
plements the Read() and Write() operations of our atomic storage. For clarity of
presentation, we first focus on the single-writer/multi-reader version.

Our algorithm, given in Figure 3.7 is generic in the sense that it relies on the
amnesia masking storage abstraction, defined in Section 3.4. The advantage of
using this abstraction is that, on the surface, our atomic storage algorithm looks
similar to the one used for the crash-stop model [Lynch and Shvartsman 1997].
The technical issues that are related to the crash-recovery model are encapsulated
within specific PreRead(), PreWrite() and Recovery() procedures that we discuss
later.

In Figure 3.7, the writer labels values with timestamps. In a first phase, value-
timestamp pair is pre-written by the PreWrite() procedure and in a second phase
they are stored using the WriteAMS() procedure. Two different amnesia masking
storage instances are used in the implementation: one for the prewrites (and
prereads) and one for the writes (and reads).

The Read() implementation is also divided in two phases: a first phase, which
invokes ReadAMS() to obtain value-timestamp pairs, and a second phase, where
the reader writes back the value with the highest timestamp collected in the
previous phase by invoking WriteAMS().

We describe below the technicalities related to the crash-recovery model and
highlight the differences between our algorithm and a crash-stop algorithm [Lynch
and Shvartsman 1997]:

1. A PreWrite() procedure is invoked before the WriteAMS() call. The goal of
the PreWrite() is to enable the writer to “remember” to finish the Write()
upon recovery in case it crashed. We describe two implementations of
PreWrite() depending on whether the writer has stable storage or not. If
stable storage is used (Figure 3.8), the PreWrite() requires a single log;
without stable storage (Figure 3.9), a WriteAMS() invocation is needed.

2. A PreRead() procedure is invoked during the Recovery() procedure. The
PreRead() returns the latest prewritten value. If stable storage is used (Fig-
ure 3.8), the PreRead() reads from stable storage, otherwise (Figure 3.9) a
ReadAMS() invocation is needed.

3. A timestamp mechanism provides monotonically increasing values despite
writer crashes: before each new Write(), a local variable tsw is incremented
and used as the new timestamp. During the Recovery() procedure, the
writer must ensure that tsw is at least as great as it was before the crash.
If stable storage is available to the writer, the latest timestamp stored by
the last PreWrite() can be retrieved by calling a PreRead().

Without stable storage at the writer, the mechanism is more complicated:
the writer cannot be sure that the values returned by a PreRead() contain
the latest value stored by a previous PreWrite() that was interrupted by a
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Recovery procedure with incremented timestamp ts = ts + 1: values v1 and v2 are prewritten with the same timestamp.

Recovery procedure without incrementing the timestamp: values v2 and v3 are prewritten with the same timestamp.

Recovery procedure with incremented timestamp ts = ts + 2: no conflicting timestamps.

Figure 3.6: Illustration of why the timestamp needs to be incremented by 2 during
the recovery phase. In all three runs W(v2) is not complete and the
prewrite messages are not received by all processes. Legend: W =
write, PW = prewrite, PR = preread.

crash. If the writer would start a new Write() with the same timestamp,
two different PreWrite() values would have the same timestamp. This is
problematic, because when the writer crashes and recovers again, it cannot
know which value to complete. The way we solve this problem is as fol-
lows. The value returned by the PreRead() is first stored by a PreWrite(),
then incremented by 2 and then stored again by a PreWrite(). The first
PreWrite() ensures that the next PreRead() will always return a value with
a timestamp at least equal to the one returned by the current PreRead().
The reason for incrementing the timestamp by 2 is best illustrated by an
example. Imagine that the timestamp at the writer is 0. The writer starts
a Write(v) and increments the timestamp by one. Then the writer crashes
while PreWrite([v, 1]) is being invoked. Even though few processes are aware
of the timestamp 1, when the writer recovers the PreRead() only returns 0
as the highest timestamp. By incrementing 0 by 2 the algorithm ensures
that the timestamp is higher than 1. The incremented timestamp is then
again stored by a PreWrite() to ensure that any consecutive PreRead() will
return at least 2 as the highest timestamp. Figure 3.6 illustrates with an-
other example why the timestamp needs to be incremented by 2. It contains
three runs: in the first run the timestamp is not incremented, in the second
it is incremented by one and in the last it is incremented by 2.



44 Chapter 3. Log-complexity

1: procedure Initialize
2: if writer then
3: tsw := 0
4: end if
5: end

6: function Write(v) at pw

7: tsw := tsw + 1
8: PreWrite([v, tsw])
9: W.WriteAMS([v, tsw])

10: return

11: function Read() at pi

12: V := W.ReadAMS() {V is the set of value timestamp pairs}
13: [vh, tsh] := highest(V ) {“highest(V )” returns the value timestamp pair with the

highest timestamp in V }
14: W.WriteAMS([vh, tsh])
15: return vh

Figure 3.7: Generic single-writer/multi-reader atomic storage algorithm.

1: function PreWrite([v, ts])
2: preW.store([v, ts])
3: return

4: function PreRead()
5: [vr, tsr] = preW.retrieve()
6: return [vr, tsr]

7: procedure Recovery()
8: if writer then
9: [vr, tsr] := PreRead()

10: W.WriteAMS([vr, tsr])
11: tsw := tsr

12: end if
13: end

Figure 3.8: Configuration with stable storage.
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1: procedure PreWrite([v, ts])
2: preW.WriteAMS([v, ts])
3: end

4: function PreRead()
5: V :=preW.ReadAMS()
6: [vr, tsr] = highest(V )
7: return [vr, tsr]

8: procedure Recovery
9: if writer then

10: [vr, tsr] := PreRead()
11: PreWrite([vr, tsr])
12: tsr := tsr + 2
13: PreWrite([vr, tsr])
14: W.WriteAMS([vr, tsr])
15: end if
16: end

Figure 3.9: Configuration without stable storage.

3.5.2 Correctness

We now address the correctness of our atomic storage. In short, we use Lemma
13.16 of [Lynch 1996] to prove atomicity (remember that we consider the single-
writer/multi-reader case: the multi-writer case is discussed in Section 3.5.3) as
well as the properties (P1 and P2) of our amnesia masking storage abstraction.
The lemma is as follows:

Lemma 13.16 Let β be a (finite or infinite) sequence of actions of a read/write
atomic object external interface. Suppose that β is well-formed for each i, and
contains no incomplete operations. Let Π be the set of all operations in β.

Suppose that ≺ is an irreflexive partial ordering of all the operations in Π,
satisfying the following properties:

1. For any operation π ∈ Π, there are only finitely many operations φ such
that φ ≺ π.

2. If the response event for π precedes the invocation event for φ in β, then it
cannot be the case that φ ≺ π.

3. If π is a WRITE operation in Π and φ is any operation in Π, then either
π ≺ φ or φ ≺ π.

4. The value returned by each READ operation is the value written by the
last preceding WRITE operation according to ≺ (or v0, if there is no such
WRITE).

Then β satisfies the atomicity property.

For a well-formed history H, the lemma lists four conditions involving a partial
order on operations inH. It states that if there is a partial order relation on events
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satisfying these four conditions then the atomicity property is satisfied. Although
the lemma has been proven correct in the crash-stop model, it directly applies to
the crash-recovery model if we only consider well-formed and complete histories
(thus in fact abstracting crashes and recoveries away). For this proof, we assume
that all histories generated by A are well-formed and complete and we later prove
that this is actually the case (Lemma 9).

Assume that H is a well-formed and complete history. Let O be the set of
operations in H, and τ be the timestamp associated with the value written or
returned by each operation. We define the partial order PO = 〈O,≺〉 on the
operations by letting: op1 ≺ op2 for op1, op2 ∈ O, if (a) τ(op1) <lex τ(op2), or if
(b) op1 is a Write(), op2 is a Read(), and τ(op1) =lex τ(op2).

We give three lemmas that are sufficient to show that PO satisfies the required
properties of Lemma 13.16.

Lemma 7 If op1 precedes op2, then
(i) if op2 is a Read(), then τ(op1) ≤lex τ(op2), and
(ii) if op2 is a Write(), then τ(op1) <lex τ(op2).

Proof:
〈1〉1. if op2 is a Read(), then τ(op1) ≤lex τ(op2)
〈2〉1. True when op1 is a Write()

Proof: op2 is a Read(), therefore τ(op2) is obtained by the reader by gather-
ing timestamps from a ReadAMS() invocation and computing the maximum
timestamp. The algorithm ensures that the value together with τ(op1) has
been stored using WriteAMS() before returning. Because of property P1,
τ(op1) ≤lex τ(op2).
〈2〉2. True when op1 is a Read()

Proof: The algorithm ensures that the value that is returned by the Read()
has been stored using the WriteAMS() procedure during the second round of
the Read(), this implies τ(op1) ≤lex τ(op2).
〈2〉3. Q.E.D.
〈1〉2. op2 is a Write(), then τ(op1) <lex τ(op2).
〈2〉1. True when op1 is a Write()

Proof: τ(op1) is stored using WriteAMS(). Since in a subsequent Write()
the writer process obtains τ(op2) by incrementing the previous timestamp
by one, we have τ(op1) <lex τ(op2).
〈2〉2. True when op1 is a Read()

Proof: No value smaller than τ(op1) has been written by WriteAMS(). Be-
cause the writer increments the timestamp before sending it to all other
processes, we have τ(op1) <lex τ(op2).

〈1〉3. Q.E.D.

Lemma 8 For a Read() operation op, let the PO imposed on H give the set of
Write() operations {op1, op2, ..., opk} such that ∀i ∈ [1, k] : opi ≺ op. Then op
returns the value written by opj such that τ(opj) =lex maxi∈[1,k](τ(opi)).
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Proof: Every Write() opj stores the value-timestamp pair using WriteAMS().
Any consecutive Read() op invokes ReadAMS and therefore receives at least one
timestamp from a process written by WriteAMS(). Because of Lemma 7 we know
that the timestamps impose a partial ordering on the writes such that the last
Write() according to ≺ has the highest timestamp. Therefore the Read() op
returns the value written by opj such that τ(opj) =lex maxi∈[1,k](τ(opi)). 2

Lemma 9 The set of possible histories H generated by A are well-formed and
complete.

Assume: Amnesia masking storage property P1 and P2 are satisfied.
〈1〉1. H is well-formed.
〈2〉1. The first event is either an invocation or a crash.

Proof: A process can only start by invoking a Read() or Write() event.
〈2〉2. A crash can only be followed by a matching recovery event.

Proof: The system model states that a crashed process cannot perform any
operations.
〈2〉3. An invocation can only be followed by a crash or a reply event.

Proof: The algorithm only allows the execution of one operation at the
same time.
〈2〉4. Q.E.D.

Proof: By definition.
〈1〉2. Every history in H can be completed.

Prove: Every incomplete WriteIC(vn) is completed before the start of the
next Write(vn+1) or WriteIC(vn) is removed from H.

〈2〉1. If WriteIC(vn) is completed, it will be completed before the start of
Write(vn+1) or WriteIC(vn) will never be completed.

〈3〉1. A recovery procedure is executed after WriteIC(vn), before the start of
Write(vn+1).

Proof: Upon recovery all operations are delayed until the end of the
recovery procedure.
〈3〉2. Upon recovery a PreRead() is executed that returns the last prewritten

value.
〈4〉1. The values written by PreWrite() are totally ordered by their asso-

ciated timestamp ts.
〈5〉1. Each value written by PreWrite() has an associated timestamp.

Proof: Line 2 of Figure 3.8 with stable storage and line 2 of Figure 3.9
without.
〈5〉2. The timestamps associated with the values written by PreWrite()

increase monotonically.
〈6〉1. True when the writer uses stable storage.

Proof: The timestamp is stored locally at line 2 of Figure 3.8 dur-
ing the PreWrite() (before actually writing the value). Upon recov-
ery this value is restored (line 5 of Figure 3.8) and incremented by
one (Line 7 Figure 3.7). Hence, timestamps increase monotonically.
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〈6〉2. True when the writer does not use stable storage.
Prove: ts1 < . . . < tsn for all n ≥ 2, where ts1, . . . , tsn are

the timestamps associated with values v1, . . . , vn, each
written consecutively by a PreWritek([vk, tsk]).

〈7〉1. True for n = 1.
Prove: ts1 < ts2.
〈8〉1. If no crash occurred between PreWrite1([v1, ts1]) and

PreWrite2([v2, ts2]), then ts1 < ts2.
Proof:
The local variable ts is incremented before each PreWrite()
(line 7 of Figure 3.7), since no crashes occurred, ts2 = ts1 + 1
and therefore ts1 < ts2.
〈8〉2. If one or more crashes occurred between PreWrite1([v1, ts1])

(which might be incomplete) and PreWrite2([v2, ts2]), then
ts1 < ts2.

〈9〉1. Initially, the local timestamp ts is equal to 0.
Proof: Line 3 of Figure 3.7.
〈9〉2. ts1 = 1.

Proof: Step 〈9〉1 and line 7 of Figure 3.7.
〈9〉3. ts2 ≥ 2.
〈10〉1. Before the invocation of PreWrite2([v2, ts2]), at least

one recovery procedure is executed.
Proof:
There is at least one crash in between PreWrite1([v1, ts1])
and PreWrite2([v2, ts2]), the system model ensures that a
recovery procedure is executed upon recovery before the
start of the next operation, and the PreWrite() is at the
beginning of a Write() operation.

〈10〉2. During this recovery procedure, a PreRead() is exe-
cuted which returns the highest timestamp from a
ReadAMS() invocation.

Proof: The PreRead() is executed at line 10 of Figure 3.9.
The ReadAMS() procedure is invoked on line 5 and the
highest value is selected on line 6.

〈10〉3. The lowest timestamp which can be read by the Pre-
Read() is 0.

Proof: Step 〈9〉1.
〈10〉4. During the recovery procedure, the highest times-

tamp read from the processes is incremented by 2.
Proof: Line 12 of Figure 3.9.

〈10〉5. Q.E.D.
〈9〉4. Q.E.D.
〈8〉3. Q.E.D.

Assume: True for n = l.
〈7〉2. True for n = l + 1.

Prove: By assumption ts1 < . . . < tsl, we must therefore prove
that tsl < tsl+1.
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〈8〉1. If no crash occurred in between PreWritel(vl) and
PreWritel+1(vl+1), then tsl < tsl+1.

Proof:
The local variable ts is incremented before each PreWrite()
(line 7 of Figure 3.7), since no crashes occurred, tsl+1 = tsl +1
and therefore tsl < tsl+1.
〈8〉2. If one or more crashes occur in between PreWritel(vl) (which

might be incomplete) and PreWritel+1(vl+1), then tsl <
tsl+1.

〈9〉1. Before the invocation of PreWritel+1(vl+1), at least one
recovery procedure is executed.

Proof: There is at least one crash in between PreWritel(vl)
and PreWritel+1(vl+1): by the network model of assumption,
a recovery procedure is executed upon recovery before the
start of the next operation, and the PreWrite() is at the
beginning of a Write() operation.
〈9〉2. During this recovery procedure, a PreRead() is executed

which returns the highest timestamp from a ReadAMS()
invocation.

Proof: The PreRead() is executed at line 10 of Figure 3.9.
It selects the highest timestamp at line 6.
〈9〉3. The lowest timestamp which can be read by the Pre-

Read() is tsl − 1.
Proof:
Before PreWritel([vl, tsl]) starts, tsl−1 or a bigger timestamp
is stored using WriteAMS(): before each PreWrite(), the local
timestamp is incremented by one (Line 7 of Figure 3.7). This
increment is preceded by another PreWrite() which stores
tsl − 1 using WriteAMS().
〈9〉4. During the recovery procedure, the highest timestamp

read from a ReadAMS() invocation is incremented by 2.
Proof: Line 12 of Figure 3.9.
〈9〉5. Q.E.D.

Proof:the minimum possible timestamp tsl+1 is such that
tsl+1 = (tsl − 1) + 2 + 1 = tsl + 2, thus tsl+1 > tsl.

〈8〉3. Q.E.D.
〈7〉3. Q.E.D.

Proof: By induction.
〈6〉3. Q.E.D.
〈5〉3. PreWrite([v, ts]) stores [v, ts] using WriteAMS() without stable stor-

age or store() with stable storage.
Proof: Property P1.
〈5〉4. PreRead() returns a value using ReadAMS() without stable storage

or retrieve() with stable storage.
Proof: Line 5 of Figures 6 and 7.
〈5〉5. Q.E.D.
〈4〉2. Q.E.D.
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1: function Write(v) at pi

2: V := W.ReadAMS()
3: tsh := highest ts(V ) {highest ts(V ) returns the highest timestamp in the set V }
4: tsw := tsh + 1
5: PreWrite([v, tsw])
6: W.WriteAMS([v, tsw, i])
7: return

Figure 3.10: Modifications to the single-writer algorithm to support the multi-
writer case.

〈3〉3. If, during the recovery phase, PreRead() returns v prewritten by in-
complete WriteIC(vn), WriteIC(vn) will be completed before the start
of the next Write(vn+1).

Proof: Line 10 of Figure 3.8 and Line 14 of Figure 3.9 show that during
the recovery procedure the value v returned by PreRead() is written using
a WriteAMS() invocation, thus completing WriteIC(vn).
〈3〉4. Q.E.D.

Proof: Step 〈3〉2 shows that upon recovery, a PreRead() is executed before
the start of the next WriteIC(vn) that returns the last prewritten value.
This value is either written, thus completing the WriteIC(vn) (step 〈3〉3) or
will never be completed in the future. This implies that if an incomplete
WriteIC(vn) is completed, it will be completed before the start of the next
Write().

〈2〉2. Q.E.D.
〈1〉3. Q.E.D.

3.5.3 Multi-writer Case

Adapting the algorithm of Figure 3.7 to the multi-writer case requires only minor
changes; the main difference being that the writer first needs to contact the pro-
cesses in order to determine the latest timestamp. As in [Lynch and Shvartsman
1997] the timestamp is tagged with the writer’s process id in order to distin-
guish between writers using the same timestamp. The PreWrite() procedures
(Figures 3.8 and 3.9) do not need to be changed: the mechanism is local to each
writer in the sense that a writer can only PreRead() its own PreWrite(). The
specific changes to the algorithm are shown in Figure 3.10.

The proof of correctness is almost the same as for the single-writer algorithm,
modulo the addition of the following Lemma:

Lemma 10 If op1 and op2 are concurrent, then if op1 is a Write(), either op1 ≺
op2 or op2 ≺ op1.

Proof: because the writer appends its process id to the sequence number, other
processes can distinguish between two simultaneous writes when both writers use
the same sequence numbers. These timestamps are compared lexicographically,
thus ensuring that two concurrent writes do not have the same timestamp. 2
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3.6 Complexity

In this section we give lower bounds on the resilience, log- and time-complexity of
robustly implementing atomic storage in a crash-recovery model. We also point
out instances of our algorithms that match these bounds, showing that they are
thus tight.

3.6.1 Resilience

The following bound determines the maximum number of faulty processes f that
an atomic storage can tolerate. The first bound (which our algorithms match) is
trivial and is a simple rephrasing in the crash-recovery case of the one in [Attiya
et al. 1995] which states that a majority of correct processes are needed for any
distributed storage:

Resilience Bound 1: An atomic read/write storage requires that f < n
2 .

Assume: Possible with f = dn2 e.
Prove: False.

Proof: Imagine an execution with a write followed by a read. During the
write operation only bn2 c processes can be contacted because f = dn2 e can be
permanently crashed and robustness can be violated if a process contacts more
than n− f processes. If all the processes that were contacted during the write
crash permanently (possible since bn2 c ≤ f) then the subsequent read cannot
return the latest written value: this contradicts the atomicity requirement. 2

The next bound relates the number of processes that need stable storage to
the number u of processes that do not crash. Our generic storage algorithm is
correct with u = f + 1 and the bound is therefore tight.

Resilience Bound 2: An atomic read/write storage requires that u > f if
s ≤ 2f .

Assume: Possible with u = f and s ≤ 2f .
Prove: False.
〈1〉1. A write can contact a maximum of n− f processes, we call this set QW .

Proof: Robustness can be violated if a process waits for more than n − f
responses because f processes can be permanently crashed.
〈1〉2. It is possible that |QW ∩ S| ≤ f

Proof: Because of s ≤ 2f and step 〈1〉1.
〈1〉3. It is possible that F ⊂ QW and (S ∩QW ) ⊆ F .

Proof: Because of f < |QW | and step 〈1〉2.
〈1〉4. It is possible that QW ∩ U = ∅.

Proof: Because of step 〈1〉1 and the assumption that u = f .
〈1〉5. It is possible that all processes in QW crash at the same time

Proof: By step 〈1〉4 and the fact that all processes not in U can crash.
〈1〉6. Q.E.D.

Proof: Consider an execution with a write followed by a read. The write
contacts the processes in QW . It is possible that all processes in QW crash
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and only processes without stable storage eventually recover (step 〈1〉3). A
subsequent read will not return the latest written value: a contradiction.

3.6.2 Log-Complexity

In this section we give bounds on the log-complexity of implementing an atomic
storage. We only consider the case where u ≤ f , because otherwise stable storage
is not necessary at all (resilience bound 2 above). Resilience bound 2 also states
that s > 2f , because otherwise it is impossible to implement an atomic storage
with u ≤ f . We first show that with these system assumptions, it is impossible
to write a value without logging.

Log-Complexity Bound 1: Any algorithm A, robustly implementing a
single-writer/single-reader atomic storage, where s > 2f and u ≤ f , has an
execution in which a write needs at least 1 log.

Assume: possible to write without logging with s > 2f and u ≤ f .
Prove: False.
〈1〉1. Consider an execution with a write followed by a read.
〈1〉2. During the write operation only n− f processes can be contacted.

Proof: Robustness requirement.
〈1〉3. The n− f processes that are aware of the new write value cannot log.

Proof: Due to assumption.
〈1〉4. If among these n − f processes, f crash permanently, then only n − 2f

processes are aware of the latest value.
〈1〉5. Q.E.D.

Since u ≤ f , all n−2f process can crash and recover thus losing the content of
their volatile memory. Since none of them logged, the subsequent read cannot
return the latest written value: a contradiction.

When there are not enough processes that do not crash during the execution
of the algorithm, stable storage must be used. The following bound uses the
notion of causal logs to refer to stable storage accesses. We say that two logs are
causal if there is a causal precedence between the two logs, i.e. not all logs can
be performed in parallel.

In a configuration with stable storage, our storage algorithm uses 2 causal
logs per write. The following bound states that in fact more than 1 log is in-
deed necessary, therefore the bound is tight and our algorithm is optimal in that
configuration.

Log-Complexity Bound 2: Any algorithm A, robustly implementing a
single-writer/single-reader atomic storage where s > 2f and u ≤ f , has an exe-
cution in which a write needs more than 1 log.

Proof sketch: We consider the case of n processes where n ≥ 3. We construct
an execution that violates atomicity and is inevitable if only 1 log per write is
allowed. Figure 3.11 depicts this execution, denoted ρ1. Process p1 is the writer
and p2 is the reader. In ρ1 the writer successfully writes the value v1 but crashes
while writing v2. After the crash, the writer recovers and starts a new write
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operation. There are two reads (R1 and R2) by p2 that are concurrent with the
third write. We will show that it is impossible to complete the second write, thus
making it possible for R1 to return v1 and for R2 to return v2. This execution
then violates atomicity.
Assume: • 1 causal log per write is enough for every execution.

• n processes where n ≥ 3.
Prove: False
〈1〉1. The history H1 associated with execution ρ1 is not complete.

Proof: the invocation W(v2) has no matching reply.
〈1〉2. H1 can be completed to obtain H ′1 by removing W(v2) from the history or

by completing the write by adding a matching reply event to H1.
Proof: By definition.
〈1〉3. If a reply event is added to H1, it must be placed before the invocation

event W(v3) at process p1.
Proof: The resulting history must be completed. By definition this implies
that W(v2) must be completed before the start of the next write at the same
process.
〈1〉4. The following property cannot be satisfied: if a read invoked after the in-

vocation of W(v3) returns v1, then no subsequent read returns v2.
〈2〉1. It is impossible to guarantee that no read returns v1 after the start of

W(v3).
In the considered model, a recovering process can initiate a recovery phase
that is not limited by the number of communication steps, messages or logs
it is allowed to perform. There are two cases to consider:
〈3〉1. It is impossible to “Cancel” v1: no subsequent read can return v1.

Proof: Consider a read R1 that is invoked after the invocation of W(v3).
Since W(v2) was not completed, R1 may not return v2. Because R1 is
concurrent with W(v3), it may not return v3. This implies that R1 can
return an old value, written before W(v1). This violates atomicity because
W(v1) is a complete write: A cannot cancel v1.
〈3〉2. It is impossible to complete W(v2) such that a subsequent read will

only return v2 or v3.
Assume: Possible
Prove: False
Proof: Consider execution ρ2 which is the same as ρ1, but where p1 con-
tacts only a single processes from QW before crashing. Since only a single
log is allowed, p1 could not have logged the fact that it started W(v2):
if it did, no other process could log and it would be easy to contradict
atomicity. Now consider execution ρ3 which is the same as ρ1, except that
there is no W(v2) invocation. After the crash, executions ρ2 and ρ3 are
indistinguishable if the single process that was contacted by p1 in ρ2 is
never contacted in ρ3. In ρ3 R1 can only return v1 and therefore too in
ρ2. This is a contradiction.
〈3〉3. Q.E.D.
〈2〉2. It is impossible to guarantee that no read returns v2 after the start of

W(v3)
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p2
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W(v3)W(v1) W(v2)

R1() R2()

p3 − pn

Figure 3.11: Execution ρ1 (Proof of Log-Complexity Bound 2).

The only way to do this is to cancel v2 so that all subsequent reads only
return v1 or v3. But v2 can only be canceled if v2 has not yet been read by
some other process. Upon recovery, the writer process (i.e. p1) must initiate
a recovery phase that first tests if v2 has been read (say this phase is initiated
at time T1) and if not the recovery phase ensures that v2 will never be read
(from time T2). If T1 is not equal to T2, then the reader could still read v2 in
between T1 and T2. Since a read initiated after T2 can return v1, atomicity
can be violated. A completely asynchronous model is assumed and since the
writer process must contact other processes to know if v2 has been read, T1

cannot be equal to T2.
〈2〉3. Q.E.D.
〈1〉5. Q.E.D.

In a configuration with stable storage our generic storage algorithm uses 1 log
per read. The following bound states when a read cannot do without logging:

Log-Complexity Bound 3: No algorithm A, robustly implementing a single-
writer/single-reader atomic storage where s > 2f and u ≤ f has an execution in
which a read does not log.

Proof sketch: We prove our result using indistinguishability arguments among
three executions displayed in Figure 3.12. Let p1 be the writer and p2 be the
reader with a total of n ≥ 3 processes in the system.
Assume: There exists such an algorithm that never logs during a read.
Prove: False.
〈1〉1. Each execution ρi has an associated history Hi, i ∈ 1, 2, 3, 4.

Proof: By definition.
〈1〉2. Execution ρ2 is atomic.

Proof: The writer p1 writes value v1 followed by v2. The reader process
crashes and reads v1 after recovering. Execution ρ2 satisfies atomicity because
H2 is equivalent to the legal sequential history made of the following ordered
object events: W(v1),R(v1),W(v2).
〈1〉3. Execution ρ3 is atomic.

Proof: Process p2 reads before crashing and returns v2. Execution ρ3 satisfies
atomicity because H3 is equivalent to the legal sequential history made of the
following ordered object events: W(v1),W(v2),R(v2).
〈1〉4. For process p2, the execution ρ4 is indistinguishable from execution ρ3 up

to time T .
Proof: In both executions up to time T , p2 and the other processes perform
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Figure 3.12: Executions ρ2, ρ3 and ρ4 (Proof of Theorem 3.6.2).

exactly the same operations.
〈1〉5. After time T , the execution ρ4 is indistinguishable from execution ρ2 for

p2.
Proof: In both executions after time T , p2 and the other processes perform
the exact same operations. Furthermore, because of the initial assumption that
no process can log, process p2 cannot “remember” anything about its previous
state after it recovers from a crash.
〈1〉6. Q.E.D.

Proof: Because of steps 〈1〉4 and 〈1〉5 execution ρ4 is inevitable. This con-
tradicts the assumption that the storage guarantees atomicity, since there is
no legal sequential history which is equivalent to H4 and that respects its op-
eration precedence. Therefore it is impossible to implement an atomic storage
that does not log during a read.

Intuitively, the previous bound makes sense considering that, in the crash-stop
model, Theorem 10.4 of [Attiya and Welch 1998] states that every reader must
“write” to implement a single-writer/multi-reader storage.

When s > 2f and u ≤ f , the storage algorithm presented in this thesis uses
2 causal logs per write and 1 causal log per read (whether the reader and writer
have stable storage or not) and therefore the previous bounds are tight.

3.6.3 Time-Complexity

The way we measure time-complexity is the traditional counting of the number
of round-trips [Lynch and Shvartsman 1997] needed for an operation to complete.
If a process p sends messages to k different processes after the invocation of the
operation and subsequently receives r < k causally dependent [Lamport 1978]
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responses from r different processes before returning from the operation, we say
that the time-complexity of the operation is 1 round-trip.

When the writer uses stable storage, our algorithm shows that only 1 round-
trip is needed per write. It is obvious that it cannot be done in less. However,
when no stable storage is available to the writer, our algorithm uses 2 round-trips.
The following bound shows that, in such a configuration, more than 1 round-trip
is always necessary. Our algorithm is thus optimal and the bound is tight.

Time-Complexity Bound 1: Any algorithm A, robustly implementing a
single-writer/single-reader atomic storage where s = 0 has an execution in which
a write needs more than 1 round-trip.

Proof sketch: We consider the case of n processes where n ≥ 3. We construct
an execution that violates atomicity and is inevitable if only 1 round trip per
write is allowed. Figure 3.11 displays this execution, denoted ρ1. Process p1 is
the writer and p2 is the reader. In ρ1 the writer successfully writes the value v1

but crashes while writing v2. After the crash, the writer recovers and starts a
new write operation. There are two reads (R1 and R2) by p2 that are concurrent
with the third write. We will show that it is impossible to complete the second
write, thus making it possible for R1 to return v1 and for R2 to return v2. This
execution then violates atomicity.
Assume: • 1 round trip per write is enough for every execution.

• n processes where n ≥ 3.
Prove: False.
〈1〉1. The history H1 associated with execution ρ1 is not complete.

Proof: The invocation W(v2) has no matching reply.
〈1〉2. H1 can be completed to obtain H ′1 by removing W(v2) from the history or

by completing the write by adding a matching reply event to H1.
Proof: By definition.
〈1〉3. If a reply event is added to H1, it must be placed before the invocation

event W(v3) at process p1.
Proof: The resulting history must be completed. By definition this implies
that W(v2) must be completed before the start of the next write at the same
process.
〈1〉4. The following property cannot be satisfied: if a read invoked after the in-

vocation of W(v3) returns v1, then no subsequent read returns v2.
〈2〉1. It is impossible to guarantee that no read returns v1 after the start of

W(v3).
In the crash-recovery model, a recovering process can initiate a recovery
phase that is not limited by the number of communication steps or messages
it is allowed to perform. There are two cases to consider:
〈3〉1. It is impossible to “Cancel” v1: no subsequent read can return v1.

Proof: Consider a read R1 that is invoked after the invocation of W(v3).
Since W(v2) was not completed, R1 may not return v2. Because R1 is
concurrent with W(v3), it may not return v3. This implies that R1 can
return an old value, written before W(v1). This violates atomicity because
W(v1) is a complete write: A cannot cancel v1.
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〈3〉2. It is impossible to complete W(v2) such that a subsequent read will
only return v2 or v3.

Assume: Possible.
Prove: False.
Proof: Consider execution ρ2 which is the same as ρ1, but where p1

contacts only a single processes from QW before crashing. Since only a
single round trip is allowed, p1 could not have stored the fact that it started
W(v2) at other processes. Now consider execution ρ3 which is the same as
ρ1, except that there is no W(v2) invocation. After the crash, executions
ρ2 and ρ3 are indistinguishable if the single process that was contacted by
p1 in ρ2 is never contacted in ρ3. In ρ3 R1 can only return v1 and therefore
too in ρ2. This is a contradiction.
〈3〉3. Q.E.D.
〈2〉2. It is impossible to guarantee that no read returns v2 after the start of

W(v3).
The only way to do this is to cancel v2 so that all subsequent reads only
return v1 or v3. But v2 can only be canceled if v2 has not yet been read by
some other process. Upon recovery, the writer process (i.e. p1) must initiate
a recovery phase that first tests if v2 has been read (say this phase is initiated
at time T1) and if not the recovery phase ensures that v2 will never be read
(from time T2). If T1 is not equal to T2, then the reader could still read v2 in
between T1 and T2. Since a read initiated after T2 can return v1, atomicity
can be violated. A completely asynchronous model is assumed and since the
writer process must contact other processes to know if v2 has been read, T1

cannot be equal to T2.
〈2〉3. Q.E.D.
〈1〉5. Q.E.D.

3.7 Discussion

3.7.1 Revisiting the assumptions

Throughout the thesis we assumed that besides an id, a process maintains a local
clock that persists upon crashes and recoveries. This assumption is very realistic,
for most machines we know off typically have battery powered clocks. One might
wonder however whether the assumption of a local clock is actually needed; i.e.
whether we cannot assume that the local clock is stored in volatile memory. The
answer is no, and intuitively, this is because the clock is a key mechanism to
uniquely identify requests. Assume by contradiction that a process does only
remember its id upon recovery. We argue below that even a safe storage cannot
be implemented if all but one process (the reader) is always up. Assume a system
with n processes in which we implement a single reader, single writer safe storage
SR. Out of the n processes, only the reader pr is eventually up (i.e. can crash
and recover), all other processes are always-up (i.e. they never crash). Assume
that upon recovery, the reader has no information about its state before crashing
and has no local clock. Consider the run α of SR as follows:
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1. The reader pr crashes and recovers.

2. Upon recovery pr executes a recovery procedure followed by a read. The
read returns v0.

3. pr crashes again.

4. The writer pw invokes and completes the write of v1.

5. pr recovers and executes a recovery procedure followed by a read.

Remember that the channels we assume, fair-lossy channels, need to duplicate
messages in order to ensure reliable delivery. Thus in run α after pr’s first crash
and recovery (2), all messages sent in reply to pr’s requests can be duplicated.
Because the algorithm is deterministic and pr has no stable storage, the first
message that is sent by pr after the second recovery (3) is exactly the same as
after the first recovery (2). Since pr has no way of distinguishing the old duplicate
messages from the new messages, it receives the same messages in (2) as in (3)
due to asynchrony. Since the algorithm is deterministic, the value returned by
the second read will be the same as in the first read: v0, thus violating safety.

Maybe surprisingly, it was shown in [Aguilera et al. 1998] that consensus can
be solved with processes that do not maintain any local clock, and yet tolerate
crashes. The difference is that consensus is a one shot problem. Processes that
crash and recover do not actively participate in the algorithm (they only wait for
the decided value) and cannot initiate new requests.

3.7.2 Strong vs. Weak Completion

Because atomic storage is the strongest form of storage, it is also the most expen-
sive to implement. In this section we discuss how by weakening the consistency
requirements of the read and write operations, we allow faster implementations
in terms of log and time-complexity.

We first introduce in the following a notion of weak completion. Remember
that the atomicity criterion we consider in the crash-recovery model guarantees
that crashes and recoveries are invisible to the client. To provide the illusion of
transparency, we require that any write operation be completed before any new
one from the same process is invoked. Weak completion differs from such a strong
completion property in that the full illusion of hiding crashes and recoveries can be
temporarily broken when a process recovers after a failure. More precisely, with
weak completion, when a writer pw crashes in the middle of executing a write
operation, recovers and invokes a new write operation, other processes might
have the impression that the two operations from the same process are invoked
concurrently: the present write, as well as the write that pw had invoked but not
terminated prior to its last crash.

To illustrate the difference between the two forms of completion, we depict two
executions in Figure 3.13: one of a storage that ensures atomicity and one that
ensures weakly complete atomicity. The execution of the weakly complete atomic
storage exhibits an “overlapping write behavior”. What happens is that, during
the third write (W(v3)) at p1, the other processes do not know if the second
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write (W(v2)) was successful or not, and can still return the value written by the
first write. The main difference is that the end of the second write can in fact
be delayed until the end of a consecutive write. The writer itself would not be
affected by the “overlapping” writes.

Strong completion relies on the completion of writes. Intuitively, this means
that incomplete writes do not “overlap” with any consecutive writes at the same
process, something that weak completion does not prevent. Although weak com-
pletion allows “strange” behavior after crashes, it is actually quite useful: in
periods without crashes, the weakly complete storage will behave exactly the
same as its stronger counter part. The advantage with weak completion is that
it is cheaper, as we will discuss now.

Indeed, if we consider weakly complete atomicity, our second log-complexity
bound (Section 3.6.2) and the first time-complexity bound (Section 3.6.3) do not
hold: both lower bounds result from the need of completing writes. In fact it
is therefore possible to implement a single-writer/single-reader weakly complete
atomic storage where s > 2f and u ≤ f with only 1 log per write, or without
stable storage using only 1 round-trip per write.

3.7.3 Safety and Regularity Semantics

Several alternatives to atomicity have been defined in the literature. The weakest
possible storage semantics are referred to as safety, in which inconsistent values
can be returned in the case of concurrent access to the storage [Lamport 1985]:
a read that is concurrent with a write can return any arbitrary value. A stronger
form, called regularity, restricts reads that are concurrent with writes to return
either the value being currently written, or the previously written value [Lam-
port 1985]. The original specification of regularity only considers single writer
scenarios, but the specification has recently been extended to include multiple
writers [Shao et al. 2003]. In order to implement a strongly complete regular
storage, our second log-complexity lower bound (Section 3.6.2) and first time-
complexity lower bound (Section 3.6.3) apply (also to the multi-writer case) and
thus, if s > 2f and u ≤ f , 2 causal logs per write are necessary, or 2 round-trips
without stable storage.

3.7.4 Performance Analysis

In order to analyze the performance of the algorithms described in the previous
sections, a version of each storage algorithm was implemented and several ex-
periments were run. The goal of these experiments was to precisely measure the
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v2 v3
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Figure 3.13: Atomic vs. weakly complete atomic storage.
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cost of logging in an atomic storage. How much more expensive is it to support
crash-recovery in the first place? How much more expensive is it to guarantee
strong completion, rather than weak completion?

Implementation and Setup

Our algorithms are written in C, using low level network abstractions such as
IP-multi-cast and UDP. The storage abstractions are implemented using files
written to disk synchronously so that the operating system writes the data to
disk immediately instead of buffering several writes together (which would violate
even weak completion).

The experiments were run on a 100Mbps local area network using up to nine
Pentium IV workstations running linux and equipped with standard IDE hard
drives. Each workstation runs the same executable. The only parameter that
needs to be set initially is the number of nodes in the storage. Every workstation
runs one process participating in the storage and consists of two threads: one
that listens for and executes read and write commands, and one that responds
to broadcasted messages.

Experimental Results
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Figure 3.14: Latency of an atomic memory emulation.

The first experiment consisted of writing a 4 byte integer value and measuring
the time that the operation took to complete, repeating the write fifty times
and finally averaging the write times. These measurements were performed on
a varying number of workstations for three different algorithms: atomic crash-
stop, weakly complete atomic crash-recovery and strongly complete atomic crash-
recovery. The results of the experiment are shown in the top graph of Figure 3.14.
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The reason why the graph only shows the write latency is that in a run without
any concurrency or crashes a read does not log, meaning that the execution times
would be the same for each algorithm.

From the graph it is easy to distinguish between the three different algorithms:
there is a clear performance impact due to logging. If we take the case of n=5
workstations, the average write latency without logging is 500µs, weak comple-
tion it is 700µs and for strong completion it is 900µs. Thus the performance
impact due to logging is 200µs for weak completion and double that for the
strong completion. This illustrates why counting the number of causal logs is so
important: weak completion requires a single causal log and persistent atomicity
two, reflecting the doubling of the latency due to logging.

The second experiment was designed to study the performance impact of in-
creasing the size of the data stored in the storage. The size of the data that can
be written by one write is limited by the fact that a UDP packet cannot contain
more than 64KB of data; cutting up the data into chunks would change the algo-
rithm by requiring more messages per write. Figure 3.15 plots the average write
times with respect to the data size for five workstations. We can conclude from
the graph that the time it takes to log and the time it takes to send a message
over the network increases linearly. This is of course only true for systems where
network congestion is not an issue.
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4
Throughput

We’ve heard that a million monkeys at a
million keyboards could produce the
complete works of Shakespeare; now,
thanks to the Internet, we know that is not
true.

Robert Wilensky

4.1 Introduction

We focus on crash failures and we consider a homogeneous cluster of server ma-
chines. Such clusters usually have low inter-server communication latency and
fine tuned TCP channels that make failure detection reliable. However, one might
expect that such clusters also deliver low latency client operations, especially in
failure-free and synchronous situations for these are considered the most frequent
in practice.

Studying lower bounds on the latency of distributed storage algorithms has
been a very active area of research in the last decade [Abraham et al. 2005;
Dutta et al. 2004; Guerraoui and Vukolic 2006]. In general, such studies focus on
the isolated latency of a read or a write operation, assuming in particular that
every server is ready to perform this operation. In practice, when a high number
of clients are served concurrently, low overall latency can only be provided with
high throughput. In short, under high load, the latency perceived by clients is
the sum of the time spent waiting for the operation to be served plus the actual
service time. Clearly, when a lot of clients access the storage concurrently, the
higher the throughput, the smaller the waiting time. Ideally, one would aim at
scalability, meaning that increasing the number of machines should improve the
throughput of the storage system.

Existing quorum-based algorithms do not scale very well since a majority of
servers need to receive all messages, and thus adding more servers does not help.
The problem is exacerbated by the fact that quorum-based algorithms typically



64 Chapter 4. Throughput

use one-to-many communication patterns (multicasts) to disseminate the infor-
mation quickly. The rationale is mainly that the cost of receiving one message
is equal to that of receiving multiple messages, especially when compared to the
message propagation time. While this might be true in widely distributed envi-
ronments (e.g., Internet), this assumption does not hold in a cluster environment
subject to a heavy load, which we consider in this work. Clearly, techniques that
aim at optimizing latency of isolated operations are not necessarily the best when
high throughput is desired.1

In this work, we exploit the availability of reliable failure detection in a homo-
geneous cluster environment to alleviate the need for quorum-based strategies.
In fact, it might appear trivial to devise a storage algorithm with high through-
put if failure detection is reliable. This is not however the case as we discuss
below. First, atomicity and resilience induce an inherent trade-off between the
throughput of reads and that of writes. Basically, the more servers are updated
by a write, the less servers need to be consulted by a read in order to fetch the
last written value (and vice-versa). It is typical to favor reads at the expense
of writes, following the argument that reads should be expedited for they occur
more frequently than writes. Since in our case maximum resilience (tolerating the
failure of all but one server) is required, the writer should update all servers. In
this case, a simple read-one write-all-available algorithm might appear to do the
job. To ensure atomicity however, one needs to solve the read-inversion problem
and prevent any read from returning an old value after an earlier read returned
a new value. One way to address this issue is to add a write phase to every read.
However, this clearly decreases the throughput. Besides, if write messages are
simply broadcast to all servers, the throughput would suffer even more drasti-
cally under high load. Modern full-duplex network interfaces can indeed receive
and send messages at the same time. However, when receiving several messages
at the same time, collisions occur at the network layer [Culler et al. 1993a]. A
retransmission is thus necessary, in turn causing even more collisions, ultimately
harming the throughput of write operations.

We present in this thesis an atomic storage algorithm that is resilient to the
crash failure of any number of readers and writers as well as to the crash failure
of all but one server. In failure-free and synchronous periods, our algorithm has
a high write throughput and a read throughput that grows linearly with the
number of available servers. This is ensured even in the face of contention. Our
algorithm is based on two key ideas. First, we ensure atomicity and prevent the
read-inversion problem by adding a pre-write phase to the write (instead of a
write-phase to the read). This idea is, we believe, interesting in its own right
because reads are local and immediate when there is no contention. Second,
we organize the servers following a ring to ensure constant write throughput
and avoid collisions during concurrent writes. This second idea was also used in
implementing a total order broadcast primitive [Amir et al. 1995; Défago et al.

1Certain techniques can be used to improve the throughput of quorum-based algorithms.
In [Saito et al. 2004] for instance, reads that are issued during contention free periods are
handled more efficiently than reads that are concurrent with write operations. Yet reads still
need to contact at least a majority of servers, which means that under high loads, there is
no improvement of the throughput.
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2004; Guerraoui et al. 2006], and one might actually wonder here whether it
would not have been interesting to consider a modular approach in devising an
atomic storage algorithm using such a primitive. Ensuring the atomicity of the
storage would however have required to also totally order the reads, hampering
its scalability. In [van Renesse and Schneider 2004], servers are organized in a
chain to ensure high throughput for replica updates. This replication scheme can
then be used to obtain a distributed atomic storage with high write throughput.
However, the reads (also called queries) are always directed to the same single
server and are therefore not scalable. We ensure liveness by imposing a fairness
strategy on the servers.

We evaluated the implementation of our algorithm on a cluster of 24 machines
(dual Intel 900MHz Itanium-2 processors, 3GB of RAM) with dual fast ethernet
network interfaces (100 Mbps). We achieve 81 Mbps of write throughput and
8 × 90 Mbps of read throughput (with up to 8 servers). To our knowledge, our
algorithm is the first atomic storage algorithm to achieve a read throughput that
grows linearly with the number of available servers.

We also present LCR, a throughput optimal uniform total order broadcast al-
gorithm that relies on point-to-point communication channels between processes.
It is an algorithm using logical clocks and a ring topology (hence the name).
Similarly to the train algorithm [Cristian 1991], each process only sends mes-
sages to the same single process. Unlike that algorithm however, messages in
LCR are sequenced using logical vector clocks. These two characteristics ensure
LCR throughput optimality and fairness, regardless of the type of traffic. In
our context, fairness conveys the equal opportunity of processes to have their
broadcast messages delivered.

We give a careful analysis of LCR’s performance and fairness. We also provide
performance results based on C and Java implementations of LCR that rely
on TCP channels. The implementations are benchmarked against Spread and
JGroups on a cluster of 9 machines and we show that LCR consistently delivers
the highest throughput.

This chapter is organized as follows. Section 4.2 describes our system model.
Section 4.3 presents the algorithm. The performance is discussed in Sections 4.4
and 4.5. Section 4.6 shows how to adapt the ring topology to provide uniform
total ordering at the same cost. Section 4.7 describes the LCR algorithm in detail.
Section 4.8 provides performance analysis and results and Section 4.9 compares
the performance of LCR to that of Spread and JGroups.

4.2 Model

We consider a cluster environment where n homogeneous servers are connected
via a local area network. We do not bound the number of client processes nor
the concurrency among these. Any client can read or write in the storage. Every
pair of processes communicate by message-passing using a bi-directional reliable
communication channel (we do not assume FIFO channels here).2

2Even if we did assume FIFO channels, our fairness mechanism would make this assumption
useless.
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We focus on process crash failures: when a process crashes, it stops performing
any further computation steps. A process that crashes is said to be faulty. A
process that is not faulty is said to be correct. We make no assumption on the
number of possible crashes except that at least one server should be correct in
every computation.

We use a ring communication pattern, meaning that servers are organized
in a ring and communicate only with their neighbors. Each server creates a
TCP connection to its successor in the ring and maintains this connection during
the entire execution of the algorithm (unless the successor fails). Because of
the simple communication pattern, the homogeneous environment and low local
area network latency, it is reasonable to assume that when a TCP connection
fails, the server on the other side of the connection failed [Dunagan et al. 2004].
Using this mechanism we implement a Perfect failure detector (P ) [Chandra and
Toueg 1996b]. Although our algorithm tolerates asynchrony, its performance is
optimized for synchronous periods during which message transmission delays are
bounded by some known value. The throughput is measured during such periods.

Evaluating the performance of message-passing algorithms requires an ade-
quate performance model. Some models only address point-to-point networks,
where no native broadcast primitive is available [Bar-Noy and Kipnis 1994; Culler
et al. 1993b]. Our algorithm does not use any broadcast primitive, but we do
not wish to exclude it from our performance model for the sake of comparison
with other algorithms. A recently proposed model [Urbán et al. 2000] is useful
for reasoning about throughput, although it assumes that processes do not si-
multaneously send and receive messages. We would like to better capture the
behavior of modern network cards which provide full duplex connectivity. The
round-based model [Gafni 1998; Keidar and Shraer 2006; Lynch 1996] is in that
sense more convenient as it assumes that a process can send a message to one or
more processes at the start of each round, and can receive the messages sent by
other processes at the end of the round. It is however not realistic in our cluster
context to consider that several messages can be simultaneously received by the
same process. Indeed, receiving two messages at the same time might result in a
collision at the network level, requiring a retransmission. Whereas, this model is
well-suited for proving lower bounds on the latency of algorithms, it is ill suited
for predicting the throughput of these algorithms.

We propose to evaluate message-passing algorithms considering a synchronous
round-based model but assuming the following: in each round k, every process
pi can execute the following steps: (1) pi computes the message for round k,
m(i, k), (2) pi broadcasts m(i, k) to all or a subset of processes and (3) pi receives
at most one message sent at round k. The synchrony assumption implies that,
at any time, all processes are in the same round. The broadcast primitive we
assume corresponds to the multicast primitive provided at the ethernet level.
There are no reliability guarantees, except in the absence of failures or collisions.
The analytical analysis of the performance of our algorithm will be based on
this model. Interestingly, the experimental evaluation confirms these numbers,
conveying in some sense the validity of this model in our context of a homogeneous
cluster.
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4.3 The Storage Algorithm

Our storage algorithm was designed with the three following properties in mind:
resilience, atomicity and high throughput. Our algorithm satisfies these proper-
ties using two key mechanisms: a read-one pre-write/write-all-available strategy
and a fairness rule orchestrating the servers in a ring. In this section, we explain
these key mechanisms and how they ensure the desired properties.

Figures 4.1 and 4.2 contain the pseudo-code of the storage algorithm.

At the client c:

1: procedure initialization:
2: v ← ⊥, ts← 0, id← ⊥
3: pending write set← ∅
4: forward queue← ∅
5: write queue← ∅
6: nb msg[pj ]← 0 ∀pj ∈ S
7: end

8: procedure read ()
9: send 〈read〉 to any pi ∈ S

10: wait until receive 〈read ack,v〉 from pi

11: return v
12: end

At the server process pi:
13: upon receive 〈read〉 from c do
14: if pending write set = ∅ then
15: send 〈read ack, v〉 to c
16: else
17: highest = maxlex(pending write set)
18: wait until receive 〈write, v′, [ts′, id′]〉 ∧ ([ts′, id′] ≥lex highest)
19: send 〈read ack, v′〉 to c
20: end if
21: end upon

22: upon pj crashed do
23: if pj = pnext then
24: pnext = pj+1

25: send 〈write, v, [ts, id]〉 to pnext

26: for each v′, [ts′, id′] ∈ pending write set do
27: send 〈pre write, v′, [ts′, id′]〉 to pnext

28: end for
29: end if
30: end upon

Figure 4.1: The storage algorithm: initialization, read and recovery procedures.

Clients send Read and Write requests to any server in S. If the server contacted
by the client crashes, the client re-issues the request to another server. Clients
do not directly detect the failure of a server, but when their request times-out,
they simply re-send it to another server.

As we pointed out, our algorithm is resilient in the sense that it tolerates the
failure of n− 1 out of n server processes and the failure of any number of clients.
Atomicity [Herlihy and Wing 1990; Lamport 1998] dictates that every read or
write operation appears to execute at an individual moment of time, between its
invocation and responses. In particular, a read always returns the last written
value, even if there is only one server that did not crash. We ensure this using a
write-all-available scheme. Newly written values are sent to all processes before
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At the client c:

1: procedure write (v)
2: send 〈write,v〉 to any pi ∈ S
3: wait until receive 〈write ack〉 from pi

4: return ok
5: end

At the server process pi:
6: upon receive 〈write, v′〉 from c do
7: write queue.last← [v′, c]
8: end upon

9: procedure write(v′, c)
10: highest = maxlex(pending write set)
11: tag ← [max(highest.ts, ts) + 1, i]
12: pending write set← pending write set ∪ tag
13: send 〈pre write, v′, tag〉 to pnext

14: nb msg[pi]← nb msg[pi] + 1
15: write queue← write queue− [v′, c]
16: end

17: upon receive 〈pre write, v′, [ts′, id′]〉 do
18: if id 6= i then
19: forward queue.last← 〈pre write, v′, [ts′, id′]〉
20: else
21: if [ts′, id′] >lex [ts, id] then
22: [ts, id]← [ts′, id′]
23: v ← v′

24: end if
25: pending write set← pending write set− [ts′, id′]
26: send 〈write, v, [ts′, id′]〉 to pnext

27: end if
28: end upon

29: upon receive 〈write, v′, [ts′, id′]〉 do
30: if id′ 6= i then
31: if [ts′, id′] >lex [ts, id] then
32: [ts, id]← [ts′, id′]
33: v ← v′

34: end if
35: pending write set← pending write set− [ts′, id′]
36: forward queue.last← 〈write, v′, [ts′, id′]〉
37: else
38: send 〈write ack〉 to c
39: end if
40: end upon

41: task queue handler
42: if forward queue = ∅ then
43: nb msg[pj ]← 0 ∀pj ∈ S
44: if write queue 6= ∅ then
45: write(write queue.first)
46: end if
47: else
48: if write queue 6= ∅ then
49: select pj s.t. nb msg[pj ] is minimal
50: else
51: select pj 6= pi s.t. nb msg[pj ] is minimal
52: end if
53: if pj = pi then
54: write(write queue.first)
55: else
56: msg ← select first in forward queue sent by pj

57: send msg to pnext

58: forward queue← forward queue−msg
59: pending write set← pending write set ∪msg.tag
60: nb msg[pj ]← nb msg[pj ] + 1
61: end if
62: end if
63: end

Figure 4.2: The storage algorithm: write procedures.



4.3 The Storage Algorithm 69

the write operation returns and each process keeps a local copy of the latest value.
Values are ordered using a timestamp which is stored together with the value.

Processes only replace their locally stored values with values that have a higher
timestamp. Since a write contacts all processes, a process wishing to perform a
write does not need to contact any other process to get the highest timestamp.
Before each write, the locally stored timestamp can simply be incremented, thus
ensuring that timestamps increase monotonically. (Ties are broken using process
ids).

Read operations do not involve any communication between server processes.
Clients directly access the value stored locally at a server process. The diffi-
culty here lies in ensuring atomicity using these local reads and in particular in
preventing the read inversion problem. Consider an execution where a value is
written and stored at all processes. Due to asynchrony, not all processes might
learn about the new value at the same time. Before the write completes, a reader
contacts a process that has the new value and thus returns the new value. After-
wards a second reader contacts a process which does not know of the new value
(since the write is not yet completed) and thus returns the old value, violating
atomicity.

Our algorithm handles this issue using a pre-write mechanism. The write
involves two consecutive phases: a pre write phase and a write phase. In the
pre write phase, all processes are informed of the new value that is going to
be written. Only when all processes acknowledge the pre write, does the write
phase actually start.

During a read, if a process knows of a pre write value that has not yet been
written, it waits until the value has been written before returning it. This en-
sures that when the new value is returned, all processes know of the new value
through the pre write phase and any subsequent read will also return the new
value. Consequently, when there are no unwritten pre write values, processes
can immediately return the latest written value. In the case of concurrent writes,
processes might see several unwritten pre write values, in which case they wait
for the value with the highest timestamp to be written. As will be explained
in Section 4.4, waiting increases the latency for a single request, but does not
influence the throughput of a loaded system. An illustration of an algorithm
execution is provided in Figure 4.3.

So far, no mention was made about the communication pattern that is used
for contacting all processes during the actual writes. The choice of the commu-
nication pattern has no influence on the correctness of the algorithm, but it does
influence the throughput. Our algorithm organizes all servers in a ring and mes-
sages are forwarded from each server to its neighbor. This simple communication
pattern avoids any unpredictability causing message collisions, especially under
high loads. Also, there is no need for explicit acknowledgment messages, since
knowing that a message has been forwarded around the ring once implies that
all processes have seen the message.

In the case of a crash of a server process pj , the crash will eventually be
detected by the crashed process’ predecessor in the ring pj−1 using the perfect
failure detector. The crashed process pj will be removed from the ring. Any
pending messages that were not forwarded due to the crash are forwarded to the
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Figure 4.3: Illustration run of the storage algorithm. (1) After receiving the write
request W (v2), s1 sends a pre write(v2) message to its successor. A
read request is received by s3, which must wait before replying because
of the pre-write, whereas s5 can reply directly to the client’s read
request. (2) Upon receiving its own pre write(v2) message, s1 sends
a write(v2) message. Upon receiving this message s3 can reply to its
client’s read request. Now s5 must wait until it receives the write(v2)
message before replying to a new read request. (3) Upon receiving its
own write(v2) message, s1 replies to the client and s5 can also reply
to its client.
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new successor by pj , ensuring that all pre-write and write messages are eventually
forwarded around the ring. This however is not enough to ensure resilience.
Under high loads, processes must decide to either forward messages received from
their neighbor or initiate a new write upon receiving a request from a client. If
each process would prioritize requests received from clients, no message would
ever be forwarded on the ring.

Our algorithm handles this issue using a fairness mechanism which ensures
that each process can complete its fair share of writes and that all write opera-
tions eventually complete. Each process keeps two queues: a write queue which
contains write requests received from clients and a forward queue which contains
messages received from the predecessor which are to be forwarded to the succes-
sor. A table nb msg keeps track of how many messages have been forwarded
for each process: there is an entry for each process pj , counting the number of
messages originating at pj that were forwarded. Messages in the forward queue
are not forwarded in FIFO order, but the first message from the processes that
has the smallest number of forwarded messages will be sent to the successor.

4.3.1 Correctness Proof

Theorem 8 The multi-reader multi-writer storage algorithm guarantees atomic-
ity.

We prove atomicity using Lemma 13.16 of [Lynch 1996]. The lemma is as
follows:
Lemma 13.16 Let β be a (finite or infinite) sequence of actions of a read/write
atomic object external interface. Suppose that β is well-formed for each i, and
contains no incomplete operations. Let Π be the set of all operations in β.

Suppose that ≺ is an irreflexive partial ordering of all the operations in Π,
satisfying the following properties:

1. For any operation π ∈ Π, there are only finitely many operations φ such
that φ ≺ π.

2. If the response event for π precedes the invocation event for φ in β, then it
cannot be the case that φ ≺ π.

3. If π is a WRITE operation in Π and φ is any operation in Π, then either
π ≺ φ or φ ≺ π.

4. The value returned by each READ operation is the value written by the
last preceding WRITE operation according to ≺ (or v0, if there is no such
WRITE).

Then β satisfies the atomicity property.
For a well-formed history H, the lemma lists four conditions involving a partial

order on operations inH. It states that if there is a partial order relation on events
satisfying these four conditions then the atomicity property is satisfied. Let O
be the set of operations in H, and τ be the tag associated with the value written
or returned by each operation. We define the partial order PO = 〈O,≺〉 on the
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operations by letting: op1 ≺ op2 for op1, op2 ∈ O, if (a) τ(op1) <lex τ(op2), or if
(b) op1 is a Write, op2 is a Read, and τ(op1) =lex τ(op2).

We start by proving the following preliminary lemmas before proceeding with
the proof of Theorem 1.

Lemma 9 When a message is added to the forward queue, it is eventually sent
to pnext.

Proof: Suppose that message m, originating at pk was added to the end of the
forward queue. Changes in the queue are handled in the algorithm at line 41
of Figure 4.2. The nb msg table contains an entry for each process pj , which
represents the number of messages originating at pj that were forwarded. Always,
the first message from the processes that has been the least forwarded will be
sent to pnext. In the worst case, suppose that nb msg[pk] is the highest in pk.
Three cases are possible: (1) several or all processes keep sending messages (2)
no processes besides pk send any further messages and (3), no processes send any
further messages. In the first case, nb msg[pk] will eventually become the lowest
value, all messages originating from pk enqueued before m, and eventually m will
be sent. In the second case, only messages sent by pk will remain in the queue
and m will be sent eventually. In the third case, the queue will empty and m will
eventually be sent.

Lemma 10 When a process receives a write request from a client, a prewrite
message is created and forwarded around the ring, followed by a write message,
before a reply is sent to the client.

Proof: When process pi receives a write request from a client, the request is
added to the write queue (line 7 of Figure 4.2). Then for the same reason as
in Lemma 9, the write procedure is called (line 9 of Figure 4.2) which creates a
prewrite message and sends it to pnext. First, consider the case without crashes.
Because of Lemma 9, we know that the prewrite message will be forwarded around
the ring until it arrives at pi again. Then a write message is created and forwarded
in the same way. When the write message is received by pi a reply is sent to the
client.
In the case of a crash of process pj , the crash will eventually be detected by the
crashed process’ predecessor in the ring pj−1 due to the perfect failure detector
P . The crashed process pj will be removed from the ring. Any ongoing messages
that were not forwarded due to the crash are forwarded to the new successor by
pj−1, thus ensuring that all prewrite and write messages are eventually forwarded
around the ring.

Lemma 11 The tag values stored at each process are monotone nondecreasing
in H

Proof: The tags are only changed in the algorithm at line 32 of Figure 4.2. A
new tag is stored only if it is lexically greater than the previous tag.
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Lemma 12 If op1 precedes op2, then
(i) if op2 is a Read, then τ(op1) ≤lex τ(op2), and
(ii) if op2 is a Write, then τ(op1) <lex τ(op2).

Proof:
〈1〉1. op2 is a Read.
〈2〉1. op1 is a Read.

Proof: Since op1 completed, all correct processes received a pending mes-
sage and at least one correct process has stored the tag τ(op1). During the
second Read op2, if pending write set = ∅ at line 14 of Figure 4.1, there is no
concurrent Write at the process pr contacted by the client. This means that
τ(op1) has already been stored at pr. Since this value is returned at line 15
of Figure 4.1, τ(op1) ≤lex τ(op2). In the case that pending write set 6= ∅
however, τ(op1) may not yet have been stored at pr. However, since τ(op1)
was returned during the first read, all processes know about τ(op1) due to
the pre write phase (line 59 of Figure 4.2). Thus, pr stored τ(op1) in its
pending write set, which ensures that the read will only be completed when
it will have received a write message with tag greater than or equal to τ(op1)
(line 19 of Figure 4.1). Thus in all cases τ(op1) ≤lex τ(op2).
〈2〉2. op1 is a Write.

Proof: Since op1 completed, all correct processes stored τ(op1). Since the
Read op2 returns the value stored locally at a server process and comes after
op1, it is clear that τ(op1) ≤lex τ(op2).
〈2〉3. Q.E.D.
〈1〉2. op2 is a Write.
〈2〉1. op1 is a Read.

Proof: Since op1 completed, all correct processes received a pending mes-
sage and at least one correct process has stored the tag τ(op1). The process
that will be contacted by Write op2 will generate a higher timestamp than
those stored in pending write set (line 11 of Figure 4.2). Consequently,
τ(op1) <lex τ(op2).
〈2〉2. op1 is a Write.

Proof: Since op1 completed, all correct processes stored τ(op1). During the
Write op2, before sending the process increments its locally stored timestamp
by one (line 11 of Figure 4.2) before sending a new write message. Therefore
τ(op1) <lex τ(op2).
〈2〉3. Q.E.D.
〈1〉3. Q.E.D.

We now prove Theorem 1 using Lemma 13.16:

Proof:
〈1〉1. For any operation op2 in H, there are only finitely many operations op1

such that op1 ≺ op2.
Proof: Suppose by contradiction that the operation op2 has infinitely many
predecessors. We begin by showing that all τ(op) values for distinct Write
operations inH are distinct. The tag τ combines a timestamp ts and the unique
id of the server process which issued the write. Therefore write operations
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issued by different server processes are unique. If we look at tags issued by a
single server process we see that at line 11 of Figure 4.2, for each new write
request, the local timestamp is incremented and stored. Therefore, no two
distinct Write operations have the same tag τ(op) which implies that op2 cannot
have infinitely many Write predecessors. Without loss of generality, we can
assume that op2 is a Write.
Thus, there must be infinitely many Read operations with the same tag t,
where t < τ(op2). Since op2 completes in H, this implies that eventually the
tag τ(op2) gets stored at all correct processes (the tag is propagated along a ring
and the initiating process doesn’t reply to the client until all correct processes
have the new tag). Lemma 11 tells us that the tag values stored at each
individual process are monotone nondecreasing in H and therefore any Read
that is subsequently invoked is guaranteed to obtain a tag that is ≥ τ(op2) > t.
This contradicts the existence of infinitely many Read operations with tag t.
〈1〉2. If the response event for op1 precedes the invocation event for op2 in H,

then it cannot be the case that op2 ≺ op1.
There are four cases to consider:
〈2〉1. Read response precedes Write invocation.

Proof: In this case, τ(op1) <lex τ(op2) by Lemma 12. Thus op2 ⊀ op1 by
the PO construction.

〈2〉2. Read1 response precedes Read2 invocation.
Proof: In this case, by the definition of PO, if τ(op1) <lex τ(op2), then
op2 ⊀ op1, else if τ(op1) =lex τ(op2), then they are not ordered by the PO
construction since they are both reads.
〈2〉3. Write response precedes Read invocation.

Proof: In this case, τ(op1) ≤lex τ(op2) by Lemma 12 and op1 ≺ op2 by the
PO construction. Thus op2 ⊀ op1.
〈2〉4. Write1 response precedes Write2 invocation.

Proof: In this case, τ(op1) <lex τ(op2) by Lemma 12. Thus op2 ⊀ op1 by
the PO construction.
〈2〉5. Q.E.D.
〈1〉3. If op2 is a Write operation in H and op1 is any operation in H, then either

op2 ≺ op1 or op1 ≺ op2.
Proof: This follows directly from the definition of the PO. If op1 is a Write
operation then the tags will be unique since they are compared lexicographi-
cally. If op1 is a Read operation then if its tag is smaller it implies op1 ≺ op2,
if its tag is larger it implies op2 ≺ op1, or if it has the same tag op2 ≺ op1.
〈1〉4. The value returned by each Read operation is the value written by the last

preceding Write operation according to ≺ (or v0, if there is no such Write).
Proof: If we have a Write op1 followed by a Read op2, then according to
Lemma 12, τ(op1) = τop2 (If there is no preceding Write, then op2 returns v0).
〈1〉5. Q.E.D.

Theorem 13 Every read and write request eventually completes.

Proof: Lemma 10 proves that all write requests eventually complete. Before a
process can reply to a read request however, it has to wait if an uncompleted write
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is detected (line 18 of Figure 4.2). Because of Lemma 10 all writes eventually
complete and therefore all reads also eventually complete.

4.4 Analytical Evaluation

We consider two performance metrics: Latency, defined here as the number of
rounds required for a client to complete a read or write invocation and Through-
put, defined here as the number of invocations (read or write) that can be com-
pleted per round. Note that our throughput definition is similar to the one
proposed in [Hendler and Kutten 2006].

4.4.1 Latency

The read latency of our algorithm is equal to 2 rounds, since a read operation
only requires 1 round-trip from the client to the server. The latency of a write
operation is equal to 2N + 2 rounds. A write operation first requires the client to
send a write message to the server (1 round). Then, the server sends a pre write
message along the ring (N rounds). Once it receives its own pre write message,
the server sends a write message along the ring (N rounds). Finally, upon the
reception of its own writemessage, the server replies to the client with a write ack
message (1 round). The write latency is thus linear with respect to the number
of servers.

4.4.2 Throughput

For simplicity of presentation, this analysis only considers messages exchanged
between servers. Note that in our experimental setup, client messages do in-
deed transit on their own dedicated network. Our evaluation also shows how-
ever, that when clients and servers use the same network, they both share the
available bandwidth evenly. Assuming that there exists at least 1 server that
receives 1 new write request per round, our storage algorithm allows completing
1 write operation per round on average. This is due to the fact that (1) mes-
sages are disseminated along a ring once, (2) write messages are piggybacked
on pending write messages without the need for explicit acknowledgements, and
(3) the fairness mechanism guarantees that write requests eventually complete.
This ensures that each server can forward a new write message at the end of each
round, and thus the algorithm allows 1 write request per round to complete on
average.

Assuming that there are only read requests, the read throughput is equal to
n. This is due to the fact that each of the n servers can reply to a different read
invocation at each round. Thus, increasing the number of machines does not
impact the write throughput, and favorably impacts the read throughput.

We now analyze the impact that concurrent writes have on reads. The fairness
mechanism that is integrated into our algorithm guarantees that 1 write can
be completed per round on average, and that the maximum latency of a write
request is bounded (let lmax be this maximum latency). Consider a server si

which receives an infinite number of read requests. Before replying to the client,
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si must wait for the latest pre-write to complete, i.e. lmax rounds in the worst case.
After an initial period of lmax rounds, si can fulfill 1 read request each round.
The read throughput for si is therefore 1. Since reads do not involve additional
communication between servers, each server can serve clients independently at a
throughput of 1, bringing the total read throughput during Rhl to n.

4.5 Experimental Evaluation

Our algorithm was implemented in C (approximately 1500 lines). The imple-
mentation consists of separate code for a client (reader or writer) and a server.
In order to stress the servers without needing an enormous number of client ma-
chines, the client application can emulate multiple clients, i.e. it can send multiple
read and write requests in parallel. Thus, a single writing node can saturate the
storage implementation (the servers and the network links) and so the maximum
throughput, under high load, can be captured.

We performed the experiments using up to 24 homogeneous nodes (Linux 2.6,
dual Intel 900MHz Itanium-2 processors, 3GB of RAM, 100Mbit/s switched eth-
ernet). Similarly to the assumption made in Section 4.4.2, servers and clients
are interconnected by two separate networks: server nodes are connected to each
other on one network and communicate with clients on the other. The load is gen-
erated by two dedicated client machines for each server, either performing reads
or writes depending on the experiment. Every measurement has been performed
at least 3 times and the average over all measurements has been recorded.

An important parameter of the experiments is the size of each message that
is being sent from a client to a server as a write request, or from a server to a
client as a read response. In our implementation, this message size was constant
among all clients/servers and during the whole experiment. Figure 4.4 depicts the
relation between write throughput and message size which we measured in a setup
of 8 servers. Clearly, for small messages the overhead of the standard message
envelope and message processing time is too high and so the network cannot
be saturated with payload data. For very high message size the throughput
decreases slightly, which is probably due to limited buffer size on one of the
many communication layers. Therefore, for all the further experiments we set the
message size to 10 kB, which should give the maximum possible write throughput.

In the experiment of Figure 4.5, each server is connected to two client ma-
chines which generate read requests. There are no concurrent writes. The read
throughput is measured at each client and the total is reported on the chart. It
can easily be seen that the total read throughput increases linearly and is equal
to 90 MBit/s per server. In the experiment of Figure 4.6, the clients generate
only write requests. The write throughput when the number of servers is between
2 and 8 remains almost constant and is about 80 Mbit/s. It is also interesting to
note that during the experiment, each client machine roughly observed the same
write throughput, i.e. 80 Mbit/s divided by the number of servers.

The experiment of Figure 4.7 examines the total throughput of the system with
write contention. The load on each server is generated by a dedicated reader and
a dedicated writer. This represents a more realistic case in which read and write
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Figure 4.4: Influence of message size on the write throughput.
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Figure 4.5: Read throughput without contention.
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Figure 4.6: Write throughput without contention.
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Figure 4.7: Read & write throughput contention on separate networks.
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Figure 4.8: Read & write throughput contention on shared network.

requests are issued concurrently by many clients. The implementation behaves
as predicted by our analytical analysis: the write throughput remains constant at
around 80 Mbit/s and the read throughput scales linearly and is almost as high as
in the contention free case (a performance penalty of about 15% is incurred). The
decrease in performance is, we believe, due to the additional overhead of queuing
client read requests while at the same time running the fairness mechanism for
write requests.

The final throughput experiment of Figure 4.8 examines the total throughput
of the system during contention when clients and servers share a single network
connection. Obviously, read and write throughput suffer, but the write through-
put remains constant at around 45 Mbit/s whereas the read throughput scales
linearly at about 31 Mbit/s per additional server. This means that each server
uses about 76 Mbit/s of its incoming and outgoing network bandwidth despite
concurrency.

The latency measurements are presented in Figure 4.9. Because of the ring
topology, the write latency grows linearly with the number of servers. The read
latency stays constant since it involves only a single round-trip between the client
and a server.

4.6 Total Order

The high throughput of the storage algorithm is due to the organization of servers
in a ring combined with reliable failure detection available in clusters. Applying
the same the same design principles allows us to build an even stronger abstrac-
tion: total order broadcast. This abstraction can be used for state machine
replication. Roughly speaking, replication is about maintaining several copies of
the same software object on different machines (also called replicas or processes),
such that, if one or more replicas fail, enough replicas remain to guarantee acces-
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Figure 4.9: Read and write latency.

sibility to the object. The key to making state machine replication work is a well
designed software layer that hides all the difficulties behind replication from the
application developer and renders it transparent to the clients.

Replication relies on an underlying ordering mechanism which ensures that
all replicas perform the same operations on their copy in the same order, even
if they subsequently fail. This mechanism is encapsulated by a communication
abstraction called uniform total order broadcast (UTO-broadcast) [Hadzilacos
and Toueg 1993]. This abstraction ensures the following for all messages that
are broadcast: (1) Uniform agreement: if a replica delivers a message m, then all
correct processes eventually deliver m; (2) Strong uniform total order: if some
replica delivers some message m before message m′, then a replica delivers m′

only after it has delivered m. Note that uniformity prevents faulty replicas from
performing operations on their copy that will not be performed by the other
(correct) replicas.

Throughput can be defined as the average number of completed UTO-broadcasts
per round. A complete UTO-broadcast of message m meaning that all processes
UTO-delivered m. In this model a UTO-broadcast algorithm is optimal if it
achieves an average of one complete UTO-broadcast per round regardless of the
number of broadcasters. Considering a cluster with n processes, we want the
throughput to be optimal with k simultaneous broadcasters, k ranging from 1 to
n.

4.6.1 Related Work

The five following classes of UTO broadcast algorithms were identified in [Défago
et al. 2004]: fixed-sequencer, moving sequencer, privilege-based, communication
history and destination agreement. In this section, we only survey time-free
algorithms, i.e. algorithms that do not rely on physical time, since these are
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the ones comparable to our LCR algorithm (which do not assume synchronized
clocks).

Fixed Sequencer

p1

p2

p3

p4

m

m, seq(m)

ack stable

Figure 4.10: Fixed sequencer-based uto-broadcast.

In a fixed sequencer algorithm [Kaashoek and Tanenbaum 1996; Armstrong
et al. 1992; Carr 1985; Garcia-Molina and Spauster 1991; Birman and van Re-
nesse 1993; Wilhelm and Schiper 1995] (Figure 4.10), a single process is elected
as the sequencer and is responsible for the ordering of messages. The sequencer
is unique, and another process is detected as a new sequencer only in the case
of sequencer failure. Three variants of the fixed sequencer algorithm exist [Bal-
doni et al. 2006] each using a different communication pattern. Fixed sequencer
algorithms exhibit linear latency with respect to n [Défago et al. 2003], but poor
throughput. The sequencer becomes a bottleneck because it must receive the
acknowledgments (acks) from all processes3 and also receives all messages to be
broadcast. Note that this class of algorithms is popular for non-uniform total
order broadcast algorithms since these do not require all processes to send acks
back to the sequencer, thus providing much better latency and throughput.

Moving Sequencer

p1

p2

p3

p4

m

seq(m)

Figure 4.11: Moving sequencer-based uto-broadcast.

Moving sequencer algorithms [Chang and Maxemchuk 1984; Whetten et al.
1994; Kim and Kim 1997; Cristian et al. 1997] (Figure 4.11) are based on the
same principle as fixed sequencer algorithms, but allow the role of the sequencer
to be passed from one process to another (even in failure-free situations). This is
achieved by a token which carries a sequence number and constantly circulates
among the processes. The motivation is to distribute the load among sequencers,
thus avoiding the bottleneck caused by a single sequencer. When a process p
wants to broadcast a message m, it sends m to all other processes. Upon receiving

3Acknowledgments in the fixed sequencer can only be piggy-backed when all processes broad-
cast messages all the time [Défago et al. 2003].
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m, the processes store m into a receive queue. When the current token holder
q has a message in its receive queue, q assigns a sequence number to the first
message in the queue and broadcasts that message together with the token. For
a message m to be delivered, m has to be acknowledged by all processes. Acks are
gathered by the token. Moving sequencer algorithms have a latency that is worse
than that of fixed sequencer algorithms [Défago et al. 2004]. On the other hand,
these algorithms achieve better throughput, although not optimal. Figure 4.11
depicts a 1-to-n broadcast of one message. It is clear from the figure that it is
impossible for the moving sequencer algorithm to deliver one message per round.
The reason is that the token must be received at the same time as the broadcast
messages and the algorithm thus cannot achieve optimal throughput. Note that
fixed sequencer algorithms are often preferred to moving sequencer algorithms
because they are much simpler to implement [Défago et al. 2004].

Privilege-based Algorithms

p1

p2

p3

p4

m

seq(m)

token

token

Figure 4.12: Privilege-based uto-broadcast.

These algorithms [Friedman and Renesse 1997; Cristian 1991; Ekwall et al.
2004; Amir et al. 1995; Gopal and Toueg 1989] (Figure 4.12) rely on the idea
that senders can broadcast messages only when they are granted the privilege to
do so. The privilege to broadcast (and order) messages is granted to only one
process at a time, but this privilege circulates from process to process in the form
of a token. Because at any given time there is only one process which can send
messages, the throughput when all processes broadcast cannot be higher than
when only one process broadcasts.

Communication History-based Algorithms

As in privilege-based algorithms, communication history-based algorithms [Peter-
son et al. 1989; Malhis et al. 1996; Ezhilchelvan et al. 1995; Ng 1991; Moser et al.
1993] use sender-based ordering of messages. Nevertheless, they differ by the fact
that processes can send messages at any time. Messages carry logical clocks that
allow processes to observe the messages received by the other processes in order
to learn when delivering a message does not violate the total order. Commu-
nication history-based algorithms have poor throughput because they rely on a
quadratic number of messages exchanged for each message that is broadcast.

Destination Agreement

In destination agreement algorithms, the delivery order results from an agreement
between destination processes. Many such algorithms have been proposed [Chan-
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dra and Toueg 1996a; Birman and Joseph 1987b; Luan and Gligor 1990; Fritzke
et al. 2001; Anceaume 1997]. They mainly differ by the subject of the agreement:
message sequence number, message set, or acceptance of a proposed message
order. These algorithms have relatively bad performance because of the high
number of messages that are generated for each broadcast.

Note that hybrid algorithms, combining two different ordering mechanisms
have also been proposed [Ezhilchelvan et al. 1995; Rodrigues et al. 1996; Vicente
and Rodrigues 2002]. Most of these algorithms are optimized for large scale net-
works instead of clusters, making use of multiple groups or optimistic strategies.

4.7 The LCR Algorithm

LCR combines a ring topology for dissemination with logical (vector) clocks for
message ordering. When a broadcast is initiated, the message is forwarded around
the ring (clockwise) until all processes receive the message. Each process main-
tains an ordered list, called pending to store received messages. Indeed, processes
cannot deliver a message as soon as they receive it: if they crash after deliver-
ing a message without forwarding it, uniformity could be violated. Thus, before
delivering a message, the processes must make sure that the message is stable,
i.e. all other processes received it. To that end an acknowledgement is sent
around the ring by the predecessor of the broadcast initiator. Upon receiving
this ack, processes set the corresponding message stored in the pending list to
stable. Whenever the first message in a pending list is stable, it is delivered.

4.7.1 Ordering

Each process pi ∈ P has a logical vector clock Cpi = (ck)k=[0..n]. Let M be the set
of messages that have been broadcast by all processes. We note MCpi

, a message
sent by process pi with vector clock C = (ck)k=[0..n]. We note Cm[i] the ith value
of the vector clock carried by m. The total order on messages in M is defined as
follows:

Definition 1 (Total order) Let m =MCpi
and m′ =MCpj

s. t. m,m′ ∈M

m ≺ m′ ⇔
{
Cm[i] ≤ Cm′ [i] if i ≤ j
Cm[j] < Cm′ [j] if i > j

4.7.2 Operating Principle

The pseudo-code of the LCR protocol is depicted in Figure 4.13. The operating
principle of the protocol is the following:

• upon reception of message m, a process updates its local logical clock by
taking, for each index i, the maximum of its local value and the value of
the clock carried by m.

• before sending a new message m, a process pi increments the value stored
at index i in its local vector clock; it then timestamps m with its logical
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Procedures executed by any process pi

1: procedure initialize(initial view)
2: pendingi ← ∅ {pending list}
3: C[p1 . . . pn]← {0, . . . , 0} {local vector clock}
4: view ← initial view
5: end

6: procedure utoBroadcast(m)
7: C[pi]← C[pi] + 1
8: pending ← pending ∪ [m, pi, C,⊥]
9: Rsend 〈m, pi, C〉 to successor(pi, view) {broadcast a message}

10: end

11: upon Rreceive 〈m, pj , Cm〉 do
12: if Cm[pj ] > C[pj ] then
13: if pi 6= predecessor(pj , view) then
14: Rsend 〈m, pj , Cm〉 to successor(pi, view) {forward the message}
15: pending ← pending ∪ [m, pj , Cm,⊥]
16: else
17: pending ← pending ∪ [m, pj , Cm, stable] {mj is stable}
18: Rsend 〈Ack, pj , Cm〉 to successor(pi, view) {send an Ack}
19: tryDeliver()
20: end if
21: ∀k ∈ [1, n] : C[pk]←max(C[pk], Cm[pk]) {update local vector clock}
22: end if
23: end upon

24: upon Rreceive 〈Ack, pj , Cm〉 do
25: if pi 6= predecessor(predecessor(pj), view) then
26: pending[Cm]← [∗, ∗, ∗, stable] {mj is stable}
27: Rsend 〈Ack, pj , Cm〉 to successor(pi, view) {forward the Ack}
28: tryDeliver()
29: end if
30: end upon

31: upon Rreceive 〈Recover,m, pj , Cm〉 do
32: pending ← pending ∪ [m, pj , Cm,⊥]
33: Rsend 〈Ack, pj , Cm〉 to successor(pi, view)
34: end upon

35: procedure tryDeliver()
36: while pending.first = [m, pk, Cm, stable] do
37: utoDeliver (m) {deliver a message}
38: pending ← pending − [m, pk, Cm, stable]
39: end while
40: end

Figure 4.13: Pseudo-code of the LCR protocol.
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clock. Once set, the logical clock of a message is never changed. Note that
no two messages have the same timestamp.

A process p can deliver a message m when it knows that m reached every pro-
cess and when all messages that are before m in its pending list can be delivered.
Intuitively the protocol works because the timestamps are unique and define a
total order on the messages. If a process delivers a message, all non-crashed pro-
cesses have received the message with the same timestamp. Therefore, even if a
process delivers a message and crashes directly afterwards we are sure that all
other correct processes will eventually deliver the message too.
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Figure 4.14: Illustration of a run of the LCR protocol with 4 processes.

Figure 4.14 illustrates a run of the LCR protocol. The state of the pending list
of each process is represented in the second column of the table. For simplicity of
presentation, consider that the computation proceeds in rounds. Round (A) con-
sists in the broadcast of messages m1 and m2 by processes p1 and p3, respectively.
Then at round (B), process p1 receives message m2 and adds it at the head of its
pending list to respect the total order relation given by Definition 1. At the end of
round (C), m1 (resp. m2) has done a full round along the ring. As a consequence
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p0 (resp. p2) sets the message to stable. Moreover, p2 delivers m2 since it is first
in its pending list, which ensures that it already delivered all messages preceding
m2. At the start of round (D), processes p0 and p2 send an ACK for messages
m1 and m2, respectively. Upon reception of these ACK messages, processes p3,
p0 and p1 (resp. p1, p2 and p3) set m2 (resp. m1) to stable. Message deliveries
occur each time that the head of a pending list becomes a stable message.

4.7.3 Group Membership Changes

Our LCR protocol is built on top of a group communication system which pro-
vides virtually synchronous communications (VSC) [Birman and Joseph 1987a].
According to the virtual synchrony programming model, the processes are orga-
nized into groups. Processes can join and leave the group using the appropriate
primitives. Faulty processes are excluded from the group after crashing. Upon
a membership change, processes agree on a new view by using a view change
protocol.

When a process joins or leaves the group, a view change event is generated by
the VSC layer and the current view vr is replaced the new view vr+1. This can
happen when a process crashes or when a process actively wants to leave or join
the group. As soon as a new view is installed it becomes the basis for the new
ring topology.

The view change procedure is detailed in Figure 4.15. Note that when a view
change occurs, every process cancels the execution of all other procedures. The
view change procedure works as follows: every process sends its pending to all
other processes. Upon receiving this list every process adds to its pending list
the messages it did not yet receive. They then send back an Ack Recover
message. Processes wait until they receive Ack Recover messages from all
processes before sending an End Recovery message to all. When a process re-
ceives End Recovery messages from all processes it can deliver all the messages
in its pending list. Thus, at the end of the recovery procedure all pending lists
have been emptied which guarantees that all messages from the old view have
been handled.

4.7.4 Correctness

Let Mpi be the set of messages that have been stored in the pending list of process
pi. In the correctness proof of the protocol, we use a local ordering relationship
defined on messages in Mpi as follows:

Definition 2 (Local order) Let m =MCpj
and m′ =MCpk

s. t. m,m′ ∈Mpi

m <pi m
′ ⇔ m has been stored in pending before m′

Moreover, we note [i _ j] the set of integers defined as follows:

[i _ j] =
{

[i, j] if i < j
[i, n] ∪ [0, j] otherwise

The communication channels are assumed to be FIFO, which can be formally
expressed as follows:
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Procedures executed by any process pi

1: upon view change(new view) do
2: Rsend 〈Recover, pi, pending〉 to all pj ∈ P
3: Wait until received 〈Ack Recover〉 from all pj ∈ P
4: Rsend 〈End Recovery〉 to all pj ∈ P
5: Wait until received 〈End Recovery〉 from all pj ∈ P
6: forceDeliver()
7: view ← new view
8: end upon

9: upon Rreceive 〈Recover, pj , pendingpj
〉 do

10: for each [m, pl, Cm, ∗] ∈ pendingpj do
11: if Cm[pl] > C[pl] then
12: pending ← pending ∪ [m, pl, Cm,⊥]
13: end if
14: end for
15: Rsend 〈Ack Recover〉 to pj

16: end upon

17: procedure forceDeliver()
18: for each [m, pk, Cm, ∗] ∈ pending do
19: utoDeliver (m) {deliver a message}
20: pending ← pending − [m, pk, Cm, ∗]
21: ∀j ∈ [1, n] : C[pj ]←max(C[pj ], Cm[pj ]) {update local vector clock}
22: end for
23: end

Figure 4.15: Pseudo-code of the view change procedure.
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Figure 4.16: The different cases studied in the correctness proof.

Definition 3 (FIFO) Let m =Mpi and m′ =Mpj be two messages and let pk

be a process.

k ∈ [i _ j[ ⇒
{
m <pk

m′ ⇒ ∀ l ∈ [i _ j[ m <pl
m′ (3.1)

m′ <pk
m⇒ ∀ l ∈ [0 _ n] m′ <pl

m (3.2)

k ∈ [j _ i[ ⇒
{
m <pk

m′ ⇒ ∀ l ∈ [0 _ n] m <pl
m′ (3.3)

m′ <pk
m⇒ ∀ l ∈ [j _ i[ m′ <pl

m (3.4)

Lemma 11 Let m =Mpi and m′ =Mpj be two messages.

m ≺ m′ ⇒
{
m <pj m

′ if i ≤ j (11.1)
m <pi m

′ otherwise (11.2)

Proof: If i = j, we have Cm[i] ≤ Cm′ [i] thus m was sent before m′ (Line 7 of
Figure 4.13). If i < j, we have Cm[i] ≤ Cm′ [i]. Since the local clock at process
pj is only updated when a new message is received (Line 21 of Figure 4.13), we
know that pj received m before sending m′. Thus, we have m <pj m

′.
If i > j, we have Cm[j] < Cm′ [j]. Since the local clock at process pi is updated
whenever a new message is received (Line 21 of Figure 4.13), we know that pi did
not receive m′ before sending m. Thus, we have m <pi m

′.

Lemma 12 (Stable) When a process pi sets m to stable, the Mpi set contains
all the messages m′ such that m′ ≺ m.

Proof: Let m =Mpk
be a message and let pi be a process setting m to stable by

executing line 17 or 26 of Figure 4.13. Let us suppose that there exists a message
m′ =Mpk′ such that m′ 6= m, m′ ≺ m and m′ 6∈Mpi .

• Case A: k′ ≤ k
We have m′ ≺ m and k′ ≤ k. It follows that m′ <pk

m (Lemma 11.1).
Moreover, ∀l ∈ [0 _ n] m′ <pl

m (Lemma 3.3). In particular, m′ <pi m.
This contradicts the fact that m′ 6∈Mpi when m is set to stable.

• Case B: k′ > k

– Subcase 1: i ∈ [k′ _ k[
We have m′ ≺ m and k′ > k. It follows that m′ <pk′ m (Lemma 11.2).
Moreover, ∀l ∈ [k′ _ k[ m′ <pl

m (Lemma 3.1). In particular,
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m′ <pi m. This contradicts the fact that m′ 6∈ Mpi when m is set
to stable.

– Subcase 2: i ∈ [k _ k′[
We have k 6= k′, which implies that pi 6= predecessor(k). It follows
that pi must receive an ACK for m before setting it to stable. More-
over, m′ ≺ m and k′ > k. It follows that m′ <pk′ m (Lemma 11.2).
Thus, m′ <pi ACK(m). This contradicts the fact that m′ 6∈Mpi when
m is set to stable.

Lemma 13 Every correct process that stores a message m in pending eventually
utoDelivers it.

Proof: Let m =Mpk
be a message and let pi be a process that set m to stable.

By Lemma 12, the Mpi set contains all the messages m′ such that m′ ≺ m. Thus,
the pending list starts with the (possibly empty) set of all messages m′ such that
m′ ≺ m and that have not yet been delivered by pi. Let us call undelivered the
ordered list containing these messages. Moreover, note that, the undelivered set
cannot grow. Otherwise, this would contradict Lemma 12.
Let m′ = Mpk′ be the first message in undelivered. The protocol ensures that
m′ will eventually be delivered by process pi. Indeed, if there is a membership
change, the recovery procedure guarantees that all messages (including m and
m′) will be received (Line 2 of Figure 4.15) and delivered (Line 6 of Figure 4.15)
by all correct processes. If, on the other hand, there is no membership change,
m′ will be eventually set to stable (Line 26 of Figure 4.13) and subsequently de-
livered (Line 28 of Figure 4.13). The same reasoning applies to other messages in
undelivered. Consequently, message m will eventually come first in the pending
list and be delivered.

Lemma 14 If a process pi utoDelivers a message m before utoDelivering a mes-
sage m′, then m ≺ m′.

Proof: We prove the lemma by contradiction. Let m = Mpk
and m′ = Mpk′

be two messages such that m′ ≺ m and let pi be a process that utoDelivers m
before Delivering m′. If there is no membership change before pi delivered m, then
m was set to stable before being delivered. The fact that m′ ≺ m implies that
when pi sets m to stable, m′ ∈Mpi (Lemma 12), which contradicts the fact that
pi delivered m before m′. If, on the other hand, there is a membership change
before pi delivered m, then the protocol ensures that m and m′ will have been
delivered by all processes before any of them deliver a message (Lines 2 and 5 of
Figure 4.15). Indeed, we are sure that m′ was broadcast before the membership
change. Otherwise, its timestamp would be greater than m’s timestamp (Line 21
of Figure 4.15). Thus, pi will deliver m′ before m.

Theorem 4 (Validity) If any correct process pi utoBroadcasts a message m,
then it eventually utoDelivers m.
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Proof: Let pi be a process and let m =Mpi be a message broadcast by pi. This
message is added to pi’s pending list (Line 8 of Figure 4.13). By Lemma 13, we
know that m will eventually be delivered by pi.

Theorem 5 (Uniform Agreement) If any process pi utoDelivers any message
m in the current view, then every correct process pj in the current view eventually
utoDelivers m.

Proof: Let m =Mpk
be a message and let pi be a process that delivered m in

the current view. The protocol ensures that m has been received by all correct
processes in the current view. Indeed, if there is a membership change, the recov-
ery procedure guarantees that all messages (including m) will be received (Line 2
of Figure 4.15) and delivered (Line 6 of Figure 4.15) by all correct processes in
the current view. If, on the other hand, there is no membership change, m did
a full round around the ring before being delivered by pi. Thus, every correct
process pj in the current view either delivered m or stored it in its pending list.
Consequently, we know (Lemma 13) that every correct process pj in the current
view will eventually deliver m.

Theorem 6 (Uniform Integrity) For any message m, any process pj that
utoDelivers m, utoDelivers m at most once, and only if m was previously uto-
Broadcast by some process pi.

Proof: By the absence of Byzantine failures, no spurious message is ever utoDe-
livered by a process. Thus, only messages that have been utoBroadcast are utoDe-
livered. Moreover, each process keeps a vector clock C, which is updated in such a
way that we are sure that every message is only delivered once. Indeed, if there is
no membership change, Lines 12 and 21 of Figure 4.13 guarantee that no message
can be stored in pj ’s pending list twice. Similarly, when there is a membership
change, Line 11 of Figure 4.15 guarantees that process pj will not add to its pend-
ing list messages it delivered before the membership change. Moreover, Line 21
of Figure 4.15 guarantees that pj ’s vector clock is updated after the membership
change, thus preventing the future delivery of messages that have been delivered
during the view change procedure.

Theorem 7 (Uniform Total Order) For any two messages m and m′, if any
process pi utoDelivers m without having delivered m′, then no process pj utoDe-
livers m′ before m.

Proof: We prove the lemma by contradiction. Let m = Mpk
and m′ = Mpk′

be two messages and let pi be a process that utoDelivers m without having deliv-
ered m′. Let us suppose that there exists a process pj that utoDelivers m′ before
delivering m. This implies that m′ ≺ m (Lemma 14). If there is no membership
change before pi delivered m, the protocol ensures that when pi sets m to stable,
it knows m′ (Lemma 12). This contradicts the fact that pi delivered m without
delivering m′. If, on the other hand, there is a membership change before pi deliv-
ered m, then m′ is delivered by pj during the view change procedure. Otherwise,



4.8 LCR Performance 91

pi would have known m′ before delivering m, contradicting the fact that pi de-
livered m without delivering m′. Nevertheless, m and m′ cannot have both been
delivered during the view change procedure. Otherwise, they they would both
have been in the pending list of pi (Lines 2 and 5 of Figure 4.15), contradicting
the initial assumption.

Theorem 8 LCR is a uniform total order broadcast protocol.

Proof: By lemmas 4, 6, 5, and 7, we know that the LCR protocol ensures validity,
integrity, uniform agreement, and uniform total order. Thus, it is a uniform total
order broadcast protocol.

4.8 LCR Performance

This section analyzes several key aspects of LCR’s performance, both from a
theoretical and a practical perspective. The performance of LCR is evaluated in
failure free runs which we expect to be the most common case. The theoretical
analysis proves that LCR is throughput optimal. However, in practice, several
improvements need to be made in order to ensure a fast and fair implementation
for all broadcasters.

4.8.1 Experimental Setup

The experiments were run on a cluster of machines with dual 900MHz Itanium-
2 processors, 3GB RAM, Fast Ethernet adapter running Linux kernel 2.4.21-32
SMP. The raw latency and bandwidth over IP are measured with Netperf [Jones
2007] between two machines and displayed in Table 4.1. The LCR algorithm is
implemented in C (1000 lines of code) and relies on the Spread toolkit to provide
a group membership layer.

Protocol Bandwidth
TCP 94 Mbit/s
UDP 93 Mbit/s

Table 4.1: Raw network performance measured using Netperf.

4.8.2 Throughput

Theoretical analysis

We propose to evaluate message-passing algorithms in a synchronous round-based
model assuming that in each round k, every process pi can execute the following
steps:

1. pi computes the message for round k, m(i, k),

2. pi sends m(i, k) to all or a subset of processes and
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3. pi receives at most one message sent at round k.

The synchrony assumption implies that, at any time, all processes are in the same
round. The throughput of a broadcast system refers to the number of completed
broadcasts per round. We say that a broadcast is complete when all processes
have delivered the message that was broadcast. We can now determine a bound
on the throughput of broadcast algorithms:

Theorem 9 (Maximum throughput) For a broadcast algorithm in a system
with n processes in the round-based model introduced above, the maximum through-
put µmax in completed broadcasts per round is:

µmax =

{
n/(n− 1) if there are n senders
1 otherwise

Proof: We first prove the case with n senders. Each broadcast message must be
received at least n−1 times in order to be delivered. The model states that at each
round at most n messages can be received. Thus, for n processes to broadcast a
message a minimum of n−1 rounds are necessary. Therefore, on average, at most
n/(n− 1) broadcasts can be completed each round. In the case with less than n
senders it is sufficient to look at a non sending process. Such a process can receive
at most 1 message per round and since it doesn’t broadcast any messages itself,
it can deliver at most 1 message per round. Since the throughput is defined as
the number of completed broadcasts per round, the maximum throughput with
less than n senders is 1.

Determining the throughput of LCR is straight forward: processes receive one
message per round and the acknowledgements are piggy-backed. Thus LCR al-
lows each process to deliver one message per round if there is at least one sender.
When there are n senders, each process can deliver one message per round broad-
cast by other processes in addition to its own messages. LCR thus matches the
bound of Theorem 9 and is theoretically throughput optimal.

Evaluation

We now evaluate the performance of the LCR implementation. The benchmarks
test k-to-n broadcasts, where n is the number of processes in the system and k
the number of senders. All processes know a priori the number of messages they
expect from other processes (each sender sends the same number of messages). A
leader process is used to synchronize the experiment start-up. Upon receiving this
message from the leader, each process starts sending a burst of messages. Both
the message size sm and burst size sb are parameters of the experiment. When the
last expected message from a sender is received, an acknowledgment is sent back
to the leader. The leader then calculates the time t between the start-up message
and the last received acknowledgment. The throughput is then calculated as the
ratio of delivered bytes over the total experiment time ((ms ∗ bs ∗ k)/t). We
ensure that the acknowledgement latency is negligible compared to the overall
experience time. A new average is calculated after each experiment, and the
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experiments are repeated a sufficient number of times, such that the variance of
these averages is negligible.

Figure 4.17 shows the results of an experiment with n = 5 processes 4. The
number k of sending processes was adjusted for each run of the experiment. We
can observe that the throughput obtained by our implementation is far from
optimal: in practice, a theoretical throughput of 1 should be equal to the raw
link speed between the processes, i.e. 94Mbit/s as shown in Table 4.1.
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Figure 4.17: LCR throughput without flow control for a system with 5 processes.
The lack of flow control quickly saturates the buffers and explains
the low throughput.

The reason that the throughput is not optimal is that senders broadcast more
messages than can be delivered, resulting in overflowing buffers and costly re-
transmissions. There is clearly a need to throttle senders to prevent them from
injecting too many new messages into the ring. One simple flow control solution
is to prevent processes from sending messages as long as they still have mes-
sages to forward. As can be seen in Figure 4.18, the throughput clearly improves
and is now close to optimal. Also notice that the throughput with 5 senders is
higher than with fewer senders, the reason being LCR’s theoretical throughput
of n/(n − 1) when all processes are senders. Note that a better flow control
mechanism is presented in Section 4.8.3.

The two previous experiments used a message size of 5 kB. The experiment in
Figure 4.19 measures the impact of varying the message size on the throughput
of a system with 5 processes and one sender. We can observe that if the messages
are too small the throughput suffers. This is due to the cost of ordering and
providing uniformity which remains constant despite a decrease in payload size.
Small messages however can easily be batched together into bigger messages when
the load on the system is high. Identical results were obtained with different

4None of the graphs plotted in this section contain error bars due to the fact that the observed
variance was negligible.
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Figure 4.18: LCR throughput with flow control but without fairness in a system
with 5 processes. Processes can only send a new message when
they have no message to forward. LCR’s throughput is close to the
optimal of 94 Mbit/s with less than 5 senders and 5/(5-1)*94 = 117
Mbit/s with 5 senders.
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Figure 4.19: Throughput with respect to message size for a system of 5 processes
with one sender.
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number of processes and senders, thus for all further throughput experiments the
message size is set to 5 kB.

4.8.3 Fairness

Even though the implementation of LCR with flow control already provides near
optimal performance, there is still a problem. Consider two processes p1 and
p2 that are neighbors on the ring. If p1 is continuously broadcasting messages
and p2 systematically forwards p1’s messages, then p2 cannot broadcast its own
messages. Consequently, the algorithm is not fair.

Fairness captures the fact that each process has an equal opportunity of having
its messages delivered by all processes. Intuitively, the notion of fairness means
that in the long run no single process has priority over other processes when
broadcasting messages. For instance when two processes want to broadcast a
large number of messages, then each process should have approximately the same
number of messages delivered by all processes.

Let bi and di be such that:

• bi(r) is the number of messages process pi wants to broadcast starting from
round r.

• di([r1, r2]) is the number of messages process pi has delivered during the
interval [r1, r2].

More formally, we define fairness as follows:

Definition 10 (Fairness) A broadcast algorithm is fair during the interval [r1, r2]
if for the set of processes B, such that ∀pi ∈ B, bi(r1) ≥ (r2−r1) there is an l ∈ N+

(l� (r2 − r1)):

di([r1 + l, r2]) ≤
⌈∑

j∈B dj([r1 + l, r2])
|B|

⌉
The mechanism for ensuring fairness in LCR acts locally at each process. If a

process wishes to broadcast a new message, it must decide whether to forward a
message received from its predecessor or to send its own. Figure 4.20 provides
an illustration of the fairness mechanism as implemented in LCR. Processes put
broadcast requests coming from the application level in their send queue. Mes-
sages received from predecessors that need to be forwarded are buffered in the
forward queue. When there is more than one message in the send queue, the
variable burst nb containing the number of messages in the queue, is added to
the first outgoing message. Each process keeps a data structure which stores
burst nb, received and sent for each process. The received variable keeps track of
the number of messages that have been received from pi since pi’s burst nb has
been updated. The sent variable keeps track of the number of messages that have
been sent by the process itself since pi’s burst nb has been updated. So, if the
first message in a process’ forward queue was originally broadcast by pj , then if
received is higher than sent for pj , the process can send its own message.

The experiment of Figure 4.21 was performed on a system with 5 processes of
which 3 are senders. Similarly to the previous experiments, a leader process is



96 Chapter 4. Throughput

  

UTOcast

burst_nb

burst_nb: 20

forward 
queue

send
queue

utoBroadcast(m)

message
p

1
p

2

p1:
burst_nb: 20
received: 4
sent: 3

p3:
burst_nb: 0
received: 0
sent: 0

Figure 4.20: Illustration of the fairness mechanism as implemented in LCR. Each
process has two queues (send and forward) and uses the burst nb,
received, sent variables to determine whether to forward messages or
send its own.
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Figure 4.21: LCR without fairness (left) and with fairness (right). Experiments
were performed with 5 processes and 3 senders. With the fairness
mechanism all processes delivered an equal number of messages from
each sender.
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used to synchronize the experiment start-up. Upon receiving the start message
from the leader, k processes start broadcasting continuously. The experiment is
halted after a total of 10’000 messages have been delivered by all processes. For
each sender we then calculate the percentage of these 10’000 delivered messages
that were initiated by them.

As expected, LCR with only flow control is not fair: the first process in the
ring initiated more than 65% of the delivered messages. Thanks to the fairness
mechanism we can observe that all processes delivered 33% of messages from each
sender. Note that despite the fairness mechanism, the throughput is identical to
the LCR implementation with just flow control evaluated in Figure 4.18. All
further experiments in the section are performed with the fair implementation of
LCR.

4.8.4 Latency

The theoretical latency of broadcasting a single message is defined as the number
of rounds that are necessary from the initial broadcast of message m until the
last process delivers m. The latency of LCR is equal to 2n− 2 rounds.

Figure 4.22 plots the latency without contention as a function of the number
of processes. The experiment consists in 1-to-n casts of 1KB messages. Each
delivered message is acknowledged by the last process in the ring delivering it.
Moreover, there is a long period of inactivity in between each initiated broadcast.
The represented latency is the average of a large number of experiments. The
observed variance was below 3%.

The graph shows that the latency is linear with respect to the number of
processes. However it is clear from the graph that the observed latency is closer
to n− 1 than 2n− 2. This is due to the fact that the latency of transmitting ack
messages is small compared to the latency of the payload messages.
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Figure 4.22: Latency as a function of the number of processes with a message size
of 1KB and 1 sender.
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Figure 4.23: Latency as a function of the message size with 5 processes and 1
sender.

Figure 4.23 plots the latency without contention as a function of the message
size. The experiment is the same as the previous one, except with 5 processes and
a varying message size. The graph shows that the latency is linear with respect
to the message size. Identical behavior was observed with different system sizes.

4.9 LCR Performance Comparison

In this section the implementations of LCR are benchmarked against Spread and
JGroups, both industry standard group communication systems. The results
show that LCR provides better throughput with all numbers of processes and
senders. In fact, the benchmark results clearly show that our implementations
are optimal. We also check that LCR’s CPU consumption is reasonable.

4.9.1 Benchmarked Systems

We benchmarked four different systems:

• Spread. We used Spread version 4.0 [Amir et al. 2004] which we recom-
piled for the IA64 platform. The message type was set to SAFE MESS which
guarantees uniform total order. A Spread daemon was deployed on each ma-
chine. All daemons belong to the same Spread segment. Spread was tuned
for bursty traffic according to Section 2.4.3 of the Spread user guide [Stan-
ton 2002]. Our benchmark uses the native C API provided by Spread.

• JGroups TCP. We used JGroups version 2.5.1 [Ban 2007a] with BEA
jrockit-R27.3.1 Java 5.0 JDK for the IA64 platform. The stack con-
tains the following protocols: TCP, MPING, FD SOCK, VERIFY SUSPECT,
pbcast.NAKACK, pbcast.STABLE, pbcast.GMS, FC. This stack provides
only non uniform FIFO ordering and is the same as the one used by JGroups
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developers in their most recent benchmarks [Ban 2007b]. We did not bench-
mark the existing total order implementations as they are known to be
unstable. Moreover, we do not present results with a UDP based stack
because of the bad obtained results, confirmed by other studies [Abdellatif
et al. 2004].

• LCR. We benchmarked the fair implementation of LCR described in Sec-
tion 4.8.3.

• LCR JGroups. We implemented a version of LCR for the JGroups frame-
work. The resulting stack is the same as the JGroups TCP stack with the
addition of the LCR algorithm but without the FC flow control algorithm
since flow control is already implemented by LCR.

4.9.2 Throughput
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Figure 4.24: n-to-n throughput comparison. The optimal line is calculated as
n/(n − 1) ∗ 94 Mbit/s. The LCR implementations closely follow
the optimal line as does JGroups. JGroups however does not pro-
vide uniformity or ordering. Spread’s throughput is limited by the
underlying privilege-based broadcast scheme.

Figure 4.24 plots the throughput as a function of the number of processes. The
experiment consists in n-to-n broadcasts of 5 KB messages. The graph shows the
performance of Spread, LCR, LCR on JGroups and JGroups using TCP. The
performance of JGroups using UDP is not represented because of the highly
variable results in the n-to-n case [Ban 2007a]. The optimal line for best effort
broad cast (n/(n− 1) times the maximum link speed of 94 Mbit/s) is plotted as
a reference.

The following observations can be made:

• The throughput of LCR is very close to optimal. Since the optimality line
is calculated for best effort broadcast and LCR provides stronger uniform
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total order broadcast, the ordering, reliability and uniformity properties of
LCR are effectively free.

• The JGroups TCP algorithm provides the same throughput in the n-to-
n case as LCR but does not provide ordering or uniformity. This can be
explained by the fact that with JGroups TCP each process sends n − 1
unicast messages for each initiated broadcast. Consequently, as in LCR,
the optimal n/(n− 1) throughput bound is reached.

• The implementation of LCR on JGroups provides the same throughput in
the n-to-n case as JGroups TCP, which confirms the fact that the ordering
and uniformity properties of LCR are free.

• The throughput of Spread is constant because of the underlying privilege
based scheme (see Section 4.6.1).
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Figure 4.25: 1-to-n throughput comparison. The optimal line is constant at 94
Mbit/s. In JGroups TCP the sender sends messages to all processes
sequentially, thus explaining the rapid drop off in throughput.

The next experiment consists in 1-to-n broadcasts of 5 KB messages. Again
LCR is close to optimal and is almost constant despite the increasing number
of processes. With n = 2 processes, LCR’s throughput is exactly equal to the
optimal of 94 Mbit/s as measured by NetPerf. This can be explained by the fact
that apart from acks, the only traffic is from the sender to the other process.
Spread’s throughput suffers a bit more from increasing the number of processes.
The bad performance of JGroups TCP can be explained by the fact that as
explained before, in JGroups the sender sends unicast messages to all processes
sequentially.

The final experiment consists in bn/2c-to-n broadcasts of 5 KB messages.
Again the LCR implementations are constant with respect to the number of
processes. The irregular performance of JGroups TCP is explained by the fact
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Figure 4.26: bn/2c-to-n throughput comparison. The optimal line is constant at
94 Mbit/s. The throughput of JGroups TCP depends on the ratio
between the number of processes and the number of senders. For
odd and even numbers of processes this ratio is not explaining the
observed variations.

that its throughput depends on the ratio between the number of processes and
the number of senders. Indeed, since only senders participate in the broadcast,
at any time, no more than bn/2c messages can be in transit in the network.

In the following sections, we only compare Spread and LCR since they provide
the best throughput.

4.9.3 CPU Usage

The following experiments measure the CPU usage of Spread and LCR under
high load. The experiment in Figure 4.27 plots the CPU usage measured during
the experiment of Figure 4.24, and Figure 4.28 the CPU usage of Figure 4.25.

During the experiment, the CPU usage of all active LCR or Spread threads
was periodically logged, added up together and averaged. The CPU usage was
constant over the length of the experiment with very low variance. Varying
the number of processes in the system had no impact on the CPU usage and
thus experiments with 5 processes are plotted. Note that since the experiments
were performed on dual processor machines, a CPU usage of 100% means that
both processors are fully used. It is to be expected that LCR uses more CPU
than Spread in the n-to-n case since LCR provides higher throughput. However,
Figure 4.27 shows that this is only true for small messages.

In the 1-to-n case (Figure 4.28), the analysis is more complicated since not all
processes perform the same tasks. In LCR the sender has less work to do than
other processes since it does not receive messages to forward, but only receives
acks. We see that for larger messages (when acks become insignificant compared
to payload messages), the sender uses almost half as much CPU as the receivers.
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Figure 4.27: CPU usage during high load n-to-n broadcasts of the LCR and
Spread implementations. Note that LCR provides higher through-
put.

In Spread the sender and receivers use the same percentage of CPU time. It is
also surprising that Spread uses more CPU than LCR for larger messages since in
LCR processes need to forward messages while in Spread processes only receive
them.

Finally, we can observe that LCR uses more CPU in the n-to-n case than in
the 1-to-n case. This was expected since in the first case LCR provides higher
throughput than in the latter.

4.9.4 Latency

The experiment of Figure 4.29 compares the latency of LCR to that of Spread
without contention. As expected, the latency of LCR scales linearly due to ring
topology, while Spread’s latency is almost constant due the use of IP-multicast
for message dissemination.
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Spread implementations. Surprisingly, for larger messages, receivers
in Spread use more CPU than LCR despite the fact that in LCR
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receive.
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Figure 4.29: Latency comparison of the LCR and Spread implementations. The
latency of LCR scales linearly due to ring topology. Spread’s latency
is fairly constant due the use of IP-multicast for message dissemina-
tion.
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5
Concluding Remarks

I now realise that if you don’t understand
the No, pretend it doesn’t exist, was never
said, then, slain by your incomprehension,
it will transform itself abruptly into its
opposite.

Maximum City : Bombay Lost and Found
Suketu Mehta

In this thesis, we presented efficient atomic storage that can be read and written
by any number of clients. We considered three key complexity metrics: time,
number of logs and throughput. For each metric we provided tight performance
bounds and matching algorithms. We now briefly summarize our contributions
and outline a few open issues and directions for future investigation.

Time-complexity. We presented optimal fast storage implementations that com-
plete both reads and writes in 1 round-trip between the client and the servers.
We showed that a fast implementation is possible if and only if the number of
readers is less than n/f − 2, with n servers out of which f can fail. Furthermore,
we showed that fast implementations are impossible for multiple writers if servers
can fail.

We also determined a bound on the number of readers in semi-fast imple-
mentations, i.e., implementations where one of the operations, read or write,
may not be fast. Determining whether this bound on the number of readers is
tight is still however an open problem. Obviously, the fast implementation pre-
sented in this thesis is also a semi-fast implementation. Thus the tight bound
R′ on the number of readers in a single-writer semi-fast implementation satisfies
n/f − 2 ≤ R′ ≤ n/f . Apart from closing this gap, it would be interesting to
investigate the possibility of semi-fast implementations in the multi-writer case.

Another direction of further investigation could be designing hybrid implemen-
tations, i.e., implementations that tolerate failures of any minority of servers,
which (from our proposition) cannot be fast, but that would complete their oper-
ations in a fast mode whenever a sufficient number of servers are available. Hybrid



106 Chapter 5. Concluding Remarks

implementations might be useful in a dynamic setting such as that of [Lynch and
Shvartsman 2002]: depending on the current configuration, such implementations
would be able to switch between fast and slow modes.

Log-complexity. We revised the notion of atomicity for the crash-recovery model,
determined a lower bound on log-complexity and introduced an atomic storage
matching the bound. We also established optimality of the storage in terms of
resilience, as well as time-complexity.

One possible way of extending our work is to look at the throughput of an
atomic storage in the crash-recovery model. In this thesis we already showed
how to improve the throughput of an atomic storage in the crash-stop model.
This high throughput storage implementation can easily be adapted to a crash-
recovery scenario thanks to the underlying group membership protocol: after
a server crashes, it leaves the active group and simply rejoins once fixed. The
key difference is that our high throughput storage tolerates the failure of all but
one server, whereas an implementation designed for the crash-recovery model
tolerates the simultaneous failure of all servers. To achieve this high level of fault
tolerance, logging must be used. Since logging is expensive, it is a challenge to
design a high throughput storage for the crash-recovery model.

Throughput. We introduced an atomic storage that provides optimal read through-
put for homogeneous clusters of servers. The storage organizes servers around
a ring and assumes point-to-point communication. We modified the storage al-
gorithm to solve the more general uniform total order broadcast problem, which
can be used to replicate any application reliably. The resulting algorithm is
throughput optimal, regardless of message broadcast patterns. The performance
evaluations confirmed the theoretical results.

Several techniques were used to successfully design high throughput algorithms.
The first was to optimize performance for the synchronous and failure-free case
which is considered to be the most frequent case in practice. The second was
to consider a realistic round-based performance model where processes can only
send and receive a single message per round. The third was to only use point-
to-point communication links and avoiding all possible message collisions. The
fourth and last technique was to piggy-back all acknowledgement messages, thus
further reducing the possibility of collisions.

It would be interesting to apply the same techniques to design high throughput
algorithms for the Byzantine failure model. Several recent studies have looked at
designing efficient algorithms that tolerate malicious servers [Kotla et al. 2007;
Castro and Liskov 2002; Cowling et al. 2006]. None of these studies however have
taken a systematic approach to ensuring high throughput. Significant work is still
required, especially in combining the above mentioned techniques with ways to
minimize the number of digital signatures that also impact throughput.

Space-complexity is another metric that could be considered in future work.
In a reliable distributed storage, the actual storage space accessible to clients
is smaller than the total storage space used by the servers: there is a storage
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overhead due to data replication. Recently however, it has been argued that
erasure coding is a better alternative to data replication since it reduces the cost
of ensuring fault tolerance.

For instance, it has been proven that a replicated storage system with 4 servers
can tolerate at most 1 failure in an asynchronous environment (n ≥ 2f+1). If each
server has a storage capacity of 1 TB, the total capacity of the replicated storage
system is still 1 TB. In this case the storage overhead (total capacity/useable
capacity) is 4, i.e. only 1/4 of the total capacity is available. Erasure coding
allows the reduction of this overhead to 2 in an asynchronous system, i.e. making
2 TB useable. In a synchronous system, it is even possible to further reduce this
overhead and make 3 TB available to the user while still tolerating 1 failure. In
this particular case tolerating 1 failure costs 1 TB instead of 3 TB with replication.

It would be interesting to determine tight bounds on space complexity in differ-
ent scenarios and design matching algorithms. Especially since existing erasure
coded storage algorithms are either not wait-free [Frolund et al. 2004; Aguilera
et al. 2005], or do not offer optimal resilience in the crash-stop model [Cachin
and Tessaro 2006].
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Défago, X., Schiper, A., and Urbán, P. 2004. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Computer Survey 36, 4,
372–421.

Dunagan, J., Harvey, N. J. A., Jones, M. B., Kostic, D., Theimer, M.,
and Wolman, A. 2004. Fuse: Lightweight guaranteed distributed failure
notification. In Proceedings of 6th Symposium on Operating Systems Design
and Implementation (OSDI ’04).

Dutta, P., Guerraoui, R., Levy, R. R., and Chakraborty, A.
2004. How fast can a distributed atomic read be? In Proceedings of the
twenty-third annual ACM symposium on Principles of distributed comput-
ing (PODC). ACM Press, 236–245.



112 Chapter 5. Concluding Remarks

Ekwall, R., Schiper, A., and Urban, P. 2004. Token-based atomic broad-
cast using unreliable failure detectors. In Proceedings of the 23rd IEEE In-
ternational Symposium on Reliable Distributed Systems (SRDS’04). IEEE
Computer Society, Washington, DC, USA, 52–65.

Ezhilchelvan, P., Macedo, R., and Shrivastava, S. 1995. Newtop: a
fault-tolerant group communication protocol. In Proceedings of the 15th
International Conference on Distributed Computing Systems (ICDCS’95).
IEEE Computer Society, Washington, DC, USA.

Fan, R. and Lynch, N. 2003. Efficient replication of large data objects.

Friedman, T. and Renesse, R. V. 1997. Packing messages as a tool for
boosting the performance of total ordering protocls. In Proceedings of the
6th International Symposium on High Performance Distributed Computing
(HPDC ’97). IEEE Computer Society, Washington, DC, USA.

Fritzke, U., Ingels, P., Mostefaoui, A., and Raynal, M. 2001.
Consensus-based fault-tolerant total order multicast. IEEE Trans. Parallel
Distrib. Syst. 12, 2, 147–156.

Frolund, S., Merchant, A., Saito, Y., Spence, S., and Veitch, A.
2004. A decentralized algorithm for erasure-coded virtual disks. In Pro-
ceedings of the 2004 International Conference on Dependable Systems and
Networks (DSN’04). 125.

Gafni, E. 1998. Round-by-round fault detectors (extended abstract): unifying
synchrony and asynchrony. In Proceedings of the seventeenth annual ACM
symposium on Principles of distributed computing (PODC’98). 143–152.

Garcia-Molina, H. and Spauster, A. 1991. Ordered and reliable multicast
communication. ACM Trans. Comput. Syst. 9, 3, 242–271.

Gopal, A. and Toueg, S. 1989. Reliable broadcast in synchronous and asyn-
chronous environments (preliminary version). In Proceedings of the 3rd In-
ternational Workshop on Distributed Algorithms. Springer-Verlag, London,
UK, 110–123.

Guerraoui, R., Levy, R. R., Pochon, B., and Quéma, V. 2006. High
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Urbán, P., Défago, X., and Schiper, A. 2000. Contention-aware metrics
for distributed algorithms: Comparison of atomic broadcast algorithms. In
Proceedings of 9th IEEE International Conference on Computer Commu-
nications and Networks (IC3N 2000). 582–589.

van Renesse, R. and Schneider, F. B. 2004. Chain replication for sup-
porting high throughput and availability. In Proc. of the 6th Symposium on
Operationg Systems Design and Implementation.

Vicente, P. and Rodrigues, L. 2002. An indulgent uniform total order
algorithm with optimistic delivery. In Proceedings of the 21st IEEE Sympo-
sium on Reliable Distributed Systems (SRDS’02). IEEE Computer Society,
Washington, DC, USA.

Whetten, B., Montgomery, T., and Kaplan, S. 1994. A high per-
formance totally ordered multicast protocol. In Selected Papers from the
International Workshop on Theory and Practice in Distributed Systems.
Springer-Verlag, London, UK, 33–57.

Wilhelm, U. and Schiper, A. 1995. A hierarchy of totally ordered multi-
casts. In Proceedings of the 14TH Symposium on Reliable Distributed Sys-
tems. IEEE Computer Society, Washington, DC, USA.



List of Figures

1.1 Difference between a centralized and a distributed storage. . . . . . 2
1.2 Time-complexity of an operation. . . . . . . . . . . . . . . . . . . . 3
1.3 Log-complexity illustration. . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Throughput comparison between two algorithms. . . . . . . . . . . 6

2.1 Fast SWMR atomic storage implementation with R < n/f − 2. . . . . . 15
2.2 Partial runs: pri and 4pri. . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Partial writes: wri. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Partial runs: prA, prB , prC and prD. . . . . . . . . . . . . . . . . . . 23
2.5 Partial writes (K = 3, R = 4). . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Appending reads (K = 3, R = 4). . . . . . . . . . . . . . . . . . . . . 28

3.1 Completing write invocations. . . . . . . . . . . . . . . . . . . . . . 30
3.2 Completing and sequentializing a history. . . . . . . . . . . . . . . 36
3.3 Amnesia masking storage procedures. . . . . . . . . . . . . . . . . 38
3.4 Amnesia masking storage reception and recovery procedures. . . . 39
3.5 Example of amnesia masking storage configurations. . . . . . . . . 41
3.6 Why timestamps needs to be incremented by 2. . . . . . . . . . . . 43
3.7 Generic single-writer/multi-reader atomic storage algorithm. . . . . 44
3.8 Configuration with stable storage. . . . . . . . . . . . . . . . . . . 44
3.9 Configuration without stable storage. . . . . . . . . . . . . . . . . . 45
3.10 Modifications to the single-writer algorithm. . . . . . . . . . . . . . 50
3.11 Execution ρ1 (Proof of Log-Complexity Bound 2). . . . . . . . . . 54
3.12 Executions ρ2, ρ3 and ρ4 (Proof of Theorem 3.6.2). . . . . . . . . . 55
3.13 Atomic vs. weakly complete atomic storage. . . . . . . . . . . . . . 59
3.14 Latency of an atomic memory emulation. . . . . . . . . . . . . . . 60
3.15 Latency with respect to data size. . . . . . . . . . . . . . . . . . . . 61

4.1 The storage algorithm: initialization, read and recovery procedures. 67
4.2 The storage algorithm: write procedures. . . . . . . . . . . . . . . 68
4.3 Illustration run of the storage algorithm. . . . . . . . . . . . . . . . 70



116 List of Figures

4.4 Influence of message size on the write throughput. . . . . . . . . . 77
4.5 Read throughput without contention. . . . . . . . . . . . . . . . . . 77
4.6 Write throughput without contention. . . . . . . . . . . . . . . . . 78
4.7 Read & write throughput contention on separate networks. . . . . 78
4.8 Read & write throughput contention on shared network. . . . . . . 79
4.9 Read and write latency. . . . . . . . . . . . . . . . . . . . . . . . . 80
4.10 Fixed sequencer-based uto-broadcast. . . . . . . . . . . . . . . . . . 81
4.11 Moving sequencer-based uto-broadcast. . . . . . . . . . . . . . . . . 81
4.12 Privilege-based uto-broadcast. . . . . . . . . . . . . . . . . . . . . . 82
4.13 Pseudo-code of the LCR protocol. . . . . . . . . . . . . . . . . . . 84
4.14 Operating principle of the LCR protocol. . . . . . . . . . . . . . . 85
4.15 Pseudo-code of the view change procedure. . . . . . . . . . . . . . 87
4.16 The different cases studied in the correctness proof. . . . . . . . . . 88
4.17 LCR throughput without flow control. . . . . . . . . . . . . . . . . 93
4.18 LCR throughput with flow control but without fairness. . . . . . . 94
4.19 Throughput with respect to message size. . . . . . . . . . . . . . . 94
4.20 Illustration of the fairness mechanism. . . . . . . . . . . . . . . . . 96
4.21 LCR without and with fairness. . . . . . . . . . . . . . . . . . . . . 96
4.22 Latency as a function of the number of processes. . . . . . . . . . . 97
4.23 Latency as a function of the message size. . . . . . . . . . . . . . . 98
4.24 n-to-n throughput comparison. . . . . . . . . . . . . . . . . . . . . 99
4.25 1-to-n throughput comparison. . . . . . . . . . . . . . . . . . . . . 100
4.26 bn/2c-to-n throughput comparison. . . . . . . . . . . . . . . . . . . 101
4.27 CPU usage during high load n-to-n broadcasts. . . . . . . . . . . . 102
4.28 CPU usage during high load 1-to-n broadcasts. . . . . . . . . . . . 103
4.29 Latency comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Curriculum Vitæ

Ron R. Levy completed elementary school in Dordrecht, the Netherlands by 1990.
From 1990 to 1997 he attended the Lycée International de Ferney-Voltaire in
France, where he obtained a “Baccalauréat Scientifique à Option Internationale”
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