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que je remercie pour ses précieux conseils. Cette expérience s’est avérée
extrêmement enrichissante et a contribué à l’aboutissement de ce travail.
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Abstract

The control of cranes and nonholonomic robots has gained increased interest
mainly because of the civilian and military industrial need to achieve fast
and accurate transport of goods and equipment. Old and new harbors are
now venturing into fully automated systems combining automated trolleys
and classical cranes.

From a theoretical viewpoint these systems are challenging because they
are strongly dynamically coupled and offer interesting and useful control
problems. Therefore, to take full advatage of their potential, the control
design must take into account as much structural information as possible.

The structural property that is exploited in the control design proposed
in this thesis is the differential flatness property of these systems, that is
the existence of particular functions of the states (called flat outputs), the
time parametrization of which implies parametrization of all the individual
states and inputs. This property is extremely useful for motion planning
problems where the system should move quickly from one configuration to
another, without inducing too much overshoot or residual oscillations.

However, the flatness property is not sufficient to guarantee the design
of an efficient controller in the presence of uncertain and unmodeled dynam-
ics. This is especially the case for cranes where the winching mechanism,
expressed in terms of the engine and pulleys, has a large amount of unmod-
eled dry friction.

This robustness issue is normally addressed by splitting the control task
into a feedforward-like part that handles the dynamical couplings and a
feedback term that enforces the tracking of the reference values stemming
from the feedforward motion planning algorithm. In contrast, this thesis
proposes to combine these two mechanisms, resulting in what will be called
the jet-scheduling controller.

Classically, the flatness property guarantees the construction of a feed-
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forward input based on a planned motion of the flat outputs by simply
combining values of the flat outputs and their time derivatives, i.e. without
having to integrate differential equations. Therefore, in the absence of per-
turbation, this mechanism is sufficient to move the system from one state to
another, once a trajectory compatible with the initial and final positions has
been designed. However, when the system has some unmodeled dynamics,
an additional mechanism must be provided to make sure that the planned
trajectory is indeed tracked accurately.

The point of view adopted in this thesis is that, instead of specifying
a trajectory to be tracked explicitly, a dynamical system called “the jet
scheduler” provides the derivatives (the jets) of an ideal stabilizing trajec-
tory. These jets are updated regularly according to measurements so as to
react to unknown perturbations.

The flat correspondence is used to provide the values of the jets, and a
subsidiary controller is designed to ensure that these jets are really matched
asymptotically by the true system. Unfortunately, each of these mecha-
nisms could possibly break the equivalence between the original nonlinear
system and the linear extended system (contrary to the classical feedback
linearization approach for which this correspondence is guaranteed at every
time instant).

The design of the jet-scheduling controllers and the implication of the
possible loss of correspondence are detailed in this work. In addition, stabil-
ity issues are addressed. Applications to two classes of systems are shown,
namely, nonholonomic robots and cranes. The specific properties of these
systems are used to achieve a rigorous stability proof. The controller for
both the nonholonomic robot and a new crane design labeled SpiderCrane
that fully takes advantage of the jet-scheduling mechanism are tested on
real setups.

Keywords: Nonlinear Control, Flatness-based Control, Trajectory Track-
ing, Stabilization, Nonholonomic Robot, Crane.



Résumé

Le contrôle des grues et des robots non-holonomes a connu un intérêt crois-
sant ces dernières décennies. Ceci notamment afin d’améliorer la vitesse et
la précision du transport de marchandises et d’équipements, à des fins tant
civiles que militaires. Des anciens ports et d’autres plus modernes sont en
train de prospecter l’utilisation de systèmes complètement automatisés qui
combineraient l’utilisation de camions et de grues autonomes.

D’un point de vue théorique, ces systèmes sont difficiles à contrôler, car
ils présentent de forts couplages dynamiques. Ils suscitent par là même des
problèmes de contrôle intéressants et utiles. Afin d’utiliser pleinement les
propriétés dynamiques de ces systèmes, le développement du contrôleur doit
tenir compte au tant que possible de leur structure fondamentale.

La propriété structurelle qui est exploitée dans la méthodologie pro-
posée dans cette thèse est la platitude différentielle. Cette propriété garantit
l’existence de fonctions particulières des états (appelées sortie plate), dont la
paramétrisation temporelle permet de déterminer chaque état individuelle-
ment ainsi que les entrées. Cette propriété est extrêmement utile dans les
problèmes de planification de mouvement, où le système doit être déplacé
rapidement d’une configuration vers une autre sans induire d’oscillations
résiduelles (par exemple dans le cas des grues).

Cependant, la propriété de platitude n’est pas suffisante pour synthétiser
un contrôleur performant lorsque sont présentes des dynamiques mal ou
non modélisées. Ceci est particulièrement vrai dans le cas des grues, où le
mécanisme de treuillage composé d’un moteur et de poulies, possède un fort
frottement sec non modélisé.

Ce problème de robustesse est généralement adressé en séparant la tâche
de contrôle en une commande a priori qui se charge des couplages dy-
namiques et en un terme de bouclage garantissant le suivi de la trajectoire de
référence provenant d’un algorithme de planification de mouvement. Cepen-
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dant, l’idée matresse de cette thèse est de fusionner ces deux mécanismes
conduisant ainsi, à ce qui sera appelé le contrôleur planificateur de jets.

Classiquement, la propriété de platitude garantit la construction d’ une
entrée a priori basée sur un mouvement planifié de la sortie plate. Ceci
se fait en combinant simplement la trajectoire désirée de la sortie plate
et ses dérivées temporelles, c’est-à-dire sans devoir intégrer d’équations
différentielles. Par conséquent, en absence de perturbation et une fois qu’une
trajectoire compatible avec les conditions initiales et finales est définie, ce
mécanisme est suffisant pour déplacer un système d’un état vers un autre.

Le point de vue adopté dans cette thèse est, au lieu de définir une
trajectoire à suivre explicitement, qu’un système dynamique, baptisé ”le
planificateur de jet”, fournit les dérivées (les jets) d’une trajectoire stabil-
isante idéale. Ces jets sont remis à jour régulièrement en tenant compte des
mesures afin de réagir à des perturbations inconnues.

La correspondance basée sur la platitude est utilisée pour fournir la
valeur de ces jets, et un contrôleur subsidiaire est synthétisé pour garantir
que ces jets soient effectivement suivis de façon asymptotique par le système
réel. Malheureusement, ces deux mécanismes peuvent briser l’équivalence
entre le système non linéaire d’origine et le système linéaire étendu (con-
trairement à la linéarisation exacte par bouclage dynamique qui garantit la
correspondance à chaque instant du temps).

La synthèse du contrôleur et les implications d’une perte possible de
correspondance, ainsi que la description détaillée de comment le mécanisme
de planification se connecte avec la stabilité, sont décrits dans ce travail. De
plus, des applications à deux classes de systèmes, les robots non-holonomes
et le contrôle des grues, sont présentées. Les propriétés spécifiques de ces
deux systèmes sont utilisées pour réaliser une preuve de stabilité rigoureuse.
Le contrôle d’un robot mobile et d’un nouveau type de grue, baptisé Spi-
derCrane, tirant pleinement partie du mécanisme de planification des jets
sont testés sur des systèmes réels.

Mots-clés: Commande Non Linéaire, Commande basé sur la platitude,
Suivi de Trajectoire, Stabilisation, Robot Non-Holonome, Grue.
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Chapter 1

Introduction

1.1 Motivation

Automatic control systems are present everywhere, in cars, in homes, in
computers and in basically every modern devices. There seems to be no
reason for this trend not continue in the future. Indeed, the benefits in terms
of efficiency and safety makes automatic control inevitable for almost all
technical projects. Moreover, the improvement in computational capability
and formal calculus allow implementation of more and more sophisticated
control laws. Thanks to these improvements, complex systems that were
once too demanding are now starting to be satisfactorily addressed. One
can mention for instance underactuated mechanical systems, nonholonomic
systems and systems with strong dynamic couplings.

In particular, the control of cranes and nonholonomic robots has gained
considerable interest mainly because of the civilian and military industrial
needs to achieve fast and accurate transport of goods and equipment. Old
and new harbors are now venturing into fully automated systems combining
automated trolleys and classical cranes.

The development of efficient automatic controllers can lead to economic
benefits and improved performance. For instance, the stabilization of loads
that are carried by cranes is tedious, and the lack of truly efficient strate-
gies implies a large economic loss due to the additional time involved in the
process. Indeed, most crane operators move the load with the cable almost
vertical; only very few of them, probably skilled through many hours of
practice, venture to shift the upper trolley in anticipation of the swing and
the desired final load position. To a certain extent, they avail themselves of
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2 CHAPTER 1. INTRODUCTION

the crane model based on their observation and experience. Improvement
of the work rate requires abandoning the quasi-static approach and intro-
ducing a control law that can cope with the dynamic couplings. Hence, the
development of control techniques capable of dealing with complex dynam-
ics is of considerable interest.

Only a good knowledge of the physical system can lead to an efficient
controller. The control design must take into account as much structural
information as possible, in the same way as an experienced crane opera-
tor knows his crane perfectly after hours of practice. Such a model-based
controller can take advantage of the dynamic capabilities of the system.
Moreover, a model-based controller respects the system dynamics, meaning
that the control input remains compatible with the structure of the system.

The basic principles raised while addressing specific control aspects of
the applications (nonholonomic mobile robots and cranes), have led to a
general methodology that can be applied to a wide class of systems.

1.2 State of the Art

Automatic control deals mainly with the design of control laws that impose
a desired behavior on a dynamic system. This desired behavior is often asso-
ciated with the notion of stability, meaning that the system state should be
bounded and eventually converge to a desired point. The control paradigm
used in this thesis is somewhat different from the classical one, as will be
described below.

Classical control strategies [56, 13, 24] enforce a stable behavior while
constructing a suitable control input based on the error between the actual
state and the final desired point. Considering a free mass with force as
input, classical control can be seen as the generalization of the introduction
of both a spring and a dashpot so as to stabilize the mass. The spring
is responsible for the proportional gain and the dashpot for the derivative
term (e.g. PD control).

Another control paradigm exploits the subtle difference between the con-
cepts of stabilizability and controllability. On the one hand, the classical
control paradigm is linked to stabilizability as it proposes a map between
the state and inputs of the system, so that the state converges to the desired
point. Indeed, the spring uses the position, and the dashpot the velocity,
to generate a force, the input to the mass. On the other hand, the new
paradigm uses the fact that, due to the controllability property, there exists
a trajectory that brings the system back to the desired point. Stabilizability
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is then achieved by both regenerating the trajectory, which exists thanks to
controllability, and tracking locally this reference.

Before defining explicitly this paradigm, an introductory example is use-
ful. Consider a driver trying to park his car. He mentally creates a tra-
jectory that should lead the car to its final position. He then makes sure
that the car approaches the trajectory. It is quite unnatural to focus on
the parked position, especially when the car is initially far away. Further-
more, if the driver loses his attention due to an unpredictable event, he has
to recreate a new mental picture. He has to regenerate a new trajectory
compatible with his current position. He will achieve his goal as long as he
keeps updating his mental pictures (trajectories) in a meaningful way and
steers the car accordingly.

The paradigm proposed in this thesis is a generalization of this idea. It
has two components: (i) A trajectory-regeneration process that frequently
updates the feasible trajectory ending up at the desired equilibrium point,
and (ii) a local controller that ensures appropriate tracking of the trajectory.

Suppose that a sudden perturbation shifts the current state to a quite
different value. The current reference trajectory is no longer appropriate
for this new state value. Therefore, by guaranteeing a systematic redefini-
tion of trajectories, the domain of attraction can be enlarged. As a result,
the tracking controller sees its error strongly reduced by the regeneration
mechanism, thus leading to improved stability.

This trajectory regeneration mechanism has been abundantly used in
model-based predictive control (MBPC) [2, 5, 14, 15, 29, 30, 67, 74]. Indeed,
the MBPC constructs both an optimal trajectory and a control input that
leads the system to the desired point. This trajectory construction is done
through optimization and is repeated at regular time intervals. Knowledge
of the current state together with this regeneration mechanism guarantees
a closed-loop operation. However, the main drawback of MBPC is that the
optimization step is often time consuming, thus making the control of fast
systems difficult. In order to circumvent this challenge, some alternatives
have been developed that simplify or avoid the optimization stage.

For instance, in [72], it is proposed to track a path instead of a tra-
jectory, the difference being that a path is parameterized by a curvilinear
coordinate, while a trajectory is parametrized by time. Therefore, a path
loses the explicit notion of time. The time constraint being absent leads to
an easier formulation of the path-regeneration process and to easier distur-
bance rejection. Indeed, it is not required that the system reaches a given
point at a specific time instant; any point on the path is acceptable. This
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fact simplifies both the formulation and the solution to path tracking com-
pared with trajectory tracking. As a consequence, the methodology labeled
predictive path planning (PPP) [4, 26, 61, 64] has been developed.

It is important to underline that the regeneration of trajectories must
compute feasible trajectories. Here, “feasible” should be understood as
compatible with the dynamics of the systems and additionally with other
external constraints such as speed limitation. In MBPC and PPP, these
constraints are taken into account by resolving an optimization problem
under constraints. As discussed above, this optimization stage could be
difficult and very time consuming. In order to eliminate this optimization
stage, it would be very useful to have a way of parametrizing and construct-
ing feasible trajectories. Of course, such a trajectory parametrization for
nonlinear systems is neither generic nor straightforward.

However, there exists a class of systems for which such a parametriza-
tion is possible and systematic. These systems are called flat systems
[33, 34, 32, 58, 54]. The flatness property guarantees the existence of particu-
lar functions of the states, (called flat outputs), with the following property:
Parametrizing the flat outputs as time functions implies parametrizing all
states and inputs as well. This gives a correspondence between the system
trajectories and the flat-output trajectories. Therefore, upon specifying a
planned trajectory for the flat outputs, the flatness property guarantees
the construction of a feedforward input based on the trajectory by simply
combining values of the flat outputs and their time derivatives. This prop-
erty is extremely useful for trajectory planning since the system dynamics
are taken into account in a static way, i.e. without having to integrate
differential equations.

In order to exploit the powerful parametrization of the flat outputs, the
MBPC technique has been tailored to flat systems. This new approach is
called flatness-based predictive control FBPC [36, 18, 17, 57]. This way the
optimization stage is simplified.

It is important to underline that the flatness property can be seen
from a different point of view than simply using a special parametriza-
tion to compute the feedforward input. Indeed, it has been established in
[35, 31, 12, 58, 54] that every flat system is exactly linearizable by dynam-
ical feedback. This leads to dynamical feedback linearization DFL, where
a nonlinear system is transformed into a trivial linear system through dy-
namical feedback. The resulting linear system can then be stabilized with
classical state feedback (e.g. pole-placement, LQR). DFL is an extension of
exact feedback linearization [60, 42] that introduces a dedicated dynamical
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extension. Contrary to the extension used in flatness-based linearization,
there is no structure in the dynamical extension. Flatness induces endoge-
nous dynamical extension. However, it has been recently shown that DFL
and linearization using an endogenous transformation are equivalent [55].

The DFL methodology can impose the cancellation of nonlinearities in
order to linearize the system. This cancellation is done using the system
model. However, this model is often inaccurate, thus inducing an inexact
cancellation of nonlinearities. This imperfect cancellation can introduce
some unstable dynamics leading to a loss of stability of the closed-loop
system.

In order to deal with this drawback, the exact feedforward linearization
(FFL) based on differential flatness has been proposed in [39]. The key idea
of this methodology is to compensate the nonlinearities through feedforward
instead of feedback. In this way, the imperfect knowledge of the system does
not introduce unstable dynamics, but just an exogenous perturbation. This
leads to a more robust behavior of the controlled system. However, FFL is
only capable of linearizing perfectly the nonlinear system when the system
state is on the reference trajectory. Therefore, FFL guarantees the stability
only in the neighborhood of the reference trajectory (local stability), while
DFL guarantees global stability.

Most of the generic techniques presented above have been applied to
nonholonomic mobile robots and cranes.

MBPC [23, 52, 79] has been extensively used for mobile robot control
with good results, in particular in obstacle avoidance. Even if the kine-
matic model of the mobile robot is quite simple, the optimization stage is
still not easy and can be very time consuming. This limitation could be a
problem when fast mobile-robot displacements are required. However, the
main advantage of MBPC is that it provides a framework in which a variety
of control objectives and operation constraints can be accommodated. The
PPP methodology has also been frequently explored in the mobile-robot
context ([72, 4, 26, 61, 64]). This alternative to MBPC can be used as long
as the robot does not need to be in a specific location at a specific time as
in the interception problem.

Another property of the nonholonomic mobile robot that has interested
the community is differential flatness. Indeed, it can be shown that the
nonholonomic mobile robot is a flat system. This has led to the construction
of feedforward control based on flatness ([10, 33, 68]). This property allows
computing the feedforward input rapidly since the relation between robot
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trajectory and input is static. However, the main drawback is that this
technique relies essentially on an open-loop controller that does not handle
external perturbations and model mismatch.

As mentioned above, the flatness property guarantees that a DFL con-
troller can be designed, and such a controller has been developed for the
nonholonomic mobile robot in [65]. As will be shown in Chapter 3, this con-
troller works well in general but can encounter difficulties in the presence
of a constant perturbation on the rotational axis.

Regarding crane control, the research work using MBPC ([7, 48, 59] ) is
not so extensive as that for mobile robot control. The reason is that the
crane model consists of highly nonlinear equations that lead to a complex
optimization stage as illustrated in [59]. The papers proposing an MBPC
approach for cranes deal essentially with the minimization of the load sway
and do not consider the case of trajectory tracking.

Meanwhile, some analytical methods that do not require optimization
have been developed. In particular, [49] defines a class of systems called “the
class of cranes”. This definition gives a general framework that includes all
the classical cranes like the overhead crane, the cantilever, and the US-
Navy crane. Both the dynamic equations and the flatness property of “the
class of cranes” are presented and, thanks to the flatness property, an open-
loop controller able to compute the feedforward input compatible with the
desired trajectory is given.

In [50], a closed-loop flatness-based control scheme is proposed. This
controller consists of a PD controller using only motor position measure-
ments and guarantees global stability at an equilibrium point. However,
only local stability in trajectory tracking is achieved.

A comprehensive state of the art for nonholonomic mobile robots and
cranes will be given in Chapter 4 and 5, respectively.

1.3 Objectives and Organization of the Thesis

The main issue regarding trajectory regeneration is how to regenerate the
trajectories in order to reach the desired objective. The available solutions
are essentially based on optimization (MBPC), the essential drawback of
which is the computation time.

An interesting alternative is a flatness-based controller as proposed in
[50]. However, [50] does not address how the trajectories should be re-
generated since it is proposed to track a given trajectory locally.
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The main objective of this thesis is to develop a general methodology
based on regenerating trajectories without any optimization stage. In order
to reach this objective, the flatness property is used, as in [50].

The point of view adopted in this thesis is that, instead of specifying a
trajectory and tracking it explicitly, a dynamical system called “jet sched-
uler” provides the derivatives (the jets) of an ideal stabilizing trajectory.
These jets are updated regularly according to state measurements so as to
react to unknown disturbances. The proposed controller can be seen as an
extension of [50] that achieves a wider domain of attraction at the cost of
requiring full-state measurement.

The flat correspondence is used to provide the values of the jets, and a
subsidiary controller is designed to ensure that these jets are really matched
asymptotically by the true system. Unfortunately, both of these mecha-
nisms could possibly break the equivalence between the original nonlinear
system and the linear extended system (contrary to the DFL approach for
which this correspondence is guaranteed at every time instant).

Chapter 2 will present preliminary material concerning stability issues
and flatness. The implication of the possible loss of correspondence, together
with the full details on how the scheduling mechanism is achieved, will be
covered in the methodological chapter of the thesis (Chapter 3). Chapter 4
applies the general formalism to a mobile robots. The specific properties of
these systems are used to achieve a rigourous convergence proof. Chapter
5 addresses the application of the general formalism to cranes, in particular
to SpiderCrane, a new design that takes full advantage of the jet-scheduling
mechanism. Both the nonholonomic and crane controllers are tested on real
setups. Finally, conclusions and perspectives are given in Chapter 6.
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Chapter 2

Preliminaries

This thesis addresses a new methodology for the control of flat systems
[58, 54, 32]. It is based on some fundamental concepts that will be recalled
briefly in this chapter.

First, the general definition of flat systems will be given. The specific
notations used throughout the thesis will also be set. The definition uses the
language of differential geometry in infinite dimension. However, both the
systems to be controlled and the dynamical extension needed to transform
the system into a linear equivalent sytem are finite dimensional. There-
fore, care will be taken to convert the infinite dimensional setting into a
finite dimensional one. Moreover, the exposition will underline the specific
structural properties associated with flatness.

Second, particular stability properties and definitions pertaining to the
stability analysis to be attempted will be recalled. This is important since,
in contrast to classical-flatness based approaches, the jet-scheduling control
breaks the exact equivalence with a linear system. This means that normal
stability issues that are trivial in the classical usage of flatness become
more cumbersome using the jet-scheduling methodology. Extra dedicated
mathematical machinery is needed to overcome the obstacles linked with
convergence and stability properties. Classical stability concepts such as
Lyapunov stability will be recalled and specific formulations required in the
forthcoming chapters presented.

9
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2.1 Lie-Bäcklund Equivalence and Flatness

2.1.1 System definition

The classical definition of a dynamical system is generalized so as to give
a natural framework for the notion of equivalence between systems and
flatness.

In traditional control theory, a dynamical system is represented by the
set of differential equations

ẋ = f(x, u) (2.1)

where f is smooth on the open subset X × U ⊂ R
n × R

m. The collection
of variables x is called the state of the system and the collection of inputs
is given by u. Although u stands for a collection of m different inputs ui,
i = 1, . . . , m, it will be called the input u.

From a geometrical point of view, f(x, u) is a vector field for a fixed value
of the input u. Therefore, if the input is not specified, f can be considered
as an infinite collection of vector fields on X parametrized by the input u.

The solution of (2.1) is a mapping t → (x(t), u(t)) with values in X ×U
such that

ẋ(t) = f(x(t), u(t)) ∀t � 0 (2.2)

Instead of this description [58, 54, 32], we can consider the infinite map-
ping

t → ξ(t) = (x(t), u(t), u̇(t), ü(t), ...)

taking values in X×U×R
∞
m , where R

∞
m = R

m×R
m×R

m× ... is a countable
infinite product of copies of R

m. Naturally, this mapping satisfies

ξ̇(t) = (f(x(t), u(t)), u̇(t), ü(t), ...) ∀t � 0. (2.3)

Equation (2.3) can be seen as a system of infinite dimension

ξ̇(t) = F (ξ(t)) = (f(x(t), u(t)), u̇(t), ü(t), ...) (2.4)

where F is an infinite vector field on X × U × R
∞
m . All the components of

F (i.e. Fi, i = 1, . . . ,∞) depend only on a finite number of coordinates.
The validity of this new interpretation of the differential equations (2.2)

can be seen through the preservation of its solutions. Indeed, the solutions
(x(t), u(t)) of (2.2) and those (x(t), u(t), u̇(t), ü(t), ...) of (2.4) are the same
in the sense that the first two components are equal ∀t � 0.

The above considerations lead to the following definition of a system:
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Definition 2.1 A dynamical system is a pair (Ω, F ) where Ω is a smooth
manifold, possibly of infinite dimension, and F is a smooth vector field on
Ω, which is a prolongation of a finite dimensional vector field.

It is important to underline that, in Definition 2.1, the notion of state
dimension is lost. Indeed, using Definition 2.1, both systems

ẋ = f(x, u) (2.5)

and

ẋ = f(x, u) (2.6)
u̇ = v (2.7)

have the same description (X × U × R
∞
m , F ).

2.1.2 Lie-Bäcklund equivalence

The notion of equivalence between two systems is now addressed [58, 54, 32].
This can be understood in the sense that the trajectories of both systems
can be exchanged by an invertible transformation.

This notion is explained in a formal way considering two systems (Ω, F )
and (Π, G) and a smooth mapping ψ : Ω → Π. If ξ(t) is a trajectory of
(Ω, F ), i.e.

ξ̇(t) = F (ξ(t)),

the composed mapping υ = ψ(ξ(t)) satisfies the chain rule

υ̇ =
∂ψ

∂ξ
(ξ(t))F (ξ(t))

The vector fields F and G are called ψ − related if

G(ψ(ξ)) =
∂ψ

∂ξ
F (ξ).

Assuming that F and G are ψ − related, it follows that

υ̇ = G(ψ(ξ(t))) = G(υ(t))

which means υ(t) = ψ(ξ(t)) is a trajectory of (Π, G). Moreover, if ψ has a
smooth inverse ϕ, F and G are called ϕ− related and there is a one-to-one
correspondence between the trajectories of both systems. An invertible ψ
relation between F and G is called an endogeneous transformation.
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Definition 2.2 Two systems (Ω, F ) and (Π, G) are Lie-Bäcklund equiva-
lent if there exists an endogeneous transformation from Ω to Π.

2.1.3 Flatness

ϕ

ψ

OyOx

Figure 2.1: Lie-Bäcklund equivalence between two representations of the
same flat system. The left-hand figure represents the system using the
original coordinates, while the right-hand figure represents the same system
using special coordinates. The mappings ϕ and ψ give the correspondences
between these representations. A trajectory is represented as a solid line.
It depends on the representation chosen as illustrated in the figure. The
dashed line illustrates a convergent trajectory. It does not necessarily start
from a point on the solid line.

In this section, the notion of a flat system is addressed. A flat system is
a system that is equivalent to the trivial system composed of m chains of
integrators. This trivial system is defined as follows:

Definition 2.3 The trivial system is the pair (R∞
m , Fm) with the coordinates

(y, ẏ, ÿ, ...) and the vector field

Fm(y, ẏ, ÿ, ...) = (ẏ, ÿ, y(3), ...)
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The definition of flatness follows directly:

Definition 2.4 The system (Ω, F ) is flat if it is equivalent to the trivial
system (R∞

m , Fm); y is called flat output.

In particular, this definition can be applied to a system (X × U × R
∞
m , F ).

Moreover, it is proved in [58, 54] that the dimension of y is equal to the
dimension of u.

Remark 2.1 Since a flat system is equivalent to the trivial system that
is linear, one can consider a flat system as a generalization of linear sys-
tems even though the system may be quite nonlinear in almost any natural
representation.

Since a flat system (X × U × R
∞
m , F ) is equivalent to the trivial system

(R∞
m , Fm), it follows that the endogeneous transformation ψ takes the form

ψ(x, u, u̇, ü, ...) = (y, ẏ, ÿ, ...)

and the transformation ϕ the form

ϕ(y, ẏ, ÿ, ...) = (x, u, u̇, ü, ...),

where ϕ is the inverse of ψ.
Such an equivalence allows one to analyze and synthesize control laws for

the system (X×U×R
m
∞, F ) using the system (Rm

∞, Fm). In fact, (Rm
∞, Fm) is

usually more tractable than (X ×U ×R
m
∞, F ) thanks to its structure. Some

aspects can be defined for (Rm∞, Fm) and then extended to (X×U ×R
m∞, F )

using the Lie-Bäcklund equivalence. In particular:

Definition 2.5 Origin. The origin Oy of the manifold (Rm∞) is the point
Oy = (0, 0, 0, ...). Moreover, the origin Ox of the manifold (X × U × R

m
∞)

is Ox = ϕ(Oy).

Definition 2.6 Convergent Trajectory. A trajectory η(t) on (Rm∞) is called
convergent if limt→∞ η(t) = Oy.

In Definition 2.6 the limit is taken in the usual Euclidian finite dimensional
sense once we admit that there exists a sufficiently large finite integer k′

such that η(k) = 0 ∀k > k′.
Figure 2.1 illustrates the correspondences ϕ and ψ. The origin Ox and

Oy are also represented together with a convergent trajectory (dashed line).
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Without loss of generality, the flatness property can be expressed also in
finite dimension.

Definition 2.7 The system

ẋ = f(x, u), x ∈ X = (x1, .., xn), u ∈ U = (u1, .., um) (2.8)

is flat if and only if there exist (i) a flat output y ∈ R
m, (ii) two integers r

and s, and (iii) mappings ψ from (X × (Rm)s+1) on R
m and (ϕx, ϕu) from

R
m(r+2) on R

n × R
m such that

y = ψ(x, u, u̇, ..., u(s)) (2.9)
x = ϕx(y, ẏ, ..., y(r)) (2.10)
u = ϕu(y, ẏ, ..., y(r+1)) (2.11)

Remark 2.2 The flatness property in infinite dimension establishes a dif-
feomorphic correspondence between two systems of infinite dimension. How-
ever, the flatness expressed in finite dimension loses this property of dif-
feomorphic correspondence, meaning that expressions (2.9)-(2.11) are not
invertible.

Notice that, in order to be more precise, the expressions (2.10) and (2.11)
should be written with the following multi-index notation

x = ϕx(y1, ẏ1, ..., y
(r1)
1 , ..., ym, ẏm, ..., y(rm)

m ) (2.12)

u = ϕu(y1, ẏ1, ..., y
(r1+1)
1 , ..., ym, ẏm, ..., y(rm+1)

m ), (2.13)

which means that the state x and the input u can be represented by chains
of integrators, which are not necessarily of the same size (i.e. r1, ...rm are
not necessarily equal). In the expressions (2.10) and (2.11), the parameter
r is equal to max(r1, ...rm)

2.1.4 Application to open-loop control

Controlling system (2.1) in its natural coordinates may be very difficult be-
cause it is multivariable, nonlinear, and potentially contains strong coupling
terms. However, as shown in Section 2.1.3, whenever the system (2.1) is flat,
it can be represented as a collection of chains of integrators. This means
that, through the Lie-Bäcklund equivalence, all the nonlinearities and the
coupling terms are compensated. It is shown next how the flatness property
can be used for solving the open-loop control problem.
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The problem is addressed by the manner in which a feedforward input
is computed so as to follow a reference trajectory. A pre-specified suffi-
ciently smooth trajectory yref must be followed through the computation
of a suitable open-loop input. Therefore, in order to follow this trajectory,
Equation (2.11) is used. Indeed, since the input u is a function of the
flat output y and its derivatives ẏ, ÿ, ..., y(r+1), the reference yref and its
derivatives ẏref , ÿref , ..., y

(r+1)
ref are inserted in Equation (2.11) to generate

the feedforward input

uf = ϕu(yref , ẏref , ..., y
(r+1)
ref ).

Consequently, specifying the flat output trajectories and using the Lie-
Bäcklund equivalence, the system (2.1) can be controlled while compen-
sating all the nonlinearities and coupling terms.

2.1.5 Dynamical feedback linearization

The control strategy exposed in Section 2.1.4 uses an open-loop point of
view and, consequently, the methodology does not lead to a controller that
can reject perturbations satisfactorily. For this reason, a closed-loop control
strategy is needed. A very popular idea, called dynamic feedback lineariza-
tion, consists in interpreting equivalence in terms of feedback [12, 32, 58, 54].

First, the notion of dynamical feedback is recalled. Considering the sys-
tem

ẋ = f(x, u), (2.14)

a dynamical feedback for this system is defined as

γ̇ = β(x, γ, w) (2.15)
u = α(x, γ, w), (2.16)

where w is a new input. This way, the closed-loop system becomes

ẋ = f(x, α(x, γ, w)) (2.17)
γ̇ = β(z, γ, w). (2.18)

As shown in Section 2.1.1, the system (2.14) can be represented in
infinite-dimension as (X×U×R

∞
m , F ). In the same way, the closed-loop sys-

tem (2.17) allows the infinite dimensional representation (X̃ ×W ×R
∞
m , F̃ ).
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Normally, the systems (X ×U ×R
∞
m , F ) and (X̃ ×W ×R

∞
m , F̃ ) are not Lie-

Bäcklund equivalent. However, there exists a particular dynamical feedback
called endogeneous dynamical feedback, which does not modify the infinite-
dimensional representation of (2.14). Such a feedback is defined hereafter:

Definition 2.8 A dynamical feedback

γ̇ = β(x, γ, w) (2.19)
u = α(x, γ, w) (2.20)

is called endogeneous if the closed-loop system

ẋ = f(x, α(x, γ, w))
γ̇ = β(x, γ, w) (2.21)

is Lie-Bäcklund equivalent to the system (X × U × R
∞
m , F ).

This notion is particularly important because, through an endogeneous dy-
namical feedback, the infinite representation of the resulting closed-loop
system always remains Lie-Bäcklund equivalent to the same system (X ×
U × R

∞
m , F ).

In Section 2.1.3, it has been shown that the system ẋ = f(x, u) is flat
if its infinite-dimension representation (X × U × R

∞
m , F ) is Lie-Bäcklund

equivalent to the trivial system (R∞
m , Fm). It is interesting to notice that,

by definition, the flat system ẋ = f(x, u) together with an endogeneous
dynamical feedback is also represented in infinite dimension by (X × U ×
R

∞
m , F ) that is equivalent to the trivial system (R∞

m , Fm). This means that
the property of flatness is preserved by endogeneous dynamical feedback.

As stated in Definition 2.7, the flat equivalence can be expressed also
in finite dimension but, in this case, the expression of equivalence (2.10) is
not necessarily diffeomorphic. However, we will assume that the closed-loop
system (2.21) is flat and moreover in diffeomorphic correspondence with the
finite-dimensional trivial system

y(r+1) = v,

where v is the input of the trivial system. This means that there exist two
invertible functions ϕxγ and ϕw such that

(x, γ) = ϕxγ(y, ẏ, ..., y(r)) (2.22)

w = ϕw(y, ẏ, ..., y(r+1)) (2.23)
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This guarantees the existence of a one-to-one correspondence between the
extended state (x, γ) and (y, ẏ, ..., y(r)). This means that, knowing (x, γ),
the state of the trivial system is perfectly known as well. The stabilization
of the trivial system

y(r+1) = v (2.24)

is considered first. Since the trivial system (2.24) is linear and composed of
pure integrator chains, the input v is chosen as

v = K(y, ẏ, ..., y(r)),

with a suitable matrix gain K that guarantees a stable closed-loop behavior.
Expressing the above differential equation in the equivalent represen-

tation associated with (2.21), w can be rewritten using (2.22), (2.23) and
(2.24) as

w = ϕw(ϕ−1
xγ (x, γ), Kϕ−1

xγ (x, γ)).

This input makes the closed-loop system

ẋ = f(x, α(x, γ, w))
γ̇ = β(x, γ, w)

equivalent to the stable linear system

y(r+1) = K1y + K2ẏ + ... + Kr−1y
(r).

Here, equivalence is understood as the existence of a finite-dimensional dif-
feomorphism between (y, ẏ, ..., y(r)) and (x, γ).

Remark 2.3 Linearization of the system ẋ = f(x, u) by feedback without
dynamical extension is usually not possible because the correspondence be-
tween the state x and (y, ẏ, ..., y(r)) is not necessarily a one-to-one correspon-
dence. On the other hand, thanks to the dynamical feedback, the new state γ
enforces a one-to-one correspondence between the extended state (x, γ) and
(y, ẏ, ..., y(r)). This is the reason for using a dynamical extension.

Remark 2.4 Naturally, this methodology can be used for tracking a suffi-
ciently smooth pre-specified trajectory yref . In this case, the input v of the
trivial system becomes

v = K1(y − yref ) + K2(ẏ − ẏref ) + ... + Kr−1(y(r) − y
(r)
ref ) + y

(r+1)
ref ,

imposing thereby stable closed-loop error dynamics.
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It is shown in [58, 54] that the dynamics are flat if and only if they are
linearizable by endogeneous feedback and coordinate change. This means
that this technique can be applied to every flat system.

2.2 Lyapunov Stability

As described in the introduction, the purpose of jet-scheduling control is
to achieve stability through instantaneous generation of feasible reference
trajectories. Therefore, it is important to recall the concept of stability
[47, 77, 42]. We first recall the notion of stability of an equilibrium point in
the sense of Lyapunov. Then, a technique not involving the explicit solution
of the differential equations is given, which depends on the definition of a
Lyapunov function.

2.2.1 Stability

We consider the dynamical system

ẋ = f(x) x(0) = x0, (2.25)

where f is smooth on the open subset X ⊂ R
n. Here, contrary to (2.1) there

is no input to the system. Normally, the input is set using u = k(x) (i.e.
using a feedback) so that ẋ = f(x, u) reads ẋ = f(x, k(x)), that is ẋ = f̃(x).
In this section, we simply use f(x) instead of f̃(x) so as to simplify the
notation. It is also assumed (without loss of generality) that the origin is
an equilibrium point, i.e. 0 = f(0).

The notion of stability of an equilibrium point is characterized by the
behavior of the solution x(t) of system (2.25) away from its equilibrium
point.

Definition 2.9 The system given by the ordinary differential equations
(2.25) is stable if ∀R > 0, ∃r > 0 such that ‖x0‖ < r implies ‖x(t)‖ < R.

As illustrated in Figure 2.2, this definition means that, whatever the size R
of a chosen ball, it is always possible to find another ball of size r such that,
for all the initial conditions comprised in the ball of size r, the resulting
trajectory x(t) remains within the ball of size R.
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‖x‖ < R

‖x0‖ < r

x(t)

Figure 2.2: Illustration of the stability definition. For every chosen ball of
size R, it is possible to find a ball of initial conditions ‖x0‖ < r such that,
for all trajectories x(t) that start in this ball, x(t) remains in the ball of size
‖x‖ < R.

The stability of a system is often not sufficient, since it precludes the
possibility of knowing exactly where the solutions of the system will con-
verge. It would be more convenient if the definition could guarantee that
the trajectory x(t) of the system goes back to its equilibrium point x = 0.

Definition 2.10 The equilibrium point x = 0 of the system (2.25) is asymp-
totically stable if

1. the system is stable

2. there exists a ball of initial conditions ‖x0‖ < r0 such that the resulting
trajectories x(t) → 0 when t → ∞.

Moreover, an asymptotically stable system is called exponentially stable if
∃α > 0 and ∃λ > 0 such that

‖x(t)‖ � α‖x(0)‖e−λt, ∀t > 0

It is important to notice that a system may be convergent, i.e. x(t) → 0
when t → ∞, without being stable. This means that it is impossible to
dominate the transient behavior of the resulting trajectory, even if the initial
conditions are chosen arbitrarily close to the equilibrium point. This is
illustrated by the following example [77].
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Example 2.1

ẋ1 =
x2

1(x2 − x1) + x5
2

(x2
1 + x2

2)[1 + (x2
1 + x2

2)2]

ẋ2 =
x2

2(x2 − 2x1)
(x2

1 + x2
2)[1 + (x2

1 + x2
2)2]

.

In Figure 2.3, the trajectories begin close to the origin, move away and then
return to the origin following the horizontal axis. This system is unstable
since the trajectories cannot be constrained to stay within a given ball (of
sufficiently small radius R) even when the radius r of the ball of initial
conditions is reduced to an infinitesimal but nonzero value. Indeed, the
more the initial condition is close to 0 (i.e. x1(0) > 0 and x2(0) > 0 with
both x1(0) → 0+ and x2(0) → 0+) the larger supt∈(0;∞) x(t) becomes, which
shows that there exists a given ball of radius R for which no matter how
small the ball of initial condition is chosen (i.e. r) there will always exist at
least one initial condition for which the solution leaves the ball of radius R.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6

0.8

x2

x1

Figure 2.3: Convergent but unstable system.

2.2.2 Lyapunov theorem

The notion of stability defined in the previous section is based on the so-
lution x(t) of the system of differential equations (2.25). However, it is
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not easy to get a closed-form solution, since the integration of a nonlinear
system may be very difficult or impossible to obtain analytically. It is also
possible to compute this solution by numerical integration, but in this case,
the solution must be evaluated for every initial condition. For this reason,
some results leading to stability assessment without integrating the system
(2.25) are presented hereafter.

Lyapunov stability rests on a procedure that replaces the condition ap-
pearing in the stability definition by a simple statement concerning a scalar-
valued function. In a sense, it is a systematic description of the balls using
the scalar-valued function which subsumes the ideas involved in the defini-
tion. Indeed, a ball is simply replaced by a suitable closed-level set of the
Lyapunov function.

The formal definition of a Lyapunov function candidate is given next.

Definition 2.11 (Lyapunov candidate) A function V (x) : R
n → R is called

a Lyapunov candidate if

1. V (x) is positive definite

2. V (x) is of Class-C1.

Establishing stability consists in simply checking the decrease or con-
servation of this Lyapunov function. This guarantees that the trajectories
do not escape the initial level set given by the intial value of the Lyapunov
function, i.e. the initial ball of radius R.

Theorem 2.1 A system is stable if there exists a Lyapunov candidate V (x)
such that

V̇ (x) =
(

∂V

∂x

)T

f(x) = LfV � 0.

Moreover, a system is asymptotically stable if

V̇ (x) =
(

∂V

∂x

)T

f(x) = LfV < 0, ∀x 	= 0

.

Additionally, another theorem enables one to establish the exponential sta-
bility thanks to more restrictive conditions on V (x). It is given below.
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Theorem 2.2 A system is exponentially stable if there exists a Lyapunov
candidate V (x) such that

α1‖x‖c ≤ V (x) ≤ α2‖x‖c

V̇ (x) � −α3‖x‖c

for some positive constants α1, α2, α3, c � 2.

A particular application of Lyapunov theorem concerns linear systems of
the form

ẋ = Ax, x(0) = x0.

In this case, a Lyapunov candidate V (x) is chosen as

V (x) = xT Px

where P is a symmetric strictly positive definite matrix. This way, V (x) is
naturally positive definite and continuous. Then, differentiating V (x) gives

V̇ (x) = xT (AT P + PA)x.

Using Theorem 2.1 to establish asymptotic stability of the linear system
imposes V̇ (x) be strictly negative definite. This means that

V̇ (x) = xT (AT P + PA)x = −xT Qx,

where Q is strictly positive definite. The condition of existence of such a
matrix P is given in the following theorem.

Theorem 2.3 Given a stable linear system ẋ = Ax (i.e. ∀λ, Re(λ) < 0)
and for any positive definite matrix Q > 0, there exists a positive definite
matrix P > 0 such that

AT P + PA = −Q (2.26)

From Theorems 2.1 and 2.2, it is possible to establish stability by con-
structing a Lyapunov function.

It is often desirable to take advantage of the knowledge of the existence
of a Lyapunov function without explicitly computing it. It relies on the
fact that the system is known to be stable from the outset. This sounds
a bit strange but it is very useful in the analysis of connected systems,
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mainly because the Lyapunov functions of the subparts can be used to
assess the stability of the whole system without necessarily knowing exactly
the structure of the respective Lyapunov functions.

Therefore, one can use what is called the converse Lyapunov theorem
[47], which guarantees the existence of a Lyapunov function associated with
a stable system.

Theorem 2.4 If a system is exponentially stable, there exists a positive
definite and proper function V such that

α1‖x‖2 ≤ V (x) ≤ α2‖x‖2,

∂V

∂x
f(x) ≤ −α3‖x‖2, (2.27)

‖∂V

∂x
(x)‖ ≤ α4‖x‖

for some positive constants α1, α2, α3, α4.

2.2.3 Vanishing perturbed system

As described in the introduction, the purpose of jet-scheduling control is
to achieve stability through the instantaneous generation of feasible refer-
ence trajectories in a continuous way. This idea leads to an asymptotic
linearization meaning that, through the use of the jet-scheduling controller,
the nonlinear system becomes equivalent to a linear one, once intermediate
variables have converged. These intermediate variables lead to a split in the
initial state space.

We will see throughout the thesis how this split is done in practice and
how the controllers are designed to achieve such a separation. Nevertheless,
the necessary preliminaries, which involve established techniques available
for naturally separated dynamical systems, are recalled here.

The state has two components, one labeled Υ whose evolution depends
on its current value and also on the second set of variables labeled Ξ, and the
second component Ξ which behaves according to its own dynamics without
being influenced by the first set Υ:

Υ̇ = F (Υ, Ξ) (2.28)
Ξ̇ = G(Ξ).

Two assumptions are introduced
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• Ξ̇ = G(Ξ) is asymptotically stable

• F (Υ, 0) = AΥ, where A is Hurwitz.

The stability of system (2.28) is studied by Lyapunov Theorem. Since Ξ
goes to 0 asymptotically, F (Υ, Ξ) becomes F (Υ, 0) = AΥ asymptotically.
Based on this observation, the linear part is factorized as

Υ̇ = F (Υ, 0) + (F (Υ, Ξ) − F (Υ, 0)) = AΥ + (F (Υ, Ξ) − F (Υ, 0))

Now, choosing a symmetric positive definite matrix Q, together with the
fact that A is Hurwitz by assumption, the Lyapunov equation

PA + AT P = −Q

has a solution (cf. Theorem 2.3). Because V (Υ) = ΥT PΥ is a quadratic
function stemming from a positive definite matrix P , it follows that

λmin(P )‖Υ‖2 � V (Υ) � λmax(P )‖Υ‖2

∂V

∂Υ
AΥ = −ΥT QΥ � −λmin(Q)‖Υ‖2

‖∂V

∂Υ
‖ = ‖2ΥTP‖ � 2‖P‖‖Υ‖ = 2λmax(P )‖Υ‖.

The derivative of V (Υ) along the solutions is

V̇ (Υ) =
∂V

∂Υ
AΥ +

∂V

∂Υ
(F (Υ, Ξ) − F (Υ, 0))

� −λmin(Q)‖Υ‖2 + 2λmax(P )‖Υ‖‖F (Υ, Ξ)− F (Υ, 0)‖
(2.29)

At this point, we notice that V̇ (Υ) is bounded by an expression containing
a negative part −λmin(Q)‖Υ‖2, which corresponds to the linear behavior
of the system, and by the positive term 2λmax(P )‖Υ‖‖F (Υ, Ξ)− F (Υ, 0)‖,
which is the influence of the nonlinear part. If

‖F (Υ, Ξ) − F (Υ, 0)‖ <
λmin(Q)‖Υ‖
2λmax(P )‖ , (2.30)

then V̇ (Υ) is strictly negative and the stability of (2.28) can be established.
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When the condition (2.30) is not met, it is possible to develop a milder
condition than (2.30), since Ξ is asymptotically stable by definition. We will
consider that ‖F (Υ, Ξ) − F (Υ, 0)‖ can be bounded by l(‖Ξ‖)‖Υ‖, where l
is of class L, i.e.

‖F (Υ, Ξ) − F (Υ, 0)‖ < l(‖Ξ‖)‖Υ‖. (2.31)

This additional condition represents the idea that the difference between
F (Υ, Ξ) and F (Υ, 0) increases strictly with Ξ and increases in a linear way
with Υ. Now introducing (2.31) into (2.29) gives

V̇ (Υ) � (−λmin(Q) + 2λmax(P )l(‖Ξ‖))‖Υ‖2

(2.32)

Consequently, V̇ (Υ) � 0, as long as

l(‖Ξ‖) <
λmin(Q)
2λmax(P )

.

Notice that, since Ξ is asymptotically stable, choosing a constant c arbi-
trarily small, there will always exist a finite time T for which

l(‖Ξ‖) < c ∀t � T. (2.33)

In particular, choosing c = λmin(Q)
2λmax(P ) gives

l(‖Ξ‖) <
λmin(Q)
2λmax(P )

∀t � Tc. (2.34)

It follows that

V̇ (Υ) < 0 ∀t � Tc. (2.35)

Thus (2.28) is stable. Nevertheless, we have to pay attention to the fact
that the behavior of (2.28) is not known for t < Tc. Thus, it is important to
check that there is no finite escape during this initial time interval. For this
purpose, the next lemma based on a growth rate condition specifies that
the difference between the linear system F (Υ, 0) and the nonlinear system
F (Υ, Ξ) must grow in a linear way to ensure no finite escape time in Υ.
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Lemma 2.1 Consider a cascade-connected system of the form

Υ̇ = F (Υ, Ξ) (2.36)
Ξ̇ = G(Ξ)

with Υ ∈ Rn and Ξ ∈ Rm. Assume that

Υ̇ = F (Υ, 0) (2.37)

is globally exponentially stable at Υ = 0 and

Ξ̇ = G(Ξ) (2.38)

is globally stable at Ξ = 0. If the growth rate condition

‖F (Υ, Ξ) − F (Υ, 0)‖ ≤ c1‖Υ‖ + ψ(‖Ξ‖) + c2 (2.39)

is satisfied for some constants c1, c2 ≥ 0 and a class K function ψ, then the
cascade system does not exhibit any finite escape time.

Proof: Since the system Υ̇ = F (Υ, 0) is globally exponentially stable
at Υ = 0, from the converse Lyapunov theorem [47], there exists a positive
definite and proper function V such that

α1‖Υ‖2 ≤ V (Υ) ≤ α2‖Υ‖2,

∂V

∂Υ
F (Υ, 0) ≤ −α3‖Υ‖2, (2.40)

‖∂V

∂Υ
(Υ)‖ ≤ α4‖Υ‖

for some positive constants α1, α2, α3, α4. Then, by hypothesis and by com-
pleting the squares,

V̇ =
d

dt
V (Υ, (t)) =

∂V

∂Υ
F (Υ, 0) +

∂V

∂Υ
(F (Υ, Ξ) − F (Υ, 0))

≤ −α3‖Υ‖2 + α4‖Υ‖ (c1‖Υ‖ + ψ(‖Ξ‖) + c2)
≤ c4V + ψ(‖Ξ‖)2 + c5

with appropriate nonnegative constants c4 and c5. Now, using the hypoth-
esis that the system Ξ̇ = G(Ξ) is globally stable, it follows that V (Υ, (t))
does not exhibit any finite escape time. This, in turn, completes the proof
of the lemma.



Chapter 3

Jet-Scheduling Control

3.1 Introduction

The previous chapter introduced the necessary concepts (flatness and sta-
bility) that will be used to develop the jet-scheduling methodology. This
control method relies on a particular usage of the flatness property together
with stabilization arguments.

The idea is to keep generating and tracking stabilizing trajectories that
lead the system to the origin. The controller is split in two parts to reach
this objective.

The first part, called the jet scheduler, provides reference values for the
jets (time derivatives) associated with a convergent trajectory. Based on the
current measured values of the flat output, the jet scheduler provides refer-
ence values for the derivatives of the flat output (the scheduled jets). Using
this information, the feedforward part of the input is set to the value cor-
responding to these jets through the flatness equivalence expression, much
in the same way as for the motion planning technique using flatness-based
system inversion.

The second part is a low-order controller that ensures that these sched-
uled jets are eventually reached by the true system.

The combination of these two entities (jet scheduler and low-order con-
troller) guarantees asymptotic convergence of the state for point stabiliza-
tion and tracking.

This chapter is organized as follows. Section 3.2 describes the general
idea of the jet-scheduling controller. The construction of the jet-scheduling
controller is detailed in Section 3.3. Section 3.4 gives a sketch of the proof

27
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for the stability of the jet-scheduling controller. Section 3.5 discusses the
difference between the jet-scheduling controller and dynamic feedback lin-
earization. A linear system controlled by the jet-scheduling controller illus-
trates the method in Section 3.6.

3.2 The Concept of Jet-Scheduling Control

In a general way, a dynamical system is described by

ẋ = f(x, u), x ∈ X = (x1, ..., xn), u ∈ U = (u1, ..., um) (3.1)

where x is the state of the system, u1,...,um the inputs and f is a parametrized
vector field that represents the dynamics.

However, for reasons detailed in Chapter 2, it is useful to describe a flat
system in the infinite dimension framework with the coordinates

(x1, ..., xn, u
(0)
1 , ..., u(0)

m , u
(1)
1 , ..., u(1)

m , ..., u
(k)
1 , ..., u(k)

m , ..., u
(∞)
1 , ..., u(∞)

m )

In this case, the system (3.1) is described by

F =

⎛
⎜⎜⎜⎜⎜⎝

f(x, u)
u̇
ü
...

u(∞)

⎞
⎟⎟⎟⎟⎟⎠

According to Definition 2.4, (ẋ, u̇, ...u(∞)) = F (x, u, ...u(∞)) is equivalent to
m chains of integrators

y(∞) = v

with the coordinates (y, ẏ, ÿ, ..., y(∞)) and v = (v1, ..., vm) as input.
For flat systems, there exists a r ∈ N (recall Definition 2.7) such that

the equivalence between (ẋ, u̇, ...u(∞)) = F (x, u, ...u(∞)) and y(∞) = v can
be reduced to finite dimensional relations expressed as:

y = ψ(x, u, u̇, ..., u(s)) (3.2)
x = ϕx(y, ẏ, ..., y(r)) (3.3)
u = ϕu(y, ẏ, ..., y(r+1)) (3.4)

The control objective is to bring the system (ẋ, u̇, ...u(∞))= F (x, u, ...u(∞))
from given initial condition to Ox. Thanks to the equivalence with the
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trivial system y(∞) = v, this problem is equivalent to bringing y(∞) = v,
from a compatible initial condition to Oy.

Remark 3.1 This convergence occurs in the usual Euclidian finite dimen-
sional sense once we admit that there exists a sufficiently large finite in-
teger k′ for which the convergence is equivalent to bringing y(k′) = v to
(y = 0, ẏ = 0, · · · , y(k′) = 0).

The usual way to achieve this goal in finite dimension, is to allow the
system y(r+1) = v to follow a convergent trajectory. A well-known solution
for achieving this goal is a feedforward controller based on flatness depicted
in Section 2.1.4. Indeed, for a sufficiently smooth convergent trajectory
η(t) of y, the feedforward input of the system (3.1) can be computed using
(2.11).

Of course, this method requires that the initial conditions x(0) of (3.1)
be compatible with the initial conditions η(0) of the convergent trajectory.
Since this methodology is open-loop, it does not tolerate either perturba-
tions or initial condition mismatches. In order to fill this gap, one possibility

Oy

Figure 3.1: Convergent trajectory regeneration. The dashed lines repre-
sent different reference trajectories generated to reach Oy, each one starting
from a different initial condition. The solid line is the effective trajectory
completed by the system. Every converging trajectory has initial conditions
compatible with the states of the system. This figure illustrates the effect
of a perturbation on the system.

(similar to model predictive control) is to regenerate regularly a new con-
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vergent trajectory compatible with the states of the system as illustrated in
Figure 3.1.

This solution has some unresolved points: i) How should the convergent
trajectory be computed? ii) How should often the convergent trajectory
be regenerated? In this chapter, one possible answer to these questions is
given by the jet-scheduling controller. In our case, the new trajectory is
recomputed at each time instant.

3.3 Construction of Jet-Scheduling Controllers

The jet-scheduling controller consists of two parts. The first part is the jet
scheduler that gives the jets to be followed instead of a complete convergent
trajectory. This jet is updated continuously based on the measurements of
the flat output and its derivatives up to the pth order. The second part is
a controller that enforces the actual jet to converge to the desired jet.

Before presenting the general application of the methodology, let us il-
lustrate the idea on a single chain of integrators.

3.3.1 Introductory example

Consider the system composed of three integrators:

y(3) = v (3.5)

This system can be stabilized using state feedback. In this case, the stabi-

v ∫ ∫∫ yẏ
K

ÿ

Figure 3.2: Control scheme. Chain of integrators stabilized by a classical
state feedback.

lizing input is given by

v = k2ÿ + k1ẏ + k0y, (3.6)
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where ki, i = 0, 1, 2 are suitable gains (Figure 3.2). However, the idea
developed in this chapter suggests solving the problem of stabilization in
a different way. The basic idea is to follow a stabilizing jet instead of
computing a stabilizing input based on state feedback. Concretely for the
system (3.5), the given jet to be followed, labeled χ, represents the desired
velocity that ẏ should have to achieve stabilization. In the same way, χ̇
represents the acceleration that ÿ should have. This is represented in the
schematic diagram given in Figure 3.3. The role of the input v is to enforce

∫ ∫∫
K

v yẏÿ

χ̇

χ -
-

Figure 3.3: Control scheme that guarantees convergence of the jets ẏ and ÿ
to the scheduled (desired) jets χ and χ̇.

the convergence of ẏ to χ and ÿ to χ̇. For this purpose, the input v given as

v = q1(χ − ẏ) + q2(χ̇ − ÿ) + χ̈, (3.7)

where q1 and q2 are suitable gains, which guarantees a stable behavior of
the error (χ − ẏ).

An important issue concerns the specification of the desired velocity χ.
Naturally, χ needs to be a function of y in order to point towards the origin.
Moreover, the update of χ is chosen to be continuous to guarantee a smooth
behavior. The idea for solving this problem is to mimic the classical state
feedback technique (3.6). Indeed, (3.6) guarantees that the system reaches
the origin. Consequently, the mechanism for updating χ is based on a filter
with the same structure as (3.6). Hence,

χ̈ = k2χ̇ + k1χ + k0y. (3.8)

In summary, the controller based on the mechanism of regenerating the
jet, which is called “jet-scheduling controller” consists of (3.7) and (3.8):

χ̈ = k2χ̇ + k1χ + k0y

v = q1(χ − ẏ) + q2(χ̇ − ÿ) + χ̈. (3.9)
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The major differences and similarities between the classical feedback con-
troller (3.6) and the jet-scheduling controller (3.9) are the following:

• The state feedback controller does not entail any dynamical extension,
i.e. the controller is a map of the state of the system (3.5) to the input
v.

• The dynamical extension χ̈ of the jet-scheduling controller has the
same dynamics as those imposed by the state feedback controller.
This means that χ given by the jet-scheduling controller leads to the
same rate of convergence as with the state feedback controller.

• In the jet-scheduling controller, χ can be understood as a “tutor” that
is tracked using the input (3.7).

To show the advantage of using the jet-scheduling controller over the
classical state feedback controller, let us assume that the system (3.5) con-
tains an unmodeled constant drift c on ÿ (Figure 3.4). With state feedback,

∫ ∫∫v yẏÿ

c

+

Figure 3.4: An additional constant perturbation is applied to the chain of
integrators.

the only way to improve the rejection of the perturbation c is to increase the
gains k0, k1 and k2, thus modifying the closed-loop dynamics. On the other
hand, using the jet-scheduling controller (3.9), it is possible to increase q1

and q2 without modifying k0, k1 and k2, which means that the dominant
closed-loop dynamics are not modified.

The fact that the jet-scheduling controller is able to reject significantly
the perturbation c without any modification of the closed-loop dynamics, is
a major advantage of this methodology.

Notice that the construction of the jet-scheduling controller is not unique.
Indeed, another possibility would be to give “a tutor” (i.e. a desired jet) only
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∫ ∫∫v yẏÿ
K

χ -

Figure 3.5: Instead of scheduling both ẏ and ÿ as in Figure 3.3 only ÿ is
scheduled.

for ÿ instead of for both ẏ and ÿ as illustrated in Figure 3.5. Consequently,
in order to impose the convergence of ÿ to χ, the input v becomes

v = q1(χ − ÿ) + χ̇. (3.10)

The law for updating χ is now based on y and ẏ:

χ̇ = k2χ + k1ẏ + k0y (3.11)

The difference between the controllers (3.9) and (3.10)-(3.11) lies in the
size of the dynamical extension χ. Indeed, for the first controller, the differ-
ential equation associated with χ is of order 2, while it is 1 for the second
controller. Meanwhile, this difference of degree has a consequence for the
robustness. On the one hand, the first controller has two degrees of freedom
q1 and q2 to impose the convergence of y to χ (see equation 3.9). These pa-
rameters have a direct influence on any perturbation affecting ẏ and ÿ. On
the other hand, the controller (3.10)-(3.11) has the single degree of freedom
q1, which acts directly only following a perturbation appearing on ÿ. These
considerations underline the tradeoff between a low controller order and a
large number of degrees of freedom available for rejecting perturbations.

As a summary, a simple chain of integrators can be controlled in two
stages.

• (i) A filter (jet scheduler) provides the reference values (χ variables)
for derivatives of the output of the integrator chain. For example,
such a filter is given by (3.11).

• (ii) A low-level controller that enforces the true values of these deriva-
tives to converge to the references (for example (3.10)).
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We will see that in the nonlinear case, it is not trivial to express the low-
level errors (i.e. ÿ − χ) using the original coordinate x. A new notation is
introduced, namely a set of variable ξ that are in one-to-one correspondence
with the low-level errors. In the case of the integrator chain, we have simply
ξ = ÿ − χ. For a nonlinear system, a dedicated manifold S will help in
defining the ξ variables.

3.3.2 Jet-scheduling control

The jet-scheduling method has been applied to a somewhat trivial sys-
tem consisting of three integrators and a single input. However, the Lie-
Bäcklund equivalence guarantees that any flat system is equivalent to a set
of chains of integrators, possibly of different sizes. This means that the
aforementioned technique can be readily adapted to this situation, simply
by changing the size of the feedback terms and the amount of gain and
applying the technique straightforwardly to each chain of integrators. We
will now provide the appropriate details for such a generalization.

The flatness property guarantees the correspondence between the flat
output y and their jets ẏ, ÿ, ..., y(r+1) and the state x and the inputs u of
the system (3.1). Consequently, a flat system is equivalent to m chains of
integrators. As underlined in Section 2.1.3, these chains are not necessarily
of the same size. For this reason, they can be represented by the multi-index
notation described in Section 2.1.3:

y
(r1+1)
1 = v1

...
y(rm+1)

m = vm

(3.12)

where v is the input.
As explained in the previous section, the option of scheduling a part

of each chain of integrators will be kept open. Therefore, for each chain,
the variable pi is introduced to denote the level at which we stop using the
flat outputs and their derivatives directly and start scheduling the higher
derivatives through the corresponding jets labeled χi, ..., χ

(ri−pi−1)
i . This

leads to the following dynamical system

χ
(ri−pi)
i = k0iyi + ... + kpiiy

(pi)
i + k(pi+1)iχi +

k(pi+2)iχ̇i + ... + kriχ
(ri−pi−1)
i i = 1, ..., m. (3.13)
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where the kji are suitable gains.
As described in the introductory example, it is necessary to impose the

convergence of the jets y
(pi+1)
i to χi. For this, the input vi is given by

vi = q(pi+1)i(χi − y
(pi+1)
i ) + q(pi+2)i(χ̇i − y

(pi+2)
i ) + ...

+kri(χ
(ri−pi−1)
i − y

(ri)
i ) + χ

(ri−pi)
i i = 1, ..., m. (3.14)

where the qji are suitable gains.

The input vi guarantees a stable behavior of the chains of integrators

y
(ri+1)
i = vi.

Since the objective is to stabilize the original system (3.1) with the coordi-
nates x and input u, the problem is to compute u based on the equivalence
between the original system and the chains of integrators stabilized by the
jet-scheduling controller. This problem is discussed in the next section.

3.3.3 Dynamical feedback linearization based on jet scheduling

As shown in the preliminary chapter (Section 2.1.5), the flatness property
can be used to construct a dynamical feedback using an endogeneous trans-
formation that transforms the nonlinear system into an equivalent set of
integrator chains. In other words, a flat system

ẋ = f(x, u)

can be extended by a dynamical feedback

γ̇ = β(x, γ, w) (3.15)
u = α(x, γ, w) (3.16)

in such way that it becomes equivalent to

y
(ri+1)
i = vi, i = 1, · · ·m.

This equivalence means that there exist two invertible functions ϕxγ and
ϕw such that

(x, γ) = ϕxγ(y, ẏ, ..., y(r)) (3.17)
w = ϕw(y, ẏ, ..., v). (3.18)
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These chains of integrators are stabilized using a closed-loop formulation,
as opposed to motion planning done open-loop through the same equivalence
(see Section 2.1.4).

Although this process gives a generally satisfactory way of handling the
control task, the controller must still be applied to the real system, which
means controlling the system in its original coordinates. In other words,
the feedback obtained for the chain of integrators must be expressed in the
original coordinates x and possibly a dynamical state extension γ.

The previous section has shown how to generalize the idea of control-
ling a chain of integrators from the classical state-feedback approach to the
jet-scheduling approach. This means that, if jet scheduling is adopted for
controlling the chain of integrators, there is no reason why it could not be
re-expressed in the original coordinates x and γ as this was the case with
the classical way of controlling the chain of integrators explained in the
previous paragraph. This process is detailed next.

Let us introduce the following selecting map

λi,j [y, ẏ, . . . , y(j), . . . , y(r)] = y
(j)
i i = 1, . . . , m j = 0, . . . , r.

Consequently, the jet scheduler (3.13) can be rewritten as

χ
(ri−pi)
i = k0iλi,0[ϕ−1

xγ (x, γ)] + ... + kpiiλi,pi [ϕ
−1
xγ (x, γ)] +

k(pi+1)iχi + k(pi+2)iχ̇i + ... + kriiχ
(ri−pi−1)
i

= Πχi(x, γ, χ
(0)
i , ..., χ

(ri−pi−1)
i ) i = 1, ..., m, (3.19)

and the input (3.14) as

vi = q(pi+1)i(λi,pi+1[ϕ−1
xγ (x, γ)] − χi) + q(pi+2)i(λi,pi+2[ϕ−1

xγ (x, γ)] − χ̇i)

+... + qrii(λi,ri [ϕ
−1
xγ (x, γ)] − χ

(ri−pi−1)
i ) + χ

(ri−pi)
i

= Πvi(x, γ, χi, ..., χ
(ri−pi)
i ) i = 1, ..., m. (3.20)

At this point, considering (3.18)-(3.20), the dynamical feedback lin-
earization based on jet scheduling becomes

χ
(ri−pi)
i = Πχi(x, γ, χ

(0)
i , ..., χ

(ri−pi−1)
i ) i = 1, ..., m.

w = ϕw(ϕ−1
xγ (x, γ), Πv(x, γ, χ

(0)
1 , ..., χ

(r1−p1)
1 , ..., χm, ..., χ(rm−pm)

m ))
(3.21)
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Notice that the order of the state extension is slightly larger than the one
of the feedback linearization through endogeneous transformations. Indeed,
not only must the state be extended using γ, but also it is required to
add the χ’s so that the control scheme can benefit from the jet-scheduling
process.

The stability of the extended system controlled using (3.21) is guaran-
teed through the equivalence with the integrator chains controlled by the
jet-scheduling controller.

3.3.4 Reduced dynamical extension

Section 3.3.3 gives a general approach for constructing a jet-scheduling con-
troller for a flat system in the original coordinates. The methodology puts
strong emphasis on the chain of integrators. It also needs a dedicated dy-
namical extension (3.15),

γ̇ = β(x, γ, w)

The controller is designed in the coordinates corresponding to the chains
of integrators and then is expressed in the original coordinates x and γ
through the flat equivalence. This equivalence leads to a good behavior for
the closed-loop system since the controller design is done for simple chains
of integrators, for which both stability and robustness are guaranteed.

However, since the original system ẋ = f(x, u) could be fairly nonlinear,
the diffeomorphism ϕxγ used to transform the system into chains of inte-
grators can be complicated. It follows that the controller (3.20), designed in
Section 3.3.3, could be awkward and not really intuitive from an engineering
point of view. Such a controller could be difficult to implement on a real
plant (see Chapter 4.6 and 5.8). For this reason, it would be useful to be
able to design a jet-scheduling controller in a more direct way.

The basic idea of jet-scheduling control (see Section 3.3.2) is to impose
the convergence of the jets

y
(p1+1)
1 , ..., y(pm+1)

m , ..., y
(r1)
1 ..., y(rm)

m

to
χ

(0)
1 , ..., χ(0)

m , ..., χ
(r1−p1−1)
1 , ..., χ(rm−pm−1)

m .

The controller (3.20) implements this convergence in the original coordinates
x and γ. Indeed, (3.20) provides an input u that has been shown to reach
this objective based on the analysis of an equivalent linear system. This
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y
ẏ

ÿ

y(r+1)

χ

χ̇

χ(r−1)
Oy

S

Ox

(x, γ)(x̂, γ̂)

ϕxγ

Figure 3.6: Jet construction. The solid lines indicate the position and all
the jets (y, ẏ, ..., y(r+1)) of the flat system ẋ = f(x, u). The dashed lines
represent the jet given by the jet scheduler. The point (x, γ) represents
the state of system that is naturally compatible with (y, ẏ, ..., y(r+1)). The
point (x̂, γ̂) is the desired state compatible with the jets given by the jet
scheduler i.e. (x̂, γ̂) = ϕxγ(y, χ, χ̇, ..., χ(r)). (x̂, γ̂) is the origin of S.

convergence can also be seen from a slightly different point of view. The
extended state (x1, ..., xn, γ1, ...γz) given by

(x1, ..., xn, γ1, ..., γz) =

ϕxγ(y1, ..., ym, ..., y
(p1)
1 , ..., y(pm)

m , y
(p1+1)
1 , ..., y(pm+1)

m , ..., y
(r1)
1 , ..., y(rm)

m ).
(3.22)

converges to

ϕxγ(y1, ..., ym, ..., y
(p1)
1 , ..., y(pm)

m , χ1, ..., χm, ..., χ
(r1−p1−1)
1 , ..., χ(rm−pm−1)

m ).

Therefore, let us define the quantities (x̂1, ..., x̂n, γ̂1, ..., γ̂z) that furnish the
reference values associated with the scheduled jets χ

(0)
1 , . . ., χ

(0)
m , . . .,χ(r1−p1)

1 ,
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. . ., χ
(rm−pm)
m as

(x̂1, ..., x̂n, γ̂1, ..., γ̂z) =

ϕxγ(y1, ..., ym, ..., y
(p1)
1 , ..., y(pm)

m , χ1, ..., χm, ..., χ
(r1−p1−1)
1 , ..., χ(rm−pm−1)

m ).
(3.23)

Consequently, the controller (3.20) enforces the convergence of

(x1, ..., xn, γ1, ...γz)

to
(x̂1, ..., x̂n, γ̂1, ..., γ̂z).

Notice that y1, ..., ym, ..., y
(p1)
1 , ..., y

(pm)
m are the same in (3.22) and

(3.23). This suggests the following geometrical interpretation (see Figure
3.6). Since y1, ..., ym, ..., y

(r1)
1 , ..., y

(rm)
m are coordinates of a cartesian

product R
r1+1 × ...× R

rm+1, fixing y1, ..., ym, ..., y
(p1)
1 , ..., y

(pm)
m drops the

number of degrees of freedom from a =
∑m

i=1 ri + 1 to b =
∑m

i=1 ri − pi.
This simply means that the map ϕ̄ : R

a → R
b defined by

ϕ̄
(
α0,1, α0,2, . . . , α0,m, α1,1, α1,2, . . . , α0,m,

. . . , αr−p,1, αr−p,2, . . . , αr−p,m

)
=

ϕ
(
y1, y2, . . . , ym, ẏ1, ẏ2, . . . , ẏm, . . . , y

(p1)
1 , y

(p2)
2 , . . . , y(pm)

m ,

χ1 + α0,1, χ2 + α0,2, . . . , χm + α0,m,

χ̇1 + α1,1, χ̇2 + α1,2, . . . , χ̇m + α1,m, . . . ,

χ
(r−p)
1 + αr−p,1, χ

(r−p)
2 + αr−p,2, . . . , χ

(r−p)
m + αr−p,m

)
is a coordinate chart defining a submanifold of dimension b within the man-
ifold with coordinates (x1, ..., xn, γ1, ..., γz). Therefore

S = {ϕ̄(α0,1, . . . , α0,m, . . . , αr−p,1, . . . , αr−p,m) |
αi,j ∈ R, i = 0, . . . , r − p, j = 1, . . . , m} (3.24)

is the aforementioned submanifold in the (x1, ..., xn, γ1, ..., γz) space. Un-
fortunately, the origin and the submanifold itself are not fixed but evolve
with time since y, ẏ, . . ., y(p) and χ̇, χ̈, . . ., χ(r−p) change with time. Nev-
ertheless, it is useful to think momentarily as if the submanifold is fixed
in time. The purpose of the tracking controller is to guarantee that the
true values of y(p+1), y(p+2), . . ., y(r+1) do indeed converge to χ, χ̇, . . .,
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χ(r−p), meaning that the origin of the submanifold is eventually reached.
The excursion towards the origin is parametrized by a suitable choice of
αi,j ∈ R, i = 0, . . . , r − p, j = 1, . . . , m

The jets involved in S are mostly in correspondence with the part of the
original state space associated with the extended state γ. This is backed up
by physical insights that will be illustrated in Chapters 4 and 5.

Since the objective is to eliminate the dynamical extension, we will con-
struct a new coordinate system Ξ for S that makes the above reduction
straightforward. The key idea is to ensure that some of these coordinates
only affect γ and some only affect x. These coordinates will be

Ξ = (ξx,1, ξx,2, . . . ξx,c,

ξγ,1, ξγ,2, . . . ξγ,d) (3.25)

where the ξx,i’s are the coordinates that affect x and the ξγ,i’s the coordi-
nates that affect γ.

The ξx,i’s are used by the controller so as to reach the origin of the
submanifold S. Let T denote the tangent of the manifold whose coordinates
are x and γ. T splits as Tx ⊕ Tγ where Tx spans the subspace associated
with the coordinates x.

Among the possible choices for the coordinate patches σ : R
Pm

i ri−pi →
S for which the α’s become diffeomorphic to the charts ξ’s and σ(0) = ϕ̄(0)
(i.e. preserving the origin of S), there exists at least one with the following
condition:

(
∂σ

∂ξγ

)T

v = 0 ∀v ∈ Tx (3.26)

This condition provides the loss of sensitivity that allows one to reduce
the order by simply discarding the subpart of S corresponding to ξγ . This
is normally not possible with the coordinates α’s. Notice however that the
reduction is done at the expense of losing the correspondence between the
space parameterized by y, ẏ, . . ., y(r+1) and that parameterized by x and
γ. The following particular choice of ξ’s in the σ map can be carried out.
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Lemma 3.1 The σ map can be chosen such that

Ξ →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σx1(ξx,1, . . . , ξx,c)
σx2(ξx,1, . . . , ξx,c)

...
σxn(ξx,1, . . . , ξx,c)

σγ1(ξx,1, . . . , ξx,c, ξγ,1, . . . , ξγ,d)
σu2 (ξx,1, . . . , ξx,c, ξγ,1, . . . , ξγ,d)

...
σγz(ξx,1, . . . , ξx,c, ξγ,1, . . . , ξγ,d)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Proof: The fact that x1 to xn do not depend on the ξγ,i, follows directly
from the condition (3.26) because these ξγ cannot influence x, since the
tangent space associated with x cannot be modified. Therefore only the
ξx,1, . . ., ξx,c appear on the σx1 ,. . ., σxn

This will lead to some difficulties in proving the stability of the closed-
loop system.

Example 3.1 Consider the flat system to be

ẋ1 = u1cos(x3)
ẋ2 = u1sin(x3) (3.27)
ẋ3 = u2

which is equivalent to the trivial system

ÿ1 = v1

ÿ2 = v2,

due to the correspondence

x1 = ϕx1(y) = y1 (3.28)
x2 = ϕx2(y) = y2 (3.29)
x3 = ϕx3(ẏ) = atan(ẏ1, ẏ2) (3.30)

γ = u1 = ϕu1(ẏ) =
√

ẏ2
1 + ẏ2

2 (3.31)

(3.32)



42 CHAPTER 3. JET-SCHEDULING CONTROL

S

α̇

α

ξ̇

ξ

ϕ̄ σ

(x̂, γ̂) = ϕx,γ(y, ẏ, ..., yp, χ, ..., χ(r−p))

Figure 3.7: Two different coordinate charts for parametrizing the S mani-
fold. The mapping ϕ̄ is based on the flatness equivalence. The mapping σ
is used by the jet-scheduling methodology. The point (x̂, γ̂) is the origin of
the S manifold.

Notice that, in this case, u1 is chosen as an extended state γ. This means
that there is a one-to-one correspondence between

(x1, x2, x3, u1)

and
(y1, y2, ẏ1, ẏ2)

Now, setting the parameter p of the jet scheduler as p = 0, it follows that
the submanifold S defined by (3.24) becomes

S = {ϕ̄(α0,1, α0,2, | α0,j ∈ R, j = 1, 2} (3.33)

where ϕ̄ = (ϕ̄x1 , ϕ̄x2 , ϕ̄x3 , ϕ̄u1) with

ϕ̄x1 = y1 (3.34)
ϕ̄x2 = y2 (3.35)
ϕ̄x3 = arctan(χ1 + α0,1, χ2 + α0,2) (3.36)

ϕ̄u1 =
√

(χ1 + α0,1)2 + (χ2 + α0,2)2) (3.37)
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The structure of the coordinates x1, x2, x3, u1 implies a split among a newly
defined set of coordinates ξx,1, ξγ,1 such that ξγ,1 only influences u1 without
affecting x1, x2, and x3. This is indeed the case with the map σ : R

2 → R
4

given by the following six components

σx1 = y1

σx2 = y2

σx3 = arctan(χ1, χ2) + ξx,1

σu1 =
√

χ2
1 + χ2

2 + ξγ,1 (3.38)

The tangent space splits as T = Tx ⊕ Tu1 given as

T =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

0 0 0
0 0 0
0 0 0
1 0 0

⎞
⎟⎟⎠

Thus, the choice of coordinates ξ satisfies the condition (3.26)

(
∂σ

∂ξγ,1

)T

Tx =
(
0 0 0 1

)
⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞
⎟⎟⎠ = 0.

Reduced-order controller design

Now, a control law must be designed to reach the origin of S. The key
idea to reduce the order is to take advantage of the prolongation structure
appearing in the Lie-Bäcklund equivalence. Such a prolongation structure
allows shortcutting the higher derivatives of u by imposing only the u, with-
out considering (u̇, ü, . . . , u∞). Ideally, only the direct input should be set,
and the upper derivatives will follow suit based on the fact that the natural
differentiability of the applied input is respected. We have the following
Lemma:

Lemma 3.2 Let x̂, û, ˆ̇u, . . ., û∞ be the variables which are ϕ-related to y,
ẏ, . . ., y(p), χ, χ̇, . . . χ∞. If x = x̂ and u = û, ∀t, then γ = γ̂

Proof: y, ẏ, . . ., y(∞) can be set freely. In particular, they can be set to y,
ẏ, . . ., y(p), χ, χ̇, . . . χ∞. No matter how they are chosen, the prolongation
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structure along the original is maintained. This means that

x̂, û, ˆ̇u, . . . , û∞

is equal to
x̂, û, ˙̂u, . . . , û∞.

Now, by hypothesis u = û ∀t. Differentiating and taking the above rela-
tions gives

u̇ = ˙̂u = ˆ̇u, ü = ¨̂u = ˆ̈u, . . . , u(∞) = û∞ = û∞

Therefore,

y = y, ẏ = ẋ, . . . , y(p) = y(p), y(p+1) = χ, y(p+1) = χ̇, . . . y(∞) = χ(∞).

Finally, considering only the finite number of these quantities that appear
in (3.23) gives γ = γ̂.

Remark 3.2 Lemma 3.2 makes it possible to reduce the number of states
by discarding the dynamical extension (3.15).

Thus the controller objective is to simply ensure that x converges to x̂
and u converges to û, so that the origin of S is eventually reached thanks
to Lemma 3.2 and the Ξ chart. Using Lemma 3.1, it follows that

x =

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠ =

⎛
⎜⎝

σx1(ξx,1, ..., ξx,c)
...

σxn(ξx,1, ..., ξx,c)

⎞
⎟⎠ = σx(ξx,1, ..., ξx,c).

This means that, by definition of σ, x converges to the origin of S when
(ξx,1, ..., ξx,c) converges to (0, ..., 0). For this reason, the dynamics of (ξx,1,
. . ., ξx,c) are studied. Notice that

ẋ = f(x, u) =
∂σx

∂(ξx,1, ..., ξx,c)
d

dt

⎛
⎜⎝

ξx,1

...
ξx,c

⎞
⎟⎠ . (3.39)

It is important to underline that the expression (3.39) is true as long
as the variables y, ẏ, . . ., y(p) and χ̇, χ̈, . . ., χ(r−p) are considered fixed in
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time. However, since these variables evolve in time, the expression (3.39)
becomes

ẋ = f(x, u) =
∂σx

∂(ξx,1, ..., ξx,c)
d

dt

⎛
⎜⎝

ξx,1

...
ξx,c

⎞
⎟⎠+

∂σx

∂Υ
dΥ
dt

(3.40)

where Υ = (y, ẏ, . . . , y(p), χ, χ̇, . . . , χ(r−p)).

Remark 3.3 Notice that Υ corresponds to the origin of S. It follows that
the term ∂σx

∂Υ
dΥ
dt can be interpreted as the contribution due to the displace-

ment of the origin of S.

At this point, it is possible to calculate the dynamics of (ξx,1, ..., ξx,c) in-
verting the relation (3.40). This is done using the pseudo-inverse

d

dt

⎛
⎜⎝

ξx,1

...
ξx,c

⎞
⎟⎠ =

[(
∂σx

∂(ξx,1, ..., ξx,c)

)T (
∂σx

∂(ξx,1, ..., ξx,c)

)]−1

(
∂σx

∂(ξx,1, ..., ξx,c)

)T (
f(x, u) − ∂σx

∂Υ
dΥ
dt

)
(3.41)

We focus next on the control of the reduced system (3.41). We suppose
that (3.41) can be enforced through u = (u1, ..., um) to be exponentially
stable. This way, the ξx,1, . . ., ξx,c are guaranteed to reach the origin of S.
Notice that the choice of u in order to achieve this goal may be non-unique.

Assumption 3.1 There exists a u = K(ξx, Υ), such that

• u = K(ξx, Υ) stabilizes exponentially (3.41)

• K(0, Υ) = û

The first condition imposes that x converges to x̂. The second one, thanks
to Lemma (3.2), imposes that γ converges to γ̂. This means that the origin
of S is reached.

Remark 3.4 Assumption 3.1 relies on the choice of p. In practice, even
when p is small, the dynamics of ξx are usually of small size. In Chapters
4 and 5, K is a P and a PD controller, respectively.
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At this point, the following conjecture is proposed.

Conjecture 1 The flat system (3.1), controlled by Controller (3.13) and
verifying Assumption 3.1, converges to the origin Ox.

Example 3.2 Considering again Example 3.1, we will construct a con-
troller that stabilizes exponentially the origin of S. The first step is to
calculate the reduced dynamics of ξ’s given by (3.41). Since in our case

σx =

⎛
⎝σx1

σx2

σx3

⎞
⎠
⎛
⎝ y1

y2

arctan(χ1, χ2) + ξx,1

⎞
⎠ , (3.42)

(3.41) becomes

ξ̇x,1 =

⎡
⎣(0 0 1

)⎛⎝0
0
1

⎞
⎠
⎤
⎦
−1 (

0 0 1
)⎛⎝ u1 cosx3 − ẏ1

u1 sinx3 − ẏ2

u2 − χ1χ̇2−χ2χ̇1
χ2

1+χ2
2

⎞
⎠

= u2 − χ1χ̇2 − χ2χ̇1

χ2
1 + χ2

2

(3.43)

Setting

u2 =
χ1χ̇2 − χ2χ̇1

χ2
1 + χ2

2

− kpξx,1,

makes ξx,1 exponentially stable and u2 = û when ξx,1 = 0. Since the second
input u1 is not used to stabilize ξx,1, the input u1 is simply set to û1. Hence,
the inputs u1 and u2 become

u1 =
√

χ2
1 + χ2

2 (3.44)

u2 =
χ1χ̇2 − χ2χ̇1

χ2
1 + χ2

2

− kpξ1 (3.45)

It is interesting to underline that in order to construct the above con-
troller, the dynamical extension γ has never been taken into account explic-
itly.

Nevertheless, one should still check the stability issue by considering the
complete dynamics consisting of the original dynamics together with the jet
scheduler and the above controller enforcing the origin of S to be reached.
This will be undertaken in Chapter 4.
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3.4 Stability Analysis

In order to study the stability of a flat system controlled through the jet-
scheduling controller, we consider the behavior of the flat outputs, their
derivatives y, ẏ, ..., y(p) and the scheduled jets χ, χ̇, ..., χ(r−p). We will see
that the analysis can be expressed as the stability problem of a vanishing
perturbed system, which has been developed in Section 2.2.3.

The first aspect is to set the problem in the connected form (2.28), namely

Υ̇ = F (Υ, Ξ) (3.46)
Ξ̇ = G(Ξ).

Since our study focuses on the behavior of y, ẏ, ..., y(p) and the scheduled
jets χ, χ̇, ..., χ(r−p), Υ is chosen as

Υ = (y, ẏ, ..., y(p), χ, ..., χ(r−p))

and Ξ = (ξx,1, . . . , ξx,c, ξγ,1, . . . , ξγ,d), where the ξ’s are the variables ap-
pearing in the condition (3.26) that describes S. Thanks to the α’s used in
(5.63), it follows that y(p+1) can be expressed as

y(p+1) = χ + α0. (3.47)

Moreover, since the condition (3.26) guarantees the existence of a diffeo-
morphism

(ξx,1, . . . , ξx,c, ξγ,1, . . . , ξγ,d) = Ξ = Φ(α, . . . , α(r−p)),

y(p+1) = χ + Φ−1
1 (Ξ, Υ). (3.48)

Therefore, since the dynamics of χ, χ̇, ..., χ(r−p) are given by (3.13), the
system to study is

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y
...

yp−1

y(p)

χ
...

χ(r−p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẏ
...

yp

χ + Φ−1
1 (Ξ, Υ)
χ̇
...

k0y + ... + kpy
(p) + k(p+1)χ + k(p+2)χ̇ + ... + krχ

(r−p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.49)



48 CHAPTER 3. JET-SCHEDULING CONTROL

or, in a more compact notation,

Υ̇ = F (Υ, Ξ). (3.50)

Thanks to Assumption 3.1 and Lemma 3.2, Ξ converges exponentially to
0. Hence, we can turn our attention to the asymptotic system

Υ̇ = F (Υ, 0).

Since (ξx,1, . . . , ξx,c, ξγ,1, . . . , ξγ,d) = 0 implies that (α, . . . , α(r−p)) = 0, (by
the choice of the ξ’s). Therefore, Υ̇ = F (Υ, 0) reads

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y
...

yp−1

y(p)

χ
...

χ(r−p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẏ
...

yp

χ
χ̇
...

k0y + ... + kpy
(p) + k(p+1)χ + k(p+2)χ̇ + ... + krχ

(r−p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.51)

which is clearly a linear system of the form

Υ̇ = F (Υ, 0) = AΥ,

with

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
k0 k1 k2 · · · kr

⎞
⎟⎟⎟⎟⎟⎠

Since the closed-loop system is now expressed as the vanishing perturbed
system (3.50), all the tools developed in Section 2.2.3 can be used to study
its stability. For the examples given in Chapters 4 and 5, a specific stability
analysis based on this development is carried out.
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3.5 Comparison with Dynamic Linearization

In this section, we will consider the jet-scheduling control for the special
case pi = ri, i = 1, . . . , m meaning that there are no χ’s involved. In this
case, the jet scheduler (3.13) becomes

y
(ri+1)
i = k0iyi + k1iẏi + ... + kriiy

(ri)
i , i = 1, . . . , m

and the submanifod S degenerates to the point

(yi, ...y
(ri)
i ), i = 1, . . . , m

Because the Assumption 3.1 is trivially satisfied, then the gain K can
be set to 0. Furthermore, since Ξ is always 0, (3.50) reads

Υ̇ = F (Υ, 0) = AΥ, (3.52)

where Υ = (y, ẏ, ..., y(r)). Consequently, (3.52) is a stable linear system ∀t.
Notice that in this case the closed-loop system is linear ∀t and not only
asymptotically as in the general case when p < r.

As described in Chapter 2, dynamic feedback linearization forces the
system ẋ = f(x, u) to be equivalent to

Υ̇ = AΥ, (3.53)

at every time instant. For this reason, we can conclude that dynamic feed-
back linearization is a particular case of the jet-scheduling control where
p = r.

3.6 Example: Linear System

Consider the unstable system A given as(
ẋ1

ẋ2

)
=
(

1 1
2 1

)(
x1

x2

)
+
(

0
1

)
u (3.54)

Construction of jet-scheduling controller

The first step for stabilizing A using the jet-scheduling controller is to check
whether A is flat. Since A is linear and controllable, it follows directly that
A is flat, and the flat output y is given by

y =
(
0 1

)C−1

(
x1

x2

)
= x1,
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where C is the controllability matrix:

C =
(

0 1
1 1

)
.

The second step is to find the functions ϕx and ϕu for which x = ϕx(y, ..., y(r))
and u = ϕu(y, ..., y(r+1)), with r ∈ Z. For this purpose, the flat output y is
differentiated:

y = x1

ẏ = ẋ1 = x1 + x2 (3.55)
ÿ = ẋ1 + ẋ2 = 3x1 + 2x2 + u

The three equations (3.55) are easily solved for x1, x2 and u, which deter-
mines ϕx and ϕu. Notice that r = 1 in this example:

x1 = ϕx1(y, ẏ) = y

x2 = ϕx2(y, ẏ) = ẏ − y

u = ϕu(y, ẏ, ÿ) = ÿ − 2ẏ − y

The third step consists in fixing the jet scheduler. For r = 1, the jet
scheduler is

χ̇ = −k2y − 2kχ (3.56)

The last step is the synthesis of the input u. As described in Section 3.3.4,
the state x needs to converge to ϕx(y, χ, ..., χ(r−1)) that corresponds to the
ideal state specified by the jet scheduler. In our case, the states x1 and x2

should converge to ϕx1(y, χ) and ϕx2(y, χ), respectively. Since ϕx1(y, χ) =
y = x1, the convergence of x1 to ϕx1(y, ẏ) is always guaranteed. This is no
longer the case for x2. The convergence of x2 to ϕx2(y, χ) must be enforced
by u. For this reason, u contains two terms. The first one, ϕu(y, χ, χ̇),
is imposed directly by the jet scheduler, while the second one, −kp(x2 −
ϕx2(y, χ)), leads to the convergence of x2 to ϕx2(y, χ). Notice that the
second term is a proportional term. Consequently, u is given by

u = ϕu(y, χ, χ̇) − kp(x2 − ϕx2(y, χ))
= χ̇ − 2χ − y − kp(x2 − (χ − y)) (3.57)
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Finally, the system A (3.54) controlled by the jet scheduler (3.56)-(3.57),
can be rewritten as⎛

⎝ẋ1

ẋ2

χ̇

⎞
⎠ =

⎛
⎝ 1 1 0
−k2 − kp + 1 1 − kp −2k + kp − 2

−k2 0 −2k

⎞
⎠
⎛
⎝x1

x2

χ

⎞
⎠ (3.58)

The poles of the closed-loop system (3.58) are λ = {−k,−k, 2 − kp}, i.e. it
is globally exponentially stable for kp > 2.

Comparison with a static state-feedback controller

Next, the jet-scheduling controller is compared with a static state-feedback
controller designed using a pole-placement technique. For the jet-scheduling
controller and the static state-feedback controller to share the same domi-
nant poles −k, the static state-feedback controller is chosen as

u =
(
3 + 2k + k2 2 + 2k

)(x1

x2

)
(3.59)

Of course, both the jet-scheduling and the static state-feedback con-
troller stabilize A. However, considering a parametric uncertainty on A,
the robustness of both controllers may be different. Let us consider the
perturbed system Ap:(

ẋ1

ẋ2

)
=
(

1 1
2 c

)(
x1

x2

)
+
(

0
1

)
u, (3.60)

where c ∈ R is a parameter subject to uncertainty.
Both the jet-scheduling and the static state-feedback controllers designed

for the nominal system A are applied to Ap. In order to compare robustness,
the poles of the closed-loop system are computed for both controllers. In
Figure 3.8, the largest pole of the closed-loop system is given as a function of
c. The parameter k, which imposes the desired dynamics, is fixed at k = 1
for both controllers. The dashed line represents the static state-feedback
controller, while the solid lines represent the jet-scheduling controller with
kp = 5 and kp = 10. For the same dominant dynamics (k = 1), the jet-
scheduling controller uses its extra degree of freedom kp to deal with the
uncertainty. Increasing kp, leads to a larger uncertainty being tolerated by
the controller, without loss of stability. However, in practice, using a kp

that is too large can amplify the measured noise.
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max(λi)

Figure 3.8: Robustness comparison: Jet-scheduling (solid lines) vs a static
state-feedback controller(dashed line). In this case k = 1. The λi are the
poles of the closed-loop system. Using a static state-feedback controller, the
stability is guaranteed as long as the perturbation term c is smaller than 3.
Thanks to its extra degree of freedom kp, the jet-scheduling controller leads
to a larger tolerance.

3.7 Conclusions

The flatness property implies the existence of correspondences between the
state and original input and the flat output. These correspondences are
given as functions of the flat output and a finite number of its time deriva-
tives. These functions are used to define the jet-scheduling mechanism.

Instead of using fixed polynomials to express the input and the state, a
dynamical system (called the jet scheduler) expresses the desired values of
some of the higher derivatives of the flat outputs in terms of the measured
values in terms of the measured values of the lower derivatives of the flat
outputs. This allows appropriate reaction to possible perturbation.

Once the jets are scheduled, they need to be matched by the true sys-
tem. This is achieved using a reduced-order controller. This controller
was designed through a dimensional reduction induced by the prolongated
structure appearing in the S submanifold defined in Section 3.3.4. In more
colloquial language, the appearance of the derivatives of the input (in the
general dynamical extension needed to convert the nonlinear system to a
linear and controllable form) could be by-passed simply by directly using
the input to force the true jets to match the ones generated by the jet sched-
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uler. This is meaningful from a physical point of view as will be illustrated
in forthcoming chapters. Roughly stated, the input is simply used to force
parts of the nonlinear system to parts corresponding to the jets, and this
does not require the use of a dynamical extension. Nevertheless, the jet
scheduler is still mandatory since it acts as a dynamical extension in its
own way.

One of the main advantages of this method is that the feedback is sep-
arated between (i) the way the jets are rescheduled (normally according to
a given dominant rate that is rather small so as to generate a smooth reac-
tion), and (ii) the way they are tracked (using the reduced-order controller).
The tracking can be vigorous, achieved with relative high gain, without dis-
turbing the dominant convergence rate. The possibility of using large gains
will be seen to be very useful to take into account unknown dynamics that
appear in practice (for instance certain aspects of the steering particularities
for nonholonomic robotic systems or the winching mechanism in cranes).

This methodology left two open questions, namely the choice of p and
the precise design of the low-order controller. Both these issues will be
addressed through two specific examples, the first one concerned with the
class of nonholonomic robots and the second dealing with the entire class
of cranes.



54 CHAPTER 3. JET-SCHEDULING CONTROL



Chapter 4

Application to Mobile Robots

4.1 Introduction

The behavior of the jet-scheduling controller, developed in Chapter 3, will
be illustrated on a nonholonomic mobile robot. In fact, we already used
— without explicit mention — the model of a nonholonomic robot. It is
now detailed and expanded so as to apply the complete methodology in
simulation and in real time on a laboratory-scale setup.

Over the last 25 years, the nonholonomic mobile robot has been used
as an illustrative example for the control and stabilization of nonholonomic
dynamic systems [6, 1, 11, 19, 45, 51, 68]. As is now well known from
Brockett’s theorem on necessary conditions for stability [8], the main diffi-
culty in controlling nonholonomic systems is that there exists no continuous
time-invariant state-feedback control law that asymptotically stabilizes the
system at any equilibrium point of interest. Due to the existence of vari-
ous necessary conditions for local smooth stabilization (Brockett’s condition
[8]; Zabczyk’s condition [81], see also [75] and [69]), the tracking problem is
much easier than the stabilization one. Moreover, it is even sometimes ad-
vantageous to consider path following instead of trajectory tracking ([72]).
The difference lies in the parametrization of the point locus. In the case of a
trajectory, points are parametrized as functions of time, whereas for a path,
points are parametrized by the choice of a curvilinear coordinate. Thanks to
the jet-scheduling control method developed in the previous chapter, both
the trajectory-tracking and point-stabilization problems are addressed us-
ing a unified methodology. Note that the methodologies proposing a unique
controller for both asymptotic stabilization and tracking are in fact rare

55
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[65, 22, 21, 76].

In the literature, the trajectory-tracking problem is dealt with in many
different ways, which fall into three main categories: (i) Linearization-based
tracking as in [27, 46, 78]; (ii) input-output linearization [62]; (iii) Dynamic
feedback linearization [65], [12] and differential flatness [10, 33, 68]. Regard-
ing the globality issue, control laws for global tracking have been proposed
in [20, 45, 65, 73].

In the case of the linearization-based tracking approaches in the first
category, discontinuous controllers can be extremely sensitive to actuator
noise, and their robust redesign is a technically difficult issue that needs
further investigation [3]. Some preliminary results are available for a class
of nonholonomic systems with uncertainties [44, 6].

Regarding the input-output linearization schemes in the second category,
a major shortcoming of the smooth time-varying feedback controllers is that
the closed-loop system is only asymptotically stable at the origin with no
guarantee of exponential stability [66, 72]. Nevertheless, it should be men-
tioned that exponential convergence can be achieved for a class of nonholo-
nomic systems by means of Lipschitz continuous homogeneous time-varying
feedback. However, as was shown in [44], homogeneous feedback laws often
do not guarantee stability in the presence of even small disturbances.

As far as the third category of feedback laws is concerned, the techniques
belong to two subclasses: a) dynamic feedback linearization [65], and b)
feedforward control based on flatness [34, 35, 68].

This chapter is organized as follows. Section 4.2 presents some pre-
liminary material about mobile robot modeling, flatness and dynamic feed-
back linearization. The jet-scheduling controller is developed in Section 4.3;
asymptotic convergence to a point will be treated first, followed by its ex-
tension to trajectory tracking. Section 4.4 illustrates, through simulation,
the effectiveness of the proposed control scheme. In Section 4.5, the proofs
of stability are detailed. In Section 4.6, the autonomous mobile robot Fouzy
III is described, and some experimental results for exponential convergence
and tracking are given. Section 4.7 concludes the chapter.
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4.2 Preliminaries

Four-quadrant arc tangent function

In this chapter, the well-known, four-quadrant arc tangent function arctan
is used. arctan is defined as a function from R × R to (−π, π)

arctan(χ1, χ2)
.=

⎧⎪⎨
⎪⎩

−i ln( χ1+iχ2√
χ2

1+χ2
2

) (χ1, χ2) 	= (0, 0)

0 (χ1, χ2) = (0, 0)
(4.1)
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Figure 4.1: Illustration of the four-quadrant arc tangent function. The
roman numerals indicate the corresponding quadrant.

As illustrated in Figure 4.1, arctan exhibits a strong discontinuity on
the set {χ2 = 0, χ1 < 0} as a 2π “jump” occurs when the set is reached.

Nonholonomic mobile robot

Consider a mobile robot moving on a planar surface as illustrated in Figure
4.2. Its kinematic equations of motion, which have already been used in
Example 3.1 are given by:

ẋ1 = u1 cos(x3) (4.2)
ẋ2 = u1 sin(x3) (4.3)
ẋ3 = u2, (4.4)
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where u1 and u2 are the inputs representing the linear and angular veloci-

u2

u1

x2

x1

x3

Figure 4.2: Illustration of the mobile robot with the positions x1, x2 and
heading angle x3.

ties, respectively. The coordinates x1 and x2 denote the robot position on
the plane, while x3 indicates its orientation, i.e. the angle measured from
the x1-axis.

Structural difficulty in controlling a nonholonomic mobile robot

The stabilization of a nonholonomic mobile robot exhibits intrinsic difficul-
ties due to the nonholonomy. These difficulties are presented below.

The first difficulty is that the control of a nonholonomic mobile robot is
an intrinsic nonlinear problem, in the sense that it is not possible to use the
linearized model in order to synthesize a stabilizing controller. Indeed, the
linearized approximation ẋ = Ax + Bu to the robot (4.2)-(4.4) is given by

A =
∂f

∂x

∣∣∣∣
x=0,u=0

=

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠ B =

∂f

∂u

∣∣∣∣
x=0,u=0

=

⎛
⎝ 1 0

0 0
0 1

⎞
⎠ ,
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with ẋ = f(x, u) = f(x1, x2, x3, u1, u2) = (u1 cosx3, u1 sin x3, u2)T . It fol-
lows that the rank of controllability matrix

C =
(

B AB A2B
)

=

⎛
⎝ 1 0 0 0 0 0

0 0 0 0 0 0
0 1 0 0 0 0

⎞
⎠

is 2, thus indicating that the linearized model is uncontrollable. This il-
lustrates that a controller based on the linearized approximation cannot be
found.

Notice that the uncontrollability of the linearized model does not mean
that the mobile robot (4.2)-(4.4) is uncontrollable. Indeed, rewriting the
system (4.2)-(4.4) as

ẋ = g1(x)u1 + g2(x)u2

with g1(x) = (cos(x3), sin(x3), 0)T and g2(x) = (0, 0, 1)T , it is possible to
compute the rank of the accessibility matrix as

rank(g1, g2, [g1, g2]).

It is easy to verify that the accessibility rank condition is globally satisfied.
As the system is driftless, this guarantees its controllability although in a
nonlinear sense.

The second difficulty is that there does not exist a time-invariant C1

feedback that stabilizes the nonholonomic robot. Hence, a stabilizing con-
troller needs to be discontinuous or time varying, which means that the
construction of such a control law is awkward.

In order to discuss this assertion, Brockett’s and Zabczyk’s necessary
conditions are recalled. The system ẋ = f(x, u), where f : R

n × R
m → R

n

is continuous, is considered. The system is said C1 stabilizable if there exists
a time-invariant C1 feedback law that makes the equilibrium point x = 0
an attractor around which the system is Lyapunov stable.

Theorem 4.1 (Brockett’s Necessary Condition [8])
If ẋ = f(x, u) is C1 stabilizable, then the image of f contains an open
neighborhood of 0.

The contrapositive is usually invoked to show the impossibility of using
a smooth time-invariant feedback law to stabilize the system. However, this
might not be sufficient at times. The following condition gives a stronger
contrapositive.
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Theorem 4.2 (Zabczyk’s Necessary Condition [81])
If ẋ = f(x, u) is C1 stabilizable, then f transforms an arbitrary neighborhood
of (0, 0) in R

n × R
m onto a neighborhood of 0 in R

n.

Lemma 4.1 The nonholonomic robot (4.2)-(4.4), although satisfying Brock-
ett’s condition, does not satisfy Zabczyk’s condition. This means that there
does not exist a time-invariant C1 feedback that stabilizes the nonholonomic
robot.

Proof: No matter how εi ∈ R, i = 1, 2, 3, are chosen, it is always
possible to find ū1, ū2 and x̄3 such that ū1 cos x̄3 = ε1, ū1 sin x̄3 = ε2,
ū2 = ε3. Therefore, the condition of Theorem 4.1 is satisfied (with f(x, u) =
f(x1, x2, x3, u1, u2) = (u1 cosx3, u1 sin x3, u2)T ). Now pick an ε ∈ R, 0 <
ε < π

2 , and consider the following neighborhood of (0, 0):

O = (−1, 1)× (−1, 1) × (−ε; ε) × (−1, 1)× (−1, 1). (4.5)

The image of this neighborhood results in two opposite “slices of cake”:

f(O) = {x1, x2, x3 | x1 = δ cosμ,

x2 = δ sinμ, x3 ∈ (−1, 1)}
∀μ ∈ (−ε, ε) ∀δ ∈ (−1, 1),

which do not constitute a neighborhood of 0, i.e. no matter how small ε > 0
is chosen, (0, ε, 0)T is not in the image of the map f(x, u)). Hence, using
the contraposition of Theorem 4.2, the conclusion follows.

Flatness

It is shown next that the mobile robot (4.2)-(4.4) is a flat system. Choosing
x1 and x2 as the flat outputs, i.e. y = (x1, x2)T , and using (4.2) and (4.3),
x3 can be expressed as:

x3 = arctan(ẋ1, ẋ2) + βπ β = 0, 1 (4.6)

Furthermore, the inputs u1 and u2 become:

u1 = (−1)β
√

ẋ2
1 + ẋ2

2 β = 0, 1 (4.7)

u2 =
ẋ1ẍ2 − ẋ2ẍ1

ẋ2
1 + ẋ2

2

. (4.8)

In view of (4.6)-(4.8), the mobile robot model is differentially flat according
to Definition 2.7.



4.2. PRELIMINARIES 61

Remark 4.1 Notice that the correspondence becomes singular when ẋ1 =
ẋ2 = 0. Formally, the robot is not flat around such a point or trajectory. As
will be seen in Section 4.3.1, this is a consequence of the contraposition of
Zabczyk’s condition being satisfied. Nevertheless, it is still possible to apply
the flatness arguments outside the singularity set, as will be seen in Section
4.3. A similar singularity occurs for dynamic feedback linearization.

Dynamic Feedback Linearization

Consider the system

ẋ = f(x, u) x ∈ R
n, u ∈ R

m. (4.9)

As explained in Section 2.1.5, dynamic feedback linearization consists in
finding a feedback compensator of the form:

γ̇ = φ(x, γ, w)
u = ϕ(x, γ, w) (4.10)

with a dynamic extension γ ∈ R
ν and an input w ∈ R

m such that the
closed-loop system obtained from (4.9) and (4.10) is equivalent to a linear
system under the state transformation y = T (x, γ), with w acting as the
new input.

In [65], a controller based on dynamic feedback linearization is proposed
for the mobile robot (4.2)-(4.4). The compensator reads

γ̇ = w1 cos(x3) + w2 sin(x3) (4.11)
u1 = γ (4.12)

u2 =
w2 cos(x3) − w1 sin(x3)

γ
. (4.13)

The closed-loop system formed by (4.2)-(4.4) and (4.11)-(4.13) is equivalent
to two chains each of two integrators, for which the inputs are w1 and w2,
respectively. A classical linear controller can then be designed to control this
equivalent linear system. It is shown that this method gives good results in
stabilization and trajectory tracking.

Remark 4.2 When γ = 0, (4.13) becomes singular. To avoid singularity
throughout the convergence process, it is proposed to reset the initial condi-
tion γ(0) whenever γ becomes small [65]. This is done in real-time.
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4.3 Jet-Scheduling Control for a Mobile Robot

In this section, the application of the jet scheduling controller methodology
(see Section 3.3.4 ) will be exposed.

Two types of point-stabilization controllers are presented in Section 4.3.1
(together with relevant convergence properties), namely a smooth feedback
and a discontinuous feedback. Both controllers are based on the afore-
mentioned asymptotic linear-equivalence idea. The trajectory-tracking con-
troller is then a straightforward adaptation of this point-stabilization con-
troller, however with an additional difficulty in the convergence proof, which
is presented in Section 4.3.2.

4.3.1 Point stabilization

As stated in Lemma 4.1, it is not possible to achieve point stabilization
using a smooth feedback law.

Nonetheless, two options are available to overcome this difficulty (these
options are also given in [65]). One is to slightly modify the stabiliza-
tion problem by requiring convergence of all states to zero except for the
robot heading angle. By appropriate choice of the controller for the linear
equivalent system, it is possible to compel the heading angle to only a few
asymptotic values that will depend on the initial conditions (mainly 0 or π,
see below). This can be satisfactory for most practical circumstances.

The second option is to use a discontinuous controller. An intricate
analysis of the linear equivalent system (see Lemma 4.11 below) shows that
the initial conditions can be split into two connected symmetrical regions
(one inducing convergence to 0 and the other to π) separated by a thin
boundary made up of two connected regions (one associated with −π

2 and
the other with π

2 ).
To construct a convenient discontinuous controller (leading to the con-

vergence of the heading angle to zero, irrespective of the initial conditions),
the symmetry of the initial conditions on each side of the partition is used
to switch between two symmetrical controllers of the type described earlier.
The switching depends on which side of the partition the state belongs to.
This introduces the needed discontinuity. Additionally, by properly adjust-
ing the initial conditions of the dynamic extension — this represents one of
the advantages of using a two-dimensional state extension — it is possible
to avoid the undesirable states that induce convergence to −π

2 or π
2 .

The jet-scheduling controller, which corresponds to a smooth controller,
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is presented first, together with a proof of convergence. Then, a discontin-
uous controller will be addressed.

Jet-scheduling controller

This section deals with the construction of a jet-scheduling controller for
the mobile robot using the results of Chapter 3. Except for a singularity
set called “the exceptional set”, the jet-scheduling controller is capable of
achieving the type of convergence described in the previous section. This is
a slight modification of classical asymptotic stabilization, where all states
are required to converge asymptotically to zero. Here, all states except
the heading angle converge to zero. The heading angle is restricted to four
different values, mainly 0 and π with the added possibilities of the asmptotic
values −π

2 , π
2 occuring for a small set of initial conditions. The study of the

exceptional set is described in Section 4.5.
As shown in Section 4.2, the mobile robot is flat with the flat output

y = (x1, x2)T , and the state x of the mobile robot is given by

x =

⎛
⎝x1

x2

x3

⎞
⎠ = ϕx(y, ẏ) =

⎛
⎝ y1

y2

arctan(ẏ1, ẏ2)

⎞
⎠

Since r = 1 and setting p = 0, the jet scheduler (3.13) becomes

χ̇1 = k1x1 + k2χ1 (4.14)
χ̇2 = k3x2 + k4χ2. (4.15)

Then, a control law capable of tracking the scheduled jets χ1 and χ2

is synthesized using the methodology proposed in Section 3.3.4. Since the
mobile robot (4.2)-(4.4) corresponds to the system studied in Example 3.1
and 3.2, the control law developed in these examples can be used. Therefore,
using (3.44) and (3.45), the jet-scheduling control for the mobile robot is

u1 =
√

χ2
1 + χ2

2 (4.16)

u2 =
χ̇2χ1 − χ2χ̇1

χ2
1 + χ2

2

− kp(x3 − arctan(χ1, χ2)) (4.17)

χ̇1 = k1x1 + k2χ1 (4.18)
χ̇2 = k3x2 + k4χ2, (4.19)
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Jet scheduling can be interpreted as a velocity scheduling where χ1 and
χ2 are the ideal translational velocities (i.e. the ideal values for ẋ1 and ẋ2)
that the robot should have (see Figure 4.3). To achieve asymptotic con-
vergence to the desired final position, it is necessary to both schedule ade-
quately these ideal velocities and steer the robot angle x3 accordingly. The
scheduler updates the ideal velocities based on the current robot position
(the scheduler is given in (4.14) and (4.15)). The input u2 is set as the output
of a proportional controller that makes x3 converge to x̂3 = arctan(χ1, χ2).

„
ẋ1

ẋ2

«

„
χ1

χ2

«
0

Figure 4.3: The scheduler provides a reference velocity (χ1, χ2)T , which is
the “ideal” velocity to lead the robot to the origin. Thanks to the input u2,
the real velocity (ẋ1, ẋ2)T of the mobile robot converges to (χ1, χ2)T .

The interplay between the controller and the mobile robot ensures asymp-
totic convergence as stated in the following proposition.

Proposition 4.1 Choose the controller gains ki, 1 � i � 4, such that the

poles r1=
k2+

√
4k1+k2

2
2 , r2=

k2−
√

4k1+k2
2

2 , r3=
k4+

√
4k3+k2

4
2 , r4=

k4−
√

4k3+k2
4

2
are negative real, and consider the system (4.2)-(4.4) together with the fol-
lowing controller:

u1 =
√

χ2
1 + χ2

2 (4.20)

u2 =
χ̇2χ1 − χ2χ̇1

χ2
1 + χ2

2

− kp(x̄3 − arctan(χ1, χ2)), (4.21)

χ̇1 = k1x1 + k2χ1 (4.22)
χ̇2 = k3x2 + k4χ2, (4.23)
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where x̄3 is given as x̄3 = x3 + 2kπ with k a discrete state determined as
follows: k is initialized at zero and updated at specific time instants. Let ti
denote any time instant for which the system states are such that χ1(ti) < 0
and χ2(ti) = 0. Then, update k according to the following rule:

k := k − 1 if χ̇2(ti) < 0
k := k + 1 if χ̇2(ti) > 0
k := k + sgn (k3 sin x3(ti)) if x2(ti) = 0. (4.24)

Under these conditions, x1 and x2 converge to the origin exponentially.
Moreover, when the poles are such that r1 = r2, r3 = r4 and r1 > r3,
x3 converges to one of four values, namely 0 + 2kπ, π + 2kπ, π

2 + 2kπ
and −π

2 + 2kπ. Therefore, the initial conditions become partitioned into
four distinct sets depending on the asymptotic value of their corresponding
trajectory, namely the sets of initial conditions X0, Xπ, Xπ

2
, and X−π

2
.

The proof of this proposition is given in Section 4.5.5 and is based on
lemmas given in Sections 4.5.1-4.5.3. A short guide through these results is
provided in Section 4.5.

Remark 4.3 The final heading angle is determined by the rate of conver-
gence of the controlled linear equivalent system. The precise statement is
given in Lemma 4.12 in Section 4.5.3 and can be summarized as follows. It
follows from x3 = arctan (ẋ1, ẋ2) that the heading angle x3 is determined by
appropriate trajectories for x1 and x2. If a faster pole is chosen for x2 than
for x1, i.e. x2 approaches zero faster than x1, the robot reaches the origin
with a horizontal tangent (x3 = 0 + 2kπ or π + 2kπ).

Remark 4.4 Xπ
2
, and X−π

2
are unusual sets in the sense that they repre-

sent much smaller regions of initial conditions than X0 and Xπ. A charac-
terization of these sets is given in Lemma 4.13. Moreover, it will be seen
that it is always possible to set the initial conditions χ1(0) and χ2(0) so as to
avoid these sets. Therefore, upon this modification, the proposed controller
converges to either 0 + 2kπ or π + 2kπ.

Remark 4.5 The controller is a smooth controller except when the excep-
tional set defined by the simultaneous vanishing of χ1 and χ2 is visited.
Smoothness is ensured along the discontinuity of the arctan function (tran-
sition set) despite the hard discontinuity of the arctan function. The update
involving the parameter k guarantees the required smoothness by ensuring
continuity when crossing between the second and third quadrants.
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Remark 4.6 The expression (4.21) for u2 contains two terms. The second
one, −kp(x̄3 − arctan(χ1, χ2)) is never singular (as long as arctan(0, 0) is
defined to be 0), whereas the first one becomes singular when χ1 and χ2

go to zero simultaneously. The first term is not really necessary to achieve
convergence as long as kp is chosen sufficiently large (as will be seen in
Section 4.6), but it is very useful for ensuring the asymptotic behavior of
the controller, i.e. it guarantees asymptotic convergence for all values of
kp. Moreover, as shown in Section 4.5.2, the singularity does not cause any
hindrance in achieving asymptotic convergence.

Remark 4.7 As with the controller proposed in [65], x3 is determined mod-
ulo 2π. Therefore, depending on the initial value of k, the final angle is a
multiple of 2π and the final value depends on the entire closed-loop dynam-
ics. It is not possible to know a priori the number of times k will be updated.
However, under the additional condition that kp is chosen large enough, it
is possible to both replace x̄3 by x3 in equation (4.21) and suppress the k
parameter.

Unfortunately, Remark 4.7 cannot be turned into a proposition for all
initial conditions. This is discussed in detail after the proof of Proposition
4.1, since it relies on the whole machinery presented in Section 4.5. Nev-
ertheless, the modification proposed in Remark 4.7 is illustrated through
simulation in Section 4.4.2.

Robustness property

The proportion term −kp(x̄3 − arctan(χ1, χ2)) appearing in (4.21) is an
added benefit of the jet-scheduling methodology over classical dynamical
feedback. For this nonholonomic robot, it helps in rejecting constant dis-
turbances on the rotational axis that might appear in practice. This the
case, when the robot is equipped with a radar consisting of a rotary turret
that operates at contstant angular velocity. Indeed, viscous friction inher-
ent to this device induces a constant torque that must be rejected. To take
into account this disturbance, the robot model is modified to

ẋ1 = u1 cosx3

ẋ2 = u1 sin x3 (4.25)
ẋ3 = u2 + δ,

where δ is a constant but unknown disturbance term. We have the following
proposition whose proof is positioned to Section 4.5
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Proposition 4.2 Let the hypothesis and the controller be as in Proposition
4.1. Moreover, consider the system (4.25) together with this controller.
Under these conditions both x1 and x2 converge to 0 exponentially as long
as kp is chosen sufficiently large. Moreover, when the poles are such that
r1 = r2, r3 = r4 and r1 > r3, x3 converges to one of two values, namely
0 + 2kπ + δ

kp , π + 2kπ + δ
kp .

Proof: The proof is postponed to Section 4.5.

Discontinuous controller

By toggling between two symmetrical smooth controllers, according to a
switching parameter β, it is possible to introduce a suitable discontinuity in
the controller and address Zabczyk’s topological obstruction. Notice that
this controller still does not achieve Lyapunov asymptotic stability, but it
nevertheless guarantees that all states converge to zero except x3 which
converges to 0 + 2kπ.

Remark 4.8 A discontinuous controller is obtained upon replacing Equa-
tions (4.20) and (4.21) by the following two equations

u1 = (−1)β
√

χ2
1 + χ2

2 (4.26)

u2 =
χ̇2χ1 − χ2χ̇1

χ2
1 + χ2

2

−kp(x̄3 − arctan(χ1, χ2) + βπ), (4.27)

and setting β = 0 (forward motion) or β = 1 (backward motion) according
to a suitable switching rule.

When (x̄3 − arctan(χ1, χ2) = 0, Lemma 4.2 in Section 4.5.1 shows that
the nonlinear dynamics are equivalent to linear ones. According to Lemma
4.11 in Section 4.5.3, the final converged values of these linear dynamics
are fully characterized by the initial conditions. Now, using a singular per-
turbation argument (as kp → ∞), the states can be separated into a fast
variable ξ and slow variables x1, χ1, x2, and χ2. It is reasonable to expect
that, since the linear system is perfectly determined by its initial conditions,
the topologies of X0 and Xπ should converge to those of the linear system
as kp tends to infinity. This would mean that it is possible to adapt the β
parameter based on the partition of the initial conditions to which the state
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belongs. This leads to the following conjecture concerning the switching
rule.

Conjecture 2 The discontinuous controller (4.26)-(4.27), together with
the switching law

β = 1 for − r1x1(t) + χ1(t) ≥ 0
β = 0 for − r1x1(t) + χ1(t) < 0,

makes the states of both the system (4.2-4.4) and the dynamic state exten-
sion (4.22) and (4.23) converge to the origin.

Unfortunately, this conjecture is false, in general, even for large values
of kp. The reason is that a Zeno-like phenomenon (that is, a very large
number of switchings during a small interval of time) cannot be excluded.
This indeed occurs in practice and will be illustrated in the simulation
section. Nevertheless, it is possible to modify the switching rule by simply
waiting a prescribed amount of time before changing the mode according to
the above rule. This results in the following transition policy:

Algorithm 1 Let β be an integer variable equal to 0 or 1. Let tβ ∈ R

denote the time at which the last transition (i.e. change in β) took place.
Also, let Tβ ∈ R denote a parameter.
Initialization: Set tβ = 0. If −r1x1(t) + χ1(t) ≥ 0 then set β := 0 else
β := 1.
Induction: while t < ∞ do

• if −r1x1(t) + χ1(t) < 0 and (t − tβ) > Tβ then set both β := 1 and
tβ := t.

• if −r1x1(t) + χ1(t) ≥ 0 and (t − tβ) > Tβ then set both β := 0 and
tβ := t.

• Set the inputs u1 and u2 according to expressions (4.26) and (4.27).

Conjecture 3 If

1. ξ(t) = 0 and −r1x1(t) + χ1(t) = 0 do not hold simultaneously, and

2. Tβ is sufficiently large,

Algorithm 1 ensures asymptotic convergence of x1, x2, χ1, χ2 and x3 to
0 + 2kπ.
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Conjecture 4 Setting χ1(0) so that −r1x1(0) + χ1(0) 	= 0 guarantees that
Assumption 1 of Conjecture 3 is always satisfied.

This update policy removes the Zeno phenomenon as will be illustrated
in the simulation section. Contrary to Conjecture 2, the last two conjectures
have not been invalidated.

4.3.2 Trajectory tracking

The result obtained in Section 4.3.1 can be extended to trajectory tracking.
In this case, the controller in Proposition 4.1 becomes:

u1 =
√

χ2
1 + χ2

2 (4.28)

u2 =
χ̇2χ1 − χ̇1χ2

χ2
1 + χ2

2

− kp(x3 − arctan(χ1, χ2)) (4.29)

χ̇1 = k1ex1 + k2eχ1 + ẍ1ref (4.30)
χ̇2 = k3ex2 + k4eχ2 + ẍ2ref (4.31)

Here x1ref and x2ref are the reference trajectories for x1 and x2, respec-
tively. The error variables are defined as:

ex1
�
= x1 − x1ref (4.32)

ex2
�
= x2 − x2ref (4.33)

eχ1
�
= χ1 − ẋ1ref (4.34)

eχ2
�
= χ2 − ẋ2ref (4.35)

With (4.32)-(4.33), the system (4.2)-(4.4) can be rewritten as:

ėx1 = u1 cos(x3) − ẋ1ref (4.36)
ėx2 = u1 sin(x3) − ẋ2ref (4.37)
ẋ3 = u2 (4.38)

Proposition 4.3 Consider the system (4.36) - (4.38) with the controller
(4.28) - (4.31). Assume that the controller is such that the poles r1=
k2+

√
4k1+k2

2
2 , r2=

k2−
√

4k1+k2
2

2 , r3=
k4+

√
4k3+k2

4
2 , r4=

k4−
√

4k3+k2
4

2 are nega-
tive and real. Then, x1 and x2 converge to x1ref and x2ref exponentially.
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The proof can be found in Section 4.5.5.

Remark 4.9 Trajectory tracking is easier than point stabilization since,
locally around a trajectory, u1 is almost always different from 0. This way,
the singularity is avoided and local linear controllability along the trajectory
can be guaranteed.

4.4 Simulation Study

In this section, the behavior of the controllers for both stabilization at the
origin and trajectory tracking is tested and compared to that of dynamic
feedback linearization in order to illustrate the theoretical results of Section
4.3.

4.4.1 Stabilization at the origin

The stabilizing behavior of the velocity-scheduling controller is tested first.
The goal is to bring the mobile robot to the origin, i.e. x1 = 0, x2 = 0. The
initial conditions and controller parameters are given in Table 4.1.

The first simulation is carried out without disturbance on the rotational
axis of the robot. The results are shown in Figure 4.4. The trajectories for
dynamic feedback linearization and velocity-scheduling control are similar,
and all states converge adequately to the origin.

For the second experiment, the robot model is modified to

ẋ1 = u1 cosx3

ẋ2 = u1 sin x3

ẋ3 = u2 + δ,

where δ is a constant but unknown disturbance term. For the value δ = 1,
the stabilization results are given in Figure 4.5. Although all translational
positions go to zero in both cases, dynamic feedback linearization cannot
handle the disturbance along the rotational axis, and the robot keeps turn-
ing on itself. In contrast, the velocity-scheduling controller ensures robust
convergence to the origin.

The improvement can be explained as follows: Setting u2 according
to Proposition 4.1 leads to ξ̇ = −kpξ + δ. Therefore, ξ converges to a
constant value, that can be made as small as desired by increasing the gain
kp, thereby leading to arbitrary boundedness in ξ. It follows from total
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Figure 4.4: Stabilization at the origin for the case of no disturbance on the
rotational axis: Dynamic feedback linearization (solid line) and velocity-
scheduling control (dashed line) give nearly the same behavior.

Parameters Values Parameters Values
x1(0) −10 x2(0) 10
χ1(0) 0 χ2(0) 0

kp 10 x3(0) 0
k1 −4 k3 −16
k2 −4 k4 −8

Table 4.1: Initial conditions and controller parameters used in the simula-
tion of stabilization at the origin

stability arguments [40] that the proof of Proposition 4.3 can be adapted to
infer that x1, x2 are also practically stable.

4.4.2 Modification of the smooth controller

It was proposed in Remark 4.7, to change x̄3 to x3 in the controller of
Proposition 4.1 and to suppress the updating mechanism involving k (see



72 CHAPTER 4. APPLICATION TO MOBILE ROBOTS

−10 −5 0 5 
−2

0

2

4

6

8

10

12

0 5 10 15 
−10

−5

0

5

0 5 10 15 
0

5

10

15

20

0 5 10 15 
−20

0

20

40

u2

u1

x2

x1

x3

t [s]

Figure 4.5: Stabilization at the origin for the case of a constant disturbance
acting on the rotational axis of the robot: Dynamic feedback linearization
cannot reject it (solid line), while velocity-scheduling control guarantees
robust convergence.

also Conjecture 5 in Section 4.5.5). A simulation for the conditions given in
Table 4.2 provides the results given in Figure 4.6. Thanks to the modifica-
tion, the robot unwinds completely so that the angle x3 goes to 0 exactly.

However, there are initial conditions for which the convergence of x3

is prevented by a rapid succession of jumps along the discontinuity of the
arctangent function. This is illustrated in Figure 4.7 and explained in de-
tail after Conjecture 5. Nevertheless, increasing kp allows induction of a
satisfactory convergence of x3 for the same initial conditions (Figure 4.8).
Despite this improvement, it is still not possible to guarantee convergence
for any initial condition since, for this new value of kp, it is possible to find
a particular set of initial conditions leading to a similar oscillatory behavior
as the one illustrated in Figure 4.7.

It is important to underline that using the smooth controller, the ini-
tial conditions can be chosen so that the robot converges to ±π. This is
illustrated in Figure 4.9 and the initial conditions are given in Table 4.5.
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Figure 4.6: Stabilization at the origin with the modified smooth controller:
Using the controller proposed in Remark 4.7, i.e. x̄3 is changed to x3, the
robot unwinds completely from 50 rad to 0.

Parameters Values Parameters Values
x1(0) −10 x2(0) 10
χ1(0) 0 χ2(0) 0

kp 10 x3(0) 50
k1 −4 k3 −16
k2 −4 k4 −8

Table 4.2: Initial conditions and controller parameters used in the simula-
tion illustrated in Figure 4.6

4.4.3 Discontinuous controller

The discontinuous controller presented in Section 4.3.1 brings the final head-
ing angle correctly to the desired asymptotic value of 0 (Figure 4.10).

However, there exist initial conditions that can induce rapid switchings
between the two modes β = 0 and β = 1. This phenomenon, called the
Zeno effect, is illustrated in Figure 4.11. The corrective action, detailed
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Figure 4.7: Stabilization at the origin with the modified smooth controller:
Using the controller proposed in Remark 4.7, there are initial conditions for
which the convergence of x3 is prevented by a rapid succession of jumps
along the discontinuity of the arctangent function.

Parameters Values Parameters Values
x1(0) 10 x2(0) 0.1
χ1(0) 0 χ2(0) 0

kp 10 x3(0) 50
k1 −4 k3 −16
k2 −4 k4 −8

Table 4.3: Initial conditions and controller parameters used in the simula-
tion illustrated in Figure 4.7

in Algorithm 1, consists in waiting for a sufficient amount of time before
changing the mode. This is illustrated in Figure 4.12 for the same “poor”
initial conditions as in Figure 4.11. Clearly, the Zeno effect has disappeared
and the robot correctly converges to the origin.
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Figure 4.8: Stabilization at the origin with the modified smooth controller:
Increasing kp allows induction of satisfactory convergence of x3 for the same
initial conditions as those in Figure 4.7

.

Parameters Values Parameters Values
x1(0) 10 x2(0) 0.1
χ1(0) 0 χ2(0) 0

kp 100 x3(0) 50
k1 −4 k3 −16
k2 −4 k4 −8

Table 4.4: Initial conditions and controller parameters used in the simula-
tion illustrated in Figure 4.8

4.4.4 Circular trajectory tracking

Figure 4.13 illustrates the theoretical development of Section 4.3.2. Velocity-
scheduling control is compared to dynamic feedback linearization. As in [45],
the problem of tracking a circle with a constant velocity is considered. A
circle centered at the origin with a unity radius is defined. As can be seen,
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Figure 4.9: Stabilization at the origin with the modified smooth controller
(i.e. without switching mode): The robot converges to (x1 = 0, x2 = 0),
with a heading angle x3 equal to −π. In a “strict” stabilization problem,
x3 should converge to 0.

Parameters Values Parameters Values
x1(0) 15 x2(0) 10
χ1(0) 0 χ2(0) 0

kp 10 x3(0) 2
k1 −4 k3 −16
k2 −4 k4 −8

Table 4.5: Initial conditions and controller parameters used in the simula-
tion illustrated in Figure 4.9

the robot converges nicely to the trajectory with both dynamic feedback
linearization and velocity-scheduling control. The input u2 is smoother
with velocity-scheduling control than with dynamic feedback linearization.
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Figure 4.10: Stabilization at the origin using a discontinuous controller (i.e.
switching controller): The robot can change its direction, i.e. either forward
or backward motion. In this case, backward motion “u1 < 0” is selected by
the controller since t = 0 . The robot moves to the origin with a heading
angle x3 = 0.

The initial conditions and controller parameters used in the simulation are
given in Table 4.6.

Parameters Values Parameters Values
x1(0) 1 x2(0) 5
x1ref cos(0.2πt) x2ref sin(0.2πt)
x3(0) 0 kp 10
k1 −6 k3 −6
k2 −6 k4 −6

Table 4.6: Initial conditions and controller parameters used in the simula-
tion of circular trajectory tracking
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Figure 4.11: Stabilization at the origin using a discontinuous controller (i.e.
switching controller): With the switching time Tβ chosen equal to zero, the
robot can get stuck in an infinite number of switchings, with no convergence
to the origin.

Similarly to the stabilization problem, the robot model is modified to

ẋ1 = u1 cosx3

ẋ2 = u1 sin x3

ẋ3 = u2 + δ,

where δ is a constant but unknown disturbance term. For the value δ = 3,
the tracking results are given in Figure 4.14. In both cases, the controllers
ensure stability, but the performances are quite different. Velocity schedul-
ing control performs significantly better than dynamic feedback lineariza-
tion. This is due to the fact that there is the additional feedback gain kp at
the user’s disposal. This extra degree of freedom achieves (as in the stabi-
lization problem) practical asymptotic stability, meaning that it is possible
to reduce the tracking error by increasing kp.
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Figure 4.12: Thanks to the delay in the switching time introduced by Tβ, the
infinite number of switchings is avoided. This leads to convergence despite
the same “poor” initial conditions as in Figure 4.11.

4.5 Stability Analysis

This section serves as a guide through the proofs of the lemmas and propo-
sitions given in this section.

Combining the robot equations (4.2)-(4.4) and the dynamic extension
(4.22)-(4.23) with the inputs defined in (4.20)-(4.21) leads to the so-called
Sx3 -system:

ẋ1 =
√

χ2
1 + χ2

2 cosx3 (4.39)

χ̇1 = k1x1 + k2χ1 (4.40)

ẋ2 =
√

χ2
1 + χ2

2 sin x3 (4.41)

χ̇2 = k3x2 + k4χ2 (4.42)

ẋ3 =
χ̇2χ1 − χ2χ̇1

χ2
1 + χ2

2

− kp(x̄3 − arctan(χ1, χ2)). (4.43)
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Figure 4.13: Circular trajectory tracking for the case of no disturbance on
the rotational axis: Both dynamic feedback linearization (solid line) and
velocity-scheduling control (dashed line) achieve good trajectory tracking.

Then, consider the change of coordinates:

ξ = x̄3 − arctan (χ1, χ2) = x3 + 2kπ − arctan (χ1, χ2) , (4.44)

where k is the discrete variable defined in (4.24). Defining the new state
space (x1, χ1, x2, χ2, ξ)T , the Sx3-system (4.39)-(4.43) is equivalent to the
Sξ-system defined as:

ẋ1 =
√

χ2
1 + χ2

2 cos(ξ + arctan(χ1, χ2)) (4.45)

χ̇1 = k1x1 + k2χ1

ẋ2 =
√

χ2
1 + χ2

2 sin(ξ + arctan(χ1, χ2)) (4.46)

χ̇2 = k3x2 + k4χ2

ξ̇ = −kpξ. (4.47)

Equivalence means here that the trajectories of the Sx3-system are in diffeo-
morphic correspondence with those of the Sξ-system. This can be verified
by differentiating the change of coordinates (4.44).
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Figure 4.14: Circular trajectory tracking for the case of a constant dis-
turbance acting on the rotational axis: Velocity-scheduling control (dashed
line) exhibits better performance than dynamic feedback linearization (solid
line).

Since χ1 and χ2 are functions of time, the time derivative of
arctan(χ1(t), χ2(t)) has been studied. Due to the discontinuity, the deriva-
tion is performed using distributions [82]. The time instant t̄i is defined
such that χ1(t̄i) and χ2(t̄i) reach the set D (i.e. {χ2(t̄i) = 0, χ1(t̄i) < 0}).
Consequently, after introducing

B(v, w) =
{

sgn(v) v 	= 0
sgn(k3 sin w) v = 0,

the time derivative of the arctangent function along the closed-loop dynam-
ics becomes

d

dt
arctan(χ1, χ2) =

χ1χ̇2 − χ2χ̇1

χ2
1 + χ2

2

(4.48)

+ 2π

N∑
i=0

B(χ̇2(t), x3(t))δ(t − t̄i),
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where N is the number of incursions in D and δ is the Dirac delta distri-
bution. B(χ̇2(t), x3(t)) is used to determine if the “jump” is positive or
negative.

For this purpose, let us recall that the discrete variable k is updated by
the rules (4.24). Let t̄i denote the time instant at which k is updated. The
differentiation of k(t) can be considered using distributions:

dk(t)
dt

=
N∑

i=0

sgn(χ̇2(t))δ(t − t̄i), (4.49)

where N is the number of switches and δ the Dirac delta distribution. Dif-
ferentiating (4.44) yields

ξ̇ = ẋ3 + 2
dk

dt
π − d arctan (χ1, χ2)

dt
(4.50)

Using (4.48) and (4.49), one notices that the contributions of the Dirac delta
distribution terms are cancelled. It follows that

ξ̇ = ẋ3 − χ̇2χ1 − χ2χ̇1

χ2
1 + χ2

2

(4.51)

Putting (4.44) and (4.51) into (4.43) leads to (4.47).
Section 4.5.1 shows the convergence of the Sξ-system. The states of the

Sξ-system can be decomposed into two sets, Υ =
(
χ1 x1 χ2 x2

)T and
ξ. This gives the structure Υ̇ = F (Υ, ξ) and ξ̇ = −kpξ. It is clear that
the state ξ decreases exponentially to zero. The difficulty lies in establish-
ing the type of convergence for Υ. Lemma 4.2 gives explicitly the value of
F and examines the type of transient behavior of Υ based on the general
Lemma 2.1 that concludes that there is no finite escape time, owing to the
way ξ interconnects inside Υ̇ = F (Υ, ξ) (a growth rate condition is satis-
fied). The asymptotic system F (Υ, 0) is shown to be a linear stable system.
The only difficulty is then to ensure that F (Υ, ξ) eventually converges to
the origin. This is guaranteed by Lemma 4.3. The proof follows lines sim-
ilar to those appearing in the vanishing perturbation case unfolded in [47].
However, the associated Lyapunov function, labelled V0, can be constructed
explicitly. The lemma shows that, after a finite time T , all states of the Sξ-
system are bounded by an exponential, i.e. there exist c1, c2 > 0 such that
‖ (χ ξ

)T ‖ ≤ c1e
−c2t, ∀t > T .
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Now the convergence properties have been established for the Sξ-system,
we can draw our attention to the Sx3-system. Both systems have continuous-
time solutions. This follows from the fact that solutions approaching the
discontinuity from one side leave the discontinuity from the other side and,
therefore, solutions can be defined as absolutely continuous functions sat-
isfying the equations almost everywhere [28]. Next, as long as the partial
states χ1(t) and χ2(t) (corresponding to these solutions) do not enter the
transition set {χ1 < 0, χ2 = 0} nor the exceptional set {χ1 = 0, χ2 = 0},
the asymptotic property of the Sx3-system can be directly inferred from the
Sξ-system. This follows from the diffeomorphic correspondence between
solutions for these two systems starting from compatible initial conditions.

Section 4.5.2 pays special attention to the transition and exceptional
sets. Two difficulties occur. First, the correspondence between ξ and x3

is discontinuous on the transition set. Second, and most important, x3 is
undefined on the exceptional set. The first problem is addressed using a
phase unwrapping technique described in Lemma 4.4. Depending on the
sign of the velocity χ̇2 while crossing the discontinuity, it is possible to reset
the value of x3 to maintain continuity before and after the transition. The
second difficulty needs careful attention. Lemma 4.5 shows that the robot
turns quickly on itself and the rotational angle jumps by a finite amount.
The argument is based again on examining the trajectories before and after
the transition. Even though the rotational velocity ẋ3 tends to infinity,
only a finite jump of ±π is induced on x3. In practice, it is not possible to
either achieve an infinite velocity or be precisely on the set {χ1 = 0, χ2 =
0}. Nevertheless, this lemma, together with a continuity argument, ensures
that the behavior of the robot close to this singularity remains satisfactory.
Away from the singularity, the diffeomorphic correspondence guarantees
that x3 is continuous and follows reasonable trajectories due to the one-to-
one correspondence with ξ, and ξ converges to zero.

Another interesting question concerns the number of times the excep-
tional set is visited. Lemma 4.6 shows that the vector field is tranversal to
the exceptional set (except for the origin which is the final desired equilib-
rium point). Therefore, the system visits the exceptional set only at specific
time instants. The number of occurrences can be shown to be finite. To see
this, Lemma 4.8 constructs a lower bounding Lyapunov function of χ1 and
χ2 that decreases exponentially. This guarantees that χ1 and χ2 cannot
vanish after time Tδ, which, in turn, guarantees that the exceptional set
can be visited only a finite number of times. Indeed, Lemma 4.10 gives the
result based on the observation that the time taken for the robot to revisit
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the exceptional set is bounded from below, before time Tδ, and thus leads
to a contradiction argument.

The only remaining question is the convergence of x3 to the desired value
of 0, which is discussed in Section 4.5.3. Depending on the initial conditions,
the robot converges to either 0 or π, the actual value depending on which
side of the state space the robot starts. Lemma 4.12 shows that all final
values of the nonlinear system are those of a linear sytem that is guaranteed
to converge to either 0 or π, depending on the initial conditions of this linear
system. This prediction is accurate after some time T . In practice, if the
robot starts with appropriate initial conditions, then the final robot angle
will be 0. In case x3 is poorly initialized, a high gain kp makes it converge
rapidly so that the nonlinear system quickly follows the linear system (this
makes T small). Lemma 4.11 provides information regarding the final angle
value that is going to be reached. This can be used to define a switching law,
and a suitable waiting time is introduced to avoid the Zeno phenomenon.
The bottom line is that ξ will eventually be small enough so that no more
switching occurs. Thus, the asymptotic behavior will correspond to that of
the linear system described in Lemma 4.11, for which the asymptotic zero
angle is guaranteed to be reached. This sketches the proofs of the main
propositions that can be found in Section 4.5.5.

4.5.1 Convergence of the Sξ-system

Lemma 4.2 The system (4.2)-(4.4) and the controller (4.20)-(4.23) can be
put in the form (2.36), with χ = (χ1, x1, χ2, x2), where χ1 and χ2 are given
by (4.22), (4.23), and ξ = x3 − arctan (χ1, χ2). Moreover, both subsystems
χ̇ = F (χ, 0) and ξ̇ = G(ξ) are globally exponentially stable at the origin and
(2.39) is fulfilled with c1 	= 0, ψ(‖ξ‖) = 0 and c2 = 0.

Proof: Using (4.2), (4.3), (4.22) and (4.23), F (χ, ξ) can be written:

F (χ, ξ) =

⎛
⎜⎜⎝

k1x1 + k2χ1√
χ2

1 + χ2
2 cos(ξ + arctan(χ1, χ2))

k3x2 + k4χ2√
χ2

1 + χ2
2 sin(ξ + arctan(χ1, χ2))

⎞
⎟⎟⎠

Using (4.4) and (4.21), G(ξ) is obtained as:

G(ξ) = −kpξ (4.52)
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from which it follows that ξ̇ = G(ξ) is exponentially stable.
When ξ = 0, and after some algebraic manipulations, F (χ, 0) becomes:

F (χ, 0) =

⎛
⎜⎜⎝

k1x1 + k2χ1

χ1

k3x2 + k4χ2

χ2

⎞
⎟⎟⎠ (4.53)

As can be directly checked, χ̇ = F (χ, 0) is globally exponentially stable
at the origin.

Let

�F (χ, ξ)
�
= F (χ, ξ) − F (χ, 0). (4.54)

Now, (2.39) can be expressed using the canonical basis ei, i = 1, . . . , 4:

‖�F (χ, ξ)‖ = ‖
4∑

i=1

�F (χ, ξ)iei‖

�
4∑

i=1

‖�F (χ, ξ)i‖ =

‖0‖ + ‖
√

χ2
1 + χ2

2 cos(ξ + arctan(χ1, χ2)) − χ1‖ +

‖0‖ + ‖
√

χ2
1 + χ2

2 sin(ξ + arctan(χ1, χ2)) − χ2‖ �
‖χ1‖ + ‖χ2‖ + ‖χ1‖ + ‖χ1‖ + ‖χ2‖ + ‖χ2‖
= 3‖χ1‖ + 3‖χ2‖
� c1‖χ‖ (4.55)

Here c2 = 0 and ψ(‖ξ‖) = 0.

Lemma 4.3 Let P = PT > 0, Q = QT > 0 be such that,

P

(
0 1
k1 k2

)
+
(

0 1
k1 k2

)T

P = −I2,

Q

(
0 1
k3 k4

)
+
(

0 1
k3 k4

)T

Q = −I2.

Then, there exists a time instant T such that

V0 =
(
x1 χ1

)
P

(
x1

χ1

)
+
(
x2 χ2

)
Q

(
x2

χ2

)
(4.56)
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converges to zero exponentially, i.e. there exists a constant c > 0 such that
V0 ≤ V0(T )e−ct ∀t ≥ T .

Proof: Notice first that

ẋ1 = χ1 +
√

χ2
1 + χ2

2 (cos(x̂3 + ξ) − cos(x̂3)) (4.57)

χ̇1 = k1x1 + k2χ1 (4.58)

ẋ2 = χ2 +
√

χ2
1 + χ2

2 (sin(x̂3 + ξ) − sin(x̂3)) (4.59)

χ̇2 = k3x2 + k4χ2 (4.60)

with x̂3 = arctan(χ1, χ2).
Then,

V̇0 = −(x2
1 + χ2

1) − (x2
2 + χ2

2)

+2
(
x1 χ1

)
P

(
1
0

)√
χ2

1 + χ2
2 · (cos(x̂3 + ξ) − cos x̂3)

+2
(
x2 χ2

)
Q

(
1
0

)√
χ2

1 + χ2
2 · (sin(x̂3 + ξ) − sin x̂3)

Since

cos(x̂3 + ξ) − cos x̂3 = −ξ

∫ 1

0

sin(x̂3 + λξ)dλ (4.61)

sin(x̂3 + ξ) − sin x̂3 = ξ

∫ 1

0

cos(x̂3 + λξ)dλ, (4.62)

it follows that

V̇0 = −(x2
1 + χ2

1) − (x2
2 + χ2

2)

−2
(
x1 χ1

)
P

(
1
0

)√
χ2

1 + χ2
2 · ξ

∫ 1

0

sin(x̂3 + λξ)dλ

+2
(
x2 χ2

)
Q

(
1
0

)√
χ2

1 + χ2
2 · ξ

∫ 1

0

cos(x̂3 + λξ)dλ.

(4.63)

Now, using first the Cauchy-Schwarz inequality and then the arithmetic and
geometric means inequality

√
ab � a+b

2 with a = x2
1 + χ2

1 and b = χ2
1 + χ2

2,
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leads to

|2 (x1 χ1

)
P

(
1
0

)√
χ2

1 + χ2
2ξ|

≤ 2‖ (x1 χ1

) ‖‖P (1
0

)
‖
√

χ2
1 + χ2

2|ξ|

= 2
√

x2
1 + χ2

1

√
χ2

1 + χ2
2‖P

(
1
0

)
‖|ξ|

≤ (x2
1 + 2χ2

1 + χ2
2)
∥∥∥∥P
(

1
0

)∥∥∥∥ | ξ | . (4.64)

Similary,

|2 (x2 χ2

)
Q

(
1
0

)√
χ2

1 + χ2
2ξ|

≤ (x2
1 + χ2

1 + 2χ2
2)
∥∥∥∥Q
(

1
0

)∥∥∥∥ | ξ | . (4.65)

Then, using (4.64), (4.65) and the fact that∣∣∣∣
∫ 1

0

sin(x̂3 + λξ)dλ

∣∣∣∣ ≤ 1
∣∣∣∣
∫ 1

0

cos(x̂3 + λξ)dλ

∣∣∣∣ ≤ 1,

(4.66)

both 1
2x2

1+
1
2χ2

2+χ2
1 < x2

1+x2
2+χ2

1+χ2
2 and 1

2x2
2+

1
2χ2

1+χ2
2 < x2

1+x2
2+χ2

1+χ2
2.

Therefore, (4.63) becomes

V̇0 ≤
(
−1 + 4|ξ(t)|

(∥∥∥∥P
(

1
0

)∥∥∥∥+
∥∥∥∥Q
(

1
0

)∥∥∥∥
))

(x2
1 + x2

2 + χ2
1 + χ2

2). (4.67)

Thanks to Lemma 4.2, there is no finite escape time. Since ξ is exponentially
stable, picking c̃ > 0 sufficiently small so that

1 − 4c̃

(∥∥∥∥P
(

1
0

)∥∥∥∥+
∥∥∥∥Q
(

1
0

)∥∥∥∥
)

> 0, (4.68)

there will always exist a finite time T for which

| ξ(t) |≤ c̃ ∀t ≥ T (4.69)
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It follows that (4.67) becomes

V̇0 ≤
(
−1 + 4c̃

(∥∥∥∥P
(

1
0

)∥∥∥∥+
∥∥∥∥Q
(

1
0

)∥∥∥∥
))

· (x2
1 + x2

2 + χ2
1 + χ2

2)
≤ −cV0 ∀t ≥ T. (4.70)

Thus, one sees that V0 → 0 exponentially.

4.5.2 Transition and exceptional sets

Lemma 4.4 Let ti be any time instant for which the solution of the Sx3-
system reaches the set {χ2 = 0, χ1 < 0}, then depending on the value of x2,
it is possible to reset the state x3(ti) to a new value x3(t+i ) so as to maintain
diffeomorphic equivalence between the Sx3-system and the Sξ-system:

x3(t+i ) = x3(ti) − 2π if χ̇2(ti) < 0
x3(t+i ) = x3(ti) + 2π if χ̇2(ti) > 0
x3(t+i ) = x3(ti) + 2πsgn (k3 sin x3(ti)) if χ̇2(ti) = 0

Proof: The transition set {χ1 < 0, χ2 = 0} is not invariant and does not
contain any proper invariant subset. To find a proper invariant subset within
the transition set, one should display a trajectory such that χ2(t) = 0 over
a certain nonvanishing time interval. This would imply χ̇2 = 0. Examining
Equation (4.42) leads to the conclusion that x2(t) should also vanish over
this time interval for such a trajectory to be possible. This would mean,
after examining (4.41), that sinx3 should also vanish, since χ1 < 0 on the
transition set (i.e. the square root appearing cannot vanish). However, on
the transition set, arctan(χ1, 0) = π and therefore equation (4.21) cannot
vanish, leading to a contradiction.

Hence, the system exits the transition set at an infinitesimal time in-
stant after entering it, i.e. at time t1 + ε These considerations then lead
to the technique for updating the variable x3, once the transition set is
encountered. For example, when k3x2(ti) > 0, Equation (4.42) shows that
limε→0+ χ̇2(ti + ε) = limε→0− χ̇2(ti − ε) > 0. This means that the arctan
function jumps from −π to π, as χ2 changes from negative to positive while
crossing the transition set. Therefore, in order to maintain ξ continuous, x3

has to increase to x3 + 2π. The other cases follow similarly.
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Nevertheless, due to inappropriate initial conditions of the Sx3 -system,
both χ1 and χ2 can vanish simultaneously. This means that the controller
is ill-defined, since the first term in (4.43) becomes infinite whenever χ1 =
χ2 = 0. This is the case when the system starts anywhere in the set W =
{x1, x2, x3, χ1, χ2 | χ1 = 0, χ2 = 0, x1 ∈ R, x2 ∈ R, x3 ∈ R}, which is termed
the exceptional set.

All that remains is to find out exactly what is happening to x3 after
crossing this exceptional set.

Lemma 4.5 Let ti denote the time instant at which χ1(ti) = 0 and χ2(ti) =
0 with x1(ti) and x2(ti) both not being zero. Then, the following disconti-
nuity in x3 occurs:

| lim
ε→o−

x3(ti + ε) − lim
ε→0+

x3(ti + ε) |= π (4.71)

Proof: Consider the Sξ-system when such a crossing occurs. Suppose it
happens at time ti. This means x1(ti) = x̄1, x2(ti) = x̄2, χ1(ti) = 0 and
χ2(ti) = 0, where at least x̄1 and x̄2 are nonzero. All states are well defined
and continuous for the Sξ-system except possibly for their time derivative
at ti where discontinuities can occur. Since arctan is ill-defined at that time
instant, the trajectory is split into two parts; one part for the time interval
[ti − ε, ti) and another for (ti, ti + ε]. For small ε, only the first-order terms
are considered, i.e. ξ(t) = ξ(ti)+kpξ(t− ti)ε+O(ε), x1(t) = x̄1, x2(t) = x̄2.
χ1 = 0, χ2 = 0. Consider a small δ > 0, for which

χ1(ti − ε) = χ1(ti − ε − δ) + χ̇1(ti − ε)δ + O(δ)
χ1(ti + ε + δ) = χ1(ti + ε) + χ̇1(ti + ε)δ + O(δ).

Then, taking the limit ε → 0 so as to join both trajectory segments gives:

χ1(t1 − δ) = −χ̇1(ti)δ + O(δ) = −k1x̄1δ + O(δ)
χ1(t1 + δ) = χ̇1(ti)δ + O(δ) = k1x̄1δ + O(δ).

A similar development can be undertaken for χ2. Thus, when approaching
the set (prior to ti), x3(ti − δ) = ξ(ti − δ) + arctan(−k1x̄1,−k2x̄2), and
when quitting the set (after ti) x3(ti + δ) = ξ(ti + δ) + arctan(k1x̄1, k2x̄2).
Therefore, by taking the limit δ → 0, the net difference is π and the result
follows.

Therefore, even though ẋ3 might become arbitrarily large (the robot
spins quickly on itself), this does not have dramatic consequences on the
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translational position of the robot (both translational velocities vanish).
Moreover, the system exits the exceptional set right away and restarts on a
“regular” trajectory as will be shown in the following Lemma.

Lemma 4.6 If the robot enters the exceptional set, both velocities ẋ1 and
ẋ2 vanish.

Proof: Squaring equations (4.39) and (4.41) and adding the result gives
χ2

1 + χ2
2 = ẋ2

1 + ẋ2
2. Therefore, both ẋ1 = 0 and ẋ2 = 0 when the robot

enters the exceptional manifold.

Remark 4.10 The result of Lemma 4.5 shows that close to the exceptional
manifold, the ẋ3 velocity can become arbitrarily large over a small interval
of time. The overall effect is a limited rotation of roughly half a turn. An
exact half turn comes when the robot is exactly on the exceptional manifold.
Another insight is also given in the proof: In order to find appropriate initial
conditions for displaying the behavior close to the exceptional manifold, the
robot can be placed at any point different from the origin (i.e. at x̄1, and x̄2);
then set χ1(0) = −εk1x̄1 and χ2(0) = −εk3x̄2, where ε is a small number,
simulate the (x3)-system over a time interval T = [0, 2ε].

We now draw our attention to the number of times the exceptional set
is visited. The next lemma shows that these visits occur at specific time
instants.

Lemma 4.7 Let Φ(t) denote the solution to system (4.2-4.4) together with
the controller (4.20-4.23), i.e. Φ(t) =

(
χ1(t) χ2(t) x1(t) x2(t) x3(t)

)T .
Let V = {x | x1 = x2 = χ1 = χ2 = 0}. If there exists a time instant t1 > 0
for which Φ(t1) ∈ W \ V, then there exists an ε > 0 for which Φ(t) 	∈ W \ V
for all t1 − ε < t < t1 + ε, t 	= t1.

Proof: The proof consists in showing that the solution manifold is
transversal to the set W \ V . To see this, we will first show that TΦ(.)(x) 	∈
TW for each x ∈ W\V . Then, since the vector field defining the dynamics is
continuous, the above transversality is guaranteed, i.e. there exists a certain
ε > 0 for which Φ(t) 	∈ W for all t1 − ε < t < t1 + ε, t 	= t1.

The manifold W is defined by χ1 = 0 and χ2 = 0. Then, TΦ(.)(x) for
x ∈ W is given by

TΦ(.)(x) =
(
k1x1 k2x2 0 0 β(x)

)T (4.72)
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where x =
(
χ1 χ2 x1 x2 x3

)
and β(x) is a corresponding scalar func-

tion of x. Now x ∈ W means that χ1 = 0 and χ2 = 0. Hence,

TW = span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0
0
1
0
0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0
0
0
0
1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.73)

clearly exhibits the fact that, as long as both x1 and x2 do not cancel
simultaneously, i.e. as long as x ∈ W \ V , then TΦ(.)(x) 	∈ TW(x) and the
conclusion follows.

Thus, the robot exits instantaneously the exceptional set once it has
entered it. This then raises the question of how many times the robot visits
the exceptional set. It will be shown that the robot can only visit this set
a finite number of times. However, it is first necessary to show that, after
a given time, it is impossible to revisit the exceptional manifold. To prove
this result, it is necessary to construct a lower bound for V0, much in the
same way as Lemma 4.3 gave an upper bound for the Lyapunov function
V0:

Lemma 4.8 There exists a time instant Tδ sufficiently large and a constant
d > 0 such that the Lyapunov function V0 given in Lemma 4.3 is bounded
by

V0 � V0(Tδ) exp(−dt), ∀t ≥ Tδ (4.74)

Proof: The proof follows exactly the same lines as those of Lemma 4.3
except for the fact that a lower bound of V0 is needed. Using the inequality
detailed in Lemma 4.3, V̇0 becomes:

V̇0 �
(
−1 − 2 | ξ(t) |

(∥∥∥∥P
(

1
0

)∥∥∥∥+
∥∥∥∥Q
(

1
0

)∥∥∥∥
))

(x2
1 + x2

2 + χ2
1 + χ2

2).

Since ξ(t) is exponentially stable, there will always exist a finite time Tδ for
which

| ξ(t) |≤ d̃ ∀t ≥ Tδ.
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Therefore, picking d̃ > 0 sufficiently small so that there exists a positive
constant d such that

V̇0 �
(
−1 − 2 | ξ(t) |

(∥∥∥∥P
(

1
0

)∥∥∥∥+
∥∥∥∥Q
(

1
0

)∥∥∥∥
))

(x2
1 + x2

2 + χ2
1 + χ2

2)
� −dV0 ∀t ≥ Tδ. (4.75)

It follows that V0 � V0(Tδ)e−dt, ∀t > Tδ. This concludes the proof.

Lemma 4.9 There exists a time instant Tδ sufficiently large such that the
solution φ(t) to system (4.2-4.4) together with the controller (4.20-4.23)
does not visit the set W \ V, ∀t > Tδ. Moreover, χ1 	= 0, ∀t > Tδ and
χ2 	= 0, ∀t > Tδ.

Proof: In order to avoid the set W \ V , ∀t > Tδ, it is sufficient to guar-
antee that the solution φ(t) to system (4.2-4.4) together with the controller
(4.20-4.23) never visits the set {x1, χ1, x2, χ2, x3|χ2

1 +χ2
2 = 0}, ∀t > Tδ. Let

Vχ = χ2
1 + χ2

2. (4.76)

Using (4.20-4.23), it follows that

V̇χ = k1x1χ1 + k3x2χ2 + k2χ
2
1 + k4χ

2
2 (4.77)

Now, V̇χ can be bounded:

V̇χ � −|k1x1χ1| − |k3x2χ2| − |k2χ
2
1| − |k4χ

2
2| (4.78)

Using the fact that ‖x‖P‖x‖ � λmin(P )‖x‖2 together with Lemma 4.3, it
can be concluded that

|k1x1χ1| � γ1V0

|k2x2χ2| � γ2V0

|k3χ
2
1| � γ3V0

|k4χ
2
2| � γ4V0

where V0 is the Lyapunov function (4.56) and γ1 > 0, γ2 > 0, γ3 > 0,
γ4 > 0. Thus, using (4.78), V̇χ is bounded by:

V̇χ � −(γ1 + γ2 + γ3 + γ4)V0 = −γV0. (4.79)
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Using Lemma 4.8, it follows that

V̇χ � −γV0(Tδ)e−dt, ∀t > Tδ (4.80)

The solution of (4.80) is given by

Vχ � dγV0(Tδ)e−dt

d
+ C, ∀t > Tδ (4.81)

Thanks to Lemma 4.3, we know that the Lyapunov function
V0(x1, χ1, x2, χ1) converges exponentially to 0. Therefore x1, χ1, x2, χ2 all
converge to 0, leading to Vχ → 0 when t → ∞. Thus, evaluating (4.81) at
t = ∞, the constant C should satisfy C � 0. Now, picking C = 0, it follows
that

Vχ � dγV0(Tδ)e(−dt)

d
, ∀t > Tδ. (4.82)

This implies that Vχ 	= 0, ∀t > Tδ.
Changing Vχ in (4.76) into Vχ = χ2

1, and Vχ = χ2
2, respectively leads to the

last two assertions, using the exact same reasoning as above with appropri-
ate adaptations. This concludes the proof.

Lemma 4.10 The solution to the system (4.2-4.4) together with (4.20-
4.23) visits a finite number of times the set W \ V.

Proof: Let Vχ = χ2
1+χ2

2. The value of Vχ along the solution to the system
(4.2-4.4) together with (4.20-4.23) is studied. A Taylor series expansion is
performed around t = T . Using the Lie derivative formulation, this results
in

Vχ(t − T ) =
∞∑

k=0

1
(k + 1)!

(
Lk

F Vχ

) ∣∣∣
t=T

(t − T )k (4.83)

where F is the vector field (4.52). Now, the solution of Vχ is developed
around Vχ(ti) = 0 and described only with the first three terms of (4.83):

Vχ(δ) =
(

1
2
k2
1x1(ti)2 + k2

3x2(ti)2
)

δ2 + O
(
δ3
)

where δ = t − ti. Choosing x1, x2 such that |x1(ti)| > ε and |x2(ti)| > ε,
where ε is an arbitrary small positive constant, it follows that:

Vχ(δ) �
(

1
2
(k2

1 + k2
3)ε

2

)
δ2 + O

(
δ3
)

(4.84)



94 CHAPTER 4. APPLICATION TO MOBILE ROBOTS

(4.84) states that there exists a δ̄ sufficiently small for which

Vχ(t) > 0 ∀t ∈]ti; ti + δ̄[. (4.85)

Let us suppose that the solution φ(t) to the system (4.2-4.4) together with
(4.20-4.23) visits an infinite number of times the set W \ V . Therefore,
there exists an infinite sequence of ti, i = 1, ...,∞ for which φ(ti) ∈ W \ V .
Additionally, Lemma 4.9 shows that φ(t) /∈ W \ V ∀t > Tδ. It follows
that there exists an infinite sequence of ti < Tδ, i = 1, ...,∞ for which
φ(ti) ∈ W \ V . Moreover, (4.85) ensures that φ(t) 	∈ W \ V , ∀t ∈]ti; ti + δ̄[.
This generates an infinite number of disjoint intervals, each one of which
has a finite measure. But, the sum of these measures must be finite since
the sequence ti, (i = 1, . . . ,∞) must belong to the interval of finite measure
[0, Tδ], which leads to a contradiction since an infinite sum of finite lower
bounded quantities cannot be finite.

4.5.3 Convergence of x3

The following lemmas give the asymptotic value of x3. By choosing con-
veniently the parameters of a reduced system given in Lemma 4.11, the
final value of x3 converges for most initial conditions to either 0 + 2kπ or
to π + 2kπ without oscillating. Then, through setting kp large enough, the
asymptotic behavior of the Sξ-system can be made to match the one of the
reduced system. Then using the appropriate value of β, based on the ini-
tial conditions of the robot, it is possible to enforce convergence to 0 + 2kπ
instead of π + 2kπ, in case the initial conditions are not suitable.

Lemma 4.11 Given the system

d

dt

⎛
⎜⎜⎝

x̆1

χ̆1

x̆2

χ̆2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

χ̆1

k1x̆1 + k2χ̆1

χ̆2

k3x̆2 + k4χ̆2

⎞
⎟⎟⎠ (4.86)

with x̆3 = arctan(χ̆1, χ̆2) and under the conditions that the poles of system

(4.86), r1=
k2+

√
4k1+k2

2
2 , r2=

k2−
√

4k1+k2
2

2 , r3=
k4+

√
4k3+k2

4
2 , r4=

k4−
√

4k3+k2
4

2
are real negative and satisfy r1 = r2, r3 = r4 and r1 > r3 then:

(i) when −r1x̆1(0) + χ̆1(0) 	= 0

lim
t→∞ x̆3(t) =

{ −π if (−r1x̆1(0) + χ̆1(0)) > 0
0 if (−r1x̆1(0) + χ̆1(0)) < 0
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(ii) when −r1x̆1(0) + χ̆1(0) = 0 and x̆1(0) 	= 0

lim
t→∞ x̆3(t) =

{ −π if χ̆1(0) > 0
0 if χ̆1(0) < 0

(iii) when −r1x̆1(0) + χ̆1(0) = 0, x̆1(0) = χ̆1(0) = 0, −r3x̆2(0) + χ̆2(0) = 0
and x2(0) 	= 0

lim
t→∞ x̆3(t) =

{ −π
2 if (−r3x̆2(0) + χ̆2(0)) > 0

π
2 if (−r3x̆2(0) + χ̆2(0)) < 0

(iiii) when −r1x̆1(0) + χ̆1(0) = 0, x̆1(0) = χ̆1(0) = 0, −r3x̆2(0) + χ̆2(0) = 0
and x̆2(0) 	= 0

lim
t→∞ x̆3(t) =

{ −π
2 if χ̆2(0) > 0

π
2 if χ̆2(0) < 0

Proof: Due to the linearity of System (4.86), when the poles are multiple,
the solution χ̆(t) becomes:

x̆1(t) = er1t(x̆1(0) + t(−r1x̆1(0) + χ̆1(0))) (4.87)
χ̆1(t) = er1t(χ̆1(0) + r1t(−r1x̆1(0) + χ̆1(0))) (4.88)
x̆2(t) = er3t(x̆2(0) + t(−r3x̆2(0) + χ̆2(0))) (4.89)
χ̆2(t) = er3t(χ̆2(0) + r3t(−r3x̆2(0) + χ̆2(0))) (4.90)

Now, the limit of x̆3 = arctan(χ̆1(t), χ̆2(t)) for t → ∞ is considered. Sub-
stituting (4.88) and (4.90) in arctan(χ̆1(t), χ̆2(t)) and after a few algebraic
manipulations together with the fact that r1 = r2, r3 = r4 and r1 > r3, the
following result holds: when −r1x̆1(0) + χ̆1(0) 	= 0

lim
t→∞ x̆3 = −ı ln

−r1x̆1(0) + χ̆1(0)√
(−r1x̆1(0) + χ̆1(0))2

lim
t→∞ x̆3(t) =

{
0 if (−r1x̆1(0) + χ̆1(0)) > 0
−π if (−r1x̆1(0) + χ̆1(0)) < 0 (4.91)

The other cases are studied along similar lines.

Remark 4.11 The result of Lemma 4.11 means that the mobile robot reaches
the origin with a horizontal tangent (x̆3 = 0 or π), because x̆2 approaches
zero faster than x̆1 thanks to its faster poles.
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Figure 4.15: Solutions of system (4.86) when χ̆1(0) = 0 and χ̆2(0) = 0. In
this case, one can see that when x̆1(0) < 0, x̆3 = arctan(χ̆1, χ̆2) converges
to 0 and when x̆1(0) > 0, x̆3 converges to π. In the abnormal case where
x̆1(0) = 0, x̆3 converges to either π

2 or to −π
2 . This illustrates the results of

Lemma 4.11.

Lemma 4.12 There exists a certain Tδ = 0 for which the system (4.2)-
(4.4) with the controller of Proposition 4.1 ensures that

lim
t→∞x3(t) =

{
π + 2kπ if (−r1x1(Tδ) + χ1(Tδ)) > 0
0 + 2kπ if (−r1x1(Tδ) + χ1(Tδ)) < 0

Proof: Let χ(t) be a solution of System (4.39)-(4.42) and χ̆(t) be a
solution to System (4.86). According to Lemma 4.9, there exists a Tδ such
that ∀t > Tδ, χ1 and χ2 do not visit the set W\V . Additionally, this lemma
also guarantees that χ1 and χ2 never become 0, ∀t > Tδ. Consider the error
between arctan(χ̆1, χ̆2) and arctan(χ1, χ2):

‖ arctan(χ̆1, χ̆2) − arctan(χ1, χ2)‖ (4.92)

The error variables w1 and w2 are defined such that

χ1 = χ̆1 + w1

χ2 = χ̆2 + w2



4.5. STABILITY ANALYSIS 97

Therefore, (4.92) becomes

‖ arctan(χ̆1, χ̆2) − arctan(χ̆1 + w1, χ̆2 + w2)‖ �
‖ arctan(χ̆1, χ̆2) − arctan(χ̆1 + w1, χ̆2)‖ +

‖ arctan(χ̆1 + w1, χ̆2) − arctan(χ̆1 + w1, χ̆2 + w2)‖ = ν.

In order to find an upper bound for ν, the mean value theorem is used.
In this respect, the differentiability of the function arctan(a, b) needs to
be discussed. Since ∂ arctan(a,b)

∂a and ∂ arctan(a,b)
∂b are well-defined on R ×

R \{0, 0}, the mean value theorem can be used only if the point {0, 0} is
avoided. Looking at (4.88) and (4.90), one can see that χ̆1 and χ̆2 never
become 0. Since χ1 and χ2 also never become 0, ∀t > Tδ, it follows that
there exists a ρ1 ∈ [0, 1] and ρ2 ∈ [0, 1] for which

ν �
∥∥∥∂ arctan(χ̆1, χ̆2)

∂χ̆1

∣∣∣
χ̆1=χ̆1+ρ1w1

∥∥∥‖w1‖ +

∥∥∥∂ arctan(χ̆1 + w1, χ̆2)
∂χ̆2

∣∣∣
χ̆2=χ̆2+ρ2w2

∥∥∥‖w2‖
� ‖w1‖ + ‖w2‖, ∀t > Tδ (4.93)

Since χ and χ̆ are exponentially decreasing ∀t > Tδ together with the fact
that‖χ − χ̆‖ � ‖χ‖ + ‖χ̆‖, it follows that ‖w1‖ � γ1e

−γ2t and ‖w2‖ �
γ3e

−γ4t, with γ1, γ3 ∈ R and γ2, γ4 ∈ R+. This means that ν converges
to zero owing to (4.93). Since ξ̇ = −kpξ, together with the fact that ξ =
x̄3 −arctan(χ1, χ2) = x3 +2kπ−arctan(χ1, χ2), x̄3 converges exponentially
to arctan(χ1, χ2). Finally, since ‖ arctan(χ̆1, χ̆2)−arctan(χ1, χ2)‖ converges
to zero, x̄3 converges to arctan(χ̆1, χ̆2).

4.5.4 Partition of the initial conditions

Lemma 4.13 limt→∞ x3 converges to either π
2 + 2kπ or −π

2 + 2kπ only if
x0 ∈ Xp, where

Xp = {x1 = 0, χ1 = 0, x2 ∈ R, χ2 ∈ R, x3 =
π

2
+ 2kπ}⋃

{x1 = 0, χ1 = 0, x2 ∈ R, χ2 ∈ R, x3 = −π

2
+ 2kπ}

Proof:
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Recall that ξ decreases quickly (ξ̇ = −kpξ) so that, after a given time
Tδ, the system is guaranteed to converge to either 0+2kπ or to π+2kπ, de-
pending on the sign of −r1x1(Tδ)+ ẋ1(Tδ). Therefore, according to Lemma
4.12, the only way for x3 to converge to a value different from 0 + 2kπ or
π + 2kπ is that the condition −r1x1(t) + ẋ1(t) = 0 holds for all t ≥ Tδ.
This means studying the condition under which T = {x1, χ1, x2, χ2, x3 |
−r1x1(t) + ẋ1(t) = 0} becomes an invariant set. Notice that (4.45) can be
put in the form ẋ1 = χ1 cos ξ − χ2 sin ξ. Also, without loss of generality
consider (4.46) with the particular choice k1 = −k2 and k2 = −2k. More-
over, set r1 = −k, again without loss of generality. Now, constitute the
two-dimensional vector field

f =
(

ẋ1

χ̇1

)
=
(

χ1 cos ξ − χ2 sin ξ
−k2x1 − 2kχ1

)
(4.94)

If the system is contrived to remain in the set T, then the vector field
describing the full five state system (i.e. with state space x3, x1, x2, χ1,
χ2) should belong to the set {x1 = r1α, χ1 = α, x2 = α1, χ2 = α2, x3 = α3 |
α ∈ R, α1 ∈ R, α2 ∈ R, α3 ∈ R}. A necessary condition for this to occur is
that the following determinant vanishes:∣∣∣∣1 χ1 cos ξ − χ2 sin ξ

k −k2x1 − 2kχ1

∣∣∣∣ = −kχ1 + kχ1 cos ξ − kχ2 sin ξ = 0,

(x1 = −χ1
k ). Now, there are three cases that satisfy this necessary condition:

1. ξ = 0 ⇒ −kχ1 + kχ1 − 0 = 0.

2. ξ 	= 0, χ1 = 0 ⇒ either ξ = ±π
2 or χ2 = 0.

3. ξ 	= 0, χ2 = 0 ⇒ +k(cos ξ − 1) = 0 ⇒ either ξ = 0 or ξ = 2π.

4. kχ1(cos ξ − 1) − kχ2 sin ξ = 0.

Case 4) cannot happen since this would contradict the dynamics. The
conclusion follows after observing that case 2) with ξ ± π

2 also cannot occur
since ξ = −kpξ, meaning that ξ cannot stay at a constant value. Moreover,
case 2) with χ2 = 0 corresponds to crossing the exceptional set. Then, due
to transversality exposed in Lemma 4.7, the system will instantaneously
leave this case and the asymptotic convergence properties are then resolved
using the other cases. Now, only the case 1) and 3) holds which means that
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ξ = 0, ∀t. Therefore, the Sξ-system (4.45)-(4.46) becomes

ẋ1 = χ1

χ̇1 = k1x1 + k2χ1

ẋ2 = χ2

χ̇2 = k3x2 + k4χ2

which is nothing but (4.86) for which is known (Lemma 4.11) that whenever
−r1x1 + χ1 = 0, then

lim
t→∞x3(t) = ±π

2
(4.95)

4.5.5 Proof of the main propositions

Proof of Proposition 4.1

Proposition 4.1 Choose the controller gains ki, 1 � i � 4, such that the

poles r1=
k2+

√
4k1+k2

2
2 , r2=

k2−
√

4k1+k2
2

2 , r3=
k4+

√
4k3+k2

4
2 , r4=

k4−
√

4k3+k2
4

2
are negative real, and consider the system (4.2)-(4.4) together with the fol-
lowing controller:

u1 =
√

χ2
1 + χ2

2 (4.96)

u2 =
χ̇2χ1 − χ2χ̇1

χ2
1 + χ2

2

− kp(x̄3 − arctan(χ1, χ2)), (4.97)

χ̇1 = k1x1 + k2χ1 (4.98)
χ̇2 = k3x2 + k4χ2, (4.99)

where x̄3 is given as x̄3 = x3 + 2kπ with k a discrete state determined as
follows: k is initialized at zero and updated at specific time instants. Let ti
denote any time instant for which the system states are such that χ1(ti) < 0
and χ2(ti) = 0. Then, update k according to the following rule:

k := k − 1 if χ̇2(ti) < 0
k := k + 1 if χ̇2(ti) > 0
k := k + sgn (k3 sin x3(ti)) if x2(ti) = 0. (4.100)
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Under these conditions, x1 and x2 converge to the origin exponentially.
Moreover, when the poles are such that r1 = r2, r3 = r4 and r1 > r3,
x3 converges to one of four values, namely 0 + 2kπ, π + 2kπ, π

2 + 2kπ
and −π

2 + 2kπ. Therefore, the initial conditions become partitioned into
four distinct sets depending on the asymptotic value of their corresponding
trajectory, namely the sets of initial conditions X0, Xπ, Xπ

2
, and X−π

2
.

Proof: The proposition follows by the various lemmas and propo-
sitions. Lemma 2.1 guarantees that there is no finite escape time in the
solutions of the Sξ-system. This is also the case for the Sx3-system, as long
as the solutions to each of these systems are in diffeomorphic correspon-
dence. This is true outside the transition and exceptional sets. Under such
circumstances, Lemmas 2.1, 4.2 and 4.3, together with the diffeomorphic
correspondence, guarantee that all states x1, x2, ξ1, ξ2 and x3 decrease.
However, when crossing the transition set, the implicit resetting mechanism
(see Lemma 4.4) shows that the solutions can be defined so as to maintain
the diffeomorphic correspondence.

Nevertheless, the problem of visiting the exceptional set must still be
clarified. Lemma 4.6 shows that, when crossing this set, only x3 is affected
and at most with a finite jump of ±π, and therefore this does not affect
the convergence process. Moreover, Lemma 4.10 shows that the number of
visits of the exceptional set is only finite after considering the amount of
time needed for the robot to be in a position to cross this set again. Finally,
Lemma 4.12 guarantees that the angle x3 of the nonlinear system converges
to either 0+2kπ or to π+2kπ, since the system trajectory converges to the
one of the linear system which was, in turn, shown to converge to either one
of these values. Therefore, the convergence depends on which side of the
state space the system is initially in, i.e. in either X0 or Xπ. Nevertheless
the topology of the sets X0 and Xπ is hard to characterize analytically.
Moreover Lemma 4.13 states the conditions of the abnormal set of initial
conditions for which x3 converges to either π

2 + 2kπ or to −π
2 + 2kπ.

Proof of Proposition 4.2

Proposition 4.2 Let the hypothesis and the controller be as in Proposition
4.1. Moreover, consider the system (4.25) together with this controller.
Under these conditions both x1 and x2 converge to 0 exponentially as long
as kp is chosen sufficiently large. Moreover, when the poles are such that
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r1 = r2, r3 = r4 and r1 > r3, x3 converges to one of two values, namely
0 + 2kπ + δ

kp , π + 2kπ + δ
kp .

Proof: The proof follows roughly the same lines as those above (Propo-
sition 4.1). However, the Sξ-system defined by (4.101)-(4.103) is slightly
different considering the perturbed mobile robot (4.25): the Sξ-system be-
comes

ẋ1 =
√

χ2
1 + χ2

2 cos(ξ + arctan(χ1, χ2)) (4.101)

χ̇1 = k1x1 + k2χ1

ẋ2 =
√

χ2
1 + χ2

2 sin(ξ + arctan(χ1, χ2)) (4.102)

χ̇2 = k3x2 + k4χ2

ξ̇ = −kpξ + δ. (4.103)

since δ is just added to ẋ3 in (4.43). Equation (4.103), shows that the
variable ξ converges exponentially to δ

kp
. In particular, considering a given

positive constant c̃ arbitrary small, there will always exist a finite time T
and a sufficiently large kp for which

| ξ(t) |≤ c̃ ∀t ≥ T (4.104)

Therefore, Lemma 4.3 can be adapted by just adding the condition that
kp must be chosen sufficiently large. Indeed, in Lemma 4.3, the condition
(4.104) needs to be satisfied (see ( 4.69)) to conclude on the exponential
convergence of x1 and x2 to 0. Now, the asymptotic value of x3 needs to
be discussed. This can be done by modifying slightly Lemma (4.12), which
leads to the following lemma

Lemma 4.14 There exists a certain Tδ = 0 for which the perturbed mobile
robot (4.25) with the controller of Proposition 4.1 ensures that

lim
t→∞x3(t) =

{
π + 2kπ + δ

kp
if (−r1x1(Tδ) + χ1(Tδ)) > 0

0 + 2kπ + δ
kp

if (−r1x1(Tδ) + χ1(Tδ)) < 0

Proof: The proof is the same as in Lemma 4.12 except for the last
arguments. Indeed, in this case, the ξ dynamics is ξ̇ = −kpξ + δ, meaning
that ξ converges to δ

kp
. Since ξ is defined as ξ = x̄3 − arctan(χ1, χ2) =

x3 + 2kπ − arctan(χ1, χ2), x̄3 converges exponentially to arctan(χ1, χ2) +
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δ
kp

. Finally, since ‖ arctan(χ̆1, χ̆2) − arctan(χ1, χ2)‖ converges to zero, x̄3

converges to arctan(χ̆1, χ̆2) + δ
kp

.

Lemma 4.14 does not consider the case (−r1x1(Tδ) + χ1(Tδ) = 0. However,
this is never fulfilled contrary to Lemma 4.13 (e.g. δ = 0). Indeed, following
the same reasoning as in the proof of Lemma 4.13, we get that ξ should be
equal to 0 for all t > Tδ to match this exceptional conditions. However this
is impossible since ξ = −kpξ + δ. Using Lemma 4.14 and the fact that x1

and x2 have been shown to converge exponentially to 0 concludes the proof.

4.5.6 A modification of Proposition 4.1

Replacing x̄3 by x3 in the controller of Proposition 4.1 leads unfortunately
to a false conjecture concerning its convergence. However, the controller
was satisfactory for most initial conditions, as it has been shown in the
simulation section.

Conjecture 5 Let all Hypotheses of Proposition 4.1 hold except that x̄3

is replaced by x3 in equation (4.21), kp is chosen sufficiently large, and
the updating of k is suppressed. Under these new assumptions, x1 and x2

converge to the origin for most initial conditions. Moreover, when the poles
are such that r1 = r2, r3 = r4 and r1 > r3, x3 then x3 converges to 0, π,
π
2 , and −π

2 depending on the initial conditions being respectively in the four
sets X0, Xπ, Xπ

2
, and X−π

2
.

A tentative proof of this conjecture could run along the following lines.
By defining

ξ = x3 − arctan(χ1, χ2),

instead of (4.44), ξ and x3 are both in diffeomorphic correspondence as long
as the transition set is not reached. However, when the system reaches the
transition set χ2 = 0, χ1 < 0, then the discontinuity in the arctangent
function prevents both ξ and x3 from being continuous. The controller in
Proposition 4.1 handled the problem by admitting a discontinuity in x̄3 and
defined ξ to be equal to (4.44), maintaining both x3 and ξ continuous. This
had the disadvantage of only guaranteeing convergence of the true angle x3

to the desired one modulo 2π.
This time, the discontinuity is forced on ξ, and therefore all previous

arguments concerning the convergence of the states should be adapted to
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take into consideration the fact that ξ, while obeying ξ̇ = kpξ, is reinitialized
each time the transition set is encountered.

This means that the convergence of x3 could be guaranteed if V0 would
decrease between two visits to the transition set. Although the increase in
V0 due to the transient (caused by the discontinuity in ξ) can be ensured by
simply increasing the gain kp, it is not easy to guarantee that V0 decreases
sufficiently before another discontinuity in ξ occurs. Indeed, consider the
condition of visiting the transition set χ2 = 0, χ1 < 0, which means studying
the dynamics of χ1 and χ2. Therefore, the time instants tk for which the
system visits the transition set are defined by χ2(tk) = 0, χ1(tk) < 0. Now,
the dynamics of χ2 around χ2(tk) is obtained by differentiating (4.42) and
using (4.41), so that

χ̈2 = k1

√
χ2

1 + χ2
2 sin(x3) + k2χ̇2 (4.105)

Using (4.67), it can be concluded that there exist two positive constants a
and b such that

√
χ2

1 + χ2
2 � aebt. It follows that (4.105) becomes

k1aebt + k2χ̇2 � χ̈2 � −k1aebt + k2χ̇2 (4.106)

If it were possible, using the two bounding solutions in (4.106), to find
a lower bound on the time for which χ2(t) revisits the transition set (i.e.
∃δ > 0 such that whenever χ2(tk+1) = 0 implies that tk+1 > tk + δ) then
it would be possible to find a gain kp that is sufficiently large to guarantee
convergence irrespective of the initial conditions. However, this is not possi-
ble since when χ2 = 0 then χ̇2 = −k1x2 meaning that by choosing x2 to be
small, the solutions of (4.105) cannot be limited by a solution guaranteeing
the existence of the bound δ. It is this argument that helped in finding the
initial conditions that led to the behavior illustrated in Figure 4.7.

4.5.7 Proof of Proposition 4.3

Proposition 4.3 Consider the system (4.36)-(4.38) with the controller (4.28)-

(4.31). Assume that the controller is such that the poles r1=
k2+

√
4k1+k2

2
2 ,

r2=
k2−

√
4k1+k2

2
2 , r3=

k4+
√

4k3+k2
4

2 , r4=
k4−

√
4k3+k2

4
2 are negative and real.

Then, x1 and x2 converge to x1ref and x2ref exponentially.

Proof: The proof follows roughly the same lines as those above (Propo-
sition 4.1). However, Lemma 4.3 is replaced by Lemma 4.15.
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Lemma 4.15 Let P and Q be chosen to be identical to those for Lemma
4.3 Then,

V0 =
(
ex1 eχ1

)
P

(
ex1

eχ1

)
+
(
ex2 eχ2

)
Q

(
ex2

eχ2

)

converges to zero exponentially.

Proof: This proof follows similar lines to those for Lemma 4.3. For
this reason, only the main differences are briefly set out below. The first
difference stems from the fact that (4.57)-(4.60) changes into

ėx1 = eχ1 +
√

(ẋ1ref + eχ1)2 + (ẋ2ref + eχ2)2

(cos(x̂3 + ξ) − cos(x̂3))
ėχ1 = k1ex1 + k2eχ1

ėx2 = eχ2 +
√

(ẋ1ref + eχ1)2 + (ẋ2ref + eχ2)2

(sin(x̂3 + ξ) − sin(x̂3))
ėχ2 = k3ex2 + k4eχ2 .

Then, the reference terms that appear under the square root lead to a
modification of (4.64) to

‖2 (ex1 eχ1

)
P

(
1
0

)√
χ2

1 + χ2
2ξ‖

≤| α1ex1 + α2eχ1 | (| χ1 | + | χ2 |) | ξ |
=| α1ex1 + α2eχ1 |
(| eχ1 + ẋ1ref | + | eχ2 + ẋ2ref |) | ξ |
≤ 2c̃1

(
V0 +

√
V0

)
| ξ | .

By analogy, a similar result can be found for the term involving Q. Finally,
after a few algebraic manipulations, there exist positive constants c1, c2

such that

V̇0 ≤ −2c1V0 + 2c2(V0 +
√

V0) | ξ | (4.107)

Here one can see that (4.107) has the same structure as (46), page 750, in
[43]. Now using the result in [43], it can be concluded that (4.107) exhibits
no finite escape time and converges exponentially to 0.
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4.6 Experimental Verification

In this section, the control methodology is validated using real-time exper-
iments performed with the autonomous mobile robot Fouzy III depicted in
Figure 4.16. The robot weighs about 15 kg for dimensions of 0.3 m by 0.3
m and a height of 0.4 m. Its mass and inertia are not negligible. Due to
space limitations, two independent motors, each with a power consumption
of 23 W, drive the wheels through belt transmissions. The center of mass
lies in front of the wheel axle.

Figure 4.16: The robot Fouzy III.

The electronic components include an ARM processor, a low-level micro-
controller and two pulse-width modulation devices (PWM), each one sup-
plying adequate power to its corresponding motor. The processors are pro-
grammed in C language. The control loop runs at 100 Hz. The controller
implements the algorithm described in Section 4.3, with some important
differences detailed next.

4.6.1 Model mismatch and hardware limitations

The high-level controller given in Section 4.3 is based on a kinematic model
of the robot. Hence, it assumes that the velocities u1 and u2 can be im-
posed directly on the robot. However, this is experimentally impossible due
to inertia and the motor characteristics. Hence, it is necessary to have a
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low-level, high-gain controller that speeds up the low-level activities and
makes the higher level look like the kinematic model that has been as-
sumed. A linear quadratic regulator (LQR) with integral action is used
to this effect. In addition, this low-level controller decreases the effect of
nonlinearity stemming from motor dead-zone and belt transmission. Nev-
ertheless, the velocities are inherently limited by the motor characteristics,
which is another difference with the theoretical part of the thesis. These
velocity bounds can be enforced in an open-loop manner by the controller
if the robot slips on the surface on which it moves.

Note that the robot knows its position through the use of encoders
mounted on the motors. It computes its odometry with a discrete model.
This way of estimating the position is not ideal since the robot can slip.
Although the position measurement may be crude, it is sufficient for our
purpose.

4.6.2 Control implementation

The implementation of the high-level controller has been done on the ARM
processor. However, since the architecture lacks a floating point unit, it is
very slow in processing numbers that are not integers. Some adaptations
have been necessary. For example, mathematical functions have been re-
programmed (i.e. sin and cos) and set in a table in RAM memory and
optimized to work with integer arithmetic.

Apart from the intrinsic model mismatch and hardware limitations de-
scribed in the previous section, the equations given in the theoretical part
need some further processing. Indeed, they are given in continuous time,
but the robot interface is discrete. The following adaptations have been
made:

• The time variable t becomes kh, where h is the sampling period (10
ms).

• Using Euler’s first-order approximation, Equations (4.30) and (4.31)
become (after setting eχj(k)=χj(k) − ẋjref (k)):

χ1(k + 1) = χ1(k) + (4.108)
(k1ex1(k) + k2eχ1(k) + ẍ1ref (k)) h

χ2(k + 1) = χ2(k) + (4.109)
(k3ex2(k) + k4eχ2(k) + ẍ2ref (k)) h,
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where xjref (k), j = 1, 2, and their derivatives are sampled versions of
their continuous-time analog.

• Two modifications are introduced in (4.29): (i) The term
(x3−arctan(χ1, χ2)) is bounded between [−π; π[ to avoid trigonomet-
ric circle discontinuity; (ii) The continuous part

ψ(t) =
χ̇2χ1 − χ̇1χ2

χ2
1 + χ2

2

, (4.110)

is approximated by the discretized version

ψ(k) =
χ1(k − 1)χ2(k) − χ2(k − 1)χ1(k)

h(χ2
1(k) + χ2

2(k))
. (4.111)

4.6.3 Experimental results

Two experiments have been carried out, one in stabilization at the origin
and one in circular trajectory tracking.

Stabilization at the origin with smooth controller

The parameters used in this experiment are given in Table 4.7. The con-
troller parameters ki, i = 1, · · · , 4 are different from those used in simula-
tion. Here, a sufficiently high ratio must exist between the dominant poles
(the slow ones) r1 and r3. This ratio has been set to 4, making the robot
go faster along x2 than along x1. The fast poles r2 and r4 are set equal.

Figure 4.17 shows the way the controller brings the system to x1 = 0
and x2 = 0. No difficulty is encountered, and x3 converges to 0 according
to Lemma 4.12. However, Part (iv) of Figure 4.17 shows that u2 can get
quite noisy.

This noise amplification stems from the computation in (4.111) and has
two causes. On the one hand, (4.111) is a numerical differentiation and
is inherently sensitive to noise. On the other hand, when χ2

1(k) + χ2
2(k)

becomes small, (4.111) approaches singularity. This last point is responsible
for the strong noise amplification visible in Part (iv) around t = 10 s.

An interesting observation, already mentioned in the theoretical part of
the paper, is that singularity crossing has little effect on the robot perfor-
mance for two reasons:

• Firstly, Lemma 4.10 ensures that this can happen only a finite number
of times. The consequence of getting close to the singular manifold, or
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even momentarily entering it, is an abrupt increase in angular velocity
(i.e. high ẋ3). However, as mentioned previously, such a high velocity
cannot be imposed instantaneously by the low-level controller despite
its high gain.

• Secondly, two important aspects limit the effect of high angular ve-
locity on x1 and x2. This can be seen through examination of (4.2)
and (4.3). On the one hand, sin(x3) and cos(x3) remain bounded. On
the other hand, u1 stays small in the vicinity of the exceptional set.
Indeed, singularity crossing happens at zero u1 velocity since, when
χ1 = χ2 = 0, u1 =

√
χ2

1 + χ2
2 = 0.
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Figure 4.17: Experimental stabilization at the origin using a smooth con-
troller with ψ(k) = 0 given by (4.111).

Noise reduction for u2: The results in Figure 4.17 show a large sensitivity
of u2 to noise. The control performance is not degraded itself, but a noisy
input can rapidly wear down the actuator. For this reason, Equation (4.111)
is modified to

ψ(k) =
ẍ2ref (k)ẋ1ref (k) − ẍ1ref (k)ẋ2ref (k)

ẋ2
1ref (k) + ẋ2

2ref (k)
, (4.112)
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where the noisy terms χ1 and χ2 have been replaced by the reference values
ẋ1ref and ẋ2ref .

Remark 4.12 For stabilization, ψ(k) = 0 since x1ref = 0 and x2ref = 0.

Since Equation (4.112) is a feedforward term that does not depend on
measurements, it is not sensitive to noise. Equation (4.112) is an approx-
imation of (4.111) with the assumption that χ1

∼= ẋ1ref and χ2
∼= ẋ2ref .

This is a strong assumption, which is validated by very convincing experi-
mental results. A comparison of the trajectories in Figure 4.17 using (4.111)
with those in Figure 4.18 using (4.112) shows that the robot behaves nearly
identically. Moreover, the noise on the input signal u2 is strongly reduced.
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Figure 4.18: Experimental stabilization at the origin using a smooth con-
troller with ψ(k) = 0 given by (4.112).

Stabilization at the origin with discontinuous controller

As explained in Section 4.3, when the initial conditions are not suitable, it is
possible through appropriate switchings to ensure that the robot’s heading
angle converges to the desired value of 0 . A typical trajectory is portrayed
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Parameters Values Parameters Values
x1(0) −1 [m] x2(0) 2 [m]
χ1(0) 0 [m/s] χ2(0) 0 [m/s]
x3(0) −π [rad] kp 2
k1 −10 k3 −39
k2 −40 k4 −40

Table 4.7: Initial conditions and controller parameters used in the stabiliza-
tion experiments

in Figure 4.19. The initial conditions and controller parameters are given
in Table 4.8.
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Figure 4.19: Experimental stabilization using switching provided by the
discontinuous controller.
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Parameters Values Parameters Values
x1(0) 0.01 [m] x2(0) 2 [m]
χ1(0) 0 [m/s] χ2(0) 0 [m/s]
x3(0) −π [rad] kp 2
k1 −10 k3 −39
k2 −40 k4 −40

Table 4.8: Initial conditions and controller parameters used in the stabiliza-
tion experiments with the discontinuous controller

Circular trajectory tracking

For this experiment, the feedforward term is computed according to (4.112).
The robot is able to reach and then follow the circular trajectory as illus-
trated in Figure 4.20. The parameters used for this experiment are shown
in Table 4.9. The distance

ε(t) =
√

(x1(t) − x1ref (t))2 + (x2(t) − x2ref (t))2 (4.113)

between the robot position and the reference trajectory is shown as a func-
tion of time in Figure 4.21. Fast convergence to zero with a very low residual
error of about 3 mm is observed.
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Figure 4.20: Experimental results for circular trajectory tracking.
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Parameters Values Parameters Values
x1(0) 0.5 [m] x2(0) 1 [m]
χ1(0) 0 [m] χ2(0) 0 [m]
x1ref cos(0.1πt) [m] x2ref sin(0.1πt) [m]
x3(0) −π

2 [rad] kp 2
k1 −39 k3 −39
k2 −40 k4 −40

Table 4.9: Initial conditions and controller parameters used in the circular
trajectory tracking experiment
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Figure 4.21: Error in measured position results for circular trajectory track-
ing.

4.6.4 Discussion

The following general observations are valid for all experiments that were
performed:

• The robot converges even when both χ1(0) and χ2(0) vanish simulta-
neously.
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• The time to converge is longer than in the simulation case. This is
due to the presence of bounds on the velocities u1 and u2 that are
clearly visible in Figures 4.19 (iii) and 4.19 (iv).

• The coefficient kp is difficult to tune, and the results are strongly
dependent on its value.

Nevertheless, the results agree well with the theory, and the control per-
formance is excellent. The differences between simulation and experiments
are mainly due to the robot imperfections and unmodeled dynamics.

4.7 Conclusions

Jet-scheduling control is applied successfully in simulation to a nonholo-
nomic mobile robot. For this system, the jet-scheduling controller can be
interpreted as a two-dimensional state extension, which provides a reference
heading angle that is tracked using a proportional controller. Once tracking
convergence has been achieved, the third-order mobile robot, together with
the second-order dynamic extension (i.e. an extended 5th-order system) be-
comes equivalent to a 4th-order linear system that can be easily stabilized.
During the transient period, i.e. when the heading angle has not yet reached
its reference value, the robot position may very well drift away due to poor
initial conditions. Nevertheless, it was shown that this excursion remains
finite, before the robot eventually goes back to its reference position.

Additionally, the control method proposed in this thesis has been shown
to be more robust in rejecting a constant perturbation appearing on the
rotational axis of the robot.

The two open issues mentioned in the conclusion of Chapter 3 (choice
of p and the design of the low-order controller) have been addressed in the
present context almost trivially. Indeed, p is chosen as small as possible
yet retaining the advantage of the jet-scheduling process, and the low-order
controller involves a single differential equation that is directly controllable
through the second input u2. The computations are direct and the pseudo-
inverse trivial. The low-order controller leads to a straightforward physical
interpretation since it steers the robot angle directly to the reference value
provided by the scheduler.

The low-order controller also explains why it can be more robust. Indeed,
putting a high gain on the steering angle of the robot allows variety of
perturbations to be handled. The final error is inversely proportional to the
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gain, which can be increased independently from the manner in which the
robot converges to the origin, a benefit not easily achievable using classical
feedback linearization using dynamical extension.



Chapter 5

Application to Cranes

5.1 Introduction

The previous chapter showed how jet-scheduling control could be applied to
an essentially kinematic system. Indeed, only the velocities were controlled
to steer the mobile robot to the origin. In this chapter, a dynamical me-
chanical system is considered where the inputs impose accelerations rather
than velocities. A crane is a typical example of such systems with the added
difficulty that the number of independent inputs are fewer than the number
of degrees of freedom.

From a purely practical viewpoint, the stabilization of loads that are
carried by cranes is tedious, and the lack of truly efficient strategies implies
a large economic loss due to the additional time required for transferring
loads. In various industries, such as construction and naval transport, the
crane drivers move the load in a quasi-static way, i.e. by keeping the cable
vertical in order not to induce oscillations. To improve the work rate, it is
necessary to abandon the quasi-static approach and introduce a control law
that can cope with dynamic couplings.

For these reasons, the dynamic behavior and the control of cranes have
been abundantly studied. In particular, a fundamental paper [49] defines a
class of systems called “crane”. This definition gives a general framework
that includes all the classical cranes like the overhead crane, the cantilever
and the US-Navy crane. The dynamical equations and the flatness property
of “crane” are given as well.

The problem of crane stabilization has often been addressed and can
be split in three main categories: i) controllers based on the linearized

115
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model [38, 16, 80, 70, 9], ii) Lyapunov-based controllers [25, 41, 53], and iii)
controllers using differential flatness and dynamical feedback linearization.

We will spend some time on the third category since the jet-scheduling
controller belongs to it. The control of cranes with dynamic inversion tech-
niques tends to generate non-asymptotically stable internal dynamics, when
the outputs are not appropriately chosen. However, using flat outputs, the
inversion technique has very good performance. In particular, the flatness
formalism is ideally suited to handle the motion planning problem: Trajec-
tory generation and input computation are performed without integrating
differential equations. Interestingly, part of the flat output corresponds to
the position of the load. This simplifies the motion planning problem, since
the load has to be positioned accurately.

The jet scheduling for cranes takes advantage of the general definition
of cranes as proposed in [49]. However, before both proceeding along the
general definition and presenting the essential features of the jet scheduler
when applied to cranes, an introductory example is given so as to set the
concepts and notation used in the chapter. While presenting the main
issues in a straightforward and simple way, it gives the necessary insight
for generalizing jet scheduling control to the whole crane class throughout
the chapter. The ideas will be presented using the simplified example first,
before extending them to the general class using the universal definition.

This chapter is organized as follows. Sections 5.2 presents respectively
the crane and its model which is rigorously the same as that appearing in
[49]. It is included in this thesis for the sake of completeness. The flatness
property of cranes are then presented with a geometrical interpretation.
The jet-scheduling controller for cranes is developed in Section 5.3. Section
5.4 illustrates the effectiveness of the proposed control scheme. In Section
5.5, the proofs of stability are detailed. An experimental verification on
a laboratory-scale setup is provided in Section 5.6. Finally, Section 5.7
concludes the chapter.

5.2 Preliminaries

As mentioned in the introduction, we will first describe the overhead crane
with its model before giving the general crane definition and its model. The
overhead crane is a very popular 2-dimensional crane. The flatness property
is also recalled for this particular example and for the general class as well.
Another important crane will then be presented to which the methodology
of the thesis is particulary efficient, namely the SpiderCrane. This crane
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operates in the 3 dimensional space. The particular structure of this crane
lies in the absence of a heavy mobile component, which allows the crane to
work at a high pace, taking full advantage of the dynamics.

5.2.1 Crane description

The overhead crane

The popular overhead crane is chosen as the first example. This crane
is particularly simple and allows an easy illustration of the general crane
definition that will be given next (Definition 5.1).

The overhead crane (Fig. 5.1) comprises:

• A working load with mass m whose position is denoted by (x1, x2).

• A main pulley mounted on a trolley that moves on a rail for which m0

denotes the mass of the trolley and (x01, x02) its position.

The input T1 is the force on the cable L1 connected to the trolley. The
input T2 is the force that pulls the working load through the main cable L2.
The forces Ti, i = 1, 2, are delivered by two motors that are located at the
origin (0,0) and at (l,0), respectively. The total inertia with respect to the
variables L1 and L2, are denoted m1 and m2, respectively. The following
properties describe on the variables appearing in Definition 5.1:

• The overhead crane works in a plane and the dimension of the working
space is q = 2.

• The rigid structure has no degree of freedom, consequently d = 0.

• There are two motors, so that h = 1.

• The main pulley moves in a manifold of dimension n = 1

General crane description

In [49], the following crane definition is given. The dimension q of the
working space is 2 when the crane operates in a plane and 3 otherwise
(q ∈ {2, 3}).
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T2

T1

Main pulley (x01, x02)

L0 L1

l

(0, 0)

Load (x1, x2)

Figure 5.1: Overhead crane

Definition 5.1 (Crane) A crane is constituted by the following elements:
i) a rigid articulated actuated mechanical system with d ∈ {0, 1} degrees
of freedom, ii) motors, iii) cables, iv) pulleys, v) a load, and it enjoys the
following topographic properties:

1. There are h + 1 motors fixed on the articulated structure.

2. There are as many cables as motors.

3. A motor is linked to a pulley or to the load with a cable.

4. h cables end on a unique pulley, called the main pulley. If h = 0 there
is no main pulley. Every other pulley is fixed to the structure.

5. There is a unique cable going through the main pulley and ending on
the load.

6. Between the load and the main pulley there is no other pulley.

Moreover, the following physical property is assumed. The main pulley
moves in a manifold of dimension n∈(q−1, q). This manifold is determined



5.2. PRELIMINARIES 119

through the constraints imposed by the cables and by the restriction of the
main pulley to move along a rail. If n=q−1, the manifold is transversal to
the gravitational field.

SpiderCrane

As a second example, a new crane design labeled SpiderCrane is proposed.
Its main particularity is that it is devoid of any heavy mobile components.
Since the problem of classical cranes is the large inertia of the boom, which
limits the crane dynamics, SpiderCrane can work at a considerably higher
speed.

SpiderCrane is made of three fixed pylons and a fixed gibbet. A pulley
is mounted at the top of each pylon, allowing a cable to slide. These three
cables are attached to a ring, and by varying their length, the ring can be
moved in the surrounding space. The end of the gibbet is above the plane
formed by the three pulleys and at the centre of the triangle formed by the
pylons. At the end of the gibbet, another pulley is mounted, guiding the
main cable. This cable goes through the centre of the ring and is attached
to the load. The positioning of the load in space is done by adjusting both
the positioning of the ring and the length of the main cable.

L1

L2

L3

L4 − L0

Load : (x1, x2, x3)

Ring : (x01, x02, x03)

Figure 5.2: SpiderCrane
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The position of the load of mass m is given by (x1, x2, x3), that of the
ring (main pulley) of mass m0 by (x01, x02, x03). The position of the main
motor is (x41, x42, x43) and its equivalent inertia m4. The positions of the
three secondary motors are (x11, x12, x13), (x21, x22, x23), and (x31, x32, x33),
respectively, and their equivalent inertias with respect to the cables m1, m2

and m3. The length of the cable connecting the main motor to the load
is L4, with the portion going from the motor to the ring being L0. The
lengths of the cables connecting the secondary motors to the ring are given
by L1, L2 and L3, respectively. The four motors are torque controlled and
provide the forces T1, T2, T3 and T4.

• The dimension of the working space is q = 3.

• There is no rigid articulated actuated system d = 0.

• The number of motors is h + 1 = 4.

• The main pulley (i.e the ring) moves in a manifold of dimension d = 3

5.2.2 Crane modeling

In Section 5.2.1, a general crane description is given. However, this descrip-
tion does not explain its dynamical behavior and in particular the complex
dynamic couplings between the different crane elements. To quantify this
behavior, a general dynamic model is developed in this section. Then, in
order to illustrate this general model, the model of the overhead crane is
derived.

Model of the overhead crane

In Sections 5.2.1 and 5.2.2, a general framework has been introduced. Mean-
while, the concepts are quite abstract and in order to exemplify and make
both Definition 5.1 and Theorem 5.1 more intuitive, the overhead crane is
considered here.

Based on the description of Section 5.2.1, the constraint on the cable of
length L1 terminating at the main pulley reads

C1 = l − L1 − x01 = 0 (5.1)
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The cable of length L2, which passes through the main pulley and terminates
at the work load, generates the following constraints

C2 = L0 − x01 = 0 (5.2)

C3 =
(x1 − L0)2 + x2

2 − (L2 − L0)2

2
= 0 (5.3)

Finally, since the main pulley moves along a rail, the last constraint is

C4 = x02 = 0 (5.4)

which is established using Theorem 5.1 together with the constraints (5.1)-
(5.4). The result is

mẍ1 = λ3(x1 − L0) (5.5)
mẍ2 = λ3x2 − mg (5.6)

m0ẍ01 = −λ1 − λ2 (5.7)
m0ẍ02 = λ4 − m0g (5.8)

0 = λ2 + λ3(x1 − L2) (5.9)
m1L̈1 = −λ1 + T1 (5.10)
m2L̈2 = λ3(L2 − L0) + T2. (5.11)

The expressions (5.5)-(5.11) are constrained by (5.1)-(5.4), which are associ-
ated with the Lagrange multiplier λ1, λ2, λ3 and λ4, respectively. However,
in order to have a more compact model, the constraints (5.1), (5.2) and
(5.4) can be injected into (5.5)-(5.11). The resulting dynamics are given by

mẍ1 = λ3(x1 − l + L1) (5.12)
mẍ2 = λ3x2 − mg (5.13)

(m1 + m0)L̈1 = λ3(x1 − L2) + T1 (5.14)
m2L̈2 = λ3(l − L1 − L2) + T2 (5.15)

under the constraint

(x1 − l + L1)2 + x2
2 − (L1 + L2 − l)2

2
= 0 (5.16)

associated with the Lagrange multiplier λ3.
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Notice that λ3 can be calculated explicitly by differentiating the con-
straint (5.16) twice, introducing the dynamics (5.12)-(5.15) and solving for
λ3. The result is

λ3 =
A

B
, (5.17)

where

A = m(−l(m0 + m1)T1 + (m0 + m1)L1T1 + (m0 + m1 + m2)L2T1 +
m2((m0 + m1)((L̇2 − ẋ1)(2L̇1 + L̇2 + ẋ1) − ẋ2

2) − T1x1))
B = (m0 + m1)(m + m2)(l2 + L2

1) + m(m0 + m1 + m2)L2
2 +

2(m0 + m1)L1(−l(m + m2) + mL2 + m2x1) −
2L2(lm(m0 + m1) + mm2x1) + m2((m + m0 + m1)x2

1 −
2l(m0 + m1)x1 + (m0 + m1)x2(x2 − gm))

General crane modeling

In [49], the dynamic equations of the crane are established using the La-
grangian formalism. The model is given in Theorem 5.1 below. An inertial
base frame is considered such that its qth axis points in the direction oppo-
site to g, the gravity acceleration. The following coordinates are introduced:

1. The position of the work load: (x1, . . . , xq).

2. The position of the main pulley (if it exists): (x01, . . . , x0q).

3. The positions of the motors: (xi1, . . . , xiq) for i = 1 . . . h + 1.

4. The positions of the fixed pulleys: (wij1, . . . , wijq) for i = 1 . . . h + 1
and j = 1 . . . ri.

5. The cable lengths: Li for i = 1 . . . h + 1.

6. The cable length L0 between the main pulley (if it exists) and the
motor winching the work load.

The load mass is m and the main pulley mass is m0. To each motor fixed on
the structure, there is a corresponding equivalent mass mi, i = 1 . . .m + 1.
The coordinate L0 is not associated to any mass. It is assumed that the rigid
body with at most one degree of freedom has an equivalent mass M and
its coordinates coincide with those of the motor winching the load, namely
(x(h+1)1, . . . , x(h+1)q). The following assumptions are made.
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Assumptions

(A1) The main pulley is present. Consequently, h ≥ 1.

(A2) The angular velocities of the fixed pulleys are small enough to neglect
their quadratic effects w.r.t. the structure. All the motors are located
on the structure along a line determined by the origin of the base frame
and the position of the motor winching the load: xji = αjx(h+1)i for
j = 1 . . . h and i = 1 . . . q.

(A3) If the main pulley moves along a rail, the rail coincides with the above
line. Let us introduce a parameter c such that c = 1 if the rail is
present and c = 0 otherwise.

(A4) The crane has no redundant actuator or motor: h = q − d − c.

(A5) If d = 1, the origin of the base frame is on the joint axis of the
articulated mechanical structure. The articulated mechanical structure
consists of either a rotational joint, in which case the joint axis is
colinear with g, or a prismatic joint, in which case the joint axis is
orthogonal to g. This assumption eliminates the variable x(h+1)q. The
vertical position of the motor winching the load remains constant.

Constraints on the cable lengths are due to either cables terminating at the
main pulley:

Cj(x01, . . . , x0q, x(h+1)1, . . . , x(h+1)q−1, Lj) = 0 j = 1 . . . h, (5.18)

or the cable terminating at the working load, one for the total length be-
tween the main pulley and the corresponding motor, and one for the length
between the load and the main pulley:

Ch+1(x01, . . . , x0q, x(h+1)1, . . . , x(h+1)q−1, L0) = 0 (5.19)
Ch+2(x01, . . . , x0q, x1, . . . , xq, L0, Lh+1) = 0. (5.20)

An additional constraint is imposed by the motion compatible with the
degree of freedom of the structure. In view of the above assumptions, the
following constraint exists only if q = 3:

Ch+3(x(h+1)1, . . . , x(h+1)q−1) = 0. (5.21)

The motion of the main pulley along the rail (if it is present) is of the form:

Ch+q+k(x0k, x0q, x(h+1)k) = 0 k = 1 . . . q − 1. (5.22)



124 CHAPTER 5. APPLICATION TO CRANES

Let denote l the total number of constraints. If (5.22) is present, l =
h + 2q − 1, otherwise l = h + q.

Instead of obtaining an explicit differential model, an implicit formula-
tion with additional variables, known as Lagrange multipliers, is preferred.

Theorem 5.1 Assume that the constraints are independent in an open sub-
set of the generalized coordinate space. The dynamic model associated with
the crane given by Definition 5.1 reads:

mẍi = λh+2
∂Ch+2

∂xi
− δiqmg i = 1 . . . q (5.23)

m0ẍ0i =
l∑

j=1

λj
∂Cj

∂x0i
− δiqm0g i = 1 . . . q (5.24)

0 =
l∑

j=1

λj
∂Cj

∂L0
(5.25)

miL̈i =
l∑

j=1

λj
∂Cj

∂Li
+ Ti i = 1 . . . h + 1 (5.26)

Mẍ(h+1)i =
l∑

j=1

λj
∂Cj

∂x(h+1)i
+ Fi(Th+2) i = 1 . . . q − 1 (5.27)

subject to Constraints (5.18)–(5.22), where δiq = 1 if i = q and δiq =
0 otherwise. T1, . . . , Th+1 are the forces produced by the motors on the
structure and Th+2 that produced by the structure actuator.

Proof: See [49].

Essential characteristics of the crane model

The overhead crane model obtained in the previous section clearly under-
lines the difficulties that might appear in the control-design stage. Indeed,
equations (5.12)-(5.15) explicit the nonlinear nature of the model, because
the Lagrange multipliers (5.17) stem from quadratic constraints. Once they
are computed explicitly, they introduce gyroscopical and centrifugal cou-
plings that will be difficult to handle using a local linearization based de-
sign.
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Moreover, the variables L1 and L2 vary when trying to follow complex
trajectories. This also induces a fundamental shift in the frequency charac-
teristic of the linearized model. Namely, the fundamental frequency linked
to the natural pendulum oscillation changes significantly according to the
length of the main cable.

These two considerations stress the need to take advantage of the nonlin-
ear model presented and to compensate these effects adequately. Notice that
both characteristics apply to all the models that can be obtained through
the application of Theorem 5.1.

In the forthcoming section we will see how nonlinear terms can be com-
pensated so as to obtain a feedforward open-loop control law that makes
the payload efficiently and elegantly follow smoothly planned motions.

5.2.3 Flatness

The models presented in the previous sections underline the presence of
complex-dynamical-coupling terms in their respective dynamics. Fortu-
nately, these couplings can be taken care of, once a useful essential structural
property is pinpointed. This helps in finding out the right way of cancelling
and compensating these nonlinear couplings. This property is the differen-
tial flatness property. Indeed, the flatness property, as it was the case with
the nonholnomic robot, helps in finding the right input to be applied so as
to steer the load adequately. As it has been done so far, checking flatness
will first be carried out on the overhead crane before recalling it for the
general class of cranes.

The overhead crane

In order to explain intuitively the concept of flatness for the cranes, Theorem
5.2 will be interpreted from a geometrical point of view (Figure 5.3).

For this purpose, a trajectory y(t) ∈ C4 for the flat output is chosen, as
illustrated in Figure 5.3(a).

For a given time instant t = ti, the flat output determines the load
position y = (y1, y2) = (x1, x2) (Figure 5.3(b)).

Then, considering the acceleration of the flat output ÿ = (ÿ1, ÿ2) =
(ẍ1, ẍ2) and knowing the direction and intensity of gravity, it is possible to
compute the resulting force acting on the load (Figure 5.3(c)):

Fx1 = mÿ1

Fx2 = mÿ2 + mg
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Using (5.13), the Lagrange multiplier λ3 can be determined

λ3 =
m(ÿ2 + g)

y2
(5.28)

(a) The flat output trajectory

(x1, x2)

(b) The load position

(Fx1 , Fx2)

(c) The force acting on the load (d) The main rings position

(e) The length of main cable (f) The forces applied to the cables

Figure 5.3: The flatness of the overhead crane from a geometrical point of
view

As shown in Figure 5.3(d), the force on the load lies necessarily along
the direction of the cable and hence after intersection with the rail of the
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trolley, the main-ring position is inferred. This is expressed algebraically
using (5.12),

L1 =
mÿ1

λ3
+ l − y1. (5.29)

Notice that L1 is only expressed with (y1, ÿ1, y2, ÿ2) since λ3 is given by
(5.28).

Taking advantage of the constraint (5.16), the length of the main cable
L2 is computed (Figure 5.3(e))

L2 = l − L1 + (y2
1 + y2

2 + L2
1 + l2 + 2y1L1 − 2ly1 − 2lL1)

1
2 (5.30)

It is then possible to determine the forces to be applied to the cables,
by first differentiating (5.29) and (5.30) and then using (5.14) and (5.15),
as illustrated in Figure 5.3(f)

L̈1 = ϕL̈1
(y1, ẏ1, ÿ1, y

(3)
1 , y

(4)
1 , y2, ẏ2, ÿ2, y

(3)
2 )

L̈2 = ϕL̈2
(y1, ẏ1, ÿ1, y

(3)
1 , y

(4)
1 , y2, ẏ2, ÿ2, y

(3)
2 )

T1 = (m1 + m0)L̈1 − λ3(y1 − L2)

= ϕT1(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y
(3)
1 , y

(3)
2 , y

(4)
1 , y

(4)
2 )

T2 = m2L̈2 + λ3(L2 + L1 − l)

= ϕT2(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y
(3)
1 , y

(3)
2 , y

(4)
1 , y

(4)
2 )

In a nutshell, the states x1, ẋ1, x2, ẋ2, L1, L̇1, L2, L̇2 and the inputs T1 and
T2 of the overhead crane are constructed as functions of the flat output y
and its derivatives ẏ, ÿ, y(3), y(4);
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x1 = y1

ẋ1 = ẏ1

x2 = y2

ẋ2 = ẏ2

λ = ϕλ(x1, x2, ẍ1, ẍ2)
L1 = ϕL1(y1, y2, ÿ1, ÿ2)

L̇1 = ϕL̇1
(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y

(3)
1 , y

(3)
2 )

L2 = ϕL2(y1, y2, ÿ1, ÿ2)

L̇2 = ϕL̇2
(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y

(3)
1 , y

(3)
2 )

T1 = ϕT1(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y
(3)
1 , y

(3)
2 , y

(4)
1 , y

(4)
2 )

T2 = ϕT2(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y
(3)
1 , y

(3)
2 , y

(4)
1 , y

(4)
2 ) (5.31)

The general class of cranes

In [49], it is stated that the cranes are flat in the sense of Chapter 2. This
result is established in the following theorem, assuming that trajectories in
free fall are excluded, namely those for which ẍp = −g.

Theorem 5.2 Cranes obeying Definition 5.1 and satisfying (A1)–(A5) are
differentially flat. The flat output can be chosen as (x1, . . . , xq), the coordi-
nates of the load, and h+d+1−q coordinates of the main pulley.

The proof is given in [49] and will not be repeated here. However, an
intuitive sketch of the proof is done using a geometrical interpretation for
the overhead crane.

5.2.4 Dynamical feedback linearization for the overhead crane

In order to construct a dynamical feedback controller for the overhead crane
(see Section 2.1.5), the first step is to find an endogenous feedback

γ̇ = β(x, γ, w) (5.32)
u = α(x, γ, w) (5.33)
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such that the extended states (x, γ) are in one-to-one correspondence with
the states (y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y

(3)
1 , y

(3)
2 ) of the trivial system

y
(4)
1 = v1

y
(4)
1 = v2 (5.34)

Moreover, the the new input w needs to be expressed as (y, ẏ, . . . , y(4) = v)
(cf. (2.22) and (2.23)).

In the case of the overhead crane, the original states are (x1, ẋ1, x2, ẋ2,
L1, L̇1) and the original inputs T1, T2. Notice that L2 and L̇2 are not taken
into account since the constraint (5.16) and its derivatives allows reducing
the degree of freedom. The dynamical extension γ is chosen as

γ = (λ3, λ̇3),

meaning that there should be a one-to-one correspondence between

(x1, ẋ1, x2, ẋ2, L1, L̇1, λ3, λ̇3)

and
(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y

(3)
1 , y

(3)
2 ).

We will show that this is indeed the case. Moreover, whenever this corre-
spondence exists then the new input can chosen as

w = (T1, λ̈3).

Since the flat output is y = (y1, y2) = (x1, x2) by definition and considering
(5.16), it follows that

y1 = x1

ẏ1 = ẋ1

y2 = x2

ẏ2 = ẋ2

Then, using (5.28) and (5.29)

ÿ1 =
−λ3L1 − l + x1

m
(5.35)

ÿ2 =
−λ3x2 − mg

m
(5.36)
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By differentiating (5.35) and (5.36),

y
(3)
1 =

−λ̇3L1 − λ3L̇1 + ẋ1

m
(5.37)

y
(3)
2 =

−λ̇3x2 − λ3ẋ2

m
. (5.38)

At this point, one can notice that the extended states (x1, ẋ1, L1, L̇1, L2,
L̇2, λ3, λ̇3 ) are in one-to-one correspondence with (y1, y2, ẏ1, ẏ2, ÿ1, ÿ2,
y
(3)
1 , y

(3)
2 ).

Now, differentiating again (5.37) and (5.38) and introducing the dynam-
ics (5.12) and (5.14)

y
(4)
1 =

−λ̈3L1 − λ̇3L̇1 − λ̇3L̇1 − λ3
λ3(x1−L2+T1)

(m1+m0) + ẋ1

m
(5.39)

y
(4)
2 =

−λ̈3x2 − λ̇3ẋ2 − λ̇3ẋ2 − λ3
λ3x2−mg

m

m
, (5.40)

one can see that the new input w = (w1, w2) = (T1, λ̈3) appears. Notice
that L2 can be expressed using the constraint (5.16),

L2 = l − L1 +
√

(−l + L1 + x1)2 + x2
2.

Therefore, the dynamical extension for the overhead crane reads

λ̈3 = w2

T1 = w1

T2 = m2L̈2 + λ3(
√

(−l + L1 + x1)2 + x2
2) (5.41)

where L̈2 can be expressed with (x1, ẋ1, L1, L̇1, L2, L̇2, λ3,T1) after differen-
tiating the constraint (5.16) twice, introducing the dynamics (5.12)-(5.15),
and solving for L̈2.

In summary, the overhead crane (5.12)-(5.15) together with the dynam-
ical extension (5.41) is equivalent to the trivial system (5.34).

Then, stable dynamics are imposed to (5.34) thanks to the following con-
trol law

v1 = k11y1 + k12ẏ1 + k13ÿ1 + k14y
(3)
1

v2 = k12y2 + k22ẏ2 + k23ÿ2 + k24y
(3)
2 (5.42)
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with kij , i = 1, 2, j = 1, ..., 4 suitable gains to achieve stable dynamics..
Finally, inverting (5.39) and (5.40) so as to express the new input w =

(w1, w2) = (T1, λ̈3) a function of v1 = y
(4)
1 and v2 = y

(4)
2 , and introducing

(5.42), we get the dynamic feedback linearizing controller

w1 =
1
λ2

((mv1 −
mv2 + λ̇3ẋ2 + λ̇3ẋ2 + λ3

λ3x2−mg
m

x2
L1

+ λ̇3L̇1 + λ̇3L̇1 − ẋ1)
(m1 + m0)

−λ3
− λ3(x1 − L2))

w2 = −mv2 + λ̇3ẋ2 + λ̇3ẋ2 + λ3
λ3x2−mg

m

x2
. (5.43)

5.3 Jet-Scheduling Control for Cranes

In Section 5.2.3, the flat property of cranes has been established. Thanks
to this property, it is possible to compensate the dynamical coupling using
a feedforward input. Clearly, in practice, this approach is not satisfactory
because an open-loop solution is incapable of rejecting perturbations, for
instance a gust of wind. For this reason, a closed-loop controller dealing
with dynamic couplings needs to be designed. This section proposes the
jet-scheduling controller developed in Chapter 3 as a possible solution.

Notice that the construction of the jet scheduler and especially the low-
level controller takes full advantage of the general definition of cranes as
it will be derived at the end of this section. However, establishing this
relation directly is quite demanding. Therefore, we will first present the
jet-scheduler for the overhead crane.

5.3.1 Jet-scheduling control for the overhead crane

In this example, a dynamical feedback linearization controller will first be
constructed for the overhead crane. Then, a jet scheduling controller will
be synthesized following the procedure given in Section 3.3.4. In order to
construct a jet scheduling controller for the overhead crane, the principal
steps developed in Chapter 3 will be addressed, namely:

• The construction of the jet scheduler.

• The definition of the coordinates Ξ, which represent the sub-manifold
S.
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• The synthesis of a control law enforcing the convergence of Ξ to 0.

The first step so as to construct the jet scheduler is to select the flat
outputs of the overhead crane (which are y1 = x1 and y2 = x2 as stated in
Section 5.2.3). In this case, the order of derivation for the flat outputs is
r = 3. Therefore, the jet scheduler is built exploiting (3.13) and reads

χ̈1 = k11y1 + k12ẏ1 + k13χ1 + k14χ̇1

χ̈2 = k12y2 + k22ẏ2 + k23χ2 + k24χ̇2, (5.44)

with kij , i = 1, 2 j = 1, ..., 4 suitable gains to achieve stable dynamics.
Notice that, in this case, the parameter p is chosen equal to 1, meaning that
the scheduled jets are based on the position and the velocity of the payload.

As discussed in the previous paragraph, the states of the overhead crane
are (x1, ẋ1, L1, L̇1, L2, L̇2) and the extended states are (λ, λ̇), which
guarantees the following one-to-one correspondence with (y1, y2, ẏ1, ẏ2, ÿ1,
ÿ2, y

(3)
1 , y

(3)
2 ).

x1 = y1

ẋ1 = ẏ1

x2 = y2

ẋ2 = ẏ2

L1 = ϕL1(y1, y2, ÿ1, ÿ2)

L̇1 = ϕL̇1
(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y

(3)
1 , y

(3)
2 )

λ = ϕλ(x1, x2, ẍ1, ẍ2)

λ̇ = ϕλ̇(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2, y
(3)
1 , y

(3)
2 )

Now, setting

ϕ̄x1 = y1

ϕ̄ẋ1 = ẏ1

ϕ̄x2 = y2

ϕ̄ẋ2 = ẏ2

ϕ̄L1 = ϕL1(y1, y2, χ1 + α0,1, χ2 + α0,2)
ϕ̄L̇1

= ϕL̇1
(y1, y2, ẏ1, ẏ2, χ1 + α0,1, χ2 + α0,2), χ̇1 + α1,1, χ̇2 + α1,2)

ϕ̄λ = ϕλ(y1, y2, χ1 + α0,1, χ2 + α0,2)
ϕ̄λ̇ = ϕλ̇(y1, y2, ẏ1, ẏ2, χ1 + α0,1, χ2 + α0,2, χ̇1 + α1,1, χ̇2 + α1,2),
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it follows that the submanifold S defined by (3.24) becomes

S = {ϕ̄(α0,1, α0,2, α1,1, α1,2) | αi,j ∈ R, i = 0, 1, j = 1, 2}. (5.45)

Choosing the map σ : R
4 → R

8 given by the following six components

σx1 = y1

σẋ1 = ẏ1

σx2 = y2

σẋ2 = ẏ2

σL1 = ϕL1(y1, y2, χ1, χ2) + ξx,1

σL̇1
= ϕL̇1

(y1, y2, ẏ1, ẏ2, χ1, χ2, χ̇1, χ̇2) + ξx,2

σλ = ϕλ(y1, y2, χ1, χ2) + ξγ,1

σλ̇ = ϕλ̇(y1, y2, ẏ1, ẏ2, χ1, χ2, χ̇1, χ̇2) + ξγ,2

implies a split among a newly defined set of coordinates ξx,1, ξx,2, ξγ,1,
ξγ,2 such that ξγ,1, ξγ,2 only influence the extended states λ and λ̇ without
affecting the original state x1, ẋ1, L1, L̇1, L2, L̇2.

As stated in Section 3.3.4, the objective is now to find a controller that
stabilizes exponentially the origin of S. The first step is to calculate the
reduced dynamics of the ξ’s associated with the original states (i.e ξx,1 and
ξx,2). These dynamics are given in (3.41) and read

d

dt

(
ξx,1

ξx,2

)
=

[(
∂σx

∂(ξx,1, ξx,2)

)T (
∂σx

∂(ξx,1, ξx,2)

)]−1

(
∂σx

∂(ξx,1, ξx,2)

)T (
f(x, u) − ∂σx

∂Υ
dΥ
dt

)
(5.46)

where Υ = (y1, y2, ẏ1, ẏ2, χ1, χ2, χ̇1, χ̇2). Developing (5.46) gives

d

dt

(
ξx,1

ξx,2

)
=

(
L̇1 − ˆ̇L1

L̈1 − ˆ̈L1

)
=

(
L̇1 − ˆ̇L1

λ3(x1−L2)+T1
(m1+m0)

− ˆ̈L1.

)
(5.47)

Notice that ξ̇x,1 = ξx,2.
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Then, following the methodology proposed in Section 3.3.4, the dynamics
(5.47) need to be stabilized using the input T1. The following structure for
T1 is chosen

T1 = T̂1 + KT,1 = (m1 + m0)
ˆ̈L1 − λ̂3(x1 − L̂2) + KT,1 (5.48)

Therefore, (5.47) reads

ξ̈x,1 =
λ3(x1 − L2) − λ̂3(x1 − L̂2) + KT,1

(m + m0)
. (5.49)

Moreover, the control law is now synthesized considering the new inputs
KT,1. Setting

KT,i = kpξx,1kdξx,1 − λ3(x1 − L2) + λ̂3(x1 − L̂2), (5.50)

transforms the dynamics (5.47) into

ξ̈x,1 =
−kpξx,1 − kdξx,1

(m + m0)
, (5.51)

which are stable for suitable values of kp and kd.
Therefore, the input T1 reads

T1 = T̂1 + kpξx,1 + kdξ̇x,1 − λ3(x1 − L2) + λ̂3(x1 − L̂2). (5.52)

Remark 5.1 Notice that T2 is not used to stabilize (5.47), since there are
many different ways of choosing it. Two direct choices are

T2 = T̂2 (5.53)

T2 = T̂2 + kp(L2 − L̂2) − kd(L̇2 − ˆ̇L2). (5.54)

As it will be seen in the stability-analysis section (Section 5.4), the input
(5.53) can lead to unsatisfactory behavior for some initial conditions. How-
ever, the input (5.54) leads to excellent results and it is used for both the
simulation and the experimental parts. Nevertheless, it still provides dif-
ficulties in establishing a stability proof as it will be discussed in Section
5.4
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Summary of the jet scheduling controller for the overhead crane

Based on the jet scheduler

χ̈1 = k11y1 + k12ẏ1 + k13χ1 + k14χ̇1

χ̈2 = k12y2 + k22ẏ2 + k23χ2 + k24χ̇2, (5.55)

which provides the desired accelerations in order to reach the origin, the
reduced dynamics (5.47) are calculated. Notice that the values L̂1,

ˆ̇L1 and
ˆ̈L1 are compatible with the jet scheduler. These quantities are obtained
through the ϕ-map given by the flatness property and read explicitly as

L̂1 =
χ1y2

χ2 + g
+ l − y1

ˆ̇L1 = −y2((g + χ2)χ̇1 − χ1χ̇2) + χ1(g + χ2)ẏ2

(g + χ2)2
− ẏ

ˆ̈L1 = ϕL̈1
(y1, y2, ẏ1, ẏ2, χ1, χ2, χ̇1, χ̇2, χ̈1, χ̈2). (5.56)

Then, in order to stabilize exponentially the reduced dynamics (5.47), the
following input is chosen

T1 = −kpξx,1 − kdξ̇x,1 + T̂1 − λ3(x1 − L2) + λ̂3(x1 − L̂2), (5.57)

where the reference input T̂1 is given explicitly as

T̂1 = (m1 + m0)
ˆ̈L1 +

m(χ2 + g)
y2

(y1 − l + L1 −
√

(−l + L1 + x1)2 + x2
2).

Since, T2 is not used to stabilize (5.47), it is simply set to

T2 = T̂2 + kp(L2 − L̂2) + kd(L̇2 − ˆ̇L2), (5.58)

where the input compatible with the jet scheduler T̂2 is given by

T̂2 = ϕT2(y1, y2, ẏ1, ẏ2, χ1, χ2, χ̇1, χ̇2, χ̈1, χ̈2)

Finally, the jet scheduling controller for the overhead crane is composed
of (5.55), (5.57) and (5.58).
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Remark 5.2 Notice that, in (5.57) the term −λ3(x1 − L2) + λ̂3(x1 − L̂2)
equals to 0 when the origin of S is reached. For this reason, in practice, this
term is often small and can be neglected leading to the controller

T1 = T̂1 + kpξx,1 + kdξ̇x,1

T2 = T̂2 + kp(L2 − L̂2) + kd(L̇2 − ˆ̇L2). (5.59)

This simple controller is used both for simulation and on the physical appli-
cation (see Sections 5.4 and 5.6).

A physical insight can be given with respect to formulas (5.46) and
(5.59). In (5.46), ξx,1 represents the error between the true trolley position
and an ideal one given by the jet scheduler. This is illustrated in Figure 5.4.
Now (5.59) is responsible for inducing the true trolley position to converge
to its ideal value. Indeed, as described in Section 5.3, the scheduled jets
(χ1, χ2) fix the desired position of the trolley L̂1 and the desired length of
the main cable L̂2. Consequently, the problem is reduced to impose the
position L1 of the trolley to L̂1, which is ensured with (5.59).

5.3.2 Jet-scheduling control for cranes

In the previous section, a jet scheduling controller for the overhead crane
has been developed. In this section a generalization of this controller is
described for the overall class of crane given in Definition 5.1. Basically, In
order to construct a jet scheduling controller for cranes, the principal steps
developed in Chapter 5.3.1 will be addressed, namely:

• The construction of the jet scheduler.

• The definition of the coordinates Ξ that represent the sub-manifold
S.

• Design of a control law so as to reach the origin of S.

Before starting the synthesis the jet-scheduling control, a careful counting
of the independent states which is needed. Without loss of generality, we
will treat the case where:

• The dimension of the work space is q = 3 (i.e. a 3D crane).

• The rigid structure of the crane has d = 1 degree of freedom is treated
here.
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L̂2 L2

L̂1

L1

Figure 5.4: Jet-scheduling control for the overhead crane, physical interpre-
tation: The jet-scheduler provides an ideal load acceleration χ. An ideal
trolley position L̂1 compatible with χ is then computed using the flat cor-
respondence. Then, using (5.59), the position L1 of the trolley converges to
L̂1.

• The main pulley does not move along a rail c = 0.

The counting is done considering the dynamics of cranes that are given by
(5.23)-(5.27) under the constraints (5.18)-(5.22). Then, it is important to
notice that:

• The position of the main pulley (x01, ..., x0q) is completely determined
by the length of the cables L1, . . ., Lh (i.e those which are linked to the
main pulley) and the position of the rigid body (x(h+1)1, ..., x(h+1)1q)

(cf. (5.18)).

• The length of the main cable Lh+1 is determined by the position of
the load together with the position of the main pulley (x01, ..., x0q).
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Therefore, it is also determined by the cable lengths L1, ...., Lh (cf.
(5.19)-(5.20)):

• The constraint (5.21) (which is related to the degree of freedom of
the structure) impose that x(h+1)q−1 can be expressed as a function
of x(h+1)1, ..., x(h+1)q−2

• The constraints (5.22) are optional constraints and will not be taken
into account in the following development. However, all the results
can be adapted without loss of generality for the other cases .

Therefore, the set of independent states of the crane are x1, ẋ1, . . ., xq, ẋq,
L1, L̇1, . . ., Lh, L̇h, x(h+1)1, ẋ(h+1)1, . . ., x(h+1)q−2, ẋ(h+1)q−2. This means
that there are 2(q + h + q − 2) independent states.

As stated in (Theorem 5.2), a crane is a flat system and their flat outputs
are given by

y = (y1, ..., yq, yq+1, ..., yh+d+1) = (x1, ..., xq, x0a1 , ..., x0ah+d+1−q
),

where a = 1, ..., h + d + 1 − q are distinct element in the set {1, ..., 3}.
Moreover, since a crane is a flat system and according to [49], the flat map
ϕ becomes a multi-valued function of the variable Y defined as

Y = (y1, ..., yq, ẏ1, ..., ẏq, ..., y
(3)
1 , ..., y(3)

q , yq+1, ..., yh+d+1, ẏq+1, ..., ẏh+d+1).
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This means that ϕ is summarized as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

ẋ1

...
xq

ẋq

L1

L̇1

...
Lh

L̇h

x(h+1)1

ẋ(h+1)1

...
x(h+1)q−2

x(h+1)q−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕx1(Y )
ϕẋ1(Y )

...
ϕxq (Y )
ϕẋq (Y )
ϕL1(Y )
ϕ̄L̇1

(Y )
...

ϕLh
(Y )

ϕL̇h
(Y )

ϕx(h+1)1(Y )
ϕẋ(h+1)1(Y )

...
ϕx(h+1)q−2 (Y )
ϕẋ(h+1)q−2 (Y )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.60)

Remark 5.3 The order of differentiation needed for the position of the load
y1, ..., yq is 3 while for the coordinate of the main pulley yq+1, ..., yh+d+1 the
differentiation order is 1

Notice that the size of Y , is 4q + 2(h + 2 − q) (since d is considered equal
to 1), while the size of the original states is 2(q + h + q − 2). Therefore,
the size difference is equal to 2, meaning that in order to have a one-to-one
correspondence between the original states and Y , it is necessary to add a
state extension (

γ1

γ2

)
=
(

ϕγ1(Y )
ϕγ2(Y )

)
(5.61)

of size 2. The existence of this extension is guaranteed by the flatness
property.

Now, the jet scheduler follows the general procedure developed in Chapter
3. Indeed, using (3.13) and assuming that y and ẏ are measured (i.e. p = 1),
the jet scheduler becomes

χ̈i = ki1yi + ki2ẏi + ki3χi + ki4χ̇i i = 1, ..., q

χi = ki1yi + ki2ẏi i = q + 1, ..., h + d + 1 (5.62)
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with kij , j = 1, ..., 4 suitable gains to achieve stable dynamics.

The next step consist in defining the manifold S. As stated in Chapter 3,
this manifold is defined through a map ϕ̄ : Ȳ → (x̂, γ̂) which is based on the
map ϕ : Y → (x, γ) but where some components of Y are fixed. These fixed
components are the measured flat outputs and their measured derivatives:

(y1, ..., yq, yq+1, ..., yh+d+1, ẏ1, ..., ẏq, ẏq+1, ..., ẏh+d+1).

Hence, the other 2q components (i.e.ÿ1, ..., ÿq, y
(3)
1 , ..., y

(3)
q ) are free pa-

rameters. As explain in Chapter 3, the manifold S is described through the
map ϕ̄

ϕ̄
(
α0,1, ..., α0,q, α1,1, ..., α1,q) =

ϕ
(
y1, ..., yq, ẏ1, ..., ẏq, χ1 + α0,1, ..., χq + α0,q, χ̇1 + α1,1, ..., χ̇q + α1,q,

yq+1, ..., yh+d+1, ẏq+1, ..., ẏh+d+1

)

The 2q coordinates α define S

S = {ϕ̄(α0,1, ..., α0,q, α1,1, ..., α1,q) |
αi,j ∈ R, i = 0, 1, j = 1, . . . , q} (5.63)

Since ϕ is a diffeomorphic map between Y and (x, γ), S is a 2q-dimension
sub-manifold within the manifold described by (x, γ). The manifold S is
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expressed using the coordinates (x, γ) as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

ẋ1

...
xq

ẋq

ϕ̄L1(α)
ϕ̄L̇1

(α)
...

ϕ̄Lh
(α)

ϕ̄L̇h
(α)

ϕx(h+1)1(α)
ϕẋ(h+1)1(α)

...
ϕx(h+1)q−2 (α)
ϕẋ(h+1)q−2 (α)

ϕγ1(α)
ϕγ2(α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.64)

Notice that using both Assumptions (A4) and the fact that q = 3, d = 1
c = 0, the α affect only the last 2h + 2(q − 2) + 2 = 6 coordinates of (5.64).
It important to underline that the size of α is also 2q = 6. This means that
the sub-manifold S can be expressed using only the last 2q components of
(x̂, γ̂). This consideration leads to the construction of the coordinate set Ξ
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as proposed in Section 3.3.4. This yields the map

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σx1

σẋ1

...
σxq

σẋq

σL1

σL̇1
...

σLh+1

σL̇h+1

σx(h+1)1

σẋ(h+1)1

...
σx(h+1)q−1

σẋ(h+1)q−1

σγ1

σγ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

ẏ1

...
yq

ẏq

L̂1 + ξL1,1

ˆ̇L1 + ξL1,2

...
L̂h + ξLh,1

ˆ̇Lh + ξLh,2

x̂(h+1)1 + ξx(h+1)1,1

ˆ̇x(h+1)1 + ξx(h+1)1,2

...
x̂(h+1)q−1 + ξx(h+1)q−1,1

ˆ̇x(h+1)q−1 + ξx(h+1)q−1,2

γ̂1 + ξγ,1

γ̂2 + ξγ,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.65)

Recall that the point (x̂, γ̂) = ϕ(y, ẏ, χ, χ̇) corresponds to the origin of S
(e.g. (3.23)).

The condition (3.26) is clearly fulfilled using (5.65). The next step con-
sists in enforcing the convergence of the ξx,’s to 0. For this purpose, the
dynamical behavior of ξx’s is studied. Similar expression as those of the
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overhead-crane example are obtained, namely

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξL,1

ξL̇,1
...

ξL,h

ξL̇,h

ξx,(h+1)1

ξẋ,(h+1)1

...
ξx,(h+1)q−2

ξẋ,(h+1)q−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L̇1 − ˆ̇L1

L̈1 − ˆ̈L1

...

L̇h − ˆ̇Lh

L̈h − ˆ̈Lh

ẋ(h+1)1 − ˆ̇x(h+1)1

ẍ(h+1)1 − ˆ̈x(h+1)1

...
ẋ(h+1)q−2 − ˆ̇x(h+1)q−2

ẍ(h+1)q−2 − ˆ̈x(h+1)q−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.66)

and need to be stabilized according to the general jet scheduling methodol-
ogy.

Remark 5.4 As for the overhead crane case, the reduced dynamics describe
basically the behavior of the error variable ξLi,1 = Li − L̂i between the sec-
ondary cables and their scheduled values and respectively the error variable
ξx(h+1)i,1 = x(h+1)i − x̂(h+1)i between the position of the structure and their
scheduled values.

Now, following the same steps as those (5.47) to (5.52), the controllers

Ti = T̂i − kpξLi − kdξ̇Li −
l∑

j=1

λj
∂Cj

∂Li
+

l∑
j=1

λ̂j
∂Ĉj

∂L̂i

i = 1 . . . h

Fi = F̂i − kpξx(h+1)i − kdξ̇x(h+1)i

−
l∑

j=1

λj
∂Cj

∂x(h+1)i
+

l∑
j=1

λ̂j
∂Ĉj

∂x̂(h+1)i
i = 1 . . . q − 1. (5.67)

are obtained. Notice that:

• The terms T̂i and F̂i are chosen in order to respect Assumption 3.1.

• The PD controller enforces the stability of ξLi,1 = Li−L̂i and ξx(h+1)i,1 =
x(h+1)i − x̂(h+1)i
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• The other terms are present so as to compensate for the dynamical
couplings generated by the constraints.

As for the overhead case, the input on the main cable Th+1 is not used to
stabilize the reduced dynamics. Therefore, it is simply set to

Th+1 = T̂h+1.

Remark 5.5 Notice that, in (5.67) the term
∑l

j=1λ̂j
∂Ĉj

∂L̂i
− ∑l

j=1λj
∂Cj

∂Li

and
∑l

j=1λ̂j
∂Ĉj

∂x̂(h+1)i
−∑l

j=1λj
∂Cj

∂x(h+1)i
are equal to 0 when the origin of S

is reached. For this reason, in practice, this term can be neglected leading
to the controller

Ti = T̂i − kpξLi − kdξ̇Li i = 1 . . . h

Fi = F̂i − kpξx(h+1)i − kdξ̇x(h+1)i i = 1 . . . q − 1, (5.68)

Remark 5.6 Recall that in Chapter 3 the construction of the ξ coordinates
was not explicitly given. For cranes however, the explicit expressions (5.65)
are obtained. Moreover, each ξ gives rise to an independent second order
differential equation with a separate input. This stems from the definition
given in (5.66). Indeed each cable (of length of Li) is independently actuated
using a separate motor (Axioms 3 and 4 of the crane definition (Definition
5.1)). In the same way, the mobile structure (coordinate x(h+1)i) is also
actuated by definition.

5.3.3 Jet-scheduling control for cranes: extension to trajectory
tracking

The jet-scheduling controller for cranes described in Section 5.3.2 can be
easily extended to the case of trajectory tracking. The unique modification
appears in the jet scheduler. Indeed, (5.62) becomes

χ̈i = ki1(yi − yi,ref ) + ki2(ẏi − ẏi,ref ) +

ki3(χi − ÿi,ref ) + ki4(χ̇i − y
(3)
i,ref ) + y

(4)
i,ref i = 1, ..., q

χi = ki1(yi − yi,ref ) + ki2(ẏi − ẏi,ref ) + ÿi,ref i = q + 1, ..., h + d + 1
(5.69)

where yi,ref is the reference trajectory for the flat output.
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5.4 Simulation Study

In this section, the behavior of the Jet Scheduling Controller for the over-
head crane (5.59) is tested and compared with dynamic feedback lineariza-
tion (5.40).

5.4.1 Stabilization
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Figure 5.5: Stabilization at the reference position x1 = 1, x2 = −3 for the
case of no Coulomb friction on the trolley: Dynamic feedback lineariza-
tion (dashed line) and jet-scheduling control (plain line) give both a good
behavior.

The stabilizing behavior of the overhead crane together with the jet
scheduling controller is tested first. The goal is to bring the load to the
reference position x1 = 1, x2 = −3. The initial conditions and controller
parameters are given in Table 5.1.

The first simulation is carried out without disturbance. The results are
shown in Figure 5.5. The trajectories for dynamic feedback linearization
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and jet-scheduling controller are similar, and all states converge adequately.
For the second experiment, the overhead crane model (5.12)-(5.15) is

modified to

mẍ1 = λ3(x1 − l + L1) (5.70)
mẍ2 = λ3x2 − mg (5.71)

(m1 + m0)L̈1 = λ3(x1 − L2) + T1 − δsgn(L̇1) (5.72)
m2L̈2 = λ3(l − L1 − L2) + T2 (5.73)

where δ is a constant but unknown disturbance term.

Remark 5.7 The added term −δsgn(L̇1) models a Coulomb friction on
the trolley. As it will be shown in Section 5.6, the Coulomb friction may be
important and difficult to identify on a real system.

For the Coulomb friction value chosen as δ = 1, 5[N ], the stabilization
results are given in Figure 5.6. Both controllers stabilize the overhead crane
with a residual static error. However, in the case dynamic feedback, this
error is three times larger than with the jet-scheduler controller.

Parameters Values Parameters Values Parameters Values
x1(0) 4 x2(0) −5 L1(0) −0.24
ẋ1(0) 0 ẋ2(0) 1.25 L̇1(0) 0.06
χ1(0) 0 χ2(0) 0 L2(0) 10.39
χ̇1(0) 0 χ̇2(0) 0 L̇2(0) −1.29

m 2 m0 + m1 1 m2 1
ki1 −16 ki2 −32 ki3 −24
ki4 −8 kp 100 kd 20

Table 5.1: Initial conditions and controller parameters used in the simula-
tion of stabilization at the reference position x1 = 1, x2 = −3 (Figures 5.5
and 5.6). i = 1, 2.

5.4.2 Circular trajectory tracking

Figure 5.7 illustrates the behavior of the jet scheduling controller in trajec-
tory tracking. This controller is compared to dynamic feedback lineariza-
tion. The problem of tracking a circle with a constant velocity is considered.
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Figure 5.6: Stabilization at the reference position x1 = 1, x2 = −3 for
the case of a Coulomb friction acting on the trolley: Dynamic feedback
linearization (dashed line) and jet-scheduling (plain line) control stabilize
the overhead crane with a residual static error. However, in the case dy-
namic feedback, this error is three times larger than with the jet-scheduling
controller.

A circle centered at (x1 = 2, x2 = −3) with a unity radius is defined. As
can be seen, the load converges nicely to the trajectory with both dynamic
feedback linearization and jets-scheduling control. The initial conditions
and controller parameters used in the simulation are given in Table 5.2.

Similarly to the stabilization problem, the overhead crane model is mod-
ified to (5.70)-(5.73) where δ is a constant but unknown disturbance term.
For the value δ = 1.5, the tracking results are given in Figure 5.8. In
both cases, the controllers ensure stability, but the performances are quite
different as shown in Figure 5.9 where the distance,

ε(t) =
√

(x1(t) − x1ref (t))2 + (x2(t) − x2ref (t))2 (5.74)
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Figure 5.7: Circular trajectory tracking for the case of no Coulomb fric-
tion on the trolley: Dynamic feedback linearization (dashed line) and jet-
scheduling (plain line) control give both a good result.

Parameters Values Parameters Values Parameters Values
x1(0) 4 x2(0) −5 L1(0) −0.24
ẋ1(0) 0 ẋ2(0) 1.25 L̇1(0) 0.06
χ1(0) 0 χ2(0) 0 L2(0) 10.39
χ̇1(0) 0 χ̇2(0) 0 L̇2(0) −1.29
x1ref cos(0.2πt) x2ref sin(0.2πt) l 5

m 2 m0 + m1 1 m2 1
ki1 −16 ki2 −32 ki3 −24
ki4 −8 kp 100 kd 20

Table 5.2: Initial conditions and controller parameters used in the simula-
tion of circular trajectory tracking (Figures 5.7 and 5.8). i = 1, 2.

between the load position and the reference trajectory is ploted. The
jet-scheduling controller performs significantly better than dynamic feed-
back linearization. In particular, the residual error is smaller for the jet-
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Figure 5.8: Circular trajectory tracking for the case of a Coulomb friction
acting on the trolley: The jet-scheduling controller (plain line) performs
significantly better than dynamic feedback linearization (dashed line). In
particular, the residual error is smaller for the jet-scheduling controller.

scheduling controller. This is due to the fact that there are additional
feedback gains (kp, kd) at the user’s disposal. These additional degrees
of freedom achieve better performance (as in the stabilization problem),
meaning that it is possible to reduce the tracking error by increasing kp, kd.

5.5 Stability Analysis

As shown in Chapter 3, the stability analysis for the jet-scheduling con-
troller is usually complex and need to be addressed from case to case. In
this section, only the stability of the overhead crane controlled by the jet
scheduling controller is studied. The first step is to discuss about the sin-
gularities appearing in the control law and its consequent limitations for
the stability. Then some modifications on the input T2 based on the sta-
bility analysis will be proposed. Indeed, as discuss in Remark 5.1, the jet
scheduling methodology allows some degree of freedom in the synthesis of
T2. Finally, a stability analysis following basically the same steps that are
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Figure 5.9: Circular trajectory tracking for the case of a
Coulomb friction acting on the trolley. The distance, ε(t) =√

(x1(t) − x1ref (t))2 + (x2(t) − x2ref (t))2 between the load position
and the reference trajectory is illustrated: The jet-scheduling controller
(plain line) performs significantly better than dynamic feedback lineariza-
tion (dashed line). In particular, the residual error is smaller for the
jet-scheduling controller.

described in Section 3.4 is done.

5.5.1 Discussion about singularities

Before entering the discussion on the stability analysis of the overhead crane
controlled by the jet scheduling controller, a study about the singularities
appearing in the control law needs to be undertaken. The jet scheduling
controller is given by (5.57)-(5.58). These expressions contain respectively
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the terms T̂1 and T̂2, which are given explicitly by

T̂1 = (m1 + m0)
ˆ̈L1 − λ̂3(x1 − L̂2)

=
χ2χ1

χ2 + g
− χ1 +

2
(
(χ2 + g)χ̇1 − χ1χ̇2

)
ẋ2

(χ2 + g)2
+

x2

(
χ̈1(χ2 + g)2 − 2χ̇1χ̇2(χ2 + g) + χ1

(
2χ̇2

2 − (χ2 + g)χ̈2

))
(χ2 + g)3

+

m(χ2 + g)
x2

(
− χ1x2

χ2 + g
+ (x2

1 + x2
2 + (

χ1x2

χ2 + g
+ l − x1)2

+l2 + 2x1(
χ1x2

χ2 + g
+ l − x1) − 2lx1 − 2l(

χ1x2

χ2 + g
+ l − x1))

1
2

)

T̂2 = m2(L̂2 +
mχ1

λ3
+ l − x1 − l)λ̂3

=
(
− (

χ1x2

χ2 + g
+ l − x1) + (x2

1 + x2
2 + (

χ1x2

χ2 + g
+ l − x1)2

+l2 + 2x1(
χ1x2

χ2 + g
+ l − x1) − 2lx1 − 2l(

χ1x2

χ2 + g
+ l − x1))

1
2 +

χ1x2

χ2 + g
+ l − x1

)m(χ2 + g)
x2

These expressions become singular when x2 = 0 or χ2 + g = 0. In order
to understand the physical meaning of these singularities, it is important
to recall that T̂1 and T̂2 are based on the flatness equivalence, and the
singularities are a consequence of this equivalence. As seen in Chapter 2,
the flatness property allows to reconstruct the input u through the flat
output y and its derivatives (i.e. u = ϕu(y, ẏ, ..., y(r+1))). The singularities
appearing in this equivalence means that there exist some points where it
is locally indeterminate.

The first singularity x2 = 0 corresponds to the physical situation where
the load is aligned with the rail of the trolley (see figure 5.10). In this
case, the inputs T1 and T2 can act on the load only along the horizontal
direction. Therefore, the inputs T1 and T2 can not provide an instantaneous
effect on the vertical acceleration of the load. This loss of direct force along
the vertical axis induces indetermination in the flat equivalence.

The second singularity χ2 + g = 0 appears when the jet scheduler plans
a desired vertical acceleration equal to the gravity. This case corresponds to
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Main pulley (x01, x02)l

(0, 0)

Load (y1, y2 = 0)

Figure 5.10: Overhead crane

a situation of weightlessness. In this case, the load floats and is not linked
to the rest of the crane. Therefore, this local loss of connection with the
crane structure induces an indetermination on the inputs T1 and T2.

Naturally, both of these singularities could ruin the stability of the
closed-loop system. However, the position x2 = 0 is a pathological case
which can be reached only with a very strong gust of wind. In such a case,
the working of the overhead crane must be stopped and the control law shut
down. Naturally, the reference position y2ref must be chosen in the working
space (i.e y2ref < 0).

The second singularity can easily be avoided through saturating χ2 < −g
using a sigmoid function as proposed in [63]. However in practice, choosing
the gains of the jet scheduler satisfactorily, this saturation is not reached
for the conditions within the working space.

Therefore, we will consider that these singularities are not reached. This
is summarized in the following assumption:
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Assumption 5.1 ∃ c1, c2 ∈ R
+ such that

x2(t) < −c1, ∀t � 0 (5.75)
|χ2(t) + g| < c2, ∀t � 0 (5.76)

5.5.2 Stability analysis

The aim of this section, is to discuss the stability of the overhead crane
(5.12)-(5.15) controlled by the jet-scheduling controller (5.52) and (5.69).
T2 is first not specified. The set of reference trajectory (y1ref , y2ref ) have
been introduced in the jet scheduler so as to choose the position of the load.
Therefore, the closed-loop system reads

mẍ1 = λ3(x1 − l + L1) (5.77)
mẍ2 = λ3x2 − mg (5.78)

(m1 + m0)L̈1 = λ3(x1 − L2) + T1 (5.79)
m2L̈2 = λ3(l − L1 − L2) + T2 (5.80)

χ̈1 = k11(x1 − y1ref ) + k12(x1d − ẏ1ref ) +

k13(χ1 − ÿ1ref ) + k14(χ1d − y
(3)
1ref ) + y

(4)
1ref (5.81)

χ̈2 = k21(x2 − y2ref ) + k22(x2d − ẏ2ref ) +

k23(χ2 − ÿ2ref ) + k24(χ2d − y
(3)
2ref ) + y

(4)
2ref (5.82)

T1 = −kpξx,1 − kdξ̇x,1 + T̂1 − λ3(x1 − L2) + λ̂3(x1 − L̂2).
(5.83)

Now, introducing the input T1 (5.83) into (5.79), the closed-loop system
becomes

mẍ1 = λ3(x1 − l + L1) (5.84)
mẍ2 = λ3x2 − mg (5.85)
ξ̈x,1 = −kpξx,1 − kdξ̇x,1 (5.86)

m2L̈2 = λ3(l − L1 − L2) + T2 (5.87)
χ̈1 = k11(x1 − y1ref ) + k12(x1d − ẏ1ref ) +

k13(χ1 − ÿ1ref ) + k14(χ1d − y
(3)
1ref ) + y

(4)
1ref (5.88)

χ̈2 = k21(x2 − y2ref ) + k22(x2d − ẏ2ref ) +

k23(χ2 − ÿ2ref ) + k24(χ2d − y
(3)
2ref ) + y

(4)
2ref (5.89)
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Let us define the error variables e as

e11 = x1 − y1ref (5.90)
e12 = ẋ1 − ẏ1ref (5.91)
e13 = χ1 − ÿ1ref (5.92)

e14 = χ̇1 − y
(3)
1ref (5.93)

e21 = x2 − y2ref (5.94)
e22 = ẋ2 − ẏ2ref (5.95)
e23 = χ2 − ÿ2ref (5.96)

e24 = χ̇2 − y
(3)
2ref . (5.97)

Therefore, the closed-loop system (5.84)-(5.89) reads

ė12 =
λ3

m
(x1 − l + L1) − ÿ1ref (5.98)

ė11 = e12 (5.99)

ė22 =
λ3x2

m
− g − ÿ2ref (5.100)

ė21 = e22 (5.101)
ξ̈x,1 = −kpξx,1 − kdξ̇x,1 (5.102)

m2L̈2 = λ3(l − L1 − L2) + T2 (5.103)
ė14 = k11e11 + k12e12 + k13e13 + k14e14 (5.104)
ė13 = e14 (5.105)
ė24 = k21e21 + k22e22 + k23e23 + k24e24 (5.106)
ė23 = e24 (5.107)

A simplified case: First, stability analysis is carried on a simplified
model of the overhead crane. The assumption made in order to simplify
the model is to consider the inertia m2 of the motor winching the main
cable negligible with respect to the mass of the load m and the mass of the
trolley m0 + m1. Consequently, let us consider

m2 = 0.

Therefore, the expression (5.103) becomes

λ3 =
T2

(L2 + L1 − l)
.
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This expression allows to control λ3 directly through T2. Then, setting
T2 = T̂2 as proposed in Section 5.3.1, we get

λ3 = − λ̂3(L̂2 + L̂1 − l)
L2 + L1 − l

.

In this way, λ3 = λ̂3 only asymptotically. However, it is possible to impose
λ3 = λ̂3 at every time instant. Indeed, setting T2 as

T2 = T̂2
L2 + L1 − l

L̂2 + L̂1 − l
,

we get that

λ3 = λ̂3 ∀t.

Remark 5.8 The input T2 defined in this way fulfills Assumption 3.2 be-
cause once L1 = L̂1 and L2 = L̂2 (that is, the origin of S is reached) then
T2 = T̂2.

Therefore, the closed-loop system (5.98)-(5.107) reads

ė12 =
λ̂3

m
(x1 − l − L̂1 + ξx,1) − ÿ1ref = e13 + ξx,1

λ̂3

m
(5.108)

ė11 = e12 (5.109)

ė22 =
λ̂3x2

m
− g − ÿ2ref = e23 (5.110)

ė21 = e22 (5.111)
ξ̈x,1 = kpξx,1 + kdξ̇x,1 (5.112)
ė14 = k11e11 + k12e12 + k13e13 + k14e14 (5.113)
ė13 = e14 (5.114)
ė24 = k21e21 + k22e22 + k23e23 + k24e24 (5.115)
ė23 = e24 (5.116)

Notice that the simplifications appearing in (5.108) and (5.110) are possible
since the explicit definition of λ̂3 and L̂1 given by the jet-scheduing controller
are λ̂3 = m(χ2+g)

x2
and L̂1 = mχ1

λ̂3
+ l − x1. The equations (5.118)-(5.116)
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can be reordered as

ė11 = e12 (5.117)

ė12 = e13 + ξx,1
e23 + ÿ2ref

e21 + y2ref
(5.118)

ė13 = e14 (5.119)
ė14 = k11e11 + k12e12 + k13e13 + k14e14 (5.120)
ė21 = e22 (5.121)
ė22 = e23 (5.122)
ė23 = e24 (5.123)
ė24 = k21e21 + k22e22 + k23e23 + k24e24 (5.124)
ξ̈x,1 = kpξx,1 + kdξ̇x,1 (5.125)

so that

• (5.125) is an independent-linear equation.

• Equations (5.121)-(5.124) constitute an independent-linear system.

• Equations (5.117)-(5.120) constitute a perturbed-linear system.

Theorem 5.3 In case the inertia of the winching motor m2 is 0, the over-
head crane with the jet-scheduler controller (5.117)-(5.125) guarantees that
x1 and x2 converge respectively to y1ref and y2ref exponentially whenever
the following four conditions holds:

• The controller parameters kij , i = 1, 2, j = 1, ..., 4 are chosen such that
the matrix

Ai =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

ki1 ki2 ki3 ki4

⎞
⎟⎟⎠ , i = 1, 2 (5.126)

is Hurwitz (i.e. max(eig(Ai)) < 0).

• kp and kd are chosen such that the matrix(
0 1
kp kd

)
(5.127)

is Hurwitz.
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• Assumption 5.1 holds.

• y2ref < 0 and |ÿ2ref | < c3, where c3 > 0

Proof: Since (5.127) is Hurwitz, kp and kd guarantee that (5.125) is ex-
ponentially stable, meaning that there exists two strictly positive constants
Cξ, λξ > 0 such that

|ξx,1| < Cξ|ξx,1(0)|e−λξt.

In the same way, since (5.126) is Hurwitz, the system (5.121)-(5.124) is
exponentially stable. Therefore, there exists four strictly positive constant
Ce21 , λe21 , Ce23 , λe23 > 0 such that

|e21| < Ce21 |e21(0)|e−λe21 t (5.128)
|e23| < Ce23 |e23(0)|e−λe23 t. (5.129)

Since the perturbing term ξx,1
e23+ÿ2ref

e21+y2ref
can be considered as an exosignal

in Equation (5.118), we define

u(t) = ξx,1
e23 + ÿ2ref

e21 + y2ref
.

Then, the system (5.117)-(5.120) can be rewritten in matrix form

d

dt

⎛
⎜⎜⎝

e11

e12

e13

e14

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

k11 k12 k13 k14

⎞
⎟⎟⎠
⎛
⎜⎜⎝

e11

e12

e13

e14

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠u (5.130)

or in a more compact form

Ė = A1E + Bu. (5.131)

The explicit solution of (5.131) is given by

E(t) = eA1tE(0) +
∫ t

0

eA1(t−τ)Bu(τ)dτ. (5.132)
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Since A1 is Hurwitz and defining min(eig(A1)) = −q, the forced response∫ t

0
eA1(t−τ)Bu(τ)dτ is bounded as follows

‖
∫ t

0

eA1(t−τ)Bu(τ)dτ‖ �
∫ t

0

‖eA1(t−τ)‖‖B‖|u(τ)|dτ

�
∫ t

0

‖eA1(t−τ)‖|u(τ)|dτ

�
∫ t

0

|e−q(t−τ)||u(τ)|dτ. (5.133)

Notice that:

• By definition e21 + y2ref = x2. Therefore, using Assumption 5.1 it
follows that e21 + y2ref < −c1, where c1 is a positive constant.

• Using (5.129), it follows |e23| < Ce23 |e23(0)|
• y2ref is chosen such that |ÿ2ref | < Y , where Y > 0 is a positive

constant.

Therefore, there exists a D > 0 such that the perturbing term u can be
bounded by

|u(t)| = |ξx,1
e23 + ÿ2ref

e21 + y2ref
| < |ξx,1|Ce23 |e23(0)|Y

c1
= De−λξt. (5.134)

Introducing (5.134) into (5.133), the forced response is bounded by

‖
∫ t

0

eA(t−τ)Bu(τ)dτ‖ �
∫ t

0

|e−q(t−τ)|De−λξτ)dτ

= D
e−qt − e−λξt

λξ − q
(5.135)

Therefore, the forced response (5.133) of (5.132) vanishes to zero expo-
nentially. Moreover, because A is Hurwitz, the free response eAtE(0) also
vanishes to zero exponentially, meaning that E(t) = (e11, e12, e13, e14)T con-
verges to zero exponentially as well and consequently x1 converges to y1ref

also. Finally, using (5.128), it follows that e21 = x2 − y2ref converges to
zero exponentially. This concludes the proof.
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General case The first variant has shown that (i) neglecting the inertia
m2 of the motor winching the main cable and (ii) choosing the input T2 as
T2 = T̂2

L2+L1−l

L̂2+L̂1−l
, guarantees that λ3 = λ̂3 ∀t. This property has led to

many simplifications, so as to find a proof of convergence for the closed-loop
system (see Theorem 5.5.2).

However, it would be very interesting to have a similar result for the
general case m2 	= 0. Therefore, considering (5.103),

m2L̈2 = λ3(l − L1 − L2) + T2,

and recalling that
m2

ˆ̈L2 = λ̂3(l − L̂1 − L̂2) + T̂2,

it is possible using T2 to guarantee λ3 = λ̂3 ∀t by combining these two
equations, the result is:

T2 = (T̂2 − m2
ˆ̈L2)

L2 + L1 − l

L̂2 + L̂1 − l
+ m2L̈2. (5.136)

In this case, the same result as that of Theorem 5.5.2 holds. This control law
needs measuring L̈2, which is possible thanks to an accelerometer. However,
from a practical point of view, this solution is not really efficient due to the
measurement noise. Therefore, so as to design an implementable control
law, a first guess would be to replace (5.136) by

T2 = (T̂2 − m2
ˆ̈L2)

L2 + L1 − l

L̂2 + L̂1 − l
+ m2

ˆ̈L2. (5.137)

Although statisfactory for all practical initial conditions whenever the mass
parameter m2 is equal to its nominal value, it is nevertheless possible to
induce unboundedness of all signals using a sufficiently large m2 and bad
initial conditions. This is illustrated in Figure 5.11 (the initial conditions
and controller parameters used in the simulation are given in Table 5.11).
This is also the case with the feedback laws T2 = T̂2 and T2 = T̂2

L2+L1−l

L̂2+L̂1−l
.

However, even for these extreme conditions, the classical control law

T2 = T̂2 + kp(L2 − L̂2) + kd(L̇2 − ˆ̇L2) (5.138)

works properly in the simulation and experimentally (see Sections 5.4 and
5.6). Indeed, all signals converge asymptotically to their reference values in
Figure 5.12.
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Figure 5.11: Instability occurs with the feedback law (5.137) whever m2 is
sufficiently large

Parameters Values Parameters Values Parameters Values
x1(0) 4 x2(0) −5 L1(0) −0.53
ẋ1(0) 0 ẋ2(0) 1.26 L̇1(0) 0.07
χ1(0) 0 χ2(0) 0 L2(0) 10.39
χ̇1(0) 0 χ̇2(0) −6 L̇2(0) −1.30
x1ref 1 x2ref −3 l 5

m 2 m0 + m1 1 m2 10
ki1 −16 ki2 −32 ki3 −24
ki4 −8 kp 100 kd 20

Table 5.3: Initial conditions and controller parameters used in the simula-
tion illustrated in Figures 5.11 and 5.12. i = 1, 2.



5.6. EXPERIMENTAL VERIFICATION 161

0 1 2 3 4 5 6 7
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

0 5 10
0

5

10

15

0 5 10
−2

0

2

4

0 5 10
−400

−200

0

200

0 5 10
−500

0

500

1000

x2

x1 t[s]

L

R

TR

TL

Figure 5.12: Even when m2 is large, the control law (5.138) guarantees
asymptotic convergence. The initial conditions are the same as those in
Figure 5.11 (see Table 5.3).

5.6 Experimental Verification

A slight modification of the SpiderCrane setup described in Section 5.2.1
has recently been built in the Automatic Control Laboratory of EPFL (see
Figure 5.13). The main difference between the two designs lies in the absence
of the fourth pylon (the one guiding the hosting cable). Instead, the three
secondary cables are directly attached to the ring so that the load can be
hoisted and lowered through a combination of the three cable lengths that
can be adjusted through the motor positions. The length of the main cable
between the ring and the load is fixed. A short description of the setup is
given next.
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5.6.1 Setup description

Load

LED

Ring

DC motors

Linear cameras

Figure 5.13: Experimental setup with the three winching motors, the load
with the LED, the ring, and the linear cameras.

Contrary to the normal setup, the three cables are attached to a ring,
and by varying their length, the ring can be moved in the surrounding space.
A main cable goes through the centre of the ring and is attached to the load.
The positioning of the load in space is done by adjusting the position of the
ring. The position of the load of mass m is given by (x1, x2, x3), that of the
ring of mass m0 by (x01, x02, x03). The positions of the three motors are
(x11, x12, x13), (x21, x22, x23) and (x31, x32, x33), respectively. Furthermore,
the motor inertias are considered to be equivalent to the masses m1, m2

and m3, respectively, suspended to the cables. The length of the cable
connecting the ring to the load is L0. The geometrical and inertial values
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of SpiderCrane are given in Table 5.4.

Param. Values Param. Values Param. Values
x11 0[m] x12 0[m] x13 0[m]
x21 −0.36[m] x22 0.64[m] x23 0[m]
x31 0.36[m] x32 0.64[m] x33 0[m]
L0 0.34[m] m 0.49[kg] m0 0.02[kg]
m1 0.54[kg] m2 0.54[kg] m3 0.54[kg]

Table 5.4: Geometrical and inertial values of SpiderCrane

The cables to the ring of length L1, L2 and L3 are controlled by means
of DC motors equipped with encoders, making it possible to measure the
length as well as the speed of the cables. The load position (x1, x2, x3) is
measured through a sensor consisting of three linear cameras. The position
of an infrared LED positioned on the load can be reconstructed with a
precision smaller than 1 [mm].

The measurement readings, the control law, and the voltages applied
to the motors are handled by a real-time kernel implemented in C. The
control loop runs at 100 Hz. The user interface that exchanges information
between the user and the real-time kernel is implemented in LabVIEW. For
the interested readers, all the implementation details regarding the real-time
kernel can be found in [71].

5.6.2 Dynamic model

The mathematical model of this version of SpiderCrane along the same lines
as those in Section 5.2.2. A set q of coordinates are defined, the cardinality
of which exceeds the minimal number of required generalized coordinates:

q = (x1, x2, x3, x01, x02, x03, L1, L2, L3).

This set of coordinates is constrained by a set of holonomic constraints:

C1 =
3∑

i=1

(xi − x0i)2 − (L0)2 = 0 (5.139)

Cj+1 =
3∑

i=1

(x0i − xji)2 − L2
j = 0 j = 1, ..., 3 (5.140)
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describing the geometrical relationship between the position of the crane
components and the length of the cables. The external forces acting in the
directions associated with the variables q are given by the three motors:

Fext = (0, 0, 0, 0, 0, 0, T1, T2, T3)

The Lagrange method of analytical mechanics is applied, and suitable La-
grange multipliers are introduced to handle the constraints ([37]). For Spi-
derCrane, this yields:

mẍ1 = (x1 − x01)λ1, (5.141)
mẍ2 = (x2 − x02)λ1, (5.142)
mẍ3 = (x3 − x03)λ1 − gm, (5.143)

m0ẍ01 = (x01 − x1)λ1 + (x01 − x11)λ2 +
(x01 − x21)λ3 + (x01 − x31)λ4 + (5.144)

m0ẍ02 = (x02 − x2)λ1 + (x02 − x12)λ2 +
(x02 − x22)λ3 + (x02 − x32)λ4 (5.145)

m0ẍ03 = (x03 − x3)λ1 + (x03 − x13)λ2 +
(x03 − x23)λ3 + (x03 − x33)λ4 − gm0, (5.146)

m1L̈1 = T1 − L1λ2 − L0 (5.147)
m2L̈2 = T2 − L2λ3 − L0 (5.148)
m3L̈3 = T3 − L3λ4 − L0 (5.149)

where λj with j = 1, ..., 4 are the Lagrange multipliers.

5.6.3 Model discrepancies

The two main model discrepancies are:

• The cables are considered as being perfectly rigid (meaning that they
can pull and push) in the mathematical model while in practice the
cables can only pull.

• There is a large amount of Coulomb friction on the DC motors.

The DC motor used for the experimental setup is controlled in voltage,
meaning that a tension u is imposed to the motor in order to obtain an
electromechanical torque to pull the cable. However, in presence of Coulomb
friction, this electromechanical torque is not completely transmitted to the
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cable, leading to a loss of sensitivity of the input. Indeed, a variation of
the input may induce no variation on the torque applied to the cable. In
order to illustrate this phenomenon the following experiment is done: A
load of mass m = 0.9 [Kg] suspended by a cable is winched through a DC
motor. The available voltage range is comprised between −5[V] and 5[V].
The experiment begins by finding the minimal voltage needed to raise the
load without inducing a displacement h, meaning that the force applied
by the motor compensates perfectly the weight of the load; this voltage is
equal to 0.42[V] as illustrated in Figure 5.14. Then, the voltage is increased
progressively. However, the load still does not move until the voltage reaches
0.85[V]. The difference of voltage between 0.42[V] and 0.85[V] corresponds
to the Coulomb friction presents in the motor. As it will be shown in Section
5.6.7, the standard amplitude of the inputs of SpiderCrane during a working
phase is smaller than 2[V]. This means that the Coulomb friction is around
20 per cent of the standard amplitude of the inputs. This loss of transmitted
torque sensitivity due to the Coulomb friction makes the control of the crane
difficult because a control law may impose an input that will not have any
influence on the system.

5.6.4 Flatness of SpiderCrane

The choice of the flat output y and the explicit calculation of the function
ϕx and ϕu are usually not trivial. In the case of SpiderCrane, one has:

x = (x1, x2, x3, x01, x02, x03, L1, L2, L3

ẋ1, ẋ2, ẋ3, ẋ01, ẋ02, ẋ03, L̇1, L̇2, L̇3)
y = (x1, x2, x3)
u = (T1, T2, T3)

Using (5.141), (5.142) and (5.143), x01, x02 and λ1 can be expressed as:
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Figure 5.14: Illustration of the Coulomb friction presents in the DC motor:
The experiment begins by finding the minimal voltage needed to raise the
load without inducing any displacement h. This voltage is equal to 0.42[V ].
Then, the voltage is increased progressively until the load starts moving.

x01 = x1 − mẍ1

λ1

= ϕx1(x1, ẍ1) (5.150)

x02 = x2 − mẍ2

λ2

= ϕx2(x2, ẍ2) (5.151)

λ1 =
mẍ3 + gm

x3 − x03

= ϕλ1(x3, x03, ẍ3) (5.152)
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Differentiating (5.150) and (5.151) gives:

ẋ01 = ϕẋ1(x1, ẋ1, ..., x
(3)
1 ) (5.153)

ẋ02 = ϕẋ2(x2, ẋ2, ..., x
(3)
3 ) (5.154)

Solving the constraint equations (5.139)-(5.140) for Lj with j = 1, ..., 3,
and using (5.150) and (5.151), leads to:

Lj = ϕLj (x1, ẍ1, x2, ẍ2, x3, ẍ3) j = 1, ..., 3 (5.155)

Time differentiation of (5.155) gives:

L̇j = ϕL̇j
(x1, ..., x

(3)
1 , x2, ..., x

(3)
2 , x3, ..., x

(3)
3 ) j = 1, ..., 3.

(5.156)

Equations (5.150)-(5.156) establish that the states can be expressed as
functions of the flat outputs and their derivatives.
Now, it remains to express the inputs as functions of the outputs and their
derivatives and, for this purpose, (5.153), (5.154) and (5.156) need to be
differentiated with respect to time:

ẍ01 = ϕẍ01(x1, ẋ1, ..., x
(4)
1 ) (5.157)

ẍ02 = ϕẍ02(x2, ẋ2, ..., x
(4)
2 ) (5.158)

L̈j = ϕL̈j
(x1, ..., x

(4)
1 , x2, ..., x

(4)
2 , x3, ..., x

(4)
3 )

j = 1, ..., 3 (5.159)

Solving (5.144)-(5.146) for λ2, λ3, λ4 and λ5, and using (5.150), (5.151),
(5.152), (5.155), (5.157) and (5.158), gives:

λi = ϕλi(x1, ..., x
(4)
1 , x2, ..., x

(4)
2 , x3, ..., x

(4)
3 ) i = 2, ..., 4 (5.160)

Finally, solving (5.147)-(5.149) for T1, T2, T3 and T4, and using (5.152),
(5.155), (5.156), (5.159) and (5.160), results in:

Tj = ϕTj (x1, ..., x
(4)
1 , x2, ..., x

(4)
2 , x3, ..., x

(4)
3 ) j = 1, ..., 3 (5.161)
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Formally, the following expressions hold:

Lj = ϕLj (x1, x2, x3, ẋ1, ẋ2, ẋ3, ẍ1, ẍ2, ẍ3) j = 1, ..., 3

L̇j = ϕL̇j
(x1, x2, x3, ẋ1, ẋ2, ẋ3, ẍ1, ẍ2, ẍ3, x

(3)
1 , x

(3)
2 , x

(3)
3 )

j = 1, ..., 3

Tj = ϕTj (x1, x2, x3, ẋ1, ẋ2, ẋ3, ẍ1, ẍ2, ẍ3, ..., x
(4)
1 , x

(4)
2 , x

(4)
3 )

j = 1, ..., 3

These relationships show that there exists a correspondence between the
load position (and their time derivatives) and the original inputs and states
of SpiderCrane, which means that the system is indeed flat.

5.6.5 Jet-scheduling control

Successful implementation of feedforward control needs to consider the dis-
crepancies between the mathematical model and the experimental setup.
For SpiderCrane, the main discrepancy relates to the characteristics of the
winching mechanism. Indeed, the motors are mounted on gears that in-
troduce a large amount of dry friction that cannot easily be compensated
for through feedforward control. Furthermore, flatness-based control is in-
appropriate to reject disturbances, e.g. sudden unpredictable forces acting
either on the load or on the motors. Hence, some feedback is necessary.
One is naturally led to consider dynamic feedback linearization, i.e. using
endogeneous dynamic feedback ([35]). However, this technique has a few
drawbacks. The first one is the need to find the dynamic extension, which
complicates the controller and especially its implementation. The second,
and most important one, lies in the difficulty of separating the closed-loop
dynamics in two parts, one governing the motors and the other responsible
for the sway and load positionning. Such a separation would allow increas-
ing the gains for the motors without necessarily imposing a violent load
reaction.

Jet-scheduling control can answer the aforementioned drawbacks. The
basic idea is to measure the load position and its derivatives and generate
appropriate references for the three cable lengths. Jet-scheduling control
has three parts:

1. The first part calculates appropriate load accelerations (the jets χ1,
χ2 and χ3) as stated in Section 5.3 to reach the load reference (x1ref ,
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x2ref , x3ref ). These jets are updated regularly based on the measure-
ments of the load position (x1, x2, x3) and its derivatives (ẋ1, ẋ2, ẋ3).
The regeneration of the scheduled jets upon measurements introduces
the element of feedback that is needed to reject disturbances. The jets
are computed using the following dynamic filter:

χ̈1 = −k4
1(x1 − x1ref ) − 4k3

1(ẋ1 − ẋ1ref )

−6k2
1(χ1 − ẍ1ref ) − 4k1(χ̇1 − x

(3)
1ref ) + x

(4)
1ref

χ̈2 = −k4
2(x2 − x2ref ) − 4k3

2(ẋ2 − ẋ2ref )

−6k2
2(χ2 − ẍ2ref ) − 4k2(χ̇2 − x

(3)
2ref ) + x

(4)
2ref

χ̈3 = −k4
3(x3 − x3ref ) − 4k3

3(ẋ3 − ẋ3ref )

−6k2
3(χ3 − ẍ3ref ) − 4k3(χ̇3 − x

(3)
3ref ) + x

(4)
3ref

These expressions are independent of SpiderCrane dynamics. They
are stabilized chain of integrators the inputs of which are the load
positions and velocities. The coefficients of the characteristic polyno-
mial are chosen so that the corresponding eigenvalues are the same
and equal to λ = −ki, so as to have few design parameters.

The above expressions should not be mistaken with linearizing dy-
namic extensions.

2. The second part uses the flatness property to compute references for
the cable lengths. The acceleration and the higher derivatives in the
flatness correspondences are replaced by the ideally scheduled vari-
ables χ1, χ2 and χ3 and their time derivatives:

L̂j = ϕLj (x1, x2, x3, ẋ1, ẋ2, ẋ3, χ1, χ2, χ3) j = 1, ..., 3
ˆ̇Lj = ϕL̇j

(x1, x2, x3, ẋ1, ẋ2, ẋ3, χ1, χ2, χ3, χ̇1, χ̇2, χ̇3)
j = 1, ..., 3

Also, direct feedforward control on the inputs can be computed in a
similar manner:

T̂j = ϕTj (x1, x2, x3, ẋ1, ẋ2, ẋ3, χ1, χ2, χ3, ..., χ̈1, χ̈2, χ̈3)
j = 1, ..., 3
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3. The third part consists of feedback controllers that track the computed
cable lengths. High-gains PD controllers can be used to compensate
the effect of dry friction and achieve a desired convergence:

T1 = −kp1(L1 − L̂1) − kd1(L̇1 − ˆ̇L1) + T̂1

T2 = −kp2(L2 − L̂2) − kd2(L̇2 − ˆ̇L2) + T̂2

T3 = −kp3(L3 − L̂3) − kd3(L̇3 − ˆ̇L3) + T̂3.

5.6.6 SpiderCrane implementation

Force-controlled setup The jet-scheduling control law uses as inputs
the forces T1, T2 and T3 that are applied to the three cables. However the
physical inputs of the SpiderCrane setup are the voltages u1, u2 and u3 to
the three DC motors. For this reason, a low-level control is designed to
impose the desired forces.

The torque ci provided by each DC motor is given by

ci = Kmi
ui − Kniωi

Ri
, i = 1, ..., 3 (5.162)

where ui is voltage input in [V], Ri is the coil resistance in [Ω], Kmi is the
torque constant, Kni is the velocity constant and ωi is the motor velocity.
The motor characteristics are given in Table 5.5.

Parameters Values Parameters Values
Power 90[W] Time const. 6 · 10−3[s]

Torque cst. Km 19.4 · 10−3[Nm/A] Vel. cst. Kn 29460[deg/Vs]

Table 5.5: Motor characteristics

The velocity of the cable L̇i is directly proportional to the motor velocity
ω trough the pulley radius ri,

L̇i = riωi. (5.163)

In the same way, the force Ti is directly proportional to the torque ci trough
the pulley radius ri,

Ti = ciri. (5.164)
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Now, inverting (5.162) and using (5.163) and (5.164) leads to the control
law:

ui =
TiciRi

riKmi
+ Kni

L̇i

ri
(5.165)

The voltage ui allows pulling on the cable Li with the force Ti. In the sequel,
we will consider the forces Ti, i = 1, ..., 3, as the inputs to SpiderCrane.

5.6.7 Experimental results

In this section, experimental results for both load stabilization and trajec-
tory tracking are presented. The numerical values of the controller param-
eters used for these experiments are given in Table 5.6.

Param. Values Param. Values Param. Values
kpi[V/m] 80 kdi[Vs/m] 15 ki 8[1/s]

Table 5.6: Controller parameters (i = 1, ..., 3).

The results described next are also available in movie form1.

Stabilization.

Figure 5.15 illustrates the way in which the jet-scheduling controller stabi-
lizes the load at the reference point (x1ref , x2ref , x3ref ). The experiment
has two phases: (i) without control, the load oscillates strongly, and (ii) at
time 3.5[s], the controller is switched on. The controller stabilizes nicely the
load at its reference point. Moreover, the performance is excellent since the
time needed for stabilization is of the order of 1.5 [s].

Figure 5.16 illustrates the controller behavior following a disturbance
that imposes a load position different from the reference value. This corre-
sponds to the situation where the load is being blocked by some obstacle, or
a human operator pulls and holds the load away from the reference value.
As can be seen by the small values of the inputs u1, u2, and u3, the controller
does not over-react. The controller knows that, under normal conditions,
small forces are sufficient to go back to the reference position. The fact
that small forces are not able to move the load indicates the presence of

1http://lawww.epfl.ch/page4506.html
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Figure 5.15: Load oscillation without control and load stabilization with
jet-scheduling control. Reference values are represented by dashed lines.

an ”unusual” situation. The controller, which works with higher deriva-
tives of the position error, does not compute the large control effort that
a proportional-like controller would. The figure also shows that, once the
load is released, it goes back swiftly to its equilibrium position without any
oscillation.
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Figure 5.16: Performance when the load is being blocked, and subsequent
load stabilization. The dashed-lines represent the reference values.

Trajectory tracking.

A circular reference trajectory is provided. Figures 5.17 and 5.18 show that
the load position tracks the reference even after a sudden disturbance takes
place at time t = 2.7 s. Again, the load rapidly catches up with the reference
in a highly dynamic fashion. This can also be seen in the 3D Figure 5.18
where, once the disturbance takes place, the load rapidly cuts across the
circle, along the diameter, to catch back with the reference.

Careful examination shows that there remains a slight tracking error
along the x3-axis, which is not the same for each rotation. However, the
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x1 and x2-axes are in perfect agreement with the references. This can be
explained by the following geometrical consideration. Table 5.4 shows that
the chosen ring position x3ref = −0.49 [m] is close to that of the fixed
pylons. Hence, this requires a large force along the horizontal cables, and
leads to a loss of sensitivity.

5.7 Conclusion

Crane control using the jet-scheduling mechanism improves over the tra-
ditional feedback linearization technique, especially regarding robustness
when there is heavy dry friction on the trolleys and winching mechanism.
These unmodelled dynamics can be handled by the high-gain low-order
controller that forces the true system to match the jets provided by the
scheduler. In particular, the Coulomb friction on the motors and on the
trolley is important and difficult to identify. Due to these unmodeled (or
poorly modeled) friction effects, jet-scheduling control for cranes can im-
prove significantly the performance of cranes compared to exact dynamical
feedback linearization.

The low-order controller is quite easy to design, mainly because it has a
simple physical interpretation. The ξ variables asscociated with the part of
S involving the original states are directly the trolley position x0j , (j= 1, 2
for planar 2D systems, and j=1,2,3 for the 3D case) and the cable lengths Li,
i = 1, . . . , m+1. These quantities can then be trivially controlled using the
original inputs. The underactuated characteristics of the crane disappear at
this stage since there are enough inputs to specify these quantities, a benefit
of the jet-scheduling control methodology.

The complex nonlinear couplings, which are well modeled (there are
mainly of geometric nature for which accurate measurements are the only
prerequisite) are handled through the scheduling mechanism. The trivial,
yet strongly uncertain dynamics are compensated through the low-order
high-gain controller. The balance between the jet-scheduling part and the
low-level controller is clearly linked to the choice of p.
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Figure 5.17: Tracking of a circular reference (height x3ref = −0.49 [m],
center at x1ref = 0 [m], x2ref = 0.41 [m], radius 0.1 [m], frequency 0.9
[Hz]). A sudden and short perturbation is applied at time t = 2.7 [s]. The
dashed-lines represent the reference values.



176 CHAPTER 5. APPLICATION TO CRANES

−0.4

−0.2

0

0.2

0.4

0

0.2

0.4

0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

M1

M2

M3

x1[m]x2[m]

x3[m]

Figure 5.18: Three-dimensional view of the tracking of a circular reference.
The reference is in solid red. The there motors are labeled M1, M2 and M3.



Chapter 6

Conclusions

The point of view adopted in this thesis is that, rather than tracking a full
trajectory explicitly, a dynamical system coined “the jet scheduler” is set
up to provide the derivatives (jets) of an ideal stabilizing trajectory. The
jets are updated continuously according to the measured position of the
system. The jets provide the ideal position of all the subparts of the system
through the flat correspondence. They specify the ideal states that the
system should have to converge smoothly towards the origin or along the
reference trajectory to be tracked (depending upon whether point regulation
or trajectory tracking is sought). Then, simple high-gain controllers are
designed to enforce the real states to match the ones provided by the jets
of the jet scheduler.

The interplay between the jet scheduler (which provides feedforward in-
formation, although this information is corrected through output measure-
ments) and the high-gain controllers gives a control mechanism that is more
robust than classical feedback linearization based on flatness. The only and
main drawback of the proposed method is that the correspondence between
the controlled system and a linear stable one is generally lost, contrary to
dynamic linearization using flatness. This leads to a more subtle stability
analysis than for classical feedback linearization schemes.

The two classes of systems addressed in this thesis illustrate how the
general methodology can be applied in practice. Of course, the chosen
examples are not exhaustive, and the idea proposed in Chapter 3 can be
applied to many different flat systems.

From a formal standpoint, the thesis leaves some open issues, the main
one being an abstract treatment of the low-order controller together with

177
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associated criteria for choosing the value of p.
Both examples show improved robustness. The improvement can be

explained largely by the intrinisic split that exists in the jet scheduler with
one part imposing the jets (handling the nonlinear couplings) and the low-
order controller ensuring that the system does match the jets. This low-level
controller can be designed with high gain without disturbing the dominant
time constants imposed by the scheduler. Such a splitting is difficult to
achieve with flatness-based feedback linearization.

Another benefit of the jet-scheduling methodology over classical feedback
linearization is that it gives simple and physically well-grounded controllers,
which considerably simplifies the implementation step. Apart from the jet
scheduler itself, the low-level controllers are P or PD controllers that can
be designed easily for a particular purpose. This considerably simplifies the
debugging stage.

The methodological Chapter 3 underlines however the challenges in-
volved in defining such a procedure. Indeed, the flatness property together
with the prolongated structure of the classical dynamical extension must be
used to define the submanifold S, from which the key variables ξ can be de-
fined. They contrast with the natural α variables that result from flatness.
These variables, in turn, give the structure of the low-order controller. This
structure with the separation existing naturally in the prolongated dynamic
extensions can be used to reduce the order of the controller.

However, the precise way and reason for the design of the controller is
still obscured by insufficient formal treatment of the resulting dynamical
structure. This direction could be investigated. This could also lead to
possible extension of the method beyond the class of flat systems to some
that are “almost” flat at least to a definable extent.

From a practical point of view, the jet-scheduling method for the class
of cranes has shown how important the scheduling mechanism is in achiev-
ing fast positioning without induced oscillation. This is the case mainly
because the load can be considered as a single point-mass payload. In the
case of more complicated payloads such as vertical heavy beams, additional
modeling is needed, mainly by considering a cascade of two flat systems,
one for the crane and the other for the payload. The method should adapt
to such a scenario with no major difficulty.

Another application directly linked to those presented is the coordinated
steering of a platoon of vehicles (flocking for instance). Indeed, the nested
structure of flat systems results in an overall flat parameterization well
suited to the jet-scheduling approach.
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[12] B. Charlet, J. Lévine, and R. Marino. Sufficient conditions for dynamic
state feedback linearization. SIAM J. Control Optimization, 29(1):38–
57, 1991.

[13] C.-T. Chen. Linear System Theory and Design. Oxford University
Press, New York, 3rd edition, 1999.
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[18] T. Devos and J. Lévine. A flatness-based nonlinear predictive approach
for crane control. In Proceedings of IFAC Workshop on Nonlinear
Model Predictive Control for Fast Systems 2006, Grenoble, France, oc-
tober 2006.



BIBLIOGRAPHY 181

[19] W.E. Dixon, D.M. Dawson, E. Zergeroglu, and A. Behal. Nonlinear
Control of Wheeled Mobile Robots. Springer, New York, USA, 2001.

[20] W.E. Dixon, D.M. Dawson, F. Zhang, and E. Zergeroglu. Global expo-
nential tracking control of a mobile robot system via a pe condition. In
In Proceedings of the 38th IEEE Conference on Decision and Control,
pages 4822–4827, Phoenix, Arizona, 1999.

[21] K. D. Do, Z. P. Jiang, and J. Pan. A global output-feedback con-
troller for simultaneous tracking and stabilization of unicycle-type mo-
bile robots. IEEE Transactions on Robotics and Automation, 20:589–
594, 2004.

[22] K. D. Do, Z. P. Jiang, and J. Pan. Simultaneous tracking and stabi-
lization of mobile robots: An adaptive approach. IEEE Transactions
on Automatic Control, 49:1147–1152, 2004.

[23] G. Dongbing and H. Huosheng. A stabilizing receding horizon regula-
tor for nonholonomic mobile robots. IEEE Transactions on Robotics,
21(5):1022 – 1028, October 2005.

[24] R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2000.

[25] Y. Fang, W. E. Dixon, D. M. Dawson, and E. Zergeroglu. Nonlin-
ear coupling control laws for an underactuated overhead crane system.
IEEE/ASME Transactions on Mechatronics, 8(3):418–423, 2003.

[26] J. Ferruz and A. Ollero. Visual generalized predictive path tracking.
In 5th International Workshop on Advanced Motion Control, AMC,
Coimbra, Portugal, 1998.

[27] R. Fierro and F. Lewis. Control of a nonholonomic mobile robot: Back-
stepping kinematics into dynamics. In In Proceedings of the 34th IEEE
Conference on Decision and Control, pages 3805–3810, New Orleans,
LA, 1995.

[28] A. F. Filippov. Differential Equations with Discontinuous Righthand
Sides. Kluwer Academic Publishers, Dordecht, The Netherlands, 1988.
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