
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

biologiste diplômé de l'Université de Lausanne
de nationalité suisse et originaire de Leytron (VS)

acceptée sur proposition du jury:

Prof. R. Schneggenburger, président du jury
Prof. S. Catsicas, Dr S. Kasas, directeurs de thèse

Prof. G. Dietler, rapporteur
Prof. Y. Dufrêne, rapporteur
Prof. B. Samori, rapporteur

MeMbrane elastic Heterogeneity studied
at nanoMetrical scale on living cells

Charles RODUIT

THÈSE NO 3985 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 20 DÉCEmBRE 2007

À LA FACULTÉ DES SCIENCES DE LA VIE

LABORATOIRE DE NEUROBIOLOGIE CELLULAIRE

PROGRAmmE DOCTORAL EN NEUROSCIENCES

Suisse
2008

Werner Heisenberg [1958]:

We have to remember that what we observe is not nature in itself
but nature exposed to our method of questioning.

i

ii

Contents

Summary ix

Résumé xi

Remerciements xiii

Acronyms xv

1 Introduction 1
1.1 Atomic force microscopy . 1

1.1.1 History . 1
1.1.2 Principle . 1
1.1.3 The AFM operating modes 2

Contact mode . 2
Tapping mode . 2
Force Spectroscopy . 4

1.2 Cell mechanical properties . 8
1.3 Cell Membrane . 11

1.3.1 The membrane organization 11
1.3.2 The lipid raft model . 12
1.3.3 Role of the rafts . 12

Signal transduction . 12
Secretory pathway . 13
Endocytosis . 13
Cell adhesion and migration 13
Disorders . 14

1.4 Aim of the project . 15

2 Materials and methods 17
2.1 Biochemistry . 17

2.1.1 Proteins . 17
2.1.2 Antibodies . 17

2.2 Cell cultures . 17
2.2.1 293T Cells . 17
2.2.2 HeLa Cells . 18
2.2.3 Hypocampal neurons . 18

2.3 Immunochemistry . 18
2.4 AFM . 19

iii

CONTENTS

2.4.1 AFM Tip . 19
2.4.2 In vivio measurements . 19
2.4.3 Force Volume measurements 20
2.4.4 Force-Volume analysis software 20
2.4.5 Data representations . 21

3 Post Processing software 23
3.1 Introduction . 23
3.2 Results . 23

3.2.1 Zero Force Image . 23
3.2.2 Stiffness Computation . 24
3.2.3 Event detection . 26
3.2.4 Relative Stiffness . 26
3.2.5 Merging the results . 28

3.3 Conclusion . 28

4 Mechanical properties of GPI domains 31
4.1 Introduction . 31
4.2 Results . 33

4.2.1 Binding specificity of aerolysin 33
4.2.2 Distribution of GPI-anchored proteins 34
4.2.3 Tip contamination . 35
4.2.4 Determining the local stiffness inhomogeneity 35
4.2.5 Relative stiffness of GPI domains 39
4.2.6 Cholesterol extraction effect on GPI domains relative stiff-

ness . 39
4.2.7 Cholesterol extraction effect on the number of detected

GPI domains . 40
4.2.8 Cytoskeleton digestion effect on the relative stiffness of

GPI domains . 40
4.2.9 Binding protein events influence on the relative stiffness . 43
4.2.10 Cell type influence on GPI domains relative stiffness . . . 43
4.2.11 Protein diffusion influence on GPI-domains relative stiffness 47
4.2.12 Cholesterol extraction effect on membrane global stiffness

heterogeneity . 48
4.3 Discussion . 49

4.3.1 GPI-anchored proteins are specifically detected by the
aerolysin coated tips . 49

4.3.2 GPI domains are local stiffer zones 49
4.3.3 GPI domains relative stiffness is not dependent on protein-

protein interactions . 50
4.3.4 GPI domains relative stiffness does not depend on actin

cytoskeleton . 51
4.3.5 GPI domains relative stiffness has similar properties in

several cell lines . 51
4.3.6 Protein diffusion does not alter the GPI domains relative

stiffness measurement . 51
4.3.7 Cell stiffness global heterogeneity is altered by cholesterol

extraction . 52
4.4 Conclusion . 53

iv

CONTENTS

5 Stiffness Tomography 55
5.1 Introduction . 55

5.1.1 The theory . 55
5.2 Results . 58

5.2.1 Finite elements simulations 58
5.2.2 Application of the Stiffness Tomography (ST) to living

systems . 63
Effect of cytoskeleton digestion 63
Tomographic view of neurites 63

5.3 Conclusion . 64

A Blender script 65
A.1 createTopoYoungEvent.py . 65
A.2 TomographyLoader.py . 71

B Succellus User Guide 75

C Succellus Developer’s Guide 91

Bibliography 208

Curriculum Vitae 218

v

CONTENTS

vi

List of Figures

1.1 AFM Principle . 3
1.2 Contact Mode . 3
1.3 Tapping Mode . 4
1.4 Force-distance curve . 4
1.5 Protein-protein interaction . 6
1.6 Force curve on soft sample . 7
1.7 Biomechanical assay . 10

2.1 Cantilever . 19
2.2 Injection setup . 20

3.1 Point of contact detection . 24
3.2 Indentation curve . 25
3.3 Curve segmentation . 25
3.4 Event shape . 27
3.5 Time spent during relative computation 27
3.6 3D scan result . 28

4.1 Binding specificity of Aerolysin 33
4.2 GPI fluorescence distribution . 34
4.3 GPI interaction distribution . 35
4.4 Tip contamination . 36
4.5 Typical neurite scan results . 36
4.6 Determining stiffness heterogeneity 37
4.7 GPI domains are stiffer . 39
4.8 MeCD effect on the GPI domain relative stiffness. 41
4.9 Change in binding-unbinding population event 42
4.10 Actin depolymerization effects on the GPI domain relative stiff-

ness and absolute membrane stiffness 44
4.11 Actin depolymerization effect on cell stiffness 45
4.12 Cell stiffness . 45
4.13 Relative stiffness of non GPI domain 45
4.14 GPI domain on other cell type 46
4.15 GPI domain relative stiffness on fixed cells 47
4.16 Stiffness heterogeneity . 48

5.1 AFM Tomography Principle : Soft inclusion 56
5.2 AFM Tomography Principle : Hard inclusion 57

vii

LIST OF FIGURES

5.3 AFM Tomography Principle : Curve segmentation 57
5.4 Reference . 58
5.5 Stiffer columns . 59
5.6 Stiffer platforms . 60
5.7 Stiffer big platforms . 60
5.8 More stiffer platforms . 61
5.9 Softer platforms . 62
5.10 Cytoskeleton digetion effect on stiffness tomography 63
5.11 Neurites Stiffness Tomography 64

viii

Summary

The aim of this thesis was to explore the cell mechanical properties using the
Atomic Force Microscope (AFM).

The cell membrane contains lipids microdomains, called rafts, enriched in
cholesterol and sphingolipids. The rafts are believed to play an important role
in signal processing by acting as a “signaling platform”. Indeed, membrane
proteins involved in signal transduction concentrates into these rafts and are
coupled with signaling pathways inside the cell. The mechanical properties of
these rafts were characterized by targeting one of its component, the glycosyl-
phosphatidylinositol-anchored protein (GPI-AP).

During this work, we found these domains to be stiffer than the surround-
ing membrane. Several control experiments were performed to consolidate this
finding. The extraction of cholesterol, one of the major component of raft, was
shown to dramatically reduce the stiffness of the raft to reach the surrounding
membrane value. The stiffness specificity of rafts may be related to the lower
diffusion rate of proteins and can be, therefore, an important property for its
role as a signaling platform.

During this thesis, we also introduced a new AFM imaging mode, which
we called “stiffness tomography”. With this imaging mode, we were able to
distinguish stiff materials inclusion located into the sample. Different control
experiments were done to validate this imaging mode. A virtual experiment
was performed with the help of the finite element modeling. This permitted
us to validate our methodology, but also pointed us its limitations. The stiff-
ness tomography was also used on living cells and showed significant differences
between native and cytoskeleton depolimerized cells.

Since no postprocessing tools was available at the beginning of this work,
the software development was a very significant part of the project. Its develop-
ment resulted in a toolbox (a collection of function), that is available for future
software development. A non negligible part of the development consisted in
the toolbox documentation that is reported in the appendix C. This software
permitted to process force volume AFM files and to characterize the elastic
properties of the cell membrane with a high precision and reliability.

Keywords : hippocampal neurons, rafts, cholesterol, atomic force microscopy,
GPI-anchored proteins, actin, stiffness tomography

ix

SUMMARY

x

Résumé

Cette thèse consistait à explorer les propriétés mécaniques des cellules avec l’aide
d’un microscope à force atomique (AFM).

La membrane cellulaire contient des microdomaines lipidiques, appelés rafts,
enrichis en cholestérol et sphingolipides. Les rafts sont supposés agir comme
plateforme de signalisation en concentrant les protéines impliquées dans la trans-
mission du signal de l’extérieur vers l’intérieur de la cellule et en les couplant avec
la cascade de signalisation à l’intérieur de la cellule. Les propriétés mécaniques
de ces raft ont été caractérisées en ciblant l’un de ses constituant, les protéines
ancrées dans la membrane par glycosylphosphatidylinositol (GPI-AP).

Grace à ce travail, nous avons montré que ces domaines sont plus durs que
la membrane adjacente, ce qui a été confirmé par plusieurs expériences contrôle.
L’extraction de cholestérol, un des composants majeur des rafts, a montré une
nette diminution de la dureté des rafts, allant jusqu’à celle de la membrane
adjacente. La dureté spécifique des rafts peut être mise en relation avec la faible
diffusion des protéines observée dans ces domaines et peuvent, par conséquent,
être une propriété importante dans son rôle de platforme de signalisation.

Cette thèse nous a aussi permi de développer un nouveau mode d’imagerie,
que nous avons baptisé “tomographie de dureté”. Celle-ci permet la détection
de matériaux à l’intérieur d’un échantillon, en se basant sur leurs différence de
dureté. Plusieurs expériences contrôles ont été réalisées pour valider ce mode
d’imagerie. Une expérience virtuelle, mettant en œuvre la modélisation par
éléments finis, a permis de valider notre méthodologie, mais nous a aussi révélé
ses possibles limites. La tomographie de dureté a aussi été réalisée sur cellules
vivantes et a montré une différence significative entre cellules natives et cellules
dont le cytosquelette est dépolymérisé.

Lors du début de ce projet, aucun outil de traitement de données nous per-
mettant de réaliser notre travail n’existait sur le marché. Le développement
du programme informatique fut une part significative de notre travail. De
son développement s’est constitué une toolbox (une collection de fonctions),
disponible pour de futures programmes informatiques. Un part non négligeable
du développement a consisté en la réalisation de la documentation de la toolbox,
reportée en appendice C. Ce programme nous a finalement permis de caractériser
de manière précise et fiable les propriétés élastiques de la membrane.

Mots clés : neurones, hippocampe, rafts, cholestérol, microscope à force
atomique, protéines GPI, actine, dureté, tomographie de dureté, propriété mécanique

xi

RÉSUMÉ

xii

Remerciements

Un travail de thèse est avant tout un travail d’équipe où idées et certitudes sont
constamment échangées et remises en cause. C’est pourquoi je profite de la
place qui m’est laissée pour remercier toutes les personnes impliquées de près
ou de loin dans ce projet.

Je voudrais tout d’abord remercier mon co-directeur de thèse, le Pr. Stefan
Catsicas pour m’avoir accueilli dans son laboratoire, pour sa confiance et pour
la liberté qu’il m’a accordé durant ces années. Un grand merci au Dr. Sandor
Kasas, mon second co-directeur de thèse, pour m’avoir fait découvrir avec autant
de patience et de pédagogie le monde de la recherche et, plus particulièrement
celui de l’AFM. Je le remercie aussi pour la modélisation par éléments finis
utilisé lors du projet “Stiffness Tomography”. Merci aussi à Frank Lafont de
l’institut Pasteur, sans qui le projet “GPI-domains” n’aurait probablement pas
vu le jour. Merci pour ses remarques et nos discussions constructives sur ce
projet.

Je voudrais aussi chaleureusement remercier mes collègues du groupe de neu-
robiologie cellulaire (LNC), Liliane Glausser, qui a préparé la majorité des cul-
tures cellulaire utilisées dans ce travail, ainsi que les doctorant et ex-doctorant,
Karina Kulangara, Michel Kropf et Alexandre Yersin, avec qui j’ai eu nombre
de discussions très intéressantes. Un merci particulier à Alexandre Yersin qui
a effectué, avec Sandor Kasas et Frank Lafont, les expériences préliminaires
utilisées pour le projet “GPI-domains”. Merci aussi aux membres du labora-
toire de neuroénergétique et dynamique cellulaire (LNDC), avec qui nous avons
partagés tant de temps lors de nos “lab-meeting”

Une grande majorité de mon travail s’est fait dans le laboratoire de physique
de la matière vivante (LPMV) dirigé par le Pr. Giovanni Dietler que je remercie
pour son accueil chaleureux, ses remarques constructives et sa motivation sans
faille. Je voudrais aussi remercier tous les membres et ex-membres du groupe
LPMV, Aleksandra Radenovic, David Viertl, Erika Ercolini, Eva Bystrenova,
Francesco Valle, Giovanni Di Santo, Guillaume Witz, Jozef Adamcik, Kanat
Dukenbayev, Kristian Rechendorff, Lilia Chtcheglova, Mélanie Favre, Mounir
Mensi, Serguei Sekatski, Susana Tobenãs. Un merci tout particulier à Serguei
Sekatski pour avoir élaboré le modèle de Hertz simplifé utilisé dans le cadre du
projet “Stiffness Tomography” ainsi qu’à Mélanie Favre d’avoir eu le courage
de partager mon bureau. Merci aussi à Christine Vuichoud la secrétaire du
groupe, au mécanicien Pyrame Jaquet, ainsi qu’à Michel Kessous, le responsable
informatique, qui n’ont jamais hésité à se plier en quatre pour nous faciliter la
vie.

Je suis aussi très reconaissant envers Mme Michèle Bonnard Giacobino,
secrétaire-administratrice du programme doctorale de neurosciences, pour son

xiii

REMERCIEMENTS

habileté à transformer de lourdes charges administratrices en de simples for-
malités.

Je profite enfin de cet espace pour remercier tous mes proches, ancien col-
lègues de biologie et non biologistes, Jean-Marc, David, Eric, Natalie, Laurence,
Lucie, Nicolas, Flo, Odile, Steeve, Thierry, Sonia et ceux que j’oublie, ainsi que
mes amis d’Ovronnaz que je vois trop rarement, pour tout ces moment passés en
leur compagnie. Merci aussi à tous les membres de ma famille qui se plaignent
souvent de mon absence, ainsi qu’à Angéline avec qui je partages de superbes
moments et qui supporte mes sauts d’humeur connues d’une grande majorité
de doctorants.

Finalement, je voudrais remercier chaleureusement les membres du jury
de thèse, le Pr. Bruno Samor̀ı, le Pr. Yves Dufrêne ainsi que le Pr. Ralf
Schneggenburger d’avoir accepté de juger mon travail.

xiv

Acronyms

AFM Atomic Force Microscope

BSA Bovine Serum Albumin

DRM detergent resistant membrane

EM Electron Microscope

Er(Rand) Relative Stiffness of randomly selected pixels

Er(GPI) Relative Stiffness of GPI domains

FD Force-Distance

GFP Green Fluorescent Protein

GPI glycosylphosphatidylinositol

GPI-AP glycosylphosphatidylinositol-anchored protein

MeCD methyl-β-cyclodextrin

SEM Standard Error of Mean

ST Stiffness Tomography

STM Scanning Tunneling Microscope

TCZ Transient Confinment Zone

TfR transferrin receptor

WGA Wheat Germ Agglutinin

xv

ACRONYMS

xvi

Chapter 1

Introduction

1.1 Atomic force microscopy

1.1.1 History

During history, the development of new imaging technologies provided new per-
ceptions of the living world and permited the science to go steps further. The
light microscope, invented in the 17th century, was at the origin of giant steps
in medicine with the discovery of cells. In the beginning of the 1940s, the in-
vention of the Electron Microscope (EM) opens new area with the description
of new sub-cellular organelles and their functions, and with the identification of
viruses. The AFM and its ancestor, the Scanning Tunneling Microscope (STM)
[Binnig et al., 1982] are such new imaging technologies which are expected to
refine our perception of biology. The STM is based on the tunneling effect and
requires the sample to be conductive and is therefore not suitable for most of
biological samples.

In 1986 the AFM was derived from the STM [Binnig et al., 1986]. Like the
STM, it holds a sharp tip which scans the surface. To measure the distance
between the tip and the surface, the AFM feels the interatomic forces between
the very end of the tip and the surface. Very soon the AFM has been applied
to biological materials since most of them are non conductive [Hansma et al.,
1988; Drake et al., 1989]. Fatty acids [Marti et al., 1988] and amino acid crystals
[Gould et al., 1988] were the first biological molecules to be imaged, followed
soon after by the imaging of plants leafs [Gould et al., 1990], viruses [Zenhausern
et al., 1992], DNA [Samori et al., 1993], living cells [Kasas et al., 1993] and
spores [Dufrene, 2000]. In addition, fundamental bichemical processes like the
polymerase activity have also been observed under nearly physiological condition
[Kasas et al., 1997].

1.1.2 Principle

The AFM is a microscope belonging to the scanning probe microscope family.
Unlike optical or electron microscopes, a physical probe is in, or nearly in,
contact with the studied sample.

The physical probe of the AFM is a sharp tip at the end of a cantilever.
A standard cantilever is shown in the figure 1.1 (a). The tip presented on this

1

CHAPTER 1. INTRODUCTION

figure has a pyramidal shape with a base of about 4 µm side length and a radius
of curvature of 50 nm or less. The spring constant of a typical cantilever varies
from 1 to 0.01 N/m. As comparaison, an aluminum sheet of 3 mm long and 1
mm wide has a spring constant of 1 N/m [Hansma et al., 1988].

The force occurring between the tip and the substrate is monitored by the
deflection of the cantilever. Several methods exist to detect the cantilever de-
flection, but the most widely used one is based on the reflection of a laser beam
off the cantilever [Meyer and Amer, 1988]. The laser beam ends its path on a 2
or 4 segment photodiode (figure 1.1(b)), and the difference in the illumination of
the segments of the photodiode is used by the controlling computer to calculate
the deflection of the cantilever. Despite its simplicity, this technique can detect
deflections below 0.1 nm [Digital Instrument, 2000; Butt and Jaschke, 1995].

The vertical and horizontal position of the sample is controlled by a piezo-
electric scanner. Depending on the microscope type, the sample or the tip is
moved by the scanner. The latter is used when the AFM is mounted on an
inverted microscope (figure 1.1(c)) in order to free the space used by the optical
microscope.

1.1.3 The AFM operating modes

The AFM can be operated in different modes.

Contact mode

The contact mode, when operated in constant force option, consists in scanning
a sample while applying a constant force between the tip and the sample [Binnig
et al., 1986]. The microscope moves the tip up and down while the cantilever
deflects to keep the tip-sample interaction forces constant. The image is gener-
ated by the recording of the piezo position during the scan (Figure 1.2). This
mode has been used to image samples like amino acids [Gould et al., 1988],
crystallized proteins [Mou et al., 1996], viruses [Drygin et al., 1998] or artificial
membranes [Vie et al., 1998]. The contact mode can be enhanced by the error
mode (Error Signal in figure 1.2), which records the deflection changes of the
cantilever during the scan [Putman et al., 1992]. It gives the information on the
efficiency of the feedback control. The advandage of contact mode is its ability
to image hard and flat samples with a high resolution whereas it drawback is
its tendancy to displace weakly attached structures [Grafstrom et al., 1994]. In
addition, soft sample appear lower than they realy are [Weihs et al., 1991].

Tapping mode

In the tapping mode, also called intermittent contact mode, the tip is oscillated
near its resonance frequency, to periodically enter in contact with the sample
(see figure 1.3). The feedback signal is driven by the oscillating amplitude so
if the tip reaches a bump, the oscillation amplitude diminishes, and inversely,
if the tip reaches a hollow, the amplitude increases. During the scan, the tip-
sample distance is adjusted to keep the cantilever oscillation aplitude constant.
The principal advantage of this imaging mode is the reduction of the lateral
forces. The tapping mode can be used in air as well as in liquid to image soft
and weakly attached samples [Hansma et al., 1993, 1994; Putman et al., 1994].

2

CHAPTER 1. INTRODUCTION

(a) SEM view of AFM cantilever (b) Schema of the AFM

(c) Inverted microscope mounted AFM

Figure 1.1: (a) Electron micrography of a standard AFM cantilever. The AFM tip
is zoomed. The tip side is about 4 µm size and ended by a curvature radius to about
50 nm. (b) A schematic view of the AFM. The tip is in contact with the sample.
A laser reflects off the cantilever, the deflection is detected by the displacement of the
laser beam on the photodiode detector. In this schema, the piezo-electric scanner pilots
the position of the sample. The photodiode detector and the piezo-electric scanner are
connected to a computer (not shown) to integrate the signal of the photodiode and send
the feedback to the scanner. (c) A schematic view of an AFM mounted on an optical
microscope. The piezo scanner moves the tip to free the space occupied by the optical
microscope.

Figure 1.2: In contact mode, the tip apply a constant force on the substrate and
records the change in the piezo height (Topographic trace). The time response of the
microscope is not immadiate. The error signal records the deflection change of the
cantilever.

3

CHAPTER 1. INTRODUCTION

Figure 1.3: In tapping mode, the tip oscillates at a given amplitude. When the tip
and the sample come closer to each other, the amplitude decreases. The feedback signal
moves then away the sample from the tip, until the initial amplitude is reached.

Force Spectroscopy

Very soon after its discovery, the AFM has been used to perform Force-Distance
(FD) measurement [Burnham and Colton, 1989; Weisenhorn et al., 1989]. The
figure 1.4, page 4 illustrates the way FD curves are recorded. In the first part of
the approach cycle (blue curve), as the tip approaches the surface, the cantilever
holds its rest position (straight line 1, 2). When the contact between the tip
and the sample occurs, the cantilever deflects upward as the scanner extends
(3), and applies a force on the substrate that is proportional to its deflection.
During the retraction cycle (red curve), the deflection of the cantilever decreases
(4). Just before the lift off, attractive forces between the tip and the sample
(capillary forces, van der Waals forces etc...) causes a downward deflection of
the cantilever (5). When the retraction force of the cantilever overcomes the
adhesion of the tip to the surface, the cantilever returns to its rest position,
ending the cycle (6).

Figure 1.4: During the approach cycle : (1-2) The tip and the surface are off contact.
The cantilever is then at its rest position. (3) As soon as the tip and the sample enter
in contact to each other, the cantilever deflects itself. During the retraction cycle : (4)
The deflection of the cantilever decreases. (5) Attractive forces deflects downward the
cantilever until the tip looses contact with the sample. (6) The tip and the surface are
off contact, and the AFM is able to perform another cycle.

The force spectroscopy mode of the AFM, also called force volume, simply
constits in recording force distance curves allover the sample [Radmacher et al.,
1996].

The presence of specific chemical species (receptor) on the surface of the
sample can be detected by attaching a ligand onto the tip. This ligand will
bind its receptor during the in-contact part of the FD curve (points 2 to 4 in
figure 1.5). During the retraction part of the curve, the ligand-receptor complex
unfolds (distance c between the points 4 and 5 in the figure), and the cantilevers

4

CHAPTER 1. INTRODUCTION

deflects downwards untill the retraction force of the cantilever overcomes the
ligand-receptor binding force. When this bond breaks, the cantilever returns
to its rest position. The force needed to break the link can be computed by
assuming that the cantilever behaves as an ideal spring. The Hook’s law (1.1)
describes the force needed to deform it if its spring constant is known.

F = k ∗ d (1.1)

F being the force in [N], k is the spring constant in [N/m] and d is the deforma-
tion of the spring in [m]. The deformation is measured by the vertical distance
between the points just before and just after the bound breakage in the force
curve (marked as d in the retraction force curve of figure 1.5).

The in-contact part of the FD curve contain information on the mechanical
properties of the indented sample and therefore permits to measure its elastical
properties [Radmacher, 1997, 2002]. When the tip enters in contact with a hard
sample (Figure 1.6, blue curve), the cantilever deflects proportionally to the
scanner extension and the tip does not indent into the sample. However, if the
sample is soft, the tip indents as the scanner extends (Figure 1.6, red curve).
The cantilever deflection is then no more directly proportional to the scanner
extension providing a force curve with a rounder shape.

The indentation curve is computed by taking the differences between force-
distance curves taken in hard and on soft sample [Tao et al., 1992; Weisenhorn
et al., 1993] (figure 3.2 page 25). This curve basically informs on the forces
required to indent the AFM tip to a given depth into the sample. By fitting the
indentation curve with the Hertz or the Sneddon model [Hertz, 1882; Sneddon,
1965], one can compute the Young’s modulus of the sample [Radmacher et al.,
1996; Radmacher, 1997; Domke and Radmacher, 1998].

The ability of the AFM to act as a nanoindenter and to probe mechanical
properties of samples at the nanometric scale makes this instrument the one of
choice to the study of cell mechanical properties.

Several other modes, not used in this study, have been developped, such as
the non contact [Martin et al., 1987] or the friction mode [Mate et al., 1987].

5

CHAPTER 1. INTRODUCTION

Figure 1.5: In the top image, the functionalized cantilever is modeled as a spring
with a ligand (red) at its end. Its receptor (green) is drawn on the substrate. The
blue side represent the approach part of the cycle, and the red side the retraction part
of the cycle. The top image is also segmented in three part, the first (left) is before
contact, the second (center) represents what happened during the contact and the latter
(right) after the contact between the tip and the sample. The bottom image represents
the resulting force curve. As the top image, the blue represent the approach and the
red the retraction part of the cycle. During the approach cycle : (1) The tip and the
surface are off contact. The cantilever is then at its rest position. (2-3) As soon as
the tip and the sample enter in contact to each other, the cantilever deflects itself and
the two proteins are allowed to interact with each other. During the retraction cycle :
(3-4) The deflection of the cantilever decreases. If the ligand and receptor interacts
together, they unfold during a certain distance (c) until it beginns to retain the tip (5).
At this time, the cantilever apply an increasing force as it tends to move away from the
surface until this force is enough to break the ligand-receptor bond (6). The cantilever
finally returns at its rest position, ready for a new approach-retraction cycle (7).

6

CHAPTER 1. INTRODUCTION

Figure 1.6: Force curve resulting of indentation into hard (blue) and soft (red) sample.

7

CHAPTER 1. INTRODUCTION

1.2 Cell mechanical properties

Physical samples can be caracterized by the Young’s modulus and the Poisson
ratio. The Young’s modulus, also known as elastic modulus, is a measure of the
stiffness of a sample. Its definition is the ratio of the rate of change of stress σ
with strain ε.

E =
σ

ε
(1.2)

The Young’s modulus can vary a lot from a material to another. As an
indication, the elastic modulus of some material are reported in table 1.1 [Rad-
macher, 1997].

When a material is stressed in one direction, it has a tendency to get thinner
in the perpendicular direction to the applied stress. The Poisson ration µ is a
mesure of this tendency. It is defined as the ratio of the relative contraction
strain :

µ =
εtrans

εaxial
(1.3)

εtrans being the transversal strain and εaxial the axial strain. If the material
is incompressible, the Poisson ratio will be 0.5. Most biological materials have
a Poisson ratio around 0.3.

Material Young’s Modulus
steel 200 GPa
glass 70 GPa
bone 10 GPa
silk 10 GPa
collagen 1 GPa
protein crystal 0.2-1 GPa
rubber 1.4 MPa
living cells 1-100 MPa

Table 1.1: Elastic properties of typical materials

Many physiologic and pathologic processes alters the biomechanical prop-
erties of the tissues they affect. When training, muscles get harder and with
aging, skin becomes less elastic. In a wide range of diseases tissue biomechan-
ics abnormalities are observed. Osteoporosis, in which the bones have a low
strength and stiffness [Dickenson et al., 1981], osteoarthritis where the vicoelas-
tic properties of cartilage is altered, suggesting a decreased dissipation of elastic
energy [Silver et al., 2001], ventricular aneurysm where the viscoelastic prop-
erties of ventricular tissues are altered [Kane et al., 1976] is another example
where the mechanical properties of tissue plays a key role in the disease. The
relationship between tissue mecanics and pathology is used clinically by palpa-
tion to detect stiff nodules associated with breast cancer or abnominal hardness
due to liver cirrhosis. A number of devices have been developped in order to
evaluate the stiffness of soft tissues in vivo more quantitatively [Lyyra et al.,
1999; Ferguson-Pell et al., 1994].

A non-invasive imaging technique known as elastography [Ophir et al., 1999],
based on ultrasound and magnetic resonance imaging methods is able to detect

8

CHAPTER 1. INTRODUCTION

the size and shape of tumors [Ophir et al., 1999; Manduca et al., 2001], can
identify stiffness differences in healty tissues [Ophir et al., 1999; Manduca et al.,
2001], or detect cardiac deformation due to coronary artery disease [Konofagou
et al., 2002].

The mechanical properties changes of the tissue during physiologic and
pathologic processes may be visible also at the single cell level. Such changes in
the cell mechanical properties of pathologic processes have been reported.

Cancerous cells are reported to be one order of magnitude softer than nor-
mal cells [Lekka et al., 1999], an increase in the cell deformability can facilitate
the cancer migration. However, the exposure to standard induction chemother-
apeutic agents of leukemia cells increased their stiffness and a decreased their
passage through microfluidic channels [Lam et al., 2007]. In this case, the cell
mechanical properties informs on the efficiency of the drug treatment. For a
review in biomecanics of cancer cells, the interessed reader can refer to Suresh
[2007]

The deformability of erythrocytes is critical for the fluidity of blood in cap-
illaries. The Sickle-cell disease is a genetic mutation that causes a defect in
haemoglobin structure. In this disorder, the erythrocytes show a lower de-
formability. Whereas the treatment with hydroxyurea, used for the medication
of the disease, restores the deformability of red blood cells [Brandao et al., 2003].
The stiffness of pathological erythrocyte is also reported to be modified in some
disease such as spherocytosis and thalassemias, characterised by abnormal ery-
throcyte shape [Dulinska et al., 2006].

The mechanical properties were also measured in other organisms. In yeast
cells, at the end of the cell division, the mother cell displays a bud scare marking
the division site. A significant variation of the cell wall mechanical properties
was observed in this region [Touhami et al., 2003]. The bud scare showed a
ten times stiffer properties than the surrounding cell surface, consistant with
the accumulation of chitin in this area. Mechanical propreties of bacteria can
be examined in function of the medium. The turgor pressure, i.e. the pressure
of the cell contents against the cell wall, have been measured by Arnoldi et al.
[2000] on Magnetospirillum gryphiswaldense to be in the range of 85 to 150 kPa
depending on the external osmolarity.

Many tools has been developped to explore the mechanical properties of
cells. Some of them will be described here.

Micropipette aspiration The micropipette aspiration technique is used to
study the time-dependent deformation of cell (Figure 1.7(a)). The cell is as-
pirated by a micropipette which inner diameter is a fraction of the nominal
diameter of the cell. It can measure the elastic and viscous properties of mate-
rials from very soft, like erytrocytes, to stiffer and more viscous cells, such as
chondrocytes [Hochmuth, 2000].

Optical tweezers A laser beam is focused to a dielectric object of high refrac-
tive index and a radius much higher than the laser wavelength (Figure 1.7(b)).
This results in an attractive force between the object and the laser focal point
[Ashkin and Dziedzic, 1987]. This phenomenon is a general effect of light on
all objects, but is generally negligible on the mesoscopic scale [Williams, 2002].
Two latex beads are positionned at opposite ends of the cell to adhere to it.

9

CHAPTER 1. INTRODUCTION

(a) Micropipette Aspiration (b) Optical Tweezers

(c) Magnetic Twisting Cytometry (d) Atomic Force Microscopy

Figure 1.7: Schematic illustration of biomechanical assays used to probe cells. (a) il-
lustrates the micropipette aspiration, (b) the optical tweezers, (c) the magnetic twisting
cytometry, and (d) the AFM.

The beads are eventually moved relatively to each other by optically trapping
one or both beads [Suresh et al., 2005]. The relative bead displacement exerts
a tensile force on the cell up to several hundreds of piconewtons [Mills et al.,
2004]

Magnetic traps The magnetic traps are a variation of the optical tweezers
where magnetic beads are controlled by an electromagetic field that imposes
local force on these beads [Smith et al., 1992]. These magnetic beads, which
can be fuctionalized with proteins, are used to apply a local force onto the cell.
The advantages over the optical tweezers are that the potential damage on the
cell via radiation is eliminated, that out-of-plane rotation of the bead can be
considered, allowing to use the magnetic trap as a magnetic twisting cytometry
[Wang and Ingber, 1995] (Figure 1.7(c)) and that several beads can be used to
stress the cell [Glogauer and Ferrier, 1998].

Atomic force microscope This technique, described in detail in section 1.1
page 1, uses a sharp tip at the end of a cantilever that indents the studied ma-
terial (Figure 1.7(d)). The principal advantages of the AFM compared to the
previously described methods is its spatial resolution. The mechanical prop-
erties of nanometric scale sample can be determined [Tao et al., 1992; Laney
et al., 1997]. It is the principal reason why we used this instrument to probe
the mechanical properties of cell membrane.

10

CHAPTER 1. INTRODUCTION

1.3 Cell Membrane

The inner part of the cell is a very specialized environment designed to main-
tain favorable condition for the chemistry of life. This environment has to be
controlled and tunned in a very fine way to respond to the outer world. The cell
membrane, the frontier between the inner and the outer of the cell, plays a key
role in maintaining this fragile equilibrium. Cell surface membrane adhesion
plays also a key role in the cell-cell and cell-substratum interaction and, thereby
in the cell motility.

1.3.1 The membrane organization

The cell membrane is made of an assymetric lipid bilayer which shows a compo-
sition asymmetry from the inner to the outer leaflet. It is composed of phospho-
lipids, glycolipids and cholesterol. Sphingolipids are moslty present in the outer
leaflet whereas some glycerophospholipids in the inner leaflet (phosphatidylinos-
itol, phosphatidylethanolamine and phosphatidylserine) [Bretscher, 1973]. This
asymmetry in the chemical composition is maintained by an active transport.
The localization of the cholesterol is more difficult to determine, its flipping
time being about 1 second [Muller and Herrmann, 2002; Steck et al., 2002], but
may locates preferentially in the outer leaflet, as it interacts with sphingolipids
[Ramstedt and Slotte, 2002].

The organization of lipids occurs also in the lateral dimension, conceptualized
by the fluid mosaic model [Singer and Nicolson, 1972]. This model describes
the organization of proteins in the lipid membrane and the putative interaction
of the lipids with the embedded proteins. Several evidences support the lateral
organization hypothesis of the membrane.

1. The first evidence of a lateral lipidic organization came with the study
of the transport of newly synthetized sphingolipids in epithelial cells [Si-
mons and van Meer, 1988]. Epithelial cells have bipolar structure where
the apical and basolateral membrane have distinct morphologies based on
their prominent organic-specific function. The composition of phospho-
lipids is also polarized. The apical membrane is enriched in cholesterol
and sphingolipids, whereas the basolateral membrane is enriched in phos-
phatidylcholine. The newly synthetized sphingolipids have to cluster in
the Golgi apparatus before the transport to the apical part of the polarized
cell [Simons and van Meer, 1988].

2. The treatment of cell membrane with non-ionic detergent (Triton X-100)
at 4°C reveals detergent resistant membrane (DRM) [Brown and Lon-
don, 1998b]. These DRM have a lipidic composition enriched in sphin-
golipids and cholesterol, but shows also a protein partitioning with GPI-
AP [Skibbens et al., 1989] and doubly acylated tyrosine kinases of the Src
family [Brown, 1993; Casey, 1995].

3. Single particle tracking revealed the existence of Transient Confinment
Zone (TCZ), where particles are trapped for ∼5 to 10 s [Simson et al.,
1995]. These TCZ are shown to preferentially trap particles attached to
DRM component, such as GPI-AP, and to be dependent on cholesterol
[Sheets et al., 1997; Dietrich et al., 2002].

11

CHAPTER 1. INTRODUCTION

4. Finally, biophysical studies of model membrane shows that pure phospho-
lipids bilayers can exist in different states in the membrane. The solid or
“gel” state and two fluid or “liquid” states : the liquid ordered (lo) and the
liquid disordered (ld) states [Owicki and McConnell, 1980; Smith et al.,
1980]. The solid state is not thought to be of physiological relevance, the
bilayer being in liquid state at physiological temperature. The lo phase is
characterized by a high degree of acyl chain order. The ld state can be
altered by addition of cholesterol [Yeagle, 1985] and converted to lo state.
Because the cholesterol is a relatively rigid molecule, the sterol causes the
acyl chain of lipids to closely pack and the bilayer to be thickened [Kucerka
et al., 2007]. lo and ld phases can coexist within a single membrane [Li
et al., 2001; Ramstedt and Slotte, 2002].

1.3.2 The lipid raft model

The lipid raft model propose that the cholesterol and the sphingolipids of the
outer leaflet are not distributed homogeneously in the membrane, but cluster
into liquid ordered phase that floats in an liquid disordered bilayer [Brown and
London, 1998a]. Proteins present in the lipid bilayer would then locate inside
or be excluded from these raft, depending to their physical properties. GPI-AP
may be targeted to rafts by small lipid shells (7 nm). These shells may form a
relatively stable interaction with the protein and promote their entry into raft
[Anderson and Jacobson, 2002].

The biological functional importance of rafts comes from the suggestion that
sphingolipids and cholesterol-rich domains, that are located in the outer leaflet,
are connected to the components of signal transduction pathways present in
the inner leaflet. In particular, G proteins and nonreceptor tyrosine-kinases
selectively partition into this inner leaflet part of the raft [Brown, 1993; Harder
et al., 1998]. This ability to couple events coming from the outside of the cell
with signaling pathways inside the cell would allow rafts to act as a “signaling
platform”.

Rafts are then defined as liquid ordered domains in cell membrane, enriched
in cholesterol and sphingolipids where specialized proteins, such as GPI-AP,
have high residency time [Simons and Ikonen, 1997; Brown and London, 1998a].

1.3.3 Role of the rafts

A wide variety of functions are believed to be dependent on rafts. These mem-
brane domains are proposed to play role in the signal transduction, secretory
pathway, endocytosis, cell adhesion and motility and are also supposed to be
required for pathogen entry and some virus assembly.

Signal transduction

The proposed role of raft-clustering in the triggering of signalling events [Simons
and Toomre, 2000] has shed new light on the dynamics of membrane-associated
molecular assemblies.

Lipid rafts are involved in the immunoglobulin E (IgE) signalling during the
allergic response [Field et al., 1995; Sheets et al., 1999b]. The IgE binds through
its Fc segment to the high affinity IgE receptor (FceRI) residing in the plasma

12

CHAPTER 1. INTRODUCTION

membrane of mast cells and basophils. The crosslinking of FceRI is though to
increase their raft affinity. This results in an increased phosphorylation by the
raft-associated Lyn kinase [Sheets et al., 1999a].

In the nervous system, these domains are believed to be of physiological
importance in cell polarization and in the establishment and maintainance of
neural-network plasticity. Indeed, raft-associated signalling has been shown to
be important for neuronal survival, for membrane polarity and for neuritogenesis
[Guirland et al., 2004; Ledesma et al., 1999; Niethammer et al., 2002; Tansey
et al., 2000]. For instance, during the establishment of neural networks, the
interaction between the GPI-domain, ephrin A, and Ephr mediated forward
signalling and synapse formation [Scheiffele, 2003].

Lipid rafts function then as signalling platforms by concentrating positive
regulators of signalling

Secretory pathway

The bipolar structure of epithelial and hepatocyte cells is maintained by in-
tracellular machinery that directs newly synthesized material into the correct
target membrane. Lipid rafts is one of the actors that play a role in the apical
sorting of lipids and membrane proteins. The trans-Golgi network represents a
sorting station, were apically targeted proteins are supposed to segregated into
rafts [Simons and van Meer, 1988; Simons and Ikonen, 1997].

Endocytosis

Endocytosis is a complicated phenomena that comprise several different and rel-
atively well defined routes of internalization. The clathrin-mediated endocytosis
is raft independent.

In the other side, the caveolae-mediate endocytosis is known to be raft de-
pendent, caveolae being categorized as raft subcategory [Simons and Toomre,
2000]. The caveolae formation is dependent of caveolin-1 and caveolin-3 [Drab
et al., 2001; Galbiati et al., 2001]. The transport of caveolin to the plasma
membrane is supposed to be dependent on its ability to associate with lipid
rafts [Ren et al., 2004].

Finally, there exist a third pathway that is clathrin- and caveolae-independent
mechanisms which seems to be intimately linked to rafts. GPI-AP was shown
to be internalized via such a clathrin and caveolae-independent pathway [Sab-
haranjak et al., 2002] during the protein recycling.

Cell adhesion and migration

Cell adhesion is critical for the cell-cell interaction and for the tissues and organ
morphogenesis. Many adhesion proteins are GPI-AP and are thereby parti-
tioned into membrane rafts.

Individual prot-prot trans-interaction (occurring between cells) measured
are relatively weak [van der Merwe and Barclay, 1994], a crucial property for
dynamic and transient cell-cell interaction. Stable cell adhesion require strong
binding forces. This can be reached by oligomerization into zippers of pro-
tein adhesion. These oligomers are stabilized through cis-interaction (occurring
within proteins of the same membrane). The axonin-1, a GPI-AP that mediates

13

CHAPTER 1. INTRODUCTION

cell adhesion during neurogenesis shows a zipper mechanism for neural adhesion
[Freigang et al., 2000].

Disorders

Rafts have also been implicated in several disorders of the nervous system, for
instance in amyloidogenic processing of the Alzheimer beta-amyloid precursor
protein [Ehehalt et al., 2003]. In addition, the prion protein possesses a GPI
anchor, which is crucial for its trafficking and hence for its pathogenic conversion
[Brugger et al., 2004; Taraboulos et al., 1995]. Furthermore, several neurotoxins
require raft-associated lipid species and/or proteins for their binding and entry
[Lafont et al., 2004]. These include the botulinum [Lalli et al., 2003], the cholera
[Shogomori and Futerman, 2001] and the tetanus toxins [Herreros et al., 2001].
Membrane proteins of several enveloped viruses also localize into rafts. The
influenza transmembrane proteins, neuraminidase and hemagglutinin [Barman
and Nayak, 2000; Scheiffele et al., 1997], the GP protein of Ebola and Marburg
virus [Bavari et al., 2002], and the transmembrane glycoprotein complex Env of
HIV-1 [Nguyen and Hildreth, 2000] are also known to partition in rafts.

14

CHAPTER 1. INTRODUCTION

1.4 Aim of the project

In this thesis, we used Atomic Force Microscope (AFM) to investigate the me-
chanical properties of lipid rafts on living hypocampal neurons. The instrument
was used because of its capabilities to operate in nearly physiological conditions,
to asses the mechanical properties of living sample at high resolution, and to
target defined proteins on a living samples.

The first part of the project constisted in the development of a specific force-
volume data processing software.

The second part of the project addressed the mechanical properties of lipid
rafts onto living cell membrane. The measurments were performed by record-
ing force-volume data on living cells with a tip coated with aerolysin, a toxin
specific for lipid rafts domains. Numerous controls were conducted to confirm
the specificity of our measurments.

The last part of the project consisted in the development of a new imag-
ing mode which we called “stiffness tomography”, and which permits to reveal
structures hidden in the bulk of the sample.

15

CHAPTER 1. INTRODUCTION

16

Chapter 2

Materials and methods

2.1 Biochemistry

2.1.1 Proteins

Aerolysin and VSG117 was a gift from Pr. F Gisou van der Goot, produced and
purified as previously described [Abrami et al., 2002]. Wheat Germ Agglutinin
(WGA) and Bovine Serum Albimin (BSA) were purchased from Sigma. The
Alexa 546-conjugated aerolysin mutant (ASSP) was a gift from Pr. F Gisou van
der Goot, produced and purified as previously described [Fivaz et al., 2002].

2.1.2 Antibodies

Antibodies against the folowing antigens were used : Polyclonal, L1 (IF 1:4000;
a gift of Dr V. Lemmon, USA); MAP2 (IF 1:300; Sigma); anti-H (from J.M.
Brunner, UNIL); Monoclonal, anti-transferrin receptor (TfR)(IF 1:500; Zymed)

We also used: Cy3-, Cy5-coupled (IF 1:200; Jackson Immunoresearch) and
Oregon-Green-coupled (IF 1:200; Molecular Probes).

2.2 Cell cultures

2.2.1 293T Cells culture and transfection

293T cells were grown in a humidified incubator at 37°C and 5% CO2 in full
medium of D-MEM (Invitrogen 41966) with 10% foetal calf serum and 1% Peni-
cillin. For Calcium Phosphate transfection, 2 million cells per 9 cm dish were
plated 8-10h before transfection. 5 µg of DNA was mixed with H2O and 50 µl
of 2.5 M CaCl2 (final concentration of 250 mM) for a final volume of 500 µl
and which was then added dropwise to HBS 2X, pH 7.1 (280 mM NaCl, 50 mM
HEPES (base), 1.5 mM Na2HPO4). The complex DNA-Phosphate-Calcium was
then added onto the cells over night. The next day, cells were washed once with
full medium and replaced then by fresh medium.

For the expression of GPI-GFP, 293T cells were transfected with Aequora
GFP. GFP was fused to the GPI-moiety of the folate receptor, which was cloned
into the pJB20 vector (a kind gift from C. Zurzolo, Institut Pasteur, Paris).
293T cells were cultured in DMEM (invitrogen 41966) containing 10% foetal

17

CHAPTER 2. MATERIALS AND METHODS

calf serum and 1% penicillin at 37°C in a humidified, 5%-CO2 atmosphere. The
cells were plated within Petri dishes at a numerical density of 30’000 cell /cm2.
After an 8- to 10-hour growth phase, the cells were transfected with the DNA-
calcium-phosphate complex. This was prepared by mixing 50 µl of 2.5M CaCl2
with 450 µl of water containing 5µg of DNA. This solution was then added
dropwise to souble-strength HBS [280 mM NaCl, 1.5 mM Na2HPO4, 50 mM
HEPES (pH 7.1)]. After an overnight incubation with the complex, the cells
were rinsed thoroughly with DMEM.

2.2.2 HeLa Cells culture and transfection

Non confluent cell cultures of Hela cells were analysed using aerolysin function-
alized tips using similar protocol as that used for neurons and 293T cells. HeLa
cells were transiently transfected with a plasmid encoding GPI-GFP (see above)
using FuGene (Roche Applied Science) as transfection reagent. Cells were used
either after overnight or after 24h transfection.

2.2.3 Hypocampal neurons

Hypocampal neurones derived from rat embryos were prepared and cultured as
previously described [Morgenthaler et al., 2003]. The cells were plated within
Petri dishes at a numerical density of 2500 / cm2 and were maintained in K5
medium [128 mM NaCl, 5 mM KCl, 2.7 mM CaCl2, 1 mM MgCl2, 10 mM
glucose, 20 mM HEPES (pH 7.4)] at ambient temperature. Each experiment
was initiated 15 minutes after inserting the Petri dish into the AFM. This delay
was required for the thermal equilibration of the cantilever. When required, a 5
mM solution of MeCD in K5 was prepared and introduced into the incubation
chamber using a home-made set-up Kasas et al. [2000b] to yield a final concen-
tration of 2.5 mM (see figure 2.2). Cytochalasin B was likewise prepared in K5
to yield a final concentration of 5 µM.

2.3 Immunochemistry

Hypocampal neuron cells were cultures as described in section 2.2.3 and seeded
onto glass coverslips at a numerical density of 5’000 / cm2 and cultured for
10 days. To label the GPI-anchored proteins, the cells were incubated with
the Alexa 546-conjugated aerolysin mutant ASSP at 500 ng/ml for 1hour at
4°C and at 37°C for 5 minutes Fivaz et al. [2002]. The cells were then fixed
in methanol for 6 minutes at -20°C. Thereafter, they were incubated with ei-
ther a dendritic monoclonal antibody against MAP2 (Sigma) or a polyclonal
antibody against L1 (kindly provided by V. Lemmon, Case Western Reserve
University, Cleveland). They were then treated with Oregon-Green-conjugated
(Jackson ImmunoResearch Laboratories, Inc.). The cell nuclei were stained with
Hoechst’s reagent.

18

CHAPTER 2. MATERIALS AND METHODS

Figure 2.1: schematic view of a silicone-nitride cantilever (www.veecoprobes.com).
L= 196 µm, W = 23 µm, t = 0.6 µm.

2.4 AFM

2.4.1 AFM tip calibration and coating

Calibration of the cantilever

We used standard triangular silicone nitride cantilevers from Veeco (dnp) with
nominal values of L = 196 µm length, W = 23 µm width and t = 0.6 µm thick
(figure 2.1). These cantilevers are coated with chromium (layer of 15 nm) in
order to provide an optimal laser reflection. The tip was calibrated using the
Nanoscope 4.43 facility. The spring constant of the tip with nominal spring
constant of 0.06 N/m varied form 0.04 N/m to 0.08 N/m.

Coating protein to the tip and the mica

The coating of mica plates and cantilevers was performed using an established
protocol which preserved the functionality of the proteins [Allen et al., 1997,
1999; Yersin et al., 2003]. The proteins were deposited at a concentration of 1
µg/ml. Aerolysin was used as a monomer.

The tip was first washed by dipping in water and soap during 15 minutes.
After rinsing three times in fresh water, the tip was immersed into a drop of
glutaraldehyde during 15 minutes. After another tree times rinsing in fresh
water, a drop of proteins was deposited onto the tip during 15 minutes. Then
the tips was finally rinses three times with TBS 1x to block the glutaraldehyde
[Allen et al., 1999]. The prepared tips can be directly used or be stored one
week at 4 °C.

2.4.2 In vivo measurements

Cells were prepared as described in ”Cell Culture” (section 2.2, page 17) in
35 mm petri dishes the day before measurements. Cultures were then washed
three times with PBS, and 2 ml K5 were added as medium buffer. Petri dishes
were mounted under the AFM for measurements. All measurements were done
at room temperature For time lapse experiments, the setup was made by two

19

http://www.veecoprobes.com/probe_detail.asp?ClassID=17

CHAPTER 2. MATERIALS AND METHODS

Figure 2.2: Illustration of the setup used for buffer injection during AFM measure-
ments.

syringe mounted as described in figure 2.2. Syringe 1. was full of medium to
inject. When injecting the additional medium, the same volume of the buffer
medium with syringe 2 was removed. To prevent noise record during medium
injection, this step was executed between the record of two scans.

2.4.3 Force Volume measurements

The force volume image mode of the AFM was used with a trigger threshold
of 50 nm and a ramp size of 1 µm. The size and resolution of the scan were
0 nm and 16×16 pixel square for calibration measurements, done on a zone
free of cells, and, if not explicitly specified, 2×2 µm with 32×32 pixel for all
measurements on cell. The first positioning of the tip was done off contact with
the microscope’s motor, then the tip was set to enter in contact with the surface.
During the first scan, the scanner position was adjusted to the desired position
with the ”x offset” and ”y offset” of the scanner.

2.4.4 Force-Volume analysis software

The force volume mode of the AFM generates a huge amount of files and force
curves. In order to analyze it, we had to automate the processing. A software
was written under Matlab®7.1.0 on a GNU/Linux platform. All files of a single
experiment were loaded and merged in a single metafile. A description of the
software can be found in section 3.2, page 23.

Stiffnesses were computed by fitting the very first 50 nm of the indentation
curve. The Hertz model chosen for the fit correspond to a sphere with a radius
of 40 nm.

Protein-protein interaction detection was done through the home-made soft-
ware powered by a fuzzy logic algorythm (see section 3.2 page 23). The detection

20

CHAPTER 2. MATERIALS AND METHODS

parameters were tuned for each experiments and the same parameters were used
for the whole experiment. Force distance curves that contained the characteris-
tic signature of a protein-protein interaction were marked for further analyses.
Results were stored in the aex file generated.

Relative Young’s moduli were computed by dividing each marked pixels by
their neighbors. All the relative Young’s moduli of a scan were then averaged
to give the mean relative stiffness of a whole scan. A more detailed explanation
of the relative Young’s modulus can be found on section 3.2.4 on page 26. The
relative Young’s moduli of pixels of interest were then computed for each scans
of the time lapse and stored in a text file. Two sets of relative Young’s modulii
were generated. One considering pixels containing protein-protein interaction as
marked pixels, and a second with randomly selected pixels considered as marked
pixels. The latter value was used as a numeric negative control.

The result of each experiments was stored in a text files and was merged
with an external home made software. The final file, containing all time lapses,
was analyzed with a spreadsheet (Gnumeric) in order to draw graphs and make
statistics.

2.4.5 Data representations

The three dimensional views were done with Blender, an open source 3D cre-
ation software. A python script was written to automatically import images,
topography and events positions (see appendix A page 65 for more information)

21

http://www.gnome.org/projects/gnumeric/
http://www.blender.org

CHAPTER 2. MATERIALS AND METHODS

22

Chapter 3

Post Processing software

3.1 Introduction

Force volume experiments generates a huge amount of data that requires a
specific postprocessing step to give comprehensive results. Since the AFM man-
ufacturers do not provide dedicated software to process this type of data, we
developed our own software tools. The software, written in Matlab®, automati-
cally detects binding-unbinding events, map their location onto the topography
of the sample and computes the stiffness of every pixel of the sample. This
chapter will describe the software we developed during this thesis.

3.2 Results

The software was written in Matlab®1.7.0 under a GNU/Linux operating sys-
tem. In order to be extensible, the software was written with an object oriented
programming method. Each force volume file of an experiment is loaded as
an object, called “forceVolume” object. Typical experiments done during this
thesis were made of timelapses composed of several force volume files. An ex-
periment is then composed by all the forceVolume object of such a timelapse.
The software saves these experiment as a whole to a zipped file containing XML
files that describes each forceVolume objects. This software is composed by 152
function and modules and counts 1̃8000 lines.

3.2.1 Zero Force Image

The zero force image, or topographic image, of the sample is constructed by
recording the piezzo position when the tip touches the sample whitout applying
any force on it.The point of contact between the tip and the sample is detected
on the approach curve and is defined after a linear fit of the “off contact” part
of the curve. The spot where the FD curve “takes off” the linear fit of the
horizontal part of the curve is considered by the software as the contact part
(figure 3.1).

At the end of this computation, the zero force image is stored as a matrix
composed of the altitude of each indented pixels. For a more detailed explana-
tion in the software side, see appendix C, “Compute Young moduli” section.

23

CHAPTER 3. POST PROCESSING SOFTWARE

Figure 3.1: Determination of the point of contact. The thin black line represents
the fit of the ”off contact” part of the force curve. The two dotted lines represents the
noise detected. The arrow points where the algorithm finds the point of contact.

3.2.2 Stiffness Computation

The stiffness measurement beginns by the detection of the point of contact
between the tip and the sample as explained in the previous section. It is
followed by the computation of the indentation curve. This step is performed
by calibrating the slope of the “on contact” part of a force curve recorded on a
hard substrate such as glass or mica. The indentation curve is finally obtained
by substrating this slope from the in contact part of the force curve (figure 3.2).

The next step consist on segmenting the indentation curve. The number and
size of each segments to extract can be chosen from the graphical user inter-
face. In the figure 3.3, we fragmented the indentation curve into 10 segments,
beginning from the point of contact I0. ∆Si is defined as the segment located
between the indentation points Ii and Ii+1. The force needed to indent this
portion of curve is then ∆Fi. For each segment ∆Si, from the point of contact,
to the end of the indentation, a force ∆Fi can be associated.

In the last step, the Young modulus of each segments of the curve is cal-
culated by fitting it to the Hertz model [Radmacher, 1997, 2002] according to
equation 3.1 for the sphere model and 3.2 for the cone model.

F =
4
3

E

1− ν2
R

1
2 δ

3
2 (3.1)

F =
2
π

E

1− ν2
tan(α)δ2 (3.2)

Where ν is the Poisson coeficient of the material, δ the indentation distance
into the material, E the Young Modulus, R the radius of the sphere and α the
semi-opening angle of the cone in radian.

24

CHAPTER 3. POST PROCESSING SOFTWARE

Figure 3.2: Computation of the indentation curve. By removing the slope of the “on
contact” part of the force curve recorded on stiff sample from the force curve recorded
on the studied sample (soft), the indentation curve is generated.

Figure 3.3: The indentation curve is divided in several segments of defined depth,
∆S from the point of contact I0 to the end of the indentation curve. At the depth i,
the force needed to indent into the segment ∆Si is ∆Fi.

25

CHAPTER 3. POST PROCESSING SOFTWARE

By passing E on the right hand side, we obtain the Young modulus :

E =
3

4
√
R

F

δ
3
2

(1− ν2) (3.3)

E =
2

π tan(α)
F

δ2
(1− ν2) (3.4)

Instead of applying the Hertz model to the whole curve, we apply it on each
segments ∆Si, which gives for the sphere and the cone model respectively :

∆Ei =
3

4
√
R

∆Fi

∆S
3
2
i

(1− ν2) (3.5)

∆Ei =
2

π tan(α)
∆Fi

∆S2
i

(1− ν2) (3.6)

Where ∆Si is the length of the ith indentation segment and ∆Fi is the
additional force needed to indent the ith segment.

3.2.3 Event detection

The protein-protein interactions are detected on the retraction part of the FD
curves (see figure 1.5, page 6). The shape of the event is easily recognized by
a human, but quite hard to be cathegorized by a computer (figure 3.4(a)). A
characteristic event is composed of a vertical segment at the rupture of the
interaction (number 1 in the figure 3.4(b)), a right angle shape on the right
hand side of this vertical segment and a characteristic v-shape in its lower part
(figure 3.4(b), number 2 and 3 respectively). The strategy we adopted was to use
a Fuzzy logic algorithms [Zadeh, 1965]. It detects the “events” and attributes
them a grade between 0 and 1 according to their similarity with an “ideal” shape
[Kasas et al., 2000a]. The Fuzzy detection module introduced in this work is an
adaptation of the previously developed one by S. Kasas.

Attributing such grades to each detected events permits to solve, in a re-
producible way, the paradox one is facing in this type of experiments and wich
consist in considering the maximum number of events to obtain a good statistic
for the calculation of the interaction forces, and the wish to exclude artefacts
and noise from the data set.

3.2.4 Relative Stiffness

The stiffness of a cell varies a lot allover its surface. It is mostly due to the
inhomogeneous distribution of its cytoskeleton, its shape and the more or less
random distribution of its organels. To get rid of this effect, we decided to
consider only the relative stiffness of the considered pixels. The relative stiffness
is computed by comparing the stiffness of the pixel of interest with the stiffness
of the pixels located in its vincinity. In order to diminish the time between two
measurement (see figure 3.5), we considered only the neighboring pixels located
along the fast scanning axis of the microscope.

26

CHAPTER 3. POST PROCESSING SOFTWARE

(a) Event in curve (b) Event shape

Figure 3.4: (a) Force-distance curves recorded on mica coated with VSG using an
aerolysin-funstionalized tip. (b) Characteristic shape of protein-protein interaction.
In 1 is described the vertical segment, in 2 the v-shape and in 3 the right angle part of
the event in the force curve.

Figure 3.5: Explanation of the time required to measure relative stiffness values. “All
around” depicts the time required to measure relative stiffness when considering pixels
located in all direction (blue) around the pixel of interrest (red). “In line” depicts the
time required to measure relative stiffness when considering only pixels located in the
fast scan axis (blue) around the pixel of interrest (red). The times shown are calculated
with a scan rate of 7Hz.

27

CHAPTER 3. POST PROCESSING SOFTWARE

3.2.5 Merging the results

On the zero force topography, image of the stiffness map and the event position
can be merged into one single image as depicted on figure 3.6. This image covers
a surface of 2 µm per 2 µm and represents the neurite of a living neuron. The
zero force image is represented in 3D. The stiffness is mapped as a color scale
where soft regions are colored in blue and hard regions in red. Regions colored
in white depicts no measurable indentation which occurs on the hard substrate.
The protein-protein interaction events are marked with the red arrows.

These three dimentional images were made with Blender, an external 3D
rendering software. Its scripting capabilities permited to automate the data
importation. A complete description of this script can be found in the appendix
A.

Figure 3.6: Scan in force-volume of a neurite. The color scale represent the stiff-
ness (blue: soft, red : hard). The arrows represent the presence of a protein-protein
interaction.

3.3 Conclusion

The automation of the postprocessing step allows to dramatically reduce the
time required to display the results.

The software has been developped as an assembly of functions (a toolbox).
Every single function is therefore independant and can be reused as a building
block for an other software. It considerably reduces the developing time and
increases its readability. The toolbox architecture permits also to introduce new
function without altering the software stability.

In order to make the toolbox available to other developpers, a non negligi-
ble part of the software development was dedicated to its documentation. This

28

http://www.blender.org

CHAPTER 3. POST PROCESSING SOFTWARE

developer’s documentation is available as an appendix in page 91. It is splitted
in several parts. The first, called “software walking” describes the software op-
erationg mode. The second, called “Function definition” explains and describes
each functions of the toolbox in detail. The two next sections describes the
variables of the software. The last one describes the AFM Exchange XML file
format (.aex), the format used to store the result.

29

CHAPTER 3. POST PROCESSING SOFTWARE

30

Chapter 4

Mechanical properties of
GPI domains

4.1 Introduction

Many approaches have been developed to characterize the heterogeneity of mem-
branes in living cells. In the present study, the elastic properties of specific
membrane domains in living cells were characterized by AFM.

We focused on GPI-APs, which play important roles in membrane trafficking
and cell signalling under both physiological and pathological conditions, and
which are known to partition preferentially into rafts.

The characterization method basically consisted in depositing a specific lig-
and for GPI-AP, the Aerolysin. The surface of a neuron was eventually explored
by force volume imaging. The spots where the protein fixed onto the tip inter-
acted with those present onto the neurons were considered as glycosylphosphati-
dylinositol (GPI) domains. The stiffness of these domains was finally compared
with the stiffness of the spots located in their vicinity (section 4.2.5). In order to
selectively measure the mechanical properties of the membrane without being
influenced by the cytoskeleton, we only considered the very beginning of the
indentation curve (section 4.2.2).

Since several methodological steps described above were never used before,
we conducted numerous control experiments to validate our methodology.

1. In a first step, we checked the ability of the AFM to detect the GPI
anchored proteins on the cell membrane (section 4.2.1) and compared the
results to fluorescence images obtained with standard labeling (section
4.2.2).

2. Since the typical timelapse experiments done in this study can last up to
two hours, we checked the tip sensitivity to contamination during scans of
2h at the top of living cells (section 4.2.3).

3. We studied to which extend the cholesterol extraction affects the relative
stiffness of the GPI domains (section 4.2.6).

4. In a next step, we study to which extend the bond between the proteins
present onto the AFM tip and those located in the membrane influence

31

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

the relative stiffness measurements (section 4.2.9).

5. To exclude a hippocampus neurons specificity, the measurements were
repeated on two different cell lines (section 4.2.10).

6. In a final control, we tested the influence of a possible protein diffusion
during the measurements (section 4.2.11).

32

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

4.2 Results

4.2.1 Binding specificity of aerolysin

In order to observe the presence of lipid rafts on hippocampal neurons, we tar-
geted GPI-APs, which are known to partition in rafts microdomains [Skibbens
et al., 1989]. The surfaces of the living cells were then explored using the AFM
in the force-volume imaging mode (see section 1.1.3, page 4) and in conjunction
with tips coated with the aerolysin, a GPI-AP specific binding bacterial toxin
from Aeromonas hydrophila (figure 4.1(a)). Since the GPI anchor is common
to all GPI-APs, this detection method is therefore not protein-specific. For a
detailed description of the protein-protein unbinding event detection, see the
section 3.2.3. Typical retraction force curves recorded on cell and that contains
protein unbinding events is shown on figure 4.1(b), with events highlighted in
red color.

The capability of the AFM to detect specific binding between the aerolysin
and the GPI anchor was assessed by comparing the binding capacity of the wild
type aerolysin to a mutant one (M41C) which lacks its affinity to the GPI anchor
(figure 4.1(c)). The experiment was done on neurites of living neurons. AFM
tip coated with aerolysin shows a binding efficiency of about 8%, whereas M41C,
which differs only on the GPI-anchor binding capability, has only 1% of binding
efficiency. The result clearly shows the binding specificity of the aerolysin to the
GPI-anchor, and the AFM capability to detect such specific binding-unbinding
event.

(a) Experimental setup (b) Force curves binding events

(c) Aerolysin binding specificity

Figure 4.1: a) Experimental set up describing the tip coated with either the aero-
lysin wild type (Aero WT), which binds GPI domains on the cell membrane, or with
the mutant M41C, which does not bind to GPI domains. (b) Force-distance curves
examples. Force-distance curves recorded on neurites with binding – unbinding events
highlighted in red. c) Number of binding-unbinding events / force curves with aerolysin
(Aero WT) – coated tip and with the non GPI domain binding mutant Aero M41C –
coated tip tested on hippocampal neurons. The number of force curves (FC) analyzed
is indicated. Data are means ± SEM; asterisk, p < 0.03, two-tailed t-test.

33

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

4.2.2 Distribution of GPI-anchored proteins

The presence of GPI-APs within all neuronal compartments, viz., axons, soma
and dendrites, was established by fluorescence microscopy and AFM.

For fluorescence microscopy, cells were stained with the aerolysin conjugated
with Alexa 546 to mark the distribution of the GPI-APs along the neurons (left
images and red channel in right image, figure 4.2). Neurons were stained either
with the dendritic marker MAP2 (center and green chanel right images, figure
4.2 (a)-(b)) or with the antibody against L1, an axonal marker (center and
green channel right images, figure 4.2 (c)-(d)). The Hoechst’s reagent revealed
the nuclei to localize the soma (blue channel right images, figure 4.2 (a) and
(c)).

The figure 4.2 shows localization of aerolysin within dendrites (revealed by
MAP2, (a) and (b)), within axon and soma (revealed by α-L1 (c) and (d))
providing that, GPI-APs are not confined to a compartment of the neuron but
are clearly located on soma, axon and dendrites.

Figure 4.2: Distribution of aerolysin on the membranes of cultured hippocampal neu-
rons. Arrows indicate regions of co-localization. Dendritic marker MAP2 and axonal
marker L1. Arrowheads denote aerolysin-positive neurons that are MAP2- or L1- neg-
ative. Bars = 20 µm.

The GPI-anchor distribution detected by the AFM with aerolysin coated tip

34

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

showed similar results to those observed by fluorescent microscopy. Moreover,
the AFM detection revealed a difference in the number of unbinding event ac-
cording to whether the axon, the dendrite or the soma were examined (figure
4.3). We found that 58% of the detected unbinding event are located on the
axon, 35% on the dendrite, and only 7% on the soma (Ncell=4, p-values < 0.03,
two-tailed ttest).

Figure 4.3: Percentage of GPI-anchored binding events per surface unit on soma,
axon and dendrite. Data are means ± SEM, ncell=4; The stars indicates the p-values
< 0.03 ; two-tailed t-test.

4.2.3 Tip contamination

In these experiments, we tested whether the aerolysin coated AFM tip was con-
taminated by the biological sample during the scan and whether the binding
capacity of the aerolysin on the tip was conserved after scanning the biological
sample (figure 4.4). We used the glycoprotein VSG117 from Trypanosoma bru-
cei, Bovine Serum Albumin (BSA), and the Wheat Germ Agglutinin (WGA) as
a control for tip contamination by cell membrane debris. All reagents were used
at 1 µg/ml. Results are expressed as binding events / FD curves before and
after scanning the biological sample. BSA was used to check unspecific bindings
before and after neurite scanning. WGA, a sialyc acid-binding lectin, was used
to follow the tip contamination by sialic acid residue from proteins originating
from the neuronal membrane. To check a possible alteration of the binding
capacity of the tip to GPI-APs, VSG117, a GPI anchored variant surface gly-
coprotein of Trypanosoma brucei, a well-characterized GPI anchored aerolysin
binding protein was used as a positive control (p<0.03, two-tailed t-test vs.
BSA and vs. WGA before scanning the biological sample). After scanning the
biological sample, event though the tip could be contaminated by sialic acid
residues, the binding to the GPI-AP VSG117 was kept similar.

4.2.4 Determining the local stiffness inhomogeneity

The Young’s modulus was calculated by fitting the indentation curves obtained
from the force-volume files to the Hertz model (see section 3.2.2, page 24). At
zero force, topographic data (i.e., the three-dimensional image of the sample)
were obtained by reading the piezo z-position at the point of contact between
the tip and the sample. Using the software described in the section 3.2 (page
23), the topographic data were combined with those pertaining to the absolute

35

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

Figure 4.4: Control experiments done before (black) and after (white) timelapse ex-
periment on neurons. The number of force curves (FC) analyzed is indicated. Data
are means ± SEM. The stars indicates the p-values < 0.03 ; two-tailed t-test.

stiffness (see below) and to the position of the binding-unbinding events to yield
images such as those depicted in figure 4.5(a). The membrane Young’s modulii
are shown in “false” colors, which are mapped on the cell-surface topography in
area units 2 µm × 2 µm with a resolution of 32 × 32 pixels. Pixels embracing
a binding-unbinding event were considered as “GPI-domains” and are labeled
with red arrows.

(a) 3D sequence

(b) Pixels selection

Figure 4.5: (a) Rotation series of 3D reconstructed images showing the stiffness
(expressed in Pascal (Pa) according to a false colors scale) mapped on the topography.
Red arrows indicate the location of GPI domains (specific events).
(b) Topography ((a) top view, false colors) with red stars indicating GPI domains
and blue stars indicating the immediately surrounding membrane at 1, 2 and 3 pixels
distance afar.

Figure 4.5(b) illustrates the pixels that were taken into consideration for the
computation. Red stars indicate the regions in which binding-unbinding events
are detected, referred to as GPI domains. Blue stars represent the surrounding
region at distances of 1, 2 and 3 pixels from the GPI domain.

In Figure 4.6(a) and (b), the mean stiffness values for the GPI domain (Fig-
ure 4.6(a)) and the 3 surrounding pixel regions are represented as a function of
time. These data revealed no difference between the average stiffness of GPI
domains (Figure 4.6(a)) and that of the surrounding membrane (Figure 4.6(b)).
This finding reflects large-scale variations in cell stiffness, which result from lo-

36

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

(a) Global stiffness of events (b) Global stiffness around events

(c) Relative stiffness, time-lapse (d) Relative stiffness, histogram

Figure 4.6: (a) Absolute and relative stiffness evolution of the GPI domains shown
as a function of time (E(GPI)). (b) Absolute stiffness values of the surrounding mem-
brane (E(s.mb)) at 1, 2 and 3 pixels (green, blue and red, respectively). (c) Relative
stiffness of GPI domains (Er(GPI)) in percent. For each binding - unbinding event,
the Er(GPI) (red star in (B)) was calculated by dividing the E(GPI) by the mean of
the E(s.mb) (blue stars in (B) for the corresponding GPI domain at 1, 2 and 3 pixels
afar (green, blue and red, respectively). The mean of all the Er(GPI) was calculated
and reported on the graph (12 to 30 values/time point). Data are means ± SEM. The
means over the 25 min are indicated in dotted line and reported on the histogram ((d))
together with the SEM.

37

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

cal differences in topography (membranes appear stiffer near the periphery than
close to the center of the cell) and organellar content, and from the absence or
presence of cytoskeletal filaments. To minimize these influences, we decided to
consider only relative stiffness. This parameter was determined by dividing the
absolute stiffness of each GPI domain (red star) by the stiffness of their respec-
tive surrounding membrane at distances of 1, 2 and 3 pixels (blue stars). That
is to say that for instance, at one pixel distance afar, the absolute stiffness of
the GPI domain (red star) was divided by the mean of the absolute stiffness of
the two pixels along the x-axis immediately apposed (blue stars).

This type of measurement therefore only tells to which extent a GPI domain
is stiffer or softer than the membrane located around it. Considering the relative
stiffness of the GPI domain instead of its absolute value has the advantage that
there is no need to follow a specific domain from scan to scan. The physical
properties are extracted from the statistical behavior of the whole GPI domains
of the scan frame and this ensemble can be used to determine the evolution
of their properties as a function of time or as a function of chemicals, which
could be added during the experiment. In addition, relative stiffness values can
directly be compared and statistically processed independently of the location,
of the cell or the moment when the measurement has been accomplished.

It is also well known that several cellular structures influence the mechanical
properties of a cell (cytoskeleton, organelle etc..). By indenting a cell with an
AFM tip and by fitting the resulting indentation curve with the Hertz model, one
integrates the mechanical contribution of the different structures present under
the cell membrane. The resulting value therefore reflects the global mechanical
contribution of all the actors and hides the particular role of the cell membrane
for example. In order to avoid interferences with cellular structures located deep
into the cell, we only considered (i.e. we fitted with the Hertz model) the first
50 nm of the indentation curve after the point of contact. This approach has
recently been validated on the components of the cytoskeleton by Kasas et al.
[2005].

An additional difficulty in this type of measurements comes from the fact
that membrane proteins and GPI domains are known to move in the plane of the
cell membrane and that, unfortunately most of the currently available AFMs
have a low scanning speed. As explained in section 3.2.4 page 26, we therefore
compared only the stiffness of a GPI domain with the membrane located along
the fast scan axis of the image (i.e. at the left and the right of the GPI domain
in our images). This procedure reduces the number of reference measurements
(pixels located around a GPI domain) but increases the temporal resolution.
With this compromise, the time required to measure a GPI domain stiffness
and its two surrounding references points drops to a reasonably short time scale
permitting to assume that the GPI domain is immobile during the measurement.

The measurement of the mechanical properties of the GPI domains is ex-
pressed on a relative stiffness scale, a value below 100 indicates that the pixel
of interest is softer than the surrounding region; a value above 100 indicated
that it is stiffer. In Figure 4.6(c), the mean relative stiffness of all binding-
unbinding events (Er(GPI)) is depicted as a function of time. The green, blue
and red curves represent the stiffness of the GPI domains relative to that of
the surrounding membrane at distances of 1, 2 and 3 pixels, respectively. This
type of processing discloses only local changes in stiffness. The data reveal
GPI domains to be stiffer than the surrounding membrane. The average rel-

38

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

ative stiffness values (Er(GPI)) are depicted as column in Figure 4.6(d) using
the same color codes. In this single-cell experiment, the GPI domains were on
average 40% stiffer than the surrounding membrane at a distance of one pixel
(Figure 4.6(d) : green bar). This value reflects the statistical properties of the
entire population of GPI domains within the analyzed scan-frame, it does not
correspond to the Er of a single GPI domain. Henceforth, all data are expressed
as average values for several independent experiment (viz., several independent
cells).

4.2.5 Relative stiffness of GPI domains

We applied the methodology explained in the previous section on living neurons
with aerolysin functionalized tip in order to detect the GPI domains. The results
indicated that the GPI domains are stiffer than their surrounding membrane.

As a control, the GPI domains relative stiffness, Er(GPI), was compared with
the relative stiffness Er of randomly selected spots on the membrane (Er(Rand),
Figure 4.7, (Random)). During analysis, GPI domains (i.e. spots with inter-
actions) were excluded from the randomly selected data set. Here again, GPI
domains were found significantly stiffer at one pixel afar (about 35% stiffer in
average with Ncells=5, p-values < 0.03 , two-tailed ttest). It should be noticed
that this value is consistent with the data shown in Figure 4.6, which concerned
only a single cell.

Figure 4.7: Relative stiffness of GPI domains when comparing at 1, 2 and 3 pixel
distance. The corresponding random result is shown. Stars indicates p-values < 0.03
(two-tailed ttest) when comparing GPI domains with their respective random relative
stiffnesses, Ncells=5.

4.2.6 Cholesterol extraction effect on GPI domains rela-
tive stiffness

GPI domains are known to be enriched in cholesterol, the extraction of which
from the cell membrane induces their disruption. This event can be used to
gauge the mechanical properties of the GPI domain in the AFM. We there-
fore applied the cholesterol-extracting drug, methyl-β-cyclodextrin (MeCD), to
living neurons during time-lapse AFM measurements. MeCD has already been
used to study lipid rafts in living hippocampal neurons [Ledesma et al., 1998,
1999]. Using this model, 40-56% of the cholesterol was extracted using MeCD
concentration in the range 1 - 10 mM [Shogomori and Futerman, 2001; Sook-
sawate and Simmonds, 2001]. In preliminary experiments, observation in the

39

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

AFM revealed some shrinkage of neurites using an MeCD concentration of 5
mM. At 2.5 mM, no such effect was observed. Hence, we opted for the lower
dose.

The Er(GPI) was monitored for 30 minutes after injecting medium alone
(K5) and for 50 minutes after injecting MeCD into the cell chamber (Figure
4.8(a), GPI domains). These graphs were obtained by averaging five indepen-
dent experiments (i.e. five different cells). Intact GPI domains were stiffer than
the surrounding membrane at a distance of one pixel (Ncells=5, p < 0.03, two-
tailed ttest). The injection of incubation medium (-30 min) had no influence on
these relative stiffness values, no statistical difference was found when comparing
Er(GPI) values before and after injecting the K5 medium over 30 minutes record-
ing (Ncells=5, p > 0.05, two-tailed t-test). However, the injection of MeCD has
a proximate effect on the relative stiffness of the GPI domains. The disrupted
GPI domain relative stiffness drops to 100%, meaning that these domains be-
comes as stiff as their surrounding membranes. The difference between the two
population (GPI domains / Disrupted GPI domains) is significatively relevant
(Ncells=5, p < 0.03, two-tailed t-test). The MeCD injection had no effect on the
relative stiffness of randomly selected pixels, meaning that the observed change
was specific to GPI domains.

As an additional control, the comparison between the Er(GPI) after the
cholesterol extraction with the Er(rand) shows no more significant differences
between these two population (Ncells=5, p > 0.05, two-tailed t-test).

4.2.7 Cholesterol extraction effect on the number of de-
tected GPI domains

An additional possible effect of the membrane cholesterol extraction is the mod-
ification of the number of GPI-AP present on the cell membrane. One can claim
that due to the disruption of rafts, the previously confined proteins can freely
diffuse on the cell membrane, resulting in an increase of the detected GPI-
aerolysin unbinding events. Therefore, we analyzed the number of unbinding
events detected during the timelapse experiment. As depicted in figure 4.9(a) no
such change was observed in the number of detected unbinding events (Ncells=5,
p > 0.05, two-tailed t-test). Because several unbinding events can be present
on a single curves, we also examined the number of event that are present per
positive curves. Here also, no changes was observed when comparing before
versus after the injection of MeCD [Ncells=5, p > 0.05, two-tailed t-test, figure
4.9(b)].

4.2.8 Cytoskeleton digestion effect on the relative stiffness
of GPI domains

The cellular membrane is underlain by a cortical network of actin, which is sep-
arated from the inner leaflet by a distance of a few nanometers [Morone et al.,
2006]. High-speed video microscopy has revealed lipids and proteins to diffuse
within 100 – to 200 nm – diameter domains and to move form one domain to an-
other. These domains were proposed to be delineated by an actin fence [Kusumi
et al., 2004]. The spatial and temporal resolution of our instrument did not per-
mit us to confirm or refute this proposal. Nevertheless, we wished to assess the
influence of the actin cytoskeleton on measurements of Er(GPI). To this end, we

40

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

(a) GPI

(b) Random

(c) Histogram

Figure 4.8: (a) Er(GPI) (GPI domain, inset: red squares) indicated in percent and
plotted in function of time before and after 2.5 mM MeCD injection. Er(GPI) are
shown at 1, 2, 3 pixels afar (inset: blue squares). The dotted line refers to the mean
of Er(GPI) for the time periods [-30;-5] and [10;45] min.
(b) Er(Rand) of randomly chosen pixels containing no detected GPI domains plotted
as in (a).
(c) Histograms of the means of the Er(GPI) (GPI-domain) and of the Er(GPI) after
MeCD treatment (Disrupted GPI domain) corresponding to the Er(GPI) over the [-30,
-5] and [10-45] min periods shown in (a), respectively, and of the Er(Rand) (Random)
shown in (b). 5 independent experiments were analyzed. Error bars indicate SEM.

41

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

(a) Number events

(b) Number events per positive curves

Figure 4.9: (a) Mean of the total number of binding – unbinding events recorded with
aerolysin coated tips in function of time. The means of total number of binding events
before and after MeCD injection are reported on the histogram. p>0.03 (b) Mean
of the number of binding events per positive pixel (i.e. in which binding-unbinding
events occurred) in function of time. The means of the number of binding-unbinding
events per positive pixel before and after MeCD injection are reported on the histogram.
Notice that for most of pixels in which binding-unbinding events were detected only one
specific event occurred. p>0.03

42

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

treated hippocampal neurons with cytochalasin B (5 µM), which depolymerizes
the actin cytoskeleton. Treatment with cytochalasin B had no influence either
on the number of binding-unbinding events detected or on the number of events
per positive curve [p > 0.03; Ncells = 5, figure 4.11(a)]. Remarkably, no dif-
ference in Er(GPI) was observed before and after actin depolymerization [p >
0.03 at a distance of 1, 2 and 3 pixels; Ncells = 5 (Figure 4.10(a))]. Even 30
- 90 minutes after treatment with cytochalasin B, the Er value was higher in
GPI domains than in randomly-selected control regions of the membrane [p <
0.03 at a distance of 1, 2 and 3 pixels; Ncells = 5 (Figure 4.10(a), (b))]. These
data indicate that the differences observed on GPI-APs spots were not exclu-
sively the result of changes in the cytoskeleton but that our measurements also
reflect the mechanical properties of the membrane itself. As it can be noticed
in Figure 4.10(c), after treatment with cytochalasin B, the difference between
Er(GPI) and Er(Rand) was less at a distance of one pixel than at 2 or 3 pixels
(see discussion).

To verify the effect of the cytochalasin on the absolute stiffness of the cell,
the Young’s modulus of the cell compartment located within the scan-frame
was calculated. A statistically significant difference in this parameter was re-
vealed with cytochalasin (p < 0.03; Ncells = 5), thereby demonstrating the actin
cytoskeleton disrupting effect of the drug (Figure 4.12).

This result shows that fitting only the very beginning of the indentation curve
with Hertz model is not enough to get rid of the actin cytoskeleton contribution.
However, considering the relative stiffness instead of the absolute one, permit
to detect differences in the membrane stiffness only.

4.2.9 Binding protein events influence on the relative stiff-
ness

It can be speculated that measurements of cell membrane stiffness are influenced
by the interaction between proteins present on the tip and those located within
the cell membrane. To refute the existence of this phenomenon, we coated the
tip with an antibody against the TfR, which is documented to reside in non-
GPI-domains [Simons and Ikonen, 1997]. These experiments revealed no dif-
ferences between the Er values for transferrin receptor-containing domains and
randomly-selected control ones (p > 0.05, Ncells = 5, Figure 4.2.9). As a fur-
ther control, we conducted measurements on neurons using tips functionalized
with WGA. This protein binds sialic-acid residues, which are homogeneously
distributed on cell membranes. The Er values obtained for WGA-mediated
binding-unbinding events were similar to those registered in randomly-selected
control regions at distances of 1, 2 and 3 pixels (p > 0.05, two-tailed ttest,
Ncells = 5, Figure 4.2.9). Hence, the greater stiffness of GPI domains compared
to surrounding regions of the membrane is apparently specific for this class of
protein.

4.2.10 Cell type influence on GPI domains relative stiff-
ness

To exclude a peculiar behavior of hippocampal neurons, we repeated the same
experiment with 293T cells line derived from primary cultures of human embry-
onic kidney cells. Here again, we noticed that the GPI domains were stiffer and

43

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

(a) GPI Timelapse

(b) Random Timelapse

(c) Histogram

Figure 4.10: (a) Er(GPI) (GPI domain, inset: red squares) indicated in percent and
plotted in function of time before and after cytochalasin B treatment (5 µM). Er(GPI)
are shown at 1, 2, 3 pixels afar (inset: blue squares). The dotted line refers to the
mean of Er(GPI) for the time period [-30;-5] and [30;90] min.
(b) Er(RanI) of randomly chosen pixels containing no detected GPI domains plotted
as in (a).
(c) Histograms of the means of the Er(GPI) before (GPI-Domain) and after cytocha-
lasin B treatment (GPI-Domain + Cytochalasin) corresponding to the Er(GPI) over
the [-30, -5] and [30-90] min, respectively shown in (a), and of the Er(Rand) shown
in (b) (Random).
5 independent experiments were analyzed. Error bars indicate SEM.

44

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

(a) Number events

(b) Number events per positive curves

Figure 4.11: Description

Figure 4.12: Absolute Young’s modulus (Absolute Stiffness) of neurites treated with
cytochalasin B. The average of the Young’s modulus for the pixels covering the entire
neurite in the scan frame was calculated at each time point and then plotted in function
of time. Between 4,636 and 5,086 force curves were analyzed per time point with a
total of 34,492 and 63,245 force curves analyzed for the time periods prior and after
Cytochalasin B treatment, respectively. Time points for injection of K5 and MeCD
are indicated by arrows on the plot. The means of the absolute stiffness (in arbitrary
unit) before and after MeCD injection are reported on the histogram. 5 independent
experiments were analyzed. Error bars indicate SEM.

Figure 4.13: Histograms indicate the mean of the Er calculated with anti-Transferin-
coated tips and WGA-coated tips. Means of the Er for the corresponding random
controls are indicated in white filled boxes. The three histograms represent the results
obtained when analyzing membranes located at 1, 2 and 3 pixels afar (see insets). 5
independent experiments were analyzed. Error bars indicate SEM.

45

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

that a similar stiffness drop occurred after cholesterol extraction (Figure 4.14).
The use of aerolysin offered the advantage of analyzing GPI-APs without dis-
criminating any specific protein. However, to test whether similar results could
indeed be obtained with a specific protein, we overexpressed a GPI-GFP con-
struct in 293T cells and functionalized the tips with an anti-Green Fluorescent
Protein (GFP) antibody. In this case, the GPI-GFP domain had no significant
difference in stiffness with the surrounding membrane at one pixel afar, which
could be explained by the oligomerization of the construct. However, GPI-GFP
membrane domain appeared clearly stiffer than the surrounding membrane at
two and three pixels afar (Figure 4.14). After treatment with MeCD, the stiff-
ness of the GPI domains decreased to the same value as that recorded for the
rest of the membrane (Figure 4.8(a)), and of 293T cells (Figure 4.14).

Figure 4.14: Non-confluent cultures of 293T cells were probed with aerolysin func-
tionalized tips using a similar protocol to that described for neurons. The cells were
analyzed 15 minutes after injecting MeCD into the cell chamber. For experiments with
these transfected 293T cells (n = 5-10), the AFM tips were coated with a rabbit poly-
clonal antibody against GFP (Molecular Probes) at a concentration of 2 µg/ml. The
Figure shows histograms of the relative stiffness values recorded during a time-lapse
experiments. Values for the GPI domains were collected between -30 minutes and -
5 minutes (before treatment with MeCD). Values for disrupted GPI domains were
collected between 5 minutes and 40 minutes (after injection of MeCD). Mean values
(± SEM) are represented for 3 (293T cells expressing the GPI-GFP chimera) and 4
(293T cells ± MeCD treatment) independent experiments. Statistical significance was
evaluated using the two-tailed t-test. * : p < 0.05

46

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

4.2.11 Protein diffusion influence on GPI-domains rela-
tive stiffness

It is very important to note that there are two time scales involved in the ex-
periments. One is the time (5 min) to take a full 2 x 2 microns size AFM image.
The other time scales (140 ms), which is the most relevant in our experiment,
relates to the time required to take one force curve on one pixel of the image.
Previous studies have shown that clustered GPI-APs diffuse at 6*10−4 µm2/s,
whereas non clustered GPI-APs diffuse more rapidly i.e. at 3.9 µm2/s [Nohe
et al., 2006]. A relative stiffness measurement at one pixel distance requires
420 ms (700 ms at two and 980 ms at three pixels afar). During this time, a
clustered GPI-APs can diffuse over a surface of 2.52*10−4 µm2. This surface
correspond to a circle of 0.0179 µm of diameter, whereas the AFM tip displace-
ment is 0.1875 µm. The diffusion rate of the clustered GPI-APs is therefore
one order of magnitude slower than the AFM tip to which the GPI-APs look
as immobilized structures. To get rid of the protein diffusion, we repeated the
experiments on beforehand fixed HeLa cells (paraformaldehyde for 15 minutes
at 4°C) that overexpressed GPI and with aerolysin coated tip. We obtained
very similar results as for the overexpressed 293T cells. GPI domains appears
stiffer than the surrounding membrane, whereas treatments with MeCD before
cell fixation decrease the relative stiffness to the same value as the surrounding
membrane (Figure 4.15).

Figure 4.15: The figure shows histograms of relative stiffness values recorded on fixed
cells. For disrupted GPI, cells were treated with MeCD before fixation. Mean values
(± SEM) are represented for 5 independent cells. Statistical significance was evaluated
using the two-tailed t-test. * : p < 0.05

47

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

4.2.12 Cholesterol extraction effect on membrane global
stiffness heterogeneity

An additional method was used to assess the cell membrane mechanical prop-
erties. The global stiffness heterogeneity of the cell can be calculated without
taking care on the position where binding-unbinding events occurred. During
this analysis, the relative stiffness of all the pixels composing the force volume
image are computed. Eventually, a threshold is applied to conserve only the
stiffer zones. In our case, we defined a relative stiffness of 120 (20% stiffer) and
more as stiffer zones, whereas others are ignored. On these images, groups of
two and more pixels were noticed to form clusters.

The figure 4.16 depicts the results of such an analysis. At one pixel distance,
before cholesterol extraction, 4.1% ± 0.4 of the stiffer zones were forming clus-
ters. The cholesterol extraction reduced the number of these clusters to 1.8%
± 0.6 (p<0.03, two-tailed t-test). The relative stiffness at two and three pixel
distance, showed similar differences between native and cholesterol extracted
cells. Before cholesterol extraction, the proportion of clusters are respectively
43.3% ± 1.6 and 36.6% ± 1.9. These population significantly decreased to 34.0%
± 1.1 and 31% ± 1.3 respectively (p<0.03, two-tailed t-test) after cholesterol
extraction.

Figure 4.16: Cholesterol extraction effect on stiffness heterogeneity of the cell. Three
relative stiffness are reported (top : relative stiffness at one pixel distance, middle :
at two, bottom : at three pixel distance). The left part describes the time lapse. The
right parts is a resume of the time lapse. “Before” is the mean values between medium
buffer (K5) and MeCD injection, “After” is the mean value after the MeCD injection.

48

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

4.3 Discussion

In this chapter we present a methodology we developed to assess the cell mem-
brane local mechanical properties. The method has been successfully applied to
living neurons and permitted to estimate the average GPI domains size as well
as their average mechanical properties.

4.3.1 GPI-anchored proteins are specifically detected by
the aerolysin coated tips

Aerolysin is known to bind to the GPI anchor of proteins. Therefore aerolysin
coated tips permit us to target a very large spectrum of proteins while being
specific to raft-associated proteins.

The capability of our AFM setup to specifically detect the GPI-domains and
hence the lipid raft microdomain was first assessed by control experiments.

The binding specificity of aerolysin coated tip was assessed by the use of tip
coated with M41C, an aerolysin mutant impaired in GPI anchor affinity. The
binding efficiency, 8% for aerolysin coated tips and 1% for M41C coated tips,
indicates the specificity of aerolysin to the GPI anchor of the proteins.

We compared the GPI-anchor distribution on neurons obtained with the
fluorescence microscopy with the one obtained with our AFM setup. In both
cases the GPI-APs were shown to be present on the whole neurons. In addition,
the AFM experiments put in evidence a significant difference in the GPI-anchor
density between the soma, the axon and the dendrites. This is in accordance with
the hypothesis of rafts acting as signaling platforms. The axons and dendrites,
specialized on signal transmission, display a high concentration of rafts under
the AFM, whereas the soma displays a lower rafts concentration.

Finally the tip contamination was tested. The binding affinity of the aero-
lysin coated tip was compared before and after timelapse experiments. The
affinity with VSG117, a GPI-AP, is not affected by the use of the functional-
ized tip. Nevertheless, the increase in the number of binding event with WGA
points a contamination of the tip with sugar moiety. However the decrease in
the number of binding events with BSA indicates that this contamination does
not affect the binding specificity.

4.3.2 GPI domains are local stiffer zones

The measurement of the mechanical properties of the GPI domains was the
major challenge of the project. The two major difficulties we faced were the
specific measurement of the cell membrane and the large stiffness variations
occurring over the surface of living cells. The first issue was addressed by
considering only the very first 50 nm of the indentation curve. It permitted
to restrict the measurement depth to the surface of the cell. Concerning the
second issue it is well known that the cell stiffness changes dramatically all over
the cellular surface and that, thermal drift of the instrument, creep, or motions
of the cell dramatically compromises any attempt to measuring subtle stiffness
variations. We therefore did not measure the absolute stiffness of a single GPI
domain rather we compared its stiffness with the stiffness of the spots located
in its immediate vicinity and which were not identified as GPI domains (i.e.
with no interactions). The use of the relative stiffness allowed thus to get rid

49

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

of several problems among which those previously mentioned ones and some
others such as the topology of the cell, the height of the cytoplasm above the
substrate, the large scale local stiffness variations or the requirement to follow
the same domain after successive scans. By considering the relative stiffness,
it became possible to compare and to average the different values and data we
present herein, therefore, reflects the statistical behavior of thousands of GPI
domains. For these measurements, we made the assumption that there was no
correlation between adjacent pixels. This is based on the notion that the small
size of the tip (nominal tip radius of curvature = 20 nm) should not introduce
pixel correlation beyond one pixel distance (62.5 nm). Pixels correlation should
have led to reproducible results independently of the treatment or of the tip
coating.

The time resolution of the method is another important issue, which in-
fluence has been minimized by considering only the neighboring pixels located
along the microscope’s fast scanning axis. Thus a measurement at one pixel
distance required only 420 ms per binding-unbinding events. Since GPI-APs
were documented to move much slower.

The relative stiffness measurements revealed thus that that GPI domains
are 30% stiffer than the rest of the membrane. It should be pointed out that
the method used herein does not exclude that the GPI domains could even be
stiffer than the value we actually measured. It is due to a phenomenon, which
can be illustrated by a coin glued at the surface of an inflated balloon. The
stiffness one measures by pushing on the coin looks higher that the rest of the
balloon but this apparent stiffness is far lower than that of the coin itself.

The measurements also permitted also to estimate the size of the GPI do-
mains according to their stiffness difference with the surrounding membrane.
The domains were found inferior to 70 nm in agreement with the reported size
for these domains using other approaches [Kusumi et al., 2004; Simons and Iko-
nen, 1997; Anderson and Jacobson, 2002; Sharma et al., 2004] and AFM on
artificial membranes [Tokumasu et al., 2003].

4.3.3 GPI domains relative stiffness is not dependent on
protein-protein interactions

The protein-protein influence on the relative stiffness was assessed by several
control experiments. Firstly, we disrupted the GPI-domains by extracting the
cholesterol from the membrane. Secondly, we coated the tip with an antibody
against the TfR, a non-raft marker. Thirdly, we coated the tip with WGA that
binds to sugar moiety unspecifically distributed on the cell membrane.

The GPI domains disruption was performed by the use of MeCD, a chemical
compound known to extract the cholesterol out of the membrane but which
leaves the GPI-APs unaffected. The experimental results clearly show that
without cholesterol, GPI domains recover the same stiffness as the rest of the
membrane, whereas the number of interactions remained unchanged, giving an
additional credit to our method. Our results are also in agreement with earlier
studies on the role of cholesterol on artificial membranes stiffness [Sharma et al.,
2004].

As the second control we repeated the experiments with AFM tips coated
with anti-transferrin receptor antibodies. TfR has been chosen because it is

50

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

known to be excluded from the GPI domains. The relative stiffness of the TfR-
anti-TfR antibody interaction spots was the same as the one obtained on the
randomly selected spots.

The last control was performed using WGA coated tip. The lectin binds
to sugar moiety distributed on the membrane. This unspecific labelling shows
again a relative stiffness identical to the one computed on randomly selected
pixels.

These experiments therefore demonstrate that the stiffness increase we pre-
viously measured on GPI domains is specific to the domains and does not reflect
any putative increase in the stiffness, which would be induced by the creation
of a link between the tip and the cell membrane.

4.3.4 GPI domains relative stiffness does not depend on
actin cytoskeleton

The next point to elucidate, was whether the GPI domains stiffness, which we
measured was not a consequence of the actin cytoskeleton filaments that are
present underneath the membrane. We therefore exposed the cells to cytocha-
lasin, a chemical known to affect actin filaments. Here again, the GPI domains
relative stiffness was higher than the rest of the membrane whether the actin
cytoskeleton was disrupted or not. The cytochalasin action was confirmed by
the fact that the absolute stiffness of the all scan frame dropped significantly
after injection, in agreement with Rotsch and Radmacher [2000]. This last
point demonstrates that considering the first 50 nm of the indentation curve
permits not only to measure the stiffness of the cell membrane (by relative
measurements) but also permits to apprehend the actin cytoskeleton (by ab-
solute measurements). It should be noticed that the absolute stiffness of the
overall scanned area did not significantly vary after cyclodextrin injection, the
treatment which extracts cholesterol but has no action on the actin filaments.

4.3.5 GPI domains relative stiffness has similar properties
in several cell lines

The validity of our measurement on other cell type was assessed. The results
we obtained on 293T and HeLa cells give similar results to the presented exper-
iments on neurons.

4.3.6 Protein diffusion does not alter the GPI domains
relative stiffness measurement

The diffusion rate of proteins in the membrane is very fast, but dramatically
slows down when inside rafts [Nohe et al., 2006] to diffuse slower than the
velocity of our microscope. To verify the contribution of the protein diffusion
on our results, we repeated the experiments on fixed HeLa cells where all protein
diffusion is definitely absent. Results were very similar than in the living cells.
The stiffness differences were however less important than on living HeLa cells,
probably due to the fixation procedure, where all proteins are crosslinked.

51

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

4.3.7 Cell stiffness global heterogeneity is altered by choles-
terol extraction

The cell stiffness global heterogeneity was introduced to get rid of the GPI-
domains detection. The results shows that, looking at one pixel distance, 4%
of the stiffer domains are contained into clusters. Cholesterol extraction re-
duced this population down to 1.8%. Similarly, when looking at two and three
pixels distances, the population of clusters dropped from 43% and 37% down
to 34% and 31% respectively. These results suggest an homogenization of the
cell membrane mechanical properties and reinforce the results obtained on GPI
domains.

52

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

4.4 Conclusion

One main goal of this study was to determine whether AFM could detect dif-
ference in stiffness of membrane domains in living cells. This is an important
point in the context of the debated issue of the behavior of proteins and lipids
in raft microdomains. This approach allows to address the issue of the relation-
ships between membrane mechanical property, as stiffness, membrane structure
and protein and lipid diffusion. It is clear that raft-associated protein-protein
interaction may participate in driving molecular assemblies as suggested by the
work of Douglass and Vale [2005] though participation of the lipid environment
is not excluded.

We demonstrated that the GPI domains are stiffer than the surrounding
membrane and many reports have documented that the diffusion of lipids and
proteins are slower in so-called raft microdomains on living cells [Kusumi et al.,
2004; Mayor and Rao, 2004] and artificial membranes [Simons and Vaz, 2004]. It
is thus attractive to propose that the stiff areas we observed correspond to spe-
cific platforms into which the diffusion of these lipids and proteins is modified al-
lowing formation of signalling complexes involved in a variety of raft-dependent
physiological events and infectious diseases [Lafont et al., 2004; Simons and Vaz,
2004]. A prediction of this hypothesis is that lowering changes in stiffness be-
tween domains should impair signalling. Indeed, several reports have shown that
upon MeCD activation of signalling cascades are inhibited [Simons and Toomre,
2000]. More studies are obviously needed in order to understand the physics
of the relationship between diffusion and stiffness. However, our data strongly
suggest that difference in stiffness clearly occurs in biological membranes and
that one class of proteins often considered as raft-associated proteins, i.e. GPI-
anchored proteins, partition into stiff domains.

Altogether these results demonstrate that it is possible to measure the rela-
tive stiffness of plasma membrane domains in living cells. The method described
herein provides thus perspectives for investigating biophysical properties of the
cell plasma membrane with a broad spectrum of applications. It permits to
study, at the nanometrical level, the role of adhesion mechanisms on the mem-
brane of living cells. Further applications could include the study of mechanical
properties of receptors before and after stimulation with physiological ligands
or pharmaceutical compounds. Hence, a link can be established between me-
chanical properties of the lipid bilayer and the fate of surface proteins leading
to signalling activation shedding new lights on the study of membrane-coupled
signal transduction.

53

CHAPTER 4. MECHANICAL PROPERTIES OF GPI DOMAINS

54

Chapter 5

Stiffness Tomography

5.1 Introduction

In this chapter, we present a new atomic force microscopy imaging technique
which permits to distinguish structures of different stiffness buried into the bulk
of the sample. The technique is based on the analysis of the vertical deformation
of the microscope’s cantilever while the AFM tip indents the sample (section
5.1.1). The working principle of this new imaging technique has been verified
by finite element models (section 5.2.1) and subsequent, by experiments applied
to living cell (section 5.2.2).

5.1.1 The theory

This last chapter describes the Stiffness Tomography (ST), a new imaging mode
we developed in our laboratory. Very soon after its invention, the AFM has also
been used to measure the mechanical properties of the sample with a nanometric
resolution [Tao et al., 1992]. These measurements are accomplished by pushing
the AFM tip into the sample and by monitoring the cantilever deflection during
the process, as described in page 5. The curve displaying the cantilever defor-
mation as a function of the tip position is referred to as a FD curve. The shape
of this curve permits to estimate the stiffness of the sample, assuming that the
shape of the tip and the spring constant of the cantilever are well defined.

FD curves have been used to examine mechanical properties of bone tissue,
cartilage platelets, synaptic vesicles and different types of living cells [Tao et al.,
1992; Laney et al., 1997] (see Introduction, section 1.2). In all these latter
studies cells were considered as homogeneous objects and the FD curves had to
fit to the so called Hertz model which assumes a homogeneous isotropic infinite
sample. Therefore, when using such a model, the mechanical changes occurring
at different depths are averaged and cannot be related to specific regions of
the sample. However, the FD curves do actually contain information about
the stiffness of the sample at different depths: during the penetration into a
non-homogeneous soft sample, the tip successively encounters different stiffness
regions which modify the path of the FD curve as depicted onto figure 5.1(a)
and 5.2(a) where a softer and stiffer inclusion is present inside a homogeneous
sample. The location at which the path diverges from the “ideal homogeneous
path” (thin black line on the figure) is a function the depth at which the tip

55

CHAPTER 5. STIFFNESS TOMOGRAPHY

encountered a different stiffness region during its penetration process. The
subfigure 5.1(a) and 5.2(a) with inclusion at depth L1 compared with their
respective subfigures (b) with inclusion at the depth L2 depicts the the different
path modification according to the depth of the inclusion.

(a) Soft inclusion (b) Soft inclusion deeper

Figure 5.1: (a) The presence of a soft inclusion in a homogeneous sample (top) and
its influence on the recorded force curve (bottom, blue curve) compared to a homoge-
neous sample (bottom, black curve).
(b) The presence of a soft inclusion deeper inside a homogeneous sample (top) and
its influence on the recorded force curve (bottom, blue curve) compared to a homoge-
neous sample (bottom, black curve). Observe the difference due to the deepness of the
inclusion between (a) and (b).

The validity of this concept has recently been demonstrated on living cells
[Kasas et al., 2005]. In order to extract information about the stiffness of the
different regions encountered during the indentation process, we computed the
indentation curve, which informs on the force applied by the tip in function
of its indentation into the sample (see section 3.2.2). Such a curve can be
fragmented, in the indentation axes, in several segments of the same size. In
the figure 5.3(a), we fragmented the indentation curve into several segments,
beginning from the point of contact I0. We can then define the segment ∆Si,
as the segment located between the indentation point Ii and Ii+1. The force
needed to indent this portion of curve is then ∆Fi. For each segment ∆Si, from
the point of contact to the end of the indentation, a force ∆Fi can be associated.

The figure 5.3(b) describes the case of a hard inclusion into a homogeneous
and isotrop material. The indentation curve deviates from the ideal one from
a similar way than explained in figure 5.2. The green dotted line describes the
indentation curve if the material were homogeneous. As soon as it feels the
hard inclusion, the indentation curve, as the FD curve, deviates from the ideal
curve, resulting in the plain red line. The application of the Hertz model on
the segmented indentation curve results in the Young modulus of the indented
sample (see equations 3.6 and 3.5 in section 3.2.2 page 3.2.2).

For each segment ∆Si, we can compute its Young modulus ∆Ei. By display-
ing in false colors the calculated stiffness of each fragment at its corresponding
depth, we obtain the “stiffness slice” of the sample, as depicted under the x axes

56

CHAPTER 5. STIFFNESS TOMOGRAPHY

(a) Hard inclusion (b) Hard inclusion deeper

Figure 5.2: (a) The presence of a hard inclusion in a homogeneous sample (top) and
its influence on the recorded force curve (bottom, red curve) compared to a homoge-
neous sample (bottom, black curve).
(b) The presence of a hard inclusion deeper inside a homogeneous sample (top) and
its influence on the recorded force curve (bottom, red curve) compared to a homoge-
neous sample (bottom, black curve). Observe the difference due to the deepness of the
inclusion between (a) and (b).

(a) Curve segmentation (b) Stiffness segmentation

Figure 5.3: (a)The indentation curve is divided in several segments of defined depth,
∆S from the point of contact I0 to the end of the indentation curve. At the depth i,
the force needed to indent into the segment ∆Si is ∆Fi.
(b) The indentation curve into a homogeneous sample (green line) and indentation
curve into a sample with hard inclusion (red line). The dotted line depicts the diver-
gence from the homogeneous sample. The force, and then the Young modulus, can be
computed for each segment ∆Si. The stiffness is reported as a colorscale, soft (green)
and hard (red), boxes above the indentation axes and represents the stiffness of each
segments ∆Si.

57

CHAPTER 5. STIFFNESS TOMOGRAPHY

in the figure 5.3(b). The color green depicted zones with a lower Young modulus
and red a higher Young modulus.

5.2 Results

5.2.1 Finite elements simulations

The description depicted in the previous section reflects an ideal case where a
single inclusion is present inside a homogeneous sample. This theoretical simple
case has to be validated. Since indentation in non-homogeneous samples is a
highly non-linear phenomenon which can not be modelized by analytical means,
we verified our method on a well defined finite elements model. We therefore
simulated a virtual AFM and a virtual sample containing various “inclusions”.
This simulation has been carried on a commercially available finite elements
program (ANSYS� 9.0).

Several diferent models were simulated. One of those is shown in figure
5.4(a). It represents a homogeneous sample (blue box) with several inclusion
column (red columns) starting at different depth. The modelized tip is shown
to the left of the figure. The small circles above the sample indicate the spots
where the indentations were simulated. The finite element software calculated
the FD curves shape during the indentation of the tip. Figure 5.4(b) shows the
tip and the deformed sample during the indentation process. The magnitude of
the total displacement vector is depicted in false colors.

(a) Simulation model (b) Intermediate result

Figure 5.4: Simulation of the indentation process by using the finite elements method.
The sample contains inclusions (a) colored in blue which have a Young modulus tree
times higher than the bulk of the sample colored in red. The AFM tip and the spots
where indentation was simulated are also represented in blue. During the indentation
process the sample deforms as depicted on (b). The deformation sum vector is displayed
in false color, no displacement, red and high displacement, blue.

Since the finite element simulation was done in 2D, a simplified Hertz model
was elaborated, that describes a 2 dimensional tip which indents in a 2 dimen-
sional sample (equation 5.1).

E =
2
π

F

δ
(1− ν2) (5.1)

In this equation, ν is the Poisson ratio of the material, δ the indentation inside
the material, E the Young Modulus of the sample, and F the force applied by
the tip.

This 2 dimensional model was included to the software for processing the
files generated by the finite element simulation.

We tested the ST concept on different finite element models.
Basically, the samples consisted of a “homogeneous gel” which contained

different type of inclusions. These inclusions had a shape which could be a

58

CHAPTER 5. STIFFNESS TOMOGRAPHY

“column”, such as those depicted on figure 5.5(a), or a “plateau”, such as those
on figure 5.6(a) which were inserted at four different depth. The Young modulus
of the inclusions was set higher or lower than the bulk of the sample (i.e. the
gel). The different simulated models, as well as their corresponding ST, are
depicted on figures 5.5 to 5.9.

The first simulation, shown on figure 5.5, concerned columns that are three
times stiffer than the bulk of the sample. On the ST result, one can clearly see
the two first columns that are located at the surface and near the surface of the
sample. The third column was still visible, but close to the background noise.
Compared to the other simulations, this one offered the most contrasted results
in the ST images.

(a) Simulation model

(b) Tomographic result

Figure 5.5: (a)Simulation model and (b) resulting tomographic view. The stiffness
is indicated as color scale from soft (blue) to hard (red).

The plateau configuration was set with different sizes and stiffnesses. The
one depicted on figure 5.6 concerned thin plateaux that are three times stiffer
than the gel. The case of bigger platforms that are three times stiffer than the
gel is reported on figure 5.7, and finally, thin plateau that are ten times stiffer is
described on figure 5.8. The result of these three simulations shows the ability
of our method to detect plateau located under the surface. In all the results,
the tomography revealed the presence of the plateau inside the sample, as deep
as the third plateau. Nevertheless, our method did not premit to differenciate
between a change of the size (figure 5.6 compared to figure 5.7) and a change of
the stiffness (figure 5.6 compared to figure 5.8). As it could be expected, a stiff
“shadow” appeared above the floating platforms.

The last simulation depicted on figure 5.9 concerned platforms that are three
times softer than the surrounding material. The ST image reveals the ability
of our technique to detect smoother materials into the sample, but also reveals
the stiffness shadow underneath the plateaux as observed with stiffer platforms.

59

CHAPTER 5. STIFFNESS TOMOGRAPHY

(a) Simulation model

(b) Tomographic result

Figure 5.6: (a)Simulation model and (b) resulting tomographic view of thin platform
included in different depth into a material. Platforms are three times stiffer than the
surrounding material. The stiffness is indicated as color scale from soft (blue) to hard
(red).

(a) Simulation model

(b) Tomographic result

Figure 5.7: (a)Simulation model and (b) resulting tomographic view of thick plat-
forms included in different depth into a material. Platforms are three times stiffer than
the surrounding material. The stiffness is indicated as color scale from soft (blue) to
hard (red).

60

CHAPTER 5. STIFFNESS TOMOGRAPHY

(a) Simulation model

(b) Tomographic result

Figure 5.8: (a)Simulation model and (b) resulting tomographic view of thin platform
included in different depth into a material. Platforms are ten times stiffer than the
surrounding material. The stiffness is indicated as color scale from soft (blue) to hard
(red).

61

CHAPTER 5. STIFFNESS TOMOGRAPHY

(a) Simulation model

(b) Tomographic result

Figure 5.9: (a)Simulation model and (b) resulting tomographic view of thin platform
included in different depth into a material. Platforms are three times softer than the
surrounding material. The stiffness is indicated as color scale from soft (blue) to hard
(red).

62

CHAPTER 5. STIFFNESS TOMOGRAPHY

5.2.2 Application of the Stiffness Tomography (ST) to liv-
ing systems

Effect of cytoskeleton digestion

In a next step, ST was applied on living systems. In order to test ST ability
to detect a stiffness contrast and to monitor stiffness changes as a function of
the depth, we compared the stiffness of 293T cells before and after the injection
of cytochalasin B at 5 µM, a chemical which is known to depolymerize the
actin cytoskeleton. To monitor the depolymerization process, we calculated the
stiffness of each segment of the FD curve as a function of its depth under the
membrane. The values of all the segments located at the same depth were
finally averaged. Fig. 5.10(a) depicts the change of the average cell stiffness, as
a function of the depth under the membrane, before and after the injection of
50 µM cytochalasin. The graph showing the stiffness as a function of the depth
contains the average of the 4 force volume files which were recorded between
25 and 5 minutes before the injection of cytochalasine (five scans). Whereas
the graph displaying the stiffness after the injection, contains the average of the
6 force volume files recorded between 30 and 55 minutes after the injection of
cytochalasine. The two curves show the development of a very clear softening
starting at a depth of about 150 nm under the membrane in the cell after the
arrival of the actin depolymerizing agent.

(a) Cytochalasin effect (b) Control

Figure 5.10: 5.10(a) Mean stiffness in function of the depth of cell before (blue) and
after (red) cytochalasin injection.
5.10(b) Control experiment, same buffer medium injection

Tomographic view of neurites

In a next step we applied the stiffness tomography imaging technique to living
hipocampal neurons. During the data processing stage every FD curve was
divided in segments of 10 nm. The AFM files were eventually processed with
the same home made software which we used for the previously described finite
element model. Fig. 5.11(a) and (b) depicts two “stiffness slices” recorded on
two different living cells. As one can notice the contrast indicates the presence
of hard structures buried into the cytoplasm of the cell. In (a), two stiff sheets
are visible in the surface at both sides of the neurites. In the second tomography
example (b), the inside of the cell appears more homogeneous. However, some
structures are visible and contrast well from the background. These structures
could correspond to the cortical actin cytoskeleton which is known to lie under
the cellular membrane.

63

CHAPTER 5. STIFFNESS TOMOGRAPHY

(a) Example 1 (b) Example 2

Figure 5.11: Stiffness tomography example of two neurites

5.3 Conclusion

We developped a new imaging mode which we called “Stiffness Tomography”.
With this mode, it becomes possible to image stiffness differences inside a soft
sample. The validity of the concept has been successfully tested on virtual
samples as well on living cells. We are aware that the mathematical model we are
using for the moment is an oversimplification of a highly complex and non linear
phenomenon. However, despite this simplification, as we could demonstrate
here, with the finite elements simulations and the application on living cells, that
stiffness tomography can highlight structures located underneath the surface of
the sample, a domain up to now invisible to the AFM.

This method can of course be applied to other domains such as polymers.
Since the method does not require any additional hardware it can easily be
implemented on any AFM by adding an additional step to the data processing
chain.

64

Appendix A

Blender script

Blender is an open source 3D modeling software. The scripting capabilities
of this software permit us to automate some repetitive operations. The two
following scripts loads files generated by the force volume analysis software to
output three dimentional images and animations.

A.1 createTopoYoungEvent.py

This script generates the 3D shape of the object with topographical image in
gray scale, and maps the Young’s modulii with the presence of protein-protein
interaction pointed with arrows.

#!BPY

Script that import grey scale images and convert in into a 3D

plane

in which each verticle height correspond to the gray intensity

of the

original image

##

(c) Charles Roduit , 2006

release under the GNU GPL

Blender 2.41

Module imortation

from array import array

import Image , Numeric , csv

import Blender

from Blender import NMesh , Scene , Object

Needed to attribute an image as a texture

from Blender import Material , Texture

from Blender import Mathutils

#############################

Path to the used files.

#

To convert tif files into jpg , use the script

ChangeImages.sh

filePath=’/home/croduit/Neurones/FR21054B .014/’

Topofile=’FR21054B .014 _Topo.png’

Youngfile=’FR21054B .014 _Young.png’

EventFile=’Event.csv’

pathSeparator=’/’

65

http://www.blender.org

APPENDIX A. BLENDER SCRIPT

#

####### Creation of the geometric objects #####

##

##

def circle(_diam ,_nbPoints):

_pasEntrePoints =2.* Numeric.pi/_nbPoints

listOfPoints =[]

for points in xrange(_nbPoints):

posX=(_diam /2.)*Numeric.cos(_pasEntrePoints*points)

posY=(_diam /2.)*Numeric.sin(_pasEntrePoints*points)

listOfPoints.append ([posX ,posY ,0])

listOfFaces =[]

for points in xrange(_nbPoints):

i f points <(_nbPoints -1):

listOfFaces.append ([points ,points+1,

_nbPoints])

else :
listOfFaces.append ([points ,0,_nbPoints])

circleMesh=NMesh.GetRaw ()

for composants in listOfPoints:

Vertics=NMesh.Vert(composants [0], composants [1],

composants [2])

circleMesh.verts.append(Vertics)

#Central point creation

circleMesh.verts.append(NMesh.Vert(0,0,0))

for face_courante in listOfFaces:

face=NMesh.Face()

for numero_vertex in face_courante:

face.append(circleMesh.verts[numero_vertex

])

circleMesh.faces.append(face)

return circleMesh

##

##

def cylindre(_diam ,_haut ,_nbFaces):

cylindre=circle(_diam ,_nbFaces)

ceilCircle=circle(_diam ,_nbFaces)

for vertsNbr in xrange(len(ceilCircle.verts)):

ceilCircle.verts[vertsNbr].co[2]= _haut

for vertsNbr in xrange(len(ceilCircle.verts)):

cylindre.verts.append(ceilCircle.verts[vertsNbr])

for facesNbr in xrange(len(ceilCircle.faces)):

cylindre.faces.append(ceilCircle.faces[facesNbr])

The central point is at the position _NbrFace and 2*

_NbrFace

because we start from 0

listOfNewFaces =[]

for point in xrange(_nbFaces):

i f point < (_nbFaces -1):

listOfNewFaces.append ([point ,point+1,

_nbFaces+point+2,_nbFaces+point +1])

else :
listOfNewFaces.append ([0,point ,_nbFaces+

point+1,_nbFaces +1])

for face_courante in listOfNewFaces:

face=NMesh.Face()

for numero_vertex in face_courante:

face.append(cylindre.verts[numero_vertex])

cylindre.faces.append(face)

return cylindre

##

##

66

APPENDIX A. BLENDER SCRIPT

def cone(_diam ,_haut ,_nbFaces):

_cone=circle(_diam ,_nbFaces)

Ascend the circle

for vertNb in xrange(len(_cone.verts)):

_cone.verts[vertNb].co[2]= _haut

_cone.verts.append(NMesh.Vert(0,0,0))

listOfFaces =[]

for faces in xrange(_nbFaces):

i f faces <(_nbFaces -1):

listOfFaces.append ([faces ,faces+1,_nbFaces

+1])

else :
listOfFaces.append ([faces ,0,_nbFaces +1])

for face_courante in listOfFaces:

face=NMesh.Face()

for numero_vertex in face_courante:

face.append(_cone.verts[numero_vertex])

_cone.faces.append(face)

return _cone

##

##

def fleche(_diamP ,_hautP ,_diamB ,_hautB ,_nbFaces):

_diamP , hautP = Tip diameter and height

_diamB , hautB = Cylinder diameter and height (base)

_fleche=cone(_diamP ,_hautP ,_nbFaces)

Base creation

baseFleche=cylindre(_diamB ,_hautB ,_nbFaces)

for vertsNb in xrange(len(baseFleche.verts)):

baseFleche.verts[vertsNb].co[2]= baseFleche.verts[

vertsNb].co[2]+ _hautP

Merge of the tip and the base

for vertsNb in xrange(len(baseFleche.verts)):

_fleche.verts.append(baseFleche.verts[vertsNb])

for faceNb in xrange(len(baseFleche.faces)):

_fleche.faces.append(baseFleche.faces[faceNb])

return _fleche

##

####### Definition of the function that imports the datas

##

def OpenTopoImage(_file):

_file is a string containing the file path and name to

import

OImage=Image.open(_file)

(sizeX ,sizeY)=OImage.size

Gray scale convertion.

gsImage=OImage.convert(’L’)

Recovery of the grayscales

white=0, black =255

height =[]

for posY in xrange(sizeY):

height.append ([])

for posX in xrange(sizeX):

stricly speaking recovery ...

print(str(posX)+’:’+str(posY))
height[posY]. append ((gsImage.getpixel ((posX

,posY))/255.) *30)

return height

##

##

67

APPENDIX A. BLENDER SCRIPT

def createTopo(_height ,original =[]):

sizeX=len(_height)

sizeY=len(_height [0])

definition of the list of the points that compose the

plane

listOfPoints =[]

for posX in xrange(sizeX):

for posY in xrange(sizeY):

listOfPoints.append ([posX ,posY ,_height[posX

][posY]])

definition of the list of the faces that compose the

plane

listOfFaces =[]

for y in xrange(sizeY -1):

for x in xrange(sizeX -1):

listOfFaces.append ([y+x*sizeY ,y+x*sizeY+1,y

+(x+1)*sizeY+1,y+(x+1)*sizeY])

Plane definition

TopoMesh=NMesh.GetRaw ()

for composants in listOfPoints:

Sommet=NMesh.Vert(composants [0]/10. , composants

[1]/10. , composants [2]/20.)

TopoMesh.verts.append(Sommet)

Faces definition

for face_courante in listOfFaces:

face=NMesh.Face()

for numero_vertex in face_courante:

face.append(TopoMesh.verts[numero_vertex])

TopoMesh.faces.append(face)

return TopoMesh

##

##

def createMaterial(_TextureFile):

_thisMaterial=Material.New(’YoungMaterial ’)

_thisTexture=Texture.New(’YoungModulus ’)

We specify the texture type

_thisTexture.setType(’Image ’) ## equvalent to YoungTexture.

Type=’Image’

We load the image to map

_thisImageToMap = Blender.Image.Load(_TextureFile)

and we link the image to the texture

_thisTexture.image=_thisImageToMap

_thisTexture.setExtend(’Extend ’)

We link the texture to the material

_thisMaterial.setTexture (0,_thisTexture ,Texture.TexCo.ORCO ,

Texture.MapTo.COL)

return _thisMaterial

##

##

def modifyTopo(_NewHeight ,_OldTopo):

_temp=NMesh.GetRaw(’_OldTopo ’)

sizeX=len(_NewHeight)

sizeY=len(_NewHeight [0])

listOfPoints =[]

for x in xrange(sizeX):

for y in xrange(sizeY):

listOfPoints.append ([x,y,(y+x*sizeY)/100.])

print ’number of vertics in input topo : ’+str(len(_OldTopo

.verts))

print ’number of vertics deduced with height : ’+str(len(

listOfPoints))

68

APPENDIX A. BLENDER SCRIPT

print ’The value of first old verticle height : ’+str(

_OldTopo.verts [0].co[2])

print ’The value of first new verticle height : ’+str(

listOfPoints [0][2])

for numberVerts in xrange(len(_OldTopo.verts)):

_OldTopo.verts[numberVerts].co[2]= listOfPoints[

numberVerts][2]

return _OldTopo

##

##

def OpenEventPosition(_file):

csvEventGride=csv.reader(open(_file ,’rb’))

eventGride =[]

for row in csvEventGride:

eventGride.append(row)

return eventGride

def getArrowForrest(_positionGride ,_topoPlane):

return an object composed by arrows that takes position

regarding

the values included in _positionGride. They are

distributed in a

rectangle of size _sizeX , _sizeY.

The size _sizeX and sizeY are the extreme point

coordinate.

_sizeX=_topoPlane.verts[len(_topoPlane.verts) -1].co[0]

_sizeY=_topoPlane.verts[len(_topoPlane.verts) -1].co[1]

_nbrVerts=len(_topoPlane.verts)

NbYVerts =0

oneLine =0

while not oneLine:

NbYVerts +=1

i f _topoPlane.verts[NbYVerts].co [1]==0:

oneLine =1

NbXVerts=_nbrVerts/NbYVerts

GESizeX = len(_positionGride)

GESizeY = len(_positionGride [0])

multiplicator to position the cursor to the correct

place

MultX=_sizeX/GESizeX

MultY=_sizeY/GESizeY

#ArrowForrest=NMesh.GetRaw ()

listOfArrows =[]

NumberOfArrows =0

print(len(_positionGride))
print(_positionGride)
for posX in xrange(len(_positionGride)):

for posY in xrange(len(_positionGride [0])):

i f int(_positionGride[posX][posY]):

Convert the positions

_PosXInPlane=int((posX +0.5) *(

NbXVerts/GESizeX))+1

_PosYInPlane=int((posY +0.5) *(

NbYVerts/GESizeY))+1

NewZPosition=_topoPlane.verts[(

NbYVerts*NbXVerts) -(

_PosXInPlane+_PosYInPlane*

NbYVerts)].co[2]

##########

arrow creation ...

_thisArrow=fleche

(0.1 ,0.1 ,0.05 ,0.1 ,10)

69

APPENDIX A. BLENDER SCRIPT

Moving the arroy

for numberVerts in xrange(len(

_thisArrow.verts)):

_thisArrow.verts[

numberVerts].co[0]\

=_thisArrow.verts[

numberVerts].co [0]+((

posX +0.5)*MultX)

_thisArrow.verts[

numberVerts].co[1]\

=_thisArrow.verts[

numberVerts].co [1]+((

posY +0.5)*MultY)

and in Z

_thisArrow.verts[

numberVerts].co[2]\

=_thisArrow.verts[

numberVerts].co[2]+

NewZPosition +0.2

listOfArrows.append(_thisArrow)

return listOfArrows

pass

##############################

Topography Creation

#

image=OpenTopoImage(filePath+pathSeparator+Topofile)

plane=createTopo(image)

#

##############################

Application of the Young modulus texture

#

PlaneMaterial=createMaterial(filePath+pathSeparator+Youngfile)

and we link the material to the plane ...

plane.setMaterials ([PlaneMaterial])

#

##############################

Place the arrows where the event are.

eventGride=OpenEventPosition(filePath+pathSeparator+EventFile)

arrowPosition=getArrowForrest(eventGride ,plane)

NumberOfEvents =0

Material creation for the arrows

ArrowMat=Material.New(’Material ’)

ArrowMat.rgbCol = [1,0,0]

ArrowMat.setAlpha (1.0)

for arrows in arrowPosition:

assignation of a material

arrows.materials.append(ArrowMat)

thisArrow=NMesh.PutRaw(arrows ,’Fleches ’+str(NumberOfEvents

) ,1)

NumberOfEvents +=1

################################

#

70

APPENDIX A. BLENDER SCRIPT

Test to catch the created objects !

#test=Object.Get(’Mesh .001 ’)

#print test.getEuler ()

#test.setEuler ([180 ,0 ,0])

#test.setName(’Arrow .001’)

##############################

Update the 3D scene (to be visible)

NMesh.PutRaw(plane ,’TopoPlane ’ ,1)

Blender.Redraw ()

A.2 TomographyLoader.py

This scripts is written to display informations from the tomographic computa-
tion made by the force volume analysis software. The series of topographical
wiews in gray scale is translated in an animation where the shape changes ac-
cording to the image series. A similar image series of the Young’s modulii is
used to animate the change of the stiffness.

#!BPY

Script that import grey scale images and convert in into a 3D

plane

in which each verticle height correspond to the gray intensity

of the

original image

##

When the script ended , finalize the animation :

* In the Editing menu (F9), the Mesh tab uncheck "Relative Keys

".

* Go to : "SRC:1-Animation" or SHIFT -F6

to display the IPO curve editor.

* The plane being selected , choose the ipo type : Shape

(by default , Object is selected)

Make a CTL+LMB to add the Basis curve (Twice to have 2 points)

and enter

the coordinate of the first point (Vertex X:0.00 and Vertex Y

:0.00)

Make the same for the second point , with the coordinate of

Vertex X being

the number of the last image of the animation and the Vertey Y

the height

of the blue curve (Key XXX) that define the last image mesh.

##

(c) Charles Roduit , 2006

release under the GNU GPL

Blender 2.41

Modules importation

from array import array

import Image

import Blender

from Blender import Mesh , NMesh , Scene , Object #, Ipo , Key # Peraps

for the 2.4x version : Key

baseFileName = ’/home/charles/Biologie/Animation/

StiffnessTomography/Chromosome/First/TEST .000/ TEST .000 _Deep_ ’

def OpenImage(_file):

_file is a string that contain the file path and name

71

APPENDIX A. BLENDER SCRIPT

to import

OImage=Image.open(_file)

(sizeX ,sizeY)=OImage.size

Gray scale convertion.

gsImage=OImage.convert(’L’)

Recovery of the grayscales

white=0, black =255

height =[]

for posX in xrange(sizeX):

height.append ([])

for posY in xrange(sizeY):

stricly speaking recovery ...

height[posX]. append ((gsImage.getpixel ((posX

,posY))/255.) *60)

return height

def createTopo(_height ,original =[]):

Mesh object creation :

ScannedTopography=Mesh.New(’ScannedTopography ’)

Recovery of the data from ’ScannedTopography ’

TopoMesh=NMesh.GetRaw(’ScannedTopography ’)

Plane creation

#

Size initialization ...

sizeX=len(_height)

sizeY=len(_height [0])

print(’Size of the plane : ’+str(sizeX)+’ * ’+str(sizeY))

Definition of the list of the points that compose the

plane

listOfPoints =[]

for posX in xrange(sizeX):

for posY in xrange(sizeY):

listOfPoints.append ([posX ,posY ,_height[posX

][posY]])

Definition of the list of the faces that compose the

plane

listOfFaces =[]

for y in xrange(sizeY -1):

for x in xrange(sizeX -1):

listOfFaces.append ([y+x*sizeY ,y+x*sizeY+1,y

+(x+1)*sizeY+1,y+(x+1)*sizeY])

Definition of the points of the plane

for composants in listOfPoints:

Sommet=NMesh.Vert(composants [0]/50. , composants

[1]/50. , composants [2]/50.)

TopoMesh.verts.append(Sommet)

Definition of the plane faces ...

for face_courante in listOfFaces:

face=NMesh.Face()

for numero_vertex in face_courante:

face.append(TopoMesh.verts[numero_vertex])

TopoMesh.faces.append(face)

and we return the Mesh object

ScannedTopography=NMesh.PutRaw(TopoMesh ,’ScannedTopography ’

)

return ScannedTopography

def modifyTopo(_NewHeight ,_OldTopo):

sizeX=len(_NewHeight)

sizeY=len(_NewHeight [0])

72

APPENDIX A. BLENDER SCRIPT

print ’input Topo length :’+str(len(_OldTopo.verts))

listOfPoints =[]

for x in xrange(sizeX):

for y in xrange(sizeY):

Vertex Repositionning

_OldTopo.verts[y+x*sizeY].co[2]= _NewHeight[

x][y]/50.

return _OldTopo

for tmpImageNb in xrange (22):

imageNb=tmpImageNb

i f imageNb ==0:

frameNb =1

else :
frameNb=imageNb *25

Blender.Set("curframe",frameNb)

frameNo=Blender.Get(’curframe ’)

i f frameNo ==1:

First passage ==> topo creation

fileNo =1

fileName=baseFileName+str(fileNo)+’Topo.tif’

image=OpenImage(fileName)

print(’Opening image ’+fileName)

planeObject=createTopo(image)

e l i f int(frameNo /25)== frameNo /25.:

fileNo=int(frameNo /25)

fileName=baseFileName+str(fileNo)+’Topo.tif’

image=OpenImage(fileName)

print(’Opening image ’+fileName)

plane=NMesh.GetRaw(’ScannedTopography ’)

plane=modifyTopo(image ,plane)

plane.update ()

plane.insertKey(frameNb ,’absolute ’)

else :

fileNo =0

print(’Not a valid frame selected , frame ’+str(int(

frameNo /25) *25)+’ or ’+str((int(frameNo /25) +1)

*25)+ ’ should have been selected ’)

73

APPENDIX A. BLENDER SCRIPT

74

Appendix B

Succellus User Guide

75

APPENDIX B. SUCCELLUS USER GUIDE

76

Ecole polytechnique fédérale de
lausanne

Institute of Physics of Complex Matter
Laboratory of Physics of Living Matter

Succellus

Succellus User’s Guide

Author:
Charles Roduit

Contents

1 Introduction 1

2 First Use 2
I First run . 2
II Create a new experiment . 2
III Understand the user interface . 4

3 Advanced Use 8
I Young Modulus . 9

A) Sensitivity Calibration . 9
B) Save the result . 9
C) Display the result . 9

II Protein-protein interaction . 10
A) Tune the event detection 10
B) How events are displayed 10
C) Detect the events . 10
D) Post-process . 10

III Tomography . 10
A) compute the stiffness . 11
B) Save the result . 11
C) Display it . 11

List of Figures

2.1 Launch Succellus . 2
2.2 New experiment . 3
2.3 Create new experiment . 3
2.4 Succellus Interface . 4
2.5 Slice example . 6

3.1 sensitivity calibration . 9
3.2 Event calibration . 10

Chapter 1

Introduction

Succellus is a software to process force-volume files of atomic force microscope
(AFM). It can display force curves and topography image recorded by the mi-
croscope. This software can also make post-processing, such as computing the
Young Moduli map of the scanned area, map of the tip-surface interaction.
Those computed data can be displayed by several manner, like map,time-lapse
curve, histograms, and exported to spreadsheet software (such as open office
calc)

This software was done during my PhD study at the swiss institute of tech-
nology of Lausanne (EPFL) on the direction of Sandor Kasas. The main subject
was the study of the mechanical properties of the cell in vivo. As no software
existed to postprocess AFM files to make such study, we decided to write it.
This software was first an extention of a previous one developed in the labora-
tory by Sandor Kasas, but the need of rewriting from scratch becomes rapidly
necessary to implement all the need we have.

As we want to be as multiplatform as possible, we developed this software
under Matlab® 7.0. This documentation is done using LATEX , figures were
made using Inkscape, screenshots were taken on GNU/Linux under Enlighten-
ment DR17 and improved with The Gimp.

1

Chapter 2

First Use

I First run

In order to launch Succellus, you have to run it through Matlab®. Once Mat-
lab® running, go to the directory where you installed Succellus (figure 2.1, ¬).
Then type Succellus () to open the main window (®).

II Create a new experiment

To create a new experiment, select from the file menu the ”new” from the
”experiment” submenu (figure 2.2). A new window appears to select the path
and file you want to load.

Once you have chosen the file to load, a progress bar informs you on the
progression of the file loading. Two new windows appears. The first one (Figure
2.3 ¬) called ”Experiment Properties” permit to save all you want about your
experiment (Which kind of tip yo used, the experimental procedure ...) and
also the identities of the author(s) of the experiment. The second window
(Figure 2.3) ask you if Succellus have to load similar files from this directory.
When saving Force-Volume files from Veeco AFM, the nanoscope records the

Figure 2.1: To run Succellus, ¬ go to the directory where Succellus is installed.

Write the command Succellus and ® the main window appears.

2

CHAPTER 2. FIRST USE

Figure 2.2: Create a new esperiment

Figure 2.3: ¬ Window to enter experiment properties and author. Popup window
asking to automatically load similar files from the current directory.

3

CHAPTER 2. FIRST USE

Figure 2.4: Succellus Interface

files by incrementing the file number (e.g. filename.000 is the first file recorded,
filename.001 is the second, filename.xyz is the xyz’th file recorded). Succellus
understand this and if the first file you load is filename.003 and press ’Yes’ to
the prompt, it will load filename.004, filename.005, ... untill the end.

III Understand the user interface

The Succellus graphical user interface (GUI) is divided in several zones. In the
figure 2.4 is represented how it will present after loading.

The interface is segmented vertically in two principal zones. The left part,
the ForceVolume panel, controlls the force volume file in memory. It’s name
correspond to the file in memory (in the figure, the panel is called Force Volume
:FR21054A.000). The right part, the Experiment panel groups command to the
whole experiment.

4

CHAPTER 2. FIRST USE

ForceVolume panel

The ForceVolume panel is also segmented by several panels.The Navigate, Young
Moduli Deep, Stiffness, Events, Parameters, Display, and Images panels.

Navigate panel

Informs from which pixel comes the displayed curve. It allows also do
navigate into the matrix by pressing the ’next’, ’prev’, ’up’ and ’down’
buttons.

Young Moduli Deep panel

After computing the Young moduli of the force volume files, you can
display it. With this panel, you can control which deep is displayed in the
’Young Moduli Image’ grid.

Stiffness panel

This panel controlls parameters necessary to perform Young moduli com-
putation. The number of parts and the deep of each parts are defined
here. Different Hertz models are avaliabe in order to compute the Young
moduli (sphere and cone models). Finally, two computation button are
present. The first one ’Compute File displayed’ starts the computation
of the file in memory. This is useful to control the parameters. The sec-
ond, ’Compute all files’, starts the computation from the first file of the
experiment to the last one (if no errors stops the software ;-)

Events panel

This panel has only one button, ’Compute all files’ to start the event
detection of all files in the experiment. We call here ”event” an interaction
between protein on the tip and protein on the substrate.

Parameters panel

In this panel can be chosen the point of contact detection method. The
standard one is ’Curve Fit’ where a fit of the off contact part of the curve
determines the position of the contact between the tip and the substrate.
Another one, more experimental is the ’Slope Change’ where the point of
contact is determined by looking at the slope of the force curve.

Display panel

The majority of the data to display can be acccible here. The ’Extention
Force Curve’ and ’Retraction Force Curve’ allows to display the extention
(blue) and retraction (red) part of the force curve.

The ’Event if FC’ allows to put in evidence, on the retraction force curve,
what the software considers as ’Events’. Very useful to tune the event
detection.

The ’Point Of Contact’ buton activates the display of the point of contact
in the extention curve.

The ’Indentation Curve’ button allows to display the indentation curve
computed from the extention curve.

5

CHAPTER 2. FIRST USE

Figure 2.5: Example of a topographical slice. The white circles describe the path of
the slice. The blue stars represent protein-protein interaction detected by Succellus

The ’Piezzo Height Image’ displays the image of the piezzo at the end of
the indentation. This image is loaded directly on the forcevolume file from
the AFM.

The ’Young Moduli Image’ displays the computed young moduli grid. If
several depth were computed, the deep displayed can be controlled in the
’Young Moduli Deep’ panel.

’Topography Image’ displays the ”zero force” image. This is a correction of
the piezzo height image by the point of contact position in the indentation
curve.

’Indentation Deep Image’ displays the deepth of indentation image. This
correspond to the distance of the point of contact from the end of the
indentation curve.

Images panel

The contrast of the images displayed by Succellus can be modified easily
through this panel. First choose the image to modify with the popup
menu and play with the slider behind it. At the right of the slider is a
number (1 by default) that controlls the exponent of the slider value. For
example, if there is the number 1 the editable zone, the slider’s values
comes from 1 (slider is to the left) to 10 (slider is to the right), if there is
5, the slider’s values comes from 104 to 105.

The button ”Display Slice” allows to display a slice view of the targeted
window (figure 2.5).

Finally, the Select Pixel allows to point to a particular pixel in the targeted
matrix.This is another way to navigate into the matrix.

Experiment panel

The experiment panel allows to control the entire experiment. The commands
are also grouped in several horizontal panels.

ForceVolume Files in Memory panel

6

CHAPTER 2. FIRST USE

There is only one popup menu in this panel. All forceVolume scans are
listed into this popup. The one selected is controlled trough the ForceVol-
ume panel, the others are silent.

Time Lapses panel

As experiments are principally time lapses, there is a special panel called
”Time Lapses”. Through it you can display the topography of all sequen-
tial scans, (check box ”Topography Image”).

The first check boxes, ”Relative and Global young” is related to the ”Com-
pute TimeLapse” button. When pressing this button, a popup window
ask for the first file after injection. This means that if you injected a
chemical during the time lapse, you can inform the software at what time
it is injected. For example, if you inject something between the scan ”file-
name.005” and ”filename.006”, just write the number ”6” and ”OK”.

After the TimeLapse computation, the ”Relative and Global young” check
boxe displays three windows containing several graphs. The first one is
called ”Time Lapse Global”. As the title inform us, it displays the evolu-
tion of the global stiffness of the scanned area. The second one is called
”Time LapseEvent1” and represent the relative stiffness of the pixels pre-
senting protein-protein interaction. Tree graphics are displayed, the rel-
ative stiffness at 1, 2 and 3 pixel distance. A value of 1 in the second
graphic means that events are as stiff as their neigbours placed 2 pixels
afar from it. A value higher than one indicates a stiffer events and lower
than one means softer. The last window is called ”Time LapseRandom1”.
As the second window, it displays 3 graphics similarly. The only difference
is that the relative stiffness is computed on randomly selected pixel. This
is a negative control very usefull to check the specificity of the relative
stiffness changes.

The patch threshold is another way to look at the sample stiffness het-
erogeneity. It computes the relative stiffness map of all scans. Pixels that
have a relative stiffness higher than the value entered are considered as
stiffer.

Events panel

The events panel permit to view the histogram of the event’s force. The
check box ”Display” displays the whole histogram if no values are entered
in Min and Max, or is limited between Min and Max. A Gaussian fit
can be estimated by entering the maximum and minimum of the values to
consider and pressing the ”Display” button. The mean, standard deviation
and the number of event considered are displayed under the button, and
the fit is drawn on the histogram.

7

Chapter 3

Advanced Use

8

CHAPTER 3. ADVANCED USE

Figure 3.1: The top figure shows the menu to get the sensitivity calibration. On the
down figure, the three windows shows how to perform the calibration

I Young Modulus

A) Sensitivity Calibration

On figure 3.1 is represented the sensitivity calibration on Succellus. Option →
Sensitivity Calibration (or CTL-G)

Click on Stiffness to change the slope of the indentation curve (Sensitivity
to change the amplitude of the slope change), so that an indentation on hard
sample (e.g. plastic of the petri dish) looks vertical.

In the stiffness panel, choose the size of segment and the number of segment
you want to compute.

Click on ”Compute file displayed” to compute only the file in memory (i.e.
the file chose in the panel ”Experiment” under ”ForceVolume Files in Memory”)
or on ”Compute all files” to compute all the files in experiment.

B) Save the result

After the computing is done, you can save the experiment in File→ Experiment
→ Save.

C) Display the result

The Young moduli can be displayed as a color map. To view it, click on the
”Young Moduli Image” check box on the ”display” panel of the ”ForceVolume”
group (see figure 2.4 page 4)

9

CHAPTER 3. ADVANCED USE

Figure 3.2: To calibrate the event detection, ¬ choose the ”Event Detection Calibra-
tion” and tune it. The convolution are explain in ®

II Protein-protein interaction

A) Tune the event detection

To display the detection of protein protein detection, check the ”Retraction
Force Curve” and ”Events in FC” checkboxes in the Display panel (see figure
2.4 page 4).

To tune the event detection, go to the ”Event Detection Calibration” option
(¬ in figure 3.2). A new window will appear, it looks like in figure 3.2.
The checkboxe ”Noise Detection” allows you to take care of noise, very usefull
for noisy curves, but not recommended for very clean curves. The convolution
values permit to tune the parameters of the fuzzy logic algorythm that detects
the events. These parameters are explain in the subfigure ®.

B) How events are displayed

When activating the event detection with the checkbox, Succellus detects online
the protein protein interaction. A new window will appear, with the name
”Events in Force Curve”. This window is empty if no event is detected and
displays the retraction curve if at least one event is detected. The retraction
force curve is drawn in red and the detected event in blue, so that, you can see
exaclty what the software considers as ”event”.

C) Detect the events

To do so just click on ”compute all files” in the ”Events” panel.

D) Post-process

III Tomography

In order to perform stiffness tomography you have to do the following steps :

10

CHAPTER 3. ADVANCED USE

A) compute the stiffness

Option → Glass Calibration (or CTL-G)
Click on Stiffness to change the slope of the indentation curve (Sensitivity

to change the amplitude of the slope change), so that an indentation on hard
sample (glass) looks vertical.

In the stiffness panel, choose the size of segment and the number of segment
you want to compute. For tomography, choose 0 parts and it will automatically
segment all the force curve with segment of the desired size.

Click on ”Compute file displayed” to compute only the file in memory (i.e.
the file chose in the panel ”Experiment” under ”ForceVolume Files in Memory”)
or on ”Compute all files” to compute all the files in experiment.

B) Save the result

After the computing is done, you can save the experiment in File→ Experiment
→ Save.

C) Display it

To display 3D view of the tomography, click on the menu Display → Stiffness
→ Tomography (3D). It will open a new window with a green button ”Show
Figure”. You can click on it to display the whole scan.

With the sliders in the ”Grid selection” panel you can slice the scan. With
the ”Young Selection” and ”Deep Selection” you can tune what to display. With
the ”Color scale adjustment” you can . . . adjust the color scale.

Finally, to have nice animation of the slicing, you can click on ”Animate
in X” and it generates a series of images slicing in the X direction. You can
then make animated gifs with an external software (like with ImageMagick :
convert -delay 20 -loop 0 *.tif anim.gif).

11

Appendix C

Succellus Developer’s Guide

91

APPENDIX C. SUCCELLUS DEVELOPER’S GUIDE

92

Ecole polytechnique fédérale de
lausanne

Institute of Physics of Complex Matter
Laboratory of Physics of Living Matter

Succellus

Succellus Developer’s Guide

Author:
Charles Roduit

Contents

1 Introduction 4

2 Software walking 5
2.1 Opening the software . 5
2.2 Creation of a new experiment . 5
2.3 Save an experiment . 7
2.4 Load an experiment . 7
2.5 Navigate into the matrix . 8
2.6 Display a force-curve . 8
2.7 Display an indentation/force curve 9
2.8 Display matrix . 9
2.9 Compute the Young moduli . 9
2.10 Detect Events . 11
2.11 Compute Time Lapses . 12

3 Function Definition 13
3.1 check AroundMe . 14
3.2 compute CalibrationConstant . 15
3.3 compute CurvePartition . 16
3.4 compute curveSegmentCarac . 17
3.5 compute DeepGride . 18
3.6 compute DeepnessFromPoc . 19
3.7 compute event . 20
3.8 compute eventSlope . 22
3.9 compute extractFromMatrix . 23
3.10 compute gaussFit . 25
3.11 compute GrideMeanPixel . 26
3.12 compute Indentation . 27
3.13 compute meanForEachDeep . 28
3.14 compute MeanSem . 29
3.15 compute PointOfContact . 30
3.16 compute RelativeYoungProperties 31
3.17 compute SimulateFile . 33
3.18 compute SlopeChange . 34
3.19 compute StiffnessOnDefinedZone 35
3.20 compute YoungModulus . 36
3.21 convert cellToText . 37
3.22 convert matrixToText.tex . 38

1

3.23 count numberEventGride . 40
3.24 count numberEventTimeLapse 41
3.25 create TopoYoungMatrix . 42
3.26 delete FVobjInList . 43
3.27 detect AttractiveEnds . 44
3.28 display plot3D . 45
3.29 display Slice . 46
3.30 export TimeLapseEvents . 47
3.31 export TimeLapseGlobal . 48
3.32 export TimeLapseRelative . 49
3.33 export TimeLapseStiffnessTomo 50
3.34 file chsuppr . 51
3.35 file clearUpFVNode . 52
3.36 file clearUpTimeLapseRelativeNode 53
3.37 file extractHeaderDate . 54
3.38 file extractNum . 55
3.39 file lectHeader . 56
3.40 file loadXmlFCFile . 58
3.41 file makeTimeLapseRelativeNode 59
3.42 file save . 60
3.43 find CurveJump . 61
3.44 find events . 62
3.45 forceVolume . 63
3.46 generate EventGride . 64
3.47 generate grideAroundSeries . 65
3.48 generate grideOfAxes . 67
3.49 generate Patches . 68
3.50 generate RelativeTimeLapseVector 69
3.51 generate vectorForceEvent . 70
3.52 get . 71
3.53 image Flatten . 72
3.54 image ThresholdCorrection . 73
3.55 import ExperimentYoungEvent 75
3.56 import RaftIngEventGride . 76
3.57 import RaftIngYoungGride . 77
3.58 load bioForceCurve . 78
3.59 load bioImageGride . 79
3.60 move FVobjInList . 80
3.61 navigate GridePosition . 81
3.62 plot EventsInFC . 82
3.63 plot ExpSeries . 83
3.64 plot FC . 84
3.65 plot Gride . 85
3.66 plot grideOfPlot . 86
3.67 plot Indentation . 87
3.68 plot Stiffness . 88
3.69 plot TimeLapse . 89
3.70 select Path . 90
3.71 select PixelGride . 91
3.72 set . 92

2

4 Modules Description 95
4.1 Gui . 96
4.2 gui LoadExperiment . 100
4.3 gui LoadForceVolume . 101

5 Variables Description 102
5.1 MainExp . 103
5.2 MainFc . 106

6 AEX
Afm Exchange XML file Format 112

3

Chapter 1

Introduction

Succellus is a software written to postprocess force curves recorded from atomic
force microscope. It is develop under Matlab on a Linux platform and known to
work under MacOS X and probably under Windows. This software analyses the
force curve recorded to extract usefull information. It can detect protein-protein
interaction between functionnalized tip and any kind of substrate (coated mica,
cell membrane, ...) with the help of a fuzzy algorythm. The mechanical proper-
ties of the scanned area is also easily computed with the help of a reference curve
taken on a hard sample (glass) from which the user calibrate the indentation
curve.

The files generated by this software are called aex files (Afm Exchange
Xml). The aex files are organized as experiment. This means that each files
are composed by all the AFM files recorded during a single experiment, the
description of the experiment, the author, and some results of computations
done on the experiment, like time lapses.

This documentation is the developper’s documentation. If you are an end
user and want to know how to use this software, you should read the User’s
documentation.

4

Chapter 2

Software walking

2.1 Opening the software

In the Opening of this software, matlab first needs some initiations. The com-
mand to run is Succellus. It loads the file Succellus.m and Succellus.mat.
As it is a graphical user interface (GUI), it needs at least Matlab v7.x to run
because of a incompatibility with the previous versions. The first action (l.50) is
to load the file Directories.ini which contains the last used directories to load
files, experiments and others and stores it in the global variable directories.
After this initiation, it waits for the user interaction.

2.2 Creation of a new experiment

Files are organized in the software as ”experiments”. Each experiment is made of
several files saved during the scan of a surface. When building a new experiment
(menu File → Experiment → New, calls gui NewExperiment), the software first
reinitialize all the values and then calls the function gui LoadForceVolume to
load the original files saved by the AFM.

This module makes the three variables MainFC, MainExp and directories
as global. These are the only variables that are blobal in this software. Then
the user is asked to point the file to load. When a file is given, two action are
possible : creation of a new experiment or the addition of a file to an existing
experiment. If it is a new ”experiment”, as it should be in our case, the variables
MainFC and MainExp are empty. MainExp is then initialized.

MainExp.NumberExperiment contains the number of file(s) in the experi-
ment and is initiate to 0. MainExp.Glass.Fit is the vector defining the fit
to a force curve taken in a hard sample. The default value is set to [1 0].
MainExp.Glass.Sensitivity stores the steps to do when calibrating the curve
on hard sample. MainExp.Figure.GrideOfPlot contains the pointer to a figure
generated when the user wants to display all the scans after the stiffness and
event computation.

If a file is given, the software creates the forceVolume object by calling
the forceVolume function with the pathname and the type of the file (here :
’nanoscope file’). The creation of the object first beginns with the initialization
of all its variables. According to the ’nanoscope file’ type of the file, it calls

5

file lectHeader to read the header of the file. Two types of AFM files are
supported, the ”Force Volume” and the ”Image”, file lectHeader can differ-
entiate between these two and direct the forceVolume function to the right
place.

In the case of a ”Force Volume” file, the forceVolume function that creates
the object, first loads the force curves by calling load bioForceCurve with
several parameters and returns two 3D matrices, fv.FVDeflectionAvMatrix
and fv.FVDeflectionReMatrix which contain respectively all the forward force
curves and retraction force curves recorded during the scan. The scale is in nm.
Of course, these are only the Y axis of the curves.

The forceVolume object creator then calls the load bioImageGride with
all its parameters to obtain the fv.ImageMatrix.Piezzo which contains all the
height values of the scanner at the end of the indentation of each indented points
in the scan.

To conclude the forceVolume object creation the X axis of the force curves
is generated. First it has to compute a calibration constant, done through the
function compute CalibrationConstant and the curve is generated and stored
in fv.FVCurveX.

The new object, known as MainFC, is finally returned to the module
gui LoadForceVolume. This new object is then stored at the end of the
MainExp.ForceVolumeClass cell, its location inside this cell is also stored in-
side the object itself through the set(MainFC,’mainExpIndice’, MainExp.
NumberExperiment) command. Some other manipulations are done on the
graphical user interface to make visible the presence of a new file inside the
experiment.

When the first file is loaded, the software ask the user to load similar files
present in the folder. If the user answer ’yes’ to this question, the software
construct the next file name by incrementing the number at the end of the
filename and try to open it. The software continue this loop until the file
doesn’t exist.

6

2.3 Save an experiment

To save an experiment (menu File → Experiment → Save, which calls
gui SaveExperiment module), the software first updates the MainExp struc-
ture and then the user is asked to point the file where to save and calls the
function file save with the MainExp structure and the file path to save it.

The file save function is a simple XML parser. For the details of the
XML file generated, please report to the DTD file (section 6, page 112). A little
remark on the way matlab generate an XML tree. In fact it is no more matlab,
but Java.

Node creation

docNode = com.mathworks.xml.XMLUtils.createDocument(’YourNode’);
docRootNode = docNode.getDocumentElement;

%% Create a new element
Element = docNode.createElement(’YourFirstElement’);
%% put attribute to the element
Element.setAttribute(’AttributeName’,YourString);
Element.setAttribute(’AnotherAttributeName’,AnotherString);
%% creating data node
data=docNode.createElement(’data’);
data.appendChild(docNode.createTextNode(YourDataAsString);
%% linking data node to Element
Element.appendChild(data);
%% link your element to the rootNode
docRootNode.appendChild(Element);

2.4 Load an experiment

To load an experiment (menu File → Experiment → Load), the module
gui LoadExperiment ask the user to point the file to load through the
gui OpenFile function. I had to make this homemade file selector because
of a bug in the built-in file selector on the linux platform. If a file is se-
lected, the software clears all variables and loads the experiment file by calling
file loadXmlFCFile with the pathname of the file and has in return the Main-
Exp structure which contains all the forceVolume objects and other variables.

The file loadXmlFCFile treats the .aex files as follow. First it uncompress
the file which is composed by several xml files. The first one is the exper-
iment.xml file and contains informations about the experiment such as time
lapses, description of the experiment and, especially, names of the files that
compose the experiment. All these files are stored in xml files which name corre-
spond to the name of the original afm file. For example, information from the file
afmfile.001 is stored in afmfile.001.xml. These two types of files are treated dif-
ferently. The file experiment.xml is send to file clearUpFVNode and returns
the MainExp structure without the forceVolume classes. The name of the AFM
files number n is constructed from the MainExp.name{n} from which it adds the
’.xml’ extention. The xml tree is opened from the file and sent to the class con-
structor, forceVolume.m with the string parameter ’xml’. The forceVolume
constructor scans the xml tree to store the variables in the class and returns the

7

complete forceVolume class. Finally, when all the forceVolume files are loaded
and stored in the MainExp.forceVoluem cell, the function file loadXmlFCFile
returns the MainExp structure to the file loadExperiment function.

2.5 Navigate into the matrix

To navigate inside the scanned area, the user can play with the navigation but-
tons. The ’Prev’ button to move backward, ’Next’, forward, ’Up’ to move up-
ward and ’Down’ to move down in the gride. This graphical manipulations calls
the internal functions of Gui.m : prevbutton Callback, nextbutton Callback,
Upbutton Callback and downbutton Callback respectively. These internal
functions modify the ForceVolum object in memory by calling its set func-
tion with the strings ’navigateFC’ and the direction (’prev’, ’next’, ’up’
or ’down’) for parameters. This manipulation has for effect to put the de-
sired curve in fv.FVCurveYAv and fv.FVCurveYRe vectors. In detail, the set
function calls the navigate FC function with the givent parameters. This lat-
ter function refresh the fv.gridePos.X, fv.gridePos.Y, fv.gridePos.Abs and
fv.gridePos.end informing the position of the curve in the gride, and computed
through the navigate GridePosition function. The force curves are directly
taken from the fv.FVDeflectionAvMatrix and fv.FVDeflectioReMatrix ma-
trices.

Finally, the internal function of Succellus calls the refreshAll which re-
fresh the displayed plots. Thi latter function just call twice the set function
with once the ’plotFC’ and secondly ’plotIndent’ string parameters. The
set function check by itself the curves the user choosed to display in accor-
dance of the state of the switches fv.CurveToPlot.Av, fv.CurveToPlot.Re
and fv.Display.Indentation.

2.6 Display a force-curve

To display a force curve, the forceVolume object first needs to be informed on
what the user wants to display. There is several switches accessible through the
set function of the forceVolume object. The first one is to choose which curve
to display.

% turn on the forward force curve display
MainFC = set(MainFC, ’FC’, ’Av’, ’On’);
% turn off the forward force curve display.
MainFC = set(MainFC, ’FC’, ’Av’, ’Off’);
% turn on the retraction force curve display
MainFC = set(MainFC, ’FC’, ’Re’, ’On’);
% activate the point of contact display
MainFC = set(MainFC, ’PoC’, ’Display’, ’On’);

And finally the set function includes a plotFC parameters to plot the acti-
vated curve(s) :

MainFC = set(MainFC, ’plotFC’);

It automatically check what to display and where to display it.

8

2.7 Display an indentation/force curve

Similarly to the force curve display, the set function has a switch to turn the
indentation display on or off.

% to turn on the indentation curve display
MainFC = set(MainFC,’Indentation’,’Display’,’On’)
% and to plot the curve :
MainFC = set(MainFC,’plotIndent’)

If the indentation curve display is set to ’off’, nothing will happend when
using the set function to plot the indentation curve. It automatically check
what to display and where to display it.

2.8 Display matrix

The scan resulting by the AFM in the force volume mode is an area com-
posed of pixels. These pixels are organized as two dimentional matrices. One
matrix is directly recorded during the AFM scan, the piezo height image.
The piezo height image is the record of the height of piezo-electic scanner
at the end of the indentation. It is stored in the forceVolume object fv as
fv.ImageMatrix.Piezzo. Other matrices are constructed during the post-
processing of the file. The deep matrix (fv.ImageMatrix.Deep) stores the deep-
ness of indentation computed from the detected point of contact between the
tip and the sample. The topography matrix (fv.ImageMatrix.Topography)
is the corrected image computed from the piezo height matrix and the deep-
ness matrix. It represents the zero force image. The stiffness matrices
fv.YoungModulus store the stiffness of the scanned area at each depth. For ex-
ample, the stiffness matrix of the depth n is stored in fv.YoungModulus[:,:,n].
All these matrices are viewable through the set function with the appro-
priate string parameter (respectively ’plotPiezzoImg’, ’plotDeepGride’,
’plotTopography’ or ’plotStiffness’. To display the stiffness, the forceVol-
ume object contains the fv.Display.Stiffness.Deep, changable by MainFC =
set(MainFC,’Stiffness Deep’,DeepNbr that stores the deep number the user
wants to display.

The set function calls the plot Gride function to plot the grides. The
parameters needed by this funtion is the gride to be displayed, the text displayed
as the title of the window, the contrast (a number) and the handler of the window
(0 if it doesn’t exist). Additionnaly to the display of the matrix, the plot Gride
function returns the handler of the window. The stiffness displaying is a little
bit different as it calls the plot Stiffness function which takes and additional
parameters, the depth the user choosed to diplay.

2.9 Compute the Young moduli

In order to compute the Young modulus of a scan, the user needs to inform
some values. The first and most important parameter to be set is the glass
calibration (menu option → Glass calibration or CTL+g). The window cre-
ated by gui GlassCalibration permits to find the parameter that generate

9

a correct indentation curve. The correct indentation curve is the one that
does not show indentation in a hard sample. This parameter is stored in
two places. Directly in MainExp structure (MainExp.Glass.Fit and in the
forceVolume object that served for this calibration by the command MainFC
= set(MainFC,’GlassFit’,MainExp.Glass.Fit) which changes the value of
fv.Stiffness.Glass.

The other parameters are the number of deep, the size of each deep and the
Hertz model to fit the indentation curve. Each of these parameters are entered
in the GUI and recovered when the stiffness computation is started. There is
two button for the stiffness computation, the ’Compute file display’ and the
’Compute all files’.

When the user press the ’Compute file display’ button, it activates the inter-
nal function pushbuttonCompute Callback of Succellus.m. The first action
is to recover the number of deep, the size of each deep and the Hertz model
and store in to the forceVolume object active through the set function with the
string parameters.

to compute 4 deeps
MainFC = set(MainFC, ’numberIndentationParts’, 4);
each depth has 50nm size
MainFC = set(MainFC, ’indentationDeep’, 50);
and if the sphere is the model chosen
MainFC = set(MainFC, ’HertzModel’, ’Sphere’);

Finally, the computation is done through the set function :

MainFC=set(MainFC,’Compute’,’Stiffness’);

This calls the function compute Stiffness. This function scanns the gride and
do comptation for each approach curves.

The first curve analyse is to detect the point of contact between the tip
and the sample. This is done with the compute PointOfContact function. As
this function returns the indice of the point in the curve where the contact
is detected, next this value is converted by compute DeepnessFromPoC into
deep and stored in fv.ImageMatrix.Deep. At this time, the zero force point
(or topography) is stored in fv.ImageMatrix.Topography. The next step is to
compute the indentation curve, done by the function compute Indentation and
the partitionning of the curve, done by compute CurvePartition. The curve
partition beginns at the point of contact detected earlier and finish at the end
of the curve. These values are then used by compute YoungModulus to return
the young modulii computed along this curve and stored in fv.YoungModulus.
Finnaly, there is a quality curve notation. This detects certain shape of the
curves that could alter the trust in the result returned. At the time of redaction,
there is only the attractive end detection, through the detect AttractiveEnds
function with the FuzzyWalk method.

When the user press the ’Compute all files’, it calls the function gui compute
through the internal function AllFileStiffnessCompute Callback. This func-
tion just make a loop to modify each forceVolume object though the set function
as explained for the ’Compute file display’ button.

10

2.10 Detect Events

When the user push the ”Compute All Files” in the events box, it activates the
pushbutton15 Callback (l.1137 in Succellus.m). For each experiments, it calls
the set function with ’Compute’ and ’Event’ in parameters (corresponding to l.
176 in set.m) and then calls compute event.

Another way from the Gui to invoke the event detection is to activate the ra-
dio button ”Events in FC” in the ”display” box (l.1133 in Succellus.m) by chang-
ing the class variable FCClass.Compute.Events from 0 to 1(l.176 in set.m).
Then, when plotting the retraction curve, the ”plotFC” argument of the class
detects if it has to display (and then compute) the event in the curve (l.100 in
set.m). If it is the case, it calls find events

In command line it can be done by calling compute event and giving the
curveX, curveY gride and a threshold.

The curveX is a vector containing all the x values of the curves. The cur-
veY gride is a 3D gride containing all the curveY recorded during a scan. If
the gride is called YGride, the curveY recorded in position x,y in the gride
is YGride(x,y,:). The threshold gives the sensitivity to the noise. If 1 is cho-
sen, the detector analyse all points deviating from the noise. If 2 is chosen, all
points deviating twice from the noise are analyse. All real positive numbers are
accepted. By default, the value 1.5 is chosen.

Each curves are send to the function find events with the curveY, the
threshold and the method in parameters. A fuzzy method is used to detect the
events.

The fuzzy method first call the function generate ConvolutionVectors
which takes in argument only the curveY and returns three vectors, the vertical,
angle, V convolution vectors. The convolution vectors contains values along the
curveY that reflect the possibility that each positions in the curveY is a vertical,
right angle or a V-shape portion respectively. It is then used later to determine
the probability that an event exist.

The threshold are then defined. Two possibilities are offered. In the first,
the threshold are fix to a certain values and cannot be changed. The second, the
threshold are automatically calibrated. In this case, generate ConvolutionVectors
computes the three convolution vector from the curveY, but, in addition, returns
the threshold values in the ”Borne” structure. The treshold values is computed
by the quantile value, where 95% of the values are.

In both case, the thresholds are stored in the Borne structure are used later
for the fuzzy set and organized like this :

Borne.Vertical threshold for the vertical fuzzy

Borne.Angle threshold for the right angle fuzzy

Borne.V threshold for the v shape angle fuzzy

After the generation of convolution vectors, the fuzzy methods calls the
detect Events function. It gives in parameters the curveY, the three convo-
lution vectors and the threshold values contained in the ”Borne” structure. It
returns an event structure containing for each events the curveY portion that
defines this event and the indice in the curve.

At the end, we have an event structure containing each events.
For the nth event:

11

• event{n}.PosX and event{n}.PosY are the position in the scanned gride
of the curve containing this event.

• event{n}.x and event{n}.y are the x and y vectors defining this event (i.e.
the curve portion that contains this event).

• event{n}.force is the force value of this event.

• event{n}.jumpSlope is the slope of the vertical segment of this event

• event{n}.maxX, event{n}.maxY, event{n}.minX and event{n}.minY are
the extremum values of this event.

2.11 Compute Time Lapses

In order to complete a time-lapse computation, the user have to push the button
”Compute TimeLapse” in the Time Lapse panel of the Succelus main window
(Experiment part). This calls the function computeTimeLapseButton Callback
at the line 1001 of the succellus.m file. The function creats MainExp.TimeLapse
which will contain the values computed on positive curve, MainExp.TimeLapse-
Rand, which will contain values computed on randomly selected curves and
MainExp.TimeLapseGlobal which will contain global valuse of the whole scan.
The user is prompt about the injection time. This value is stored to inform
when, in the experiment, a chemical is added.

For each force-volume files, the function :

Loads event and random gride. If no random gride exist, it generates one with
15 random points. At each depth computed, it loads the young moduli ma-
trix of this depth,and calls the function compute RelativeYoungProperties
with the young moduli matrix and the event matrix as argument. The same
is done with the Random points with the random matrix in place of the event
matrix, and for the global time lapse with three arguments, the young mod-
uli matrix, a matrix filled with ones, and a string ’Global’ to inform the
compute RelativeYoungProperties function that it treats global values.

The time-lapses values are stored as following :

MainExp.TimeLapse.Deep{deepNbr}.File{fileNbr}. Events {eventNbr}
Event. mean

sem
number

MainExp.TimeLapseRand.Deep{deepNbr}.File{fileNbr}. Events {eventNbr}
Event. mean

sem
number

MainExp.TimeLapseGlobal.Deep{deepNbr}.File{fileNbr}. Events {eventNbr}
Event. mean

sem
number

Then, to access the relative values of the 3rd file at the depth 2, Main-
Exp.TimeLapse.Deep2.File3.Event.mean

12

Chapter 3

Function Definition

13

3.1 check AroundMe

Purpose

Check if a pixel has a non-zero value at a certain distance in a gride.

Syntax

eventAround=check AroundMe(Gride,X,Y,Distance)

Description

Given a matrix filled with zeros and non zeros values, test if there is a non zero
pixel at a certain distance from the position (X, Y)

Output variables :

eventAround = Number

Returns the number of events the function finds around the selected point.

Input variables :

Gride = Matrix

matrix filled with zeros and non zeros values.

X = Number

Y = Number

such as (X, Y) is a pixel inside the matrix Gride.

Distance = Number

Distance (in pixel) from the given pixel at which the function look around.

14

3.2 compute CalibrationConstant

Purpose

Compute the constant used to convert the data from the AFM.

Syntax

calib=compute CalibrationConstant(
Z SCALE,SensitDeflection,RAMP SIZE,SensZScan,
NumberPointsPerCurves,ScanRate,SpringConstant)

Description

Compute the constant used to convert the data from the AFM.

Output variables :

calib = Struct

Contain the different constant to calibrate the datas.

calib.FacteurY

Z SCALE ∗ SensitDeflection ∗ SpringConstant

65536

calib.FacteurX
RAMP SIZE ∗ SensZScan

NumberPointsPerCurves

calib.Vitesse

NumberPointsPerCurves ∗ calib.FacteurX ∗ ScanRate

Input variables :

Z SCALE = Factor used to convert data to indicated units

data[nm] =
pixel value

65536
∗ Z SCALE

SensitDeflection = ’Sens. Deflection: V’

RAMP SIZE = ’ @4:Ramp size: V’

SensZScan = Sens. Zscan: V’

NumberPointsPerCurves = Number of pixels per scan line

ScanRate = ’Scan rate’

SpringConstant = The spring constant of the cantilever used.

15

3.3 compute CurvePartition

Purpose

Cut the indentation curve.

Syntax

parts=compute CurvePartition(Indentation, SegNbr,SegDeep)

Description

Output variables :

parts = (n0, n1, ..., nSegNb)

Indices for the selection of the curve parts. The first segment is taken
between the n0 and n1 points, the second between the n1 + 1 and n2

points,... the last, between the nSegNbr−1 + 1 and nSegNbr.

Input variables :

Indentation = (In1, In2, ..., Ini)

indentation curve coordinate in [nm]

SegNbr = Sn

Number of segment to take out of the indentation curve.

SegDeep = Sd

Deepness of each segments.

16

3.4 compute curveSegmentCarac

Purpose

Returns the caracteristic of a segment of curve.

Syntax

[slope, constant] =
compute curveSegmentCarac(curveX,curveY,numberSegment)

Description

The function decompose the curve defined by curveX and curveY in numberSegment
segments. The slope and constant (such as y = slope * x + constant) of each
segment are determined. The function returns the result as two vectors. If you
ask for one output, the function returns the slope vector.

Output variables :

slope = (s1, ..., snumberSegment)

The slope of the respective segments taken on the curve.

constant = (c1, ..., cnumberSegment)

The constant of the respective segments taken on the curve.

Input variables :

CurveX = (x1, ..., xn)

Coordinates representing the x value of each points of the curve.

CurveY = (y1, ..., yn)

Coordinates representing the y value of each points of the curve.

numberSegment = Integer

The number of subdivision of the curve you want to perform.

17

3.5 compute DeepGride

Purpose

computes the deepness of indentation in the substrate from the detected point
of contact to the end in all the scanned area.

Syntax

deepGride=compute DeepGride(PoCGride, CurveX, CurveYGride, FitGlass)

Description

computes the deepness of indentation in the substrate from the detected point
of contact to the end in all the scanned area.

calls navigate GridePosition and compute DeepnessFromPoC

Output variables :

deepGride = n ∗ n matrix

Input variables :

PoCGride = n ∗ n matrix

Contains the coordinate of the detected point of contact in the curve.
Computed by the function compute PointOfContact

CurveX = (x1, x2, ..., xp matrix

This vector describes the x coordinate of the curve.

CurveYGride = n ∗ n ∗ p matrix

This matrix contains all the curves recorded during the scan of the area.

FitGlass = = (a, b) where y = ax + b.

Value of the fit with a force curve taken in a hard sample.

18

3.6 compute DeepnessFromPoc

Purpose

computes the deepness of indentation in the substrate from the detected point
of contact to the end.

Syntax

deep=compute DeepnessFromPoC(PoC,CurveX,CurveY,FitGlass)

Description

computes the deepness of indentation in the substrate from the detected point
of contact to the end.

Output variables :

deep = d

The deepness in [nm] calculated between the point of contact and the end
of the indentation.

Input variables :

PoC = i

The indice of the point of contact in the curve.

CurveX = (x1, x2, ..., xi, ..., xn)

coordinates in [nm] representing the displacement of the piezzo.

CurveY = (y1, y2, ..., yi, ..., yn)

coordinates in [nm] representing the deflection of the cantilever.

FitGlass = (a, b) where y = ax + b.

Value of the fit with a force curve taken in a hard sample.

19

3.7 compute event

Purpose

Detects events on a gride coposed of several curves and returns the position of
curves with events and all the events.

Syntax

[eventGride,allEvents]=compute event(curveX, curveGride, [threshold])

Description

Detects events on a gride coposed of several curves and returns the position
of curves with events and a description of all the events. A threshold can be
specified.

Output variables :

eventGride = n ∗ n matrix

Represents the position of curves with events detected.
0 means no event detected in the corresponding curve.
1 means at least one event detected in the corresponding curve.

Then if eventGride(x,y)=1, the function has detected an event in the curve
curveGride(x,y,:).

allEvents = Cell

• allEvents{nbr}.x
coordinates in x of the points composing the event

• allEvents{nbr}.y
coordinates in y of the points composing the event

• allEvents{nbr}.maxX
X coordinate in pixel in the curve of the end of the event

• allEvents{nbr}.minX
X coordinate in pixel in the curve of the begining of the event

• allEvents{nbr}.maxY
Y coordinate in pixel the curve of the top of the event

• allEvents{nbr}.minY
Y coordinate in pixel the curve of the bottom of the event

• allEvents{nbr}.jumpSlope
Slope of the jump of contact. Can be a criteria to say if this is really
an event or not.

• allEvents{nbr}.force
Force computed between the top and the bottom. Represents the
interraction force between the tip and the surface.

20

• allEvents{nbrEv}.PosX
X coordinate of the curve containing the event in the scan gride.

• allEvents{nbrEv}.PosY
Y coordinate of the curve containing the event in the scan gride.

Input variables :

curveX = (x1, x2, ..., xi, ..., xm)

Coordinates in [nm] of the point of the curve representing the piezzo dis-
placement.

curveGride = n ∗ n ∗m matrix

Each (n*n*:) vectors are the coordinates in [nm] of the point of the curve
representing the cantilever deflection.

threshold = Float

Optionnal value. This is a factor which modulates the effect of noise in
the event detection. A value lower than 1 decrease the influence of noise in
error detection (then increase the probability of noise detected as event),
a value higher than 1 increase the influence of noise in error detection (but
real event becomes more susceptible to be detected as noise).

21

3.8 compute eventSlope

Purpose

Computes the slope of the jump of contact and the force of events.

Syntax

events=compute eventSlope(curveX,events)

Description

Computes the slope of the jump of contact and the force of events.

Output variables :

events = Cell

• events{nbr}.x
coordinates in x of the points composing the event

• events{nbr}.y
coordinates in y of the points composing the event

• events{nbr}.maxX
X coordinate in pixel in the curve of the end of the event

• events{nbr}.minX
X coordinate in pixel in the curve of the begining of the event

• events{nbr}.maxY
Y coordinate in pixel the curve of the top of the event

• events{nbr}.minY
Y coordinate in pixel the curve of the bottom of the event

• events{nbr}.jumpSlope
Slope of the jump of contact. Can be a criteria to say if this is really
an event or not.

• events{nbr}.force
Force computed between the top and the bottom. Represents the
interraction force between the tip and the surface.

• events{nbrEv}.PosY

Input variables :

curveX = (x1, x2, ..., xi, ..., xm)
Coordinates in [nm] of the point of the curve representing the piezzo dis-
placement.

events = Cell

• events{nbr}.x
coordinates in x of the points composing the event

• events{nbr}.y
coordinates in y of the points composing the event

22

3.9 compute extractFromMatrix

Purpose

Returns the mean, median of a matrix or in vector form.

Syntax

valueToReturn[,stdDev[,RestTopo]]=compute extractFromMatrix(
Matrix,toReturn[,Topography,ExcludePercent]

Description

This function computes the mean or the median of a matrix according to the
toReturn value. It can also returns the matrix in the form of a vector, rearang-
ing the value in one row. If specified, it can exclude some values according to a
Topography matrix and a precentage to take from this matrix.

Output variables :

valueToReturn = Float or Vector

Depends on the toReturn value.

stdDev = Float

Is the standard deviation of the mean or median computed. NaN is returned
if a problem occured or if ’Vector’ is set in the variable toReturn.

RestTopo = n*n matrix

Filled with 0 and 1. Represents the values that are or are not taken to
compute the mean, median or return the vector, according to the percent-
age of the topology you choosed.

Input variables :

Matrix = n*n matrix

toReturn = String

Determines the value to return. Can be :

’mean’
computes the mean of the matrix.

’median’
computes the median of the matrix.

’vector’
rearange the matrix in a vector.

Topography = n*n matrix

Matrix representing the topography of the scanned area.

23

ExcludePercent = Float

Number of percent of the total height to exclude from the computation.
For example, if the total height computed from the Topography matrix
is 100 and you sets the ExcludePercent value to 5, all the values that
correspond to a height lower than 5 are not taken in the computation.

24

3.10 compute gaussFit

Purpose

Compute a gaussian fit of elements in a vector.

Syntax

[x,y,mean,std]=compute gaussFit(vector,min,max)

Description

Compute a gaussian fit of elements borned by min and max in a vector according
to the function :

yi =
e−

1
2∗(

xi−vectMean

vectStd)2

vectStd ∗ √2 ∗ π

Where vectMean and vectStd are respectively the mean value and the stan-
dard deviation of the population in the vector.

Output variables :

x = (x1, ..., xi, ..., xn)

The x coordinate of the gaussian fit

y = (y1, ..., yi, ..., yn)

The y coordinate of the gaussian fit

Input variables :

vector = (v1, ..., vj , ..., vm)

The values from where you want to compute the gaussian fit. You don’t
need to order them.

25

3.11 compute GrideMeanPixel

Purpose

Computes the mean value of selected points in a matrix.

Syntax

[young, semYoung, numberPoints]=compute GrideMeanPixel(YoungGride,
PositionGride)

Description

Computes the mean, the standard error of mean and the number of values con-
tained in a matrix at selected points. The values are contained in a matrix and
the selection of points in this matrix is contained in another matrix filled with 0
and 1, where points containing a non zero value (1) determines the correspond-
ing values in the first matrix to take in the mean and sem computation.

This function calls compute meansem.m (put reference).

Output variables :

young = Float

Returns the mean of the values taken in the first matrix

semYoung = Float

Returns the standard error of mean of the the values taken in the first
matrix

numberPoints = Integer

Returns the numbers of values used to compute the mean and the sem.

Input variables :

YoungGride =

y1,1 · · · y1,n

...
. . .

...

yn,1 · · · yn,n

Contains the values to compute the mean, the standard error of mean and
determine how many values were taken (NaN are excluded)

PositionGride =

p1,1 · · · p1,n

...
. . .

...

pn,1 · · · pn,n

contains the position of the points you want to compute the mean and the
standard error of mean. 0 symbolize non considered points, 1 symbolize
points to take.

26

3.12 compute Indentation

Purpose

Compute the indentation and force curves.

Syntax

[Indentation,Force] =
compute Indentation(CurveX,CurveY,PoCPos,FitGlass,SpringConst)

Description

compute Indentation compute the indentation and force curves taken the de-
flection curve.

Output variables :

Indentation = (I1, I2, ..., In)

coordinates in [nm] of the points of the indentation curve.

Force = (F1, F2, ..., Fn)

coordinates in [Pa] of the points of the force curve.

Input variables :

CurveX = (x1, x2, ..., xi, ..., xn)

coordinates in [nm] representing the displacement of the piezzo.

CurveY = (y1, y2, ..., yi, ..., yn)

coordinates in [nm] representing the deflection of the cantilever.

PoCPos = i

Point of contact between the tip and the substrate.

FitGlass = (a, b) where y = ax + b.

Value of the fit with a force curve taken in a hard sample.

SpringConst = s

Spring constante of the cantilever used for the mesurements.

27

3.13 compute meanForEachDeep

Purpose

Given a stiffness matrix for all deep, it returns the mean of the matrix for each
deep.

Syntax

[Mean[,Deviation,[restOfMatrix]]]=compute meanForEachDeep(
AllStiffMatrix[,TopographyMatrix,removePercent])

Description

Given a stiffness matrix for all deep, it returns the mean of the matrix for each
deep. You can exclude some values according to a Topography matrix and a
precentage to take from this matrix. calls compute extractFromMatrix

Output variables :

Mean = Vector of size m

The mean stiffness value for each deep.

Deviation = Vector of size m

Optional.

The Deviation value for each deep.

restOfMatrix = n ∗ n ∗m matrix

Optional.

A matrix filled by 0 and 1. 0 representing the pixels excluded from the
mean computation according to the TopographyMatrix matrix and to
removePercent value given in input.

Input variables :

AllStiffMatrix = n ∗ n ∗m matrix

The 3D matrix containing the values from which you want to compute the
mean.

TopographyMatrix = n ∗ n matrix

Optional.

2D matrix containing the topography of the scanned area. It is used with
the removePercent value to determine which pixel to include or to exclude
from the computation.

removePercent = Integer

Optional.

Number of high percent you want to exclude from the computation. See
TopographyMatrix for more detatils.

28

3.14 compute MeanSem

Purpose

Compute the mean, the standard error of mean of numbers and the number of
values used to compute.

Syntax

[meanvect, semvect, number]=compute MeanSem(vecteur)

Description

Compute the mean, the standard error of mean and the number n of values
used to compute.

Output variables :

meanvect = float

returns the mean value of the vector.

meanvect =
n∑

k=1

vk

n

semvect = float

returns the standard error of mean of the vector.

sem =
1

n ∗ √n
∗

n∑
k=1

(vk −meanvect)2

number = integer

returns the numbers of values in the vector used to compute the mean
and the sem. It is different from the length of the vector as it can contain
NaN elements.

Input variables :

vecteur = (v1, v2, ..., vk, ..., vm)

contains the set of value you want to compute the mean and sem.

29

3.15 compute PointOfContact

Purpose

Detect the point of contact.

Syntax

PoC = compute PointOfContact(CurveX,CurveY,’method’,[window])

Description

compute PointOfContac detect the point of contact between the tip and the
sample on the given curve. The method of detection can be chosen.

Output variables :

PoC.Position = i

Contain the position of the point of contact on the vectors CurveX and
CurveY

PoC.fity = (f1, f2, ..., fi, ..., fn)

Coordinates in [nm] (Y) of the result of the first order fit used to determine
the point of contact.

PoC.Errfity = PoC.fity equivalent used to obtain delta

PoC.delta = d

Noise of the portion of the curve used for the fit.

PoC.distDelta = dd

delta+distDelta is the minimal distance from the curve representing the
non-contact part.

Input variables :

CurveX = (x1, x2, ..., xi, ..., xn)

coordinates in [nm] of the point of the curve representing the piezzo dis-
placement.

CurveY = (y1, y2, ..., yi, ..., yn)

coordinates in [nm] of the point of the curve representing the cantilever
deflection.

’method’ = ’CurveFit’, ’Manually’

method used to detect the point of contact.

’window’ = Integer

Pointer to the window where curves are plotted. Necessary for the method
’Manually’.

30

3.16 compute RelativeYoungProperties

Purpose

Computes the properties of the young modulus of selected pixels.

Syntax

selectedYoungProp=compute RelativeYoungProperties(
YoungGride,PositionGride,[KindOfYoungProp,[whereAround]])

Description

Computes the properties of the young modulus of selected pixels, relatively to
the surrounding pixels or globally, depending on the kind of young modulus
proterties you sepcified.

Output variables :

selectedYoungProp = list

• selectedYoungProp{n}.Self

• selectedYoungProp{n}.Around{i}
• selectedYoungProp{n}.Relative{i}

where i is the distance and n is the number on pixels with events.
if the KindOfYoungProp argument is All Relative, selectedYoungProp
is a 3D matrix where selectedY oungProp(X, Y,D) is the relative young
value of the pixel (X, Y) compared to pixels at distance D.

Input variables :

YoungGride = n*n matrix

Contains the young modulus of each pixels in the scanned area.

PositionGride = n*n matrix

Contains the position where at least one event was detected, symbolized
with the number 1. No event detected is marked as 0 in the matrix.

KindOfYoungProp = string (default = ’Relative’)

characterize the kind of computation you want to do. Two possibilities :

• Relative (default)
When the position gride are like event gride.

• Global

When you want to compute the young properties on a continuous
zone.

• All Relative

When the relative stiffness of each pixel has to be computed.

31

whereAround = integer (default = 2)

Symbolise the method you want to look around.

2 = horizontally (X)
example at 2 pixels around
.....
.....
o.*.o
.....
.....

3 = vertically (Y)
example at 2 pixels around
..o..
.....
..*..
.....
..o..

4 = all around (circle)
example at 2 pixels around
..o..
.o.o.
o.*.o
.o.o.
..o..

(1 is reserved)

32

3.17 compute SimulateFile

Purpose

Importe simulate files generated by Sandor Kasas under ANSYS environment.

Syntax

[Indentation,Force,curveParts,YoungModulis]=c
ompute SimulateFile(fileName)

Description

Output variables :

Indentation = (I1, I2, ..., In)

coordinates in [nm] of the points of the indentation curve.

Force = (F1, F2, ..., Fn)

coordinates in [Pa] of the points of the force curve.

curveParts = (n0, n1, ..., nSegNb)

Indices for the selection of the curve parts. The first segment is taken
between the n0 and n1 points, the second between the n1 + 1 and n2

points,... the last, between the nSegNbr−1 + 1 and nSegNbr.

YoungModulis = (ym1, ..., ymSegNbr)

Vector containig the Young moduli at each deepness of the indentation/-
force curve. When the curve is not enough deep, it fills the vector with
’NaN’ to reach the correct length

Input variables :

fileName = String

Is the file name and path to open.

33

3.18 compute SlopeChange

Purpose

computes the variation of a curve.

Syntax

changeInSlope=compute SlopeChange([curveX,]curveY)

Description

If only the curveY is send in input, the curve is segmented in several parts.
The mean value of each segment is then computed. Then the difference of each
adjacent segment mean value represents the variation of the curve. The function
retruns the final vector composed by these differences.

If the curveX and the curveY is send in input, the curve is segmented in
several parts. The slope of the curve is computed and then the derivative (slope
of the slope).

Output variables :

changeInSlope = vector

The size of the resulting vector depends of the size of the input vector(s).
If the size of initial vector is n, the size of the resulting vector is n− n

5

Input variables :

curveX = (x1, ...xn) (Optional)

This optionnal vector defines the x axis.

curveY = (y1, ..., yn)

This vector defins the y position of each points.

34

3.19 compute StiffnessOnDefinedZone

Purpose

Compute the stiffness on a zone defined by the user

Syntax

MainExp=compute StiffnessOnDefinedZone(MainExp)

Description

Compute the stiffness on a zone defined by the user instead of on the whole
scan. If no zone were prevoiously defined, the user is promped to select it from
the piezzo image of the scan (see section 3.52 and 5.2)

Output variables :

MainExp = structure

The modified MainExp contain the result of the computation on its
forceVolume objects (see 5.1 for more details)

Input variables :

MainExp = structure

see 5.1 for more details on the structure of MainExp.

35

3.20 compute YoungModulus

Purpose

Compute the Young Modulis

Syntax

YM = compute YoungModulus(CuInd,CuFor,CuPart,SegNbr,TipCar,’modèle’)

Description

compute YoungModulus computes the Young modulis on the selected curve
portions, taken the choosen model.

Output variables :

YM = (ym1, ..., ymSegNbr)

Vector containig the Young moduli at each deepness of the indentation/-
force curve. When the curve is not enough deep, it fills the vector with
’NaN’ to reach the correct length

Input variables :

CuInd = (cI1, cI2, ..., cIi)

coordinates in [nm] of the points of the indentation curve. cI(1) is the
deepest point, cI(i) is the point of contact.

CuFor = (cF1, cF2, ..., cFi)

coordinates in [Pa] of the points of the force curve. cF(1) is the deepest
point, cF(i) is the point of contact.

CuPart = (n0, n1, ..., nSegNbr)

Indices for the selection of the curve parts. The first segment is taken
between the n0 and n1 points, the second between the n1 + 1 and n2

points,... the last, between the nSegNbr−1 +1 and nSegNbr. If there is only
one point, the function returns a vector of length SegNbr with only ’NaN’
inside.

SegNbr = Number of segment choosen when called to compute CurvePartition.
This parameter is useful when the indentation cannot permit to have as
segment as you want. The functin fill the the vector with ’NaN’ to have
the appropriate length.

TipCar = Caracteristic of the tip.

Depending on the hertz model it waits the radius [nm] (Sphere) or the
semi-opening angle [rad] (Cone) of the tip.

’modèle’ = ’Sphere’ or ’Cone’

Modele used for the computation of the Young moduli.

36

3.21 convert cellToText

Purpose

Convert a cell structure to a text. Usefull to save variables.

Syntax

text=convert cellToText(cell[,delimiterInsideRow
,[delimiterBetweenRows]])

Description

Convert a cell to a text. You can choose the delimiters between the different
values inside each elements and between elements inside the cell.

Output variables :

text = String

The converted values.

Input variables :

cell = Cell

The variable to convert.

delimiterInsideRow = Char

Optional.

Character chosen to delimite each value inside an element. If none, ’,’ is
the default one.

delimiterBetweenRows = Char

Optional.

Character chosen to delimit each element inside the cell. If none, ’˚’ is
the default one. You can specify this delimiter only if you specified the
previous one (delimiterInsideRow)

37

3.22 convert matrixToText.tex

Purpose

Convert a matrix structure to a text. Usefull to save variables.

Syntax

text=convert matrixToText(matrix,nbCol,nbRow,delimiterInsideRow,
delimiterBetweenRows,startCol,startRow)

Description

Convert a matrix to a text. You can choose the delimiters between the different
values inside each elements and between elements inside the cell. Youn can also
specify from which column and line you want to start the conversion.

Output variables :

text = String

The converted values.

Input variables :

matrix = Matrix

The variable to convert.

nbCol = Integer

The number of column you want to convert. If you want to convert the
whole matrix, enter here the total number of column in the matrix

nbRow = Integer

The number of row you want to convert. If you want to convert the whole
matrix, enter here the total number of row in the matrix

delimiterInsideRow = Char

Optional.

Character chosen to delimite each value inside an element. If none, ’,’ is
the default one.

delimiterBetweenRows = Char

Optional.

Character chosen to delimit each element inside the cell. If none, ’˚’ is
the default one. You can specify this delimiter only if you specified the
previous one (delimiterInsideRow)

startCol = Integer

Optional.

Specifies the column number from which you want to start the convertion.

38

startRow = Integer

Optional.

Specifies the row number from which you want to start the convertion.

39

3.23 count numberEventGride

Purpose

Counts the number of events/curves. The result is sorted so that you have the
information of the number of curves without events, with one event, two events,
...

Syntax

NbrEvtVect=count numberEventGride(eventStruct)

Description

Returns a vector which contains the number of curves with 0, 1, ..., n events by
scanning the eventStruct structure.

Elements important in the eventStruct structure :

• GridePos = n ∗ n Matrix

for the size of the scanned area

• each{n}[.PosX & .PosY] = Integer

for their position.

Called by : count numberEventTimeLapse

Output variables :

NbrEvtVect = Vector

NbrEvtVect(1) = nbr of pixels without events.
(2) = nbr of pixels with one event.
...
(nb) = nbr of pixels with (nb-1) events.

Input variables :

eventStruct = Structure

Structure containing the matrix of events position and position of each
events.

• GridePos = n ∗ n Matrix
for the size of the scanned area

• each{n}[.PosX & .PosY] = Integer

for their position.

40

3.24 count numberEventTimeLapse

Purpose

Function that count the number of event present in an experiment. The result is
sorted so that you have the information of the number of curves without events,
with one event, two events, ...

Syntax

Experiment=count numberEventTimeLapse(Experiment)

Description

Elements important in the eventStruct structure :

• GridePos = n ∗ n Matrix

for the size of the scanned area

• each{n}[.PosX & .PosY] = Integer

for their position.

Call count numberEventGride to generate the vector.

Output variables :

Experiment = Structure

modified structure.
See section 5.1, page 103. Modifies Experiment.TimeLapse.NumberEvt.

Input variables :

Experiment = Structure

See section 5.1, page 103

41

3.25 create TopoYoungMatrix

Purpose

Creation of the matrix to be display in 3D

Syntax

TopoYoung=create TopoYoungMatrix(
AllYoung,Topography,PiezzoHeight,sizeSegment
[[,Type,borderMin],borderMax]

Description

This function creates a matrix that can be plotted in 3D.
Called by : select 3DSlice.m

Output variables :

TopoYoung =

Input variables :

AllYoung = M a N ×N ×M matrix

Where mi,j,k is the kth stiffness of the pixel (i, j).

Topography = T a N ×N matrix

Where ti,j is the topography of the pixel (i, j).

PiezzoHeight = P a N ×N matrix

Where pi,j is the height of the scanner at the end of indentation of the
pixel (i, j).

sizeSegment = Float

The sizeSegment represent the size of the segmentation of the curve in
nm.

Type = ’Young’, ’Deep’ or ’None’

This argument inform the function on the target of the limit set with bor-
derMin and borderMax. If the Type is set to ’Young’, then the borderMin
and borderMax are apply on the AllYoung matrix. All pixels which Young
values outside of the limit defined are not displayed. And similarly with
’Deep’ as argument.

If ’None’ is set, then the function does not take care on the borderMin
and borderMax argument.

borderMin = Float

Sets the minimum value that is reported in the final matrix.

borderMax = Float

Sets the maximum value that is reported in the final matrix.

42

3.26 delete FVobjInList

Purpose

Delete a force volume object in the list.

Syntax

newExpStruct=delete FVobjInList(oldExpStruct,FVname,direction)

Description

Delete the FVname force volume object in the list. The MainExp.ForceVolumeClass
is then amputed from this object.

Called by :

• Succellus.m function DeleteMenu Callback

Output variables :

newExpStruct = Struct

The new Experiment structure with the desired forceVolume object am-
puted.

Input variables :

oldExpStruct = Struct

The Experiment structure from which you want to delet the forceVolume
object.

FVname = String

The forceVolume object name to delete. The name is the one in oldExp-
Struct.name, not the one in the object (FC.name).

43

3.27 detect AttractiveEnds

Purpose

Gives a quality note on the shape of the end of the curve.

Syntax

[Score,FirstFit,LastFit]=detect AttractiveEnds(CurveX,CurveY,method)

Description

This functio detects a curvature at the beginning of the curve, when the tip is
not in contact with the sample.

Called by :

• compute Stiffness.m

• plot FC.m

Output variables :

CurveX = (x1, x2, ...xn)

CurveY = (yav1, yav2, ..., yavn)

method = String

• ’FuzzyWalk’
This method uses the fuzzy logic on the first slope, the last slope,
the angle and the step to beginn the measurments.

Input variables :

Score = Is the final score, in the range [0; 1]. A score of zero describes a non
attractive and a score of one describes an attractive beginning of the curve.

FirstFit = Optionnal Is the fit of the first part of the beginning of the cruve.
It was used by the function to compute the slope. This output is used
by plot FC.m to plot in the force curve the position the function detected
the first slope.

LastFit = Optionnal Is the fit of the second part of the beginning of the
cruve. It was used by the function to compute the slope. This output
is used by plot FC.m to plot in the force curve the position the function
detected the second slope.

44

3.28 display plot3D

Purpose

Plots in 3d the volumes contained in 3D matrix.

Syntax

display plot3D(data)

Description

In this function is specified the colorscale of the YoungModulus
Called by :

• plot 3DYoungView

Output variables :

Nothing = No outputs

Input variables :

data = x ∗ y ∗ deep

The 3D matrix containing the information for the colorscale. The pixels
that are not displayed have to have the value 0 (zero), NaN doesn’t work.

45

3.29 display Slice

Purpose

Display a slice of an image.

Syntax

figureIndex = display Slice(
PathX,PathY, Topography, [name, [figureIndex]])

Description

Display a slice following a given path through a gride.

Output variables :

figureIndex = Number

Handle of the figure where the plot has been drawn

Input variables :

PathX = (x1, x2, ...xt)

such as (x1, y1) is the first pixel, ... (xt, yt) is the last one.

PathY = (y1, y2, ...yt)

such as (x1, y1) is the first pixel, ... (xt, yt) is the last one.

Topography =

t1,1 · · · t1,n

...
. . .

...

tn,1 · · · tn,n

The matrix where information of the topography is stored.

figureIndex =

Handle of the figure where the plot has to be drawn

46

3.30 export TimeLapseEvents

Purpose

Export the number of curves with event(s) in a text file.

Syntax

export TimeLapseEvents(NbrEventsStruct,baseFileName,InjectionTime)

Description

Export the number of curves with event(s) in a text file. The first line represents
the curves with no events, the second with one, the third with two events and
so on untill the maximum of events per curve is reached.

Called by :

• Succellus.m function ExportNbrEvtMnu Callback

Output variables :

None = No output

There is no output as the result of this function is the creation of a file.

Input variables :

NbrEventsStruct = Structure

A structure such that NbrEventsStruct{n}=nbrOfCurves is a vector con-
taining the number of curve where n event(s) were detected.

For expample, the number returned by NbrEventsStruct{n}[t] is the
number of curves of the scan number t (in the time-lapse) that contains
n events.

baseFileName = String

This string contain the pathname of the file where the data are saved. By
default, it will add the .csv extention at the end if there isn’t.

InjectionTime = Integer

This number represents the first file after the injection of the buffer (put
1 if there is no injection).

47

3.31 export TimeLapseGlobal

Purpose

Exports the global stiffness.

Syntax

export TimeLapseGlobal(TimeLapse,baseFileName,InjectionTime)

Description

Exports the global stiffness contained in the MainExp.TimeLapseGlobal in a
text file. The first line represents the mean values of each scans, the second, the
standard error of mean of each scans, and the following are all values that were
taken to give those results.

Output variables :

None = No output

There is no output as the result of this function is the creation of a file.

Input variables :

TimeLapse = Structure

composed like this :

• TimeLapse.Deep{deep}.File{fileNbr}.Event.mean
representing the mean value of the global stiffness of the file fileNbr
at the depth deep

• TimeLapse.Deep{deep}.File{fileNbr}.Event.sem
representing the standard error of mean of the mean value of the
global stiffness of the file fileNbr at the depth deep

• TimeLapse.Deep{deep}.File{fileNbr}.Events{evNbre}.self
collects all the values of all the pixel at the depth deep of the file
fileNbr

baseFileName = String

This string contain the pathname of the file where the data are saved. By
default, it will add the .csv extention at the end if there isn’t.

InjectionTime = Integer

This number represents the first file after the injection of the buffer (put
1 if there is no injection).

48

3.32 export TimeLapseRelative

Purpose

Exports the time lapse in a spreadsheet format (.CSV)

Syntax

varargout=export TimeLapseRelative(TimeLapse, baseFileName, InjectionTime)

Description

Exports the time lapse in a spreadsheet format (.CSV).
The first line is the number of the file after the first injection.
The second line mark that what follows is the mean values and separates the
several distances.
The third line is the mean values.
The fourth line mark that what follows is the standard deviations and separates
the several distances.
The fifth line is the standard deviations.
The sixth line mark that what follows is the number of value used to compute
and separates the several distances.
The seventh line are thes values.
The eigth line mark that what follows are all values used to compute and sepa-
rates the several distances.
The nineth and following lines are all these values.

File → export → TimeLapse → relative Called in Succellus.m in line 1087,
1088.

Output variables :

varargout = None

Specified just for semantic reason.

Input variables :

TimeLapse = Cell

• TimeLapse.Deep{deep}.File{fileNbr}.Relative.mean{dist}
• TimeLapse.Deep{deep}.File{fileNbr}.Relative.sem{dist}
• TimeLapse.Deep{deep}.File{fileNbr}.Relative.number{dist}
• TimeLapse.Deep{deep}.File{fileNbr}.Events{evNbre}.Relative{dist}

baseFileName = String

Contains the base filename of the exported csv with the path. The soft
adds in the name the deep information and the csv extention (e.g. base-
FileName Deep 1.csv for the first deep).

InjectionTime = Integer

Indicates the first file after the injection of medium.

49

3.33 export TimeLapseStiffnessTomo

Purpose

Export in a text file the values of the stiffness tomography

Syntax

export TimeLapseStiffnessTomo(StiffTomoVectStruct,baseFileName,InjectionTime)

Description

Exports in a text file the mean values of the stiffness tomography.

Output variables :

None = No output

There is no output as the result of this function is the creation of a file.

Input variables :

StiffTomoVectStruct = Structure

StiffTomoVectStruct.Stdev{fileNbr}(deep) is the mean stiffness at
the depth ’deep’ of the file number ’fileNbr’

baseFileName = String

This string contain the pathname of the file where the data are saved. By
default, it will add the .csv extention at the end if there isn’t.

InjectionTime = Integer

This number represents the first file after the injection of the buffer (put
1 if there is no injection).

50

3.34 file chsuppr

Purpose

Erase some character from a string

Syntax

ch=file chsuppr(ch orig, pos, n)

Description

Output variables :

ch = String

The original string without character [pos:pos+(n-1)]

Input variables :

ch orig = String

Original string

pos = Number

Determines the position from where you have to erase.

n = Number

Determines the number of character has to be erased.

51

3.35 file clearUpFVNode

Purpose

Returns structure from node.

Syntax

cleared=file clearUpFVNode(rootNode)

Description

Returns a structure from a node taken from EAX files. Calls forceVolume.m to
create all the force volume object contained in the node.

Output variables :

cleared = Struct

See MainExp in the Variable description chapter to have more information.

Input variables :

rootNode = java node

Is the first node found when parsing the EAX XML file in the function of
this toolbox.

52

3.36 file clearUpTimeLapseRelativeNode

Purpose

Returns structure from node.

Syntax

Cleared=file clearUpTimeLapseRelativeNode(TLNode)

Description

Returns a structure from a time lapse node taken inside an EAX files.

Output variables :

Cleared = Cell

• Cleared{deep}.File{fileNumber}.Events{numbrEvent}.self
• Cleared{deep}.File{fileNumber}.Event.mean

• Cleared{deep}.File{fileNumber}.Event.sem

• Cleared{deep}.File{fileNumber}.Event.number

• Cleared{deep}.File{fileNumber}.Events{numbrAround}.Around{dist}
• Cleared{deep}.File{fileNumber}.Around.mean{dist}
• Cleared{deep}.File{fileNumber}.Around.sem{dist}
• Cleared{deep}.File{fileNumber}.Around.number{dist}
• Cleared{deep}.File{fileNumber}.Events{numbrRelative}.Relative{dist}
• Cleared{deep}.File{fileNbr}.Relative.mean{dist}
• Cleared{deep}.File{fileNbr}.Relative.sem{dist}
• Cleared{deep}.File{fileNbr}.Relative.number{dist}

Input variables :

TLNode = Java node

Is the node obtained inside the ’TimeLapse’ node, corresponding to its
child named ’RelativeOnEvent’, ’RelativeOnRandom’ or ’Global’.

53

3.37 file extractHeaderDate

Purpose

Read a text file and extract the date.

Syntax

date=file extractHeaderDate(text)

Description

Read a text where the date is written like ’09:00:48 PM Thu Oct 14 2004’ and
returs a computer comprehesive date.

Output variables :

date = Structure

date.Year = Scalar

date.Month = Scalar

date.Day = Scalar

date.Hour = Scalar

date.Minute = Scalar

date.Second = Scalar

Input variables :

text = String

String containing the date in a form:

HH:MM:SS month DD YYYY where H,M,S,D,Y are numbers and month is :
’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’ or
’Dec’.

54

3.38 file extractNum

Purpose

Extract number from a text.

Syntax

Number=file extractNum(text,’method’)

Description

Output variables :

Number = Scalar

Input variables :

text = String

Contains the number to extract

’method’ = String

Describe from where we wand to scan.

’Reverse’ (Default) Scans from the last character

’Forward’ Scans from the first character

55

3.39 file lectHeader

Purpose

Read the header of nanoscope files

Syntax

header=file lectHeader(filepath)

Description

Given the file path returns all the needed header to let the other functions of
the toolbox perform their tasks

Output variables :

header = Structure

This structure contains :

header.dateTime = Structure
Contains the time when the file was recorded by the AFM.
Organization:

dateTime.year = Scalar
dateTime.month = Scalar
dateTime.day = Scalar
dateTime.hour = Scalar
dateTime.minute = Scalar
dateTime.second = Scalar

header.SensZScan = Scalar
is the sensitivity of the scan.

header.OpMode = String
Contain the operating mode of the AFM.
For Bioscope files:
’Force Volume’
’Image’

header.NFL

header.ScanListScanRate

header.ScanSize
Size of the scan in [nm].

header.SensitDeflection

header.NumberCurvesPerLines

header.ScanRate

header.ForceListForwVeloc

header.ForceListRevVeloc

56

header.ForceListFVScanRate

header.Z SCAN START

header.Z SCAN SIZE

header.TTD

header.ImageNumberLines

header.ImageScale

header.ImageSampsPerLine

header.ImageLength

header.ImageTwoOffset

header.ImageOffset
Indication on where to find the image data in the bioscope file.

header.ForceOffset
Indication on where to find the ForceVolume data in the bioscope
file.

header.NumberPointsPerCurves

header.Z SCALE

header.HARD Z SCALE

header.FV SCALE

header.RAMP SIZE

header.SpringConstant
Contain the spring constant of the cantilever used in [N/m]

Input variables :

filepath = String

Localisation of the file.

57

3.40 file loadXmlFCFile

Purpose

Load AEX files

Syntax

data=file loadXmlFCFile(file)

Description

Load AEX files and returns Experiment structure

Output variables :

data = Structure

See MainExp in the Variable description chapter to have more information.

Input variables :

file = String

Is the file name and path to open.

58

3.41 file makeTimeLapseRelativeNode

Purpose

Creates XML nodes for the file saving.

Syntax

[eventTLNode,]aroundTLNode,
relativeTLNode=file makeTimeLapseRelativeNode(docNode,deep,deepInTimeLapse)

Description

Creates XML TimeLapse nodes for the file saving.

Output variables :

eventTLNode = Java node

aroundTLNode = Java node

relativeTLNode = Java node

Input variables :

docNode = Java node

Main AEX java node

TLDeep = Cell

Cleared = Cell Contains the time lapse

• TLDeep{deep}.File{fileNumber}.Events{numbrEvent}.self
• TLDeep{deep}.File{fileNumber}.Event.mean

• TLDeep{deep}.File{fileNumber}.Event.sem

• TLDeep{deep}.File{fileNumber}.Event.number

• TLDeep{deep}.File{fileNumber}.Events{numbrAround}.Around{dist}
• TLDeep{deep}.File{fileNumber}.Around.mean{dist}
• TLDeep{deep}.File{fileNumber}.Around.sem{dist}
• TLDeep{deep}.File{fileNumber}.Around.number{dist}
• TLDeep{deep}.File{fileNumber}.Events{numbrRelative}.Relative{dist}
• TLDeep{deep}.File{fileNbr}.Relative.mean{dist}
• TLDeep{deep}.File{fileNbr}.Relative.sem{dist}
• TLDeep{deep}.File{fileNbr}.Relative.number{dist}

deepInTimeLapse = Integer

Number of deep computed.

59

3.42 file save

Purpose

Save experiment files

Syntax

mainExp=file save(mainExp.xmlFileName)

Description

Save experiment files in the AEX file format

Output variables :

mainExp = struct

Contains the Experiments.

Input variables :

mainExp = struct

Contains the Experiments.

xmlFileName = String

Is the file and path name of the file to be saved.

60

3.43 find CurveJump

Purpose

Finds jumps in the curve.

Syntax

[coord,curve]=find CurveJump(curve)

Description

Finds jumps in the curve by scanning the curve by a window. When the center
point of the window is outside the noise, it mark it as a jump.

Output variables :

coord = (p1, ..., pn)

Marked points have 1 values
Other points are 0

curve = (c1, ..., cn)

New curve with the markes points having a new value (the mean of the
window).

Input variables :

curve = (c1, ..., cn)

Curve from where you want to detect jumps.

61

3.44 find events

Purpose

Detects events in a curve.

Syntax

[event, newCurve]=find events(curve, threshold)

Description

Detects events in a curve. Calls find CurveJump several times recursively. The
function deselect then the curve jump lower than the noise and the lonely ones
(an event can’t be describe with only one point).

Output variables :

event = Cell

• eventnbrOfEvents.x
x coordinates composing the event

• eventnbrOfEvents.y
y coordinates composing the event

newCurve = nc1, ..., nci, ..., ncn

Same as the original curve but without the events.

Input variables :

curve = c1, ..., ci, ..., cn

Curve from where you want to detect events.

threshold = Float

Optionnal value. This is a factor which modulates the effect of noise in
the event detection. A value lower than 1 decrease the influence of noise in
error detection (then increase the probability of noise detected as event),
a value higher than 1 increase the influence of noise in error detection (but
real event becomes more susceptible to be detected as noise).

62

3.45 forceVolume

Purpose

Creation of a forceVolume class

Syntax

fvClass=forceVolume(filepath,method)

Description

Create a forceVolume class with the appropriate methode according to the file
given in argument.

Output variables :

fvClass = forceVolume class

This class contain all variables and functions needed to manimulate the
force curves

Input variables :

filepath = String

localisation of the file to be open.

method = String

Specifies which method has to be used to open the file.

’nanoscope File’ method used when the file comes directly from the
nanoscope software.

’XML’ method used when the file was saved using this toolbox.

63

3.46 generate EventGride

Purpose

Generates gride filled with 0 and 1.

Syntax

NewEventGride=generate EventGride(EventGride,method,number)

Description

Takes the event gride and returns a gride with dots not corresponding to events
in initial gride.

Output variables :

NewEventGride = Matrix

The generated matrix filled with 0 or 1.

Input variables :

EventGride = Matrix

Initial event gride

method = Number

1 Random

2 Around Vertically

3 Around Horizontally

4 All around

number = Number

in case of method = 1, sets the number of event you want to generate. If
number is set to 0, the function generate as events as it finds in the initial
gride.

in case of method =2,3 or 4, sets the distance from each positive pixels
we want to generate new pixels.

64

3.47 generate grideAroundSeries

Purpose

Creates a series of position gride.

Syntax

generatedGride=generate grideAroundSeries(PositionGride,to, whereAround)

Description

Creates a series of position gride around events. One is position around all
events, n grides are the postion of one event, and n others are the position
around each of these n events.

Call :

• generate EventGride.m

Output variables :

generatedGride = list

Organized like this :

generatedGride.AroundAll{dist} :
dist grides representing the position around all events at each dis-
tance (from 1 to dist).

generatedGride.Me{n} :
n gride representing the position of each events

generatedGride.AroundMe{n}.distance{dist} :
n*dist grides representing the position around each events at each
distances (from 1 to n and from 1 to dist).

Input variables :

PositionGride = n*n matrice

Represents the position of the points from where you want to look around.
There are symbolized as 1, and the other points have a null (0) value.

to = dist integer

Specifies the distances you want to look around (from a distance of 1 to a
distance of dist). A value of 0 returns an error.

65

whereAround = integer

Symbolise the method you want to look around.

1 = horizontally (X)
example at 2 pixels around
.....
.....
o.*.o
.....
.....

2 = vertically (Y)
example at 2 pixels around
..o..
.....
..*..
.....
..o..

3 = all around (circle)
example at 2 pixels around
..o..
.o.o.
o.*.o
.o.o.
..o..

66

3.48 generate grideOfAxes

Purpose

Creation of a set of axis in a given figure.

Syntax

axesPosition=generate grideOfAxes(parentFigure,nbreAxes)

Description

Create a set of axis in a given figure after destroying all axes present in this
figure.

Output variables :

axesPosition = matrix

Contains the pointers for each axes created in the figure.

Input variables :

parentFigure = Number

Is the handle of the figure in which you want to create axes.

nbreAxes = Number

Is the number of figure you want to create in the figure.
Note that the function can create more axis than you expect, because it
needs to store in a matrix. For example, a number of axis of 3 returns you
4 axis in a 2x2 matrix.

67

3.49 generate Patches

Purpose

Generates patches in a gride at the position where non zero values are in the
input matrix, with the given size.

Syntax

OutputMatrix=generate Patches(InputMatrix,Method,Size)

Description

Generates patches in a gride at the position where non zero values are in the
input matrix, with the given size.

Call :

• generate EventGride

WARNING : There is a bug with size higher than 4 pixels, some pixels are
not selected. To be fixed.

Output variables :

OuptutMatrix = N ∗N matrix

Input variables :

InputMatrix = N ∗N matrix

Method = String

Specifies the patches you want to generate :

• ’X’ To generate horizontal patches

• ’Y’ To generate vertical patches

• ’Surf’ To generate 2D patches

Size = Number

Specifies the size, in pixel, of the patches.

68

3.50 generate RelativeTimeLapseVector

Purpose

From a timelapse structure returns vectors (ordered in a structure)

Syntax

VectorStructure=generate RelativeTimeLapseVector(Structure)

Description

From a timelapse structure returns vectors (ordered in a structure). Usefull for
exportation.

Output variables :

VectorStructure = Cell

Contains the values in the form of vectors.
These vectors are :

• VectorStructure.Event.mean

• VectorStructure.Event.sem

• VectorStructure.Around.dist{d}.mean

• VectorStructure.Around..sem

• VectorStructure.Relative.dist{d}.mean

• VectorStructure.Around..sem

Input variables :

baseStructure = Cell

Is the structure of MainExp.TimeLapse.deep{p} at a certain p.

• baseStructure.File{n}.Event.mean

• baseStructure.File{n}.Event..sem

• baseStructure.File{n}.Around.mean{d}
• baseStructure.File{n}.Around.sem{d}
• baseStructure.File{n}.Relative.mean{d}
• baseStructure.File{n}.Around.sem{d}

69

3.51 generate vectorForceEvent

Purpose

Takes the force value of events in the forceVolum objects and put them in a
single vector. Usefull to display histogram of force.

Syntax

[ForceVector,VectorLength]=generate vectorForceEvent(MainExp)

Description

Output variables :

EvForceVector = {ef1, · · · , efi, · · · , efn}
efi is the force of the ith event

EvLengthVector = el1, · · · , eli, · · · , eln

eli is the length of the ith event

Input variables :

MainExp = Structure

70

3.52 get

Purpose

Function to get some caracteristics of the forceVolume object

Syntax

Value=get(FVObject,Propertie)

Description

Output variables :

Value Is the value you asked from the object. It can be a string, a vector, a
matrix, ... depending on what you asked.

Input variables :

FVObject = Object

Is the forceVolume object from which you want to extract information.

Properties Properties you can extract:

Compute All informations about computation
Contrast Exposant Current value of the exposant of the contrast scroll bar
Contrast Value Current value of the contrast scroll bar
curveToPlot Which curve is set to be drown
DeepDisplay Returns the deepness of the Young Modulus that will be displayed
DeflectMatrix Matrix NxNxM containing all the deflection force curves
Event Matrix Matrix NxN containing 1 (one) at the position where an event is

detected and 0 (zero) elsewhere
figureIndex The figure names and their indexes to point to
file String containing file path and name
FVCurveX The x vector of the curves
FVCurveYAv Current advance curve
FVCurveYRe Current retraction curve
header All the headers
mainExpIndice Return his indice in the main experiment container
name String containing file name
Piezzo Matrix Piezzo height at the end of the indentation for each pixel in the matrix
PoC Detection Method Method used to detect the point of contact
PoC Matrix X coordinate in the deflection force curves of the point of contact
PointTo Window where next instruction has to be done. eg:contrast,...
posXY Current x and y position
RetractMatrix Matrix NxNxM containing all the retraction force curves
Smooth Filter Return the results of the filter, Low or Low and High frequency
Stiffness Matrix Return the values of stiffness of the scaned area at the

”fv.Display.Stiffness.Deep”
Stiffness Properties Return all the properties used to compute the stiffness
Topography Matrix Correction of the piezzo height by the PoC converted in nanometers

71

3.53 image Flatten

Purpose

Do a n order flatten on an image matrix

Syntax

ImageFlattened=image Flatten(Image,Order)

Description

Output variables :

ImageFlattened = N ·N Matrix

Stored the flatten image.

Input variables :

Image = N ·N Matrix

Is the image to be flatten

Order = Number

Degree of the polynome with which the function performs it’s flatten. Can
be 1, 2, 3, 4 or 5.

72

3.54 image ThresholdCorrection

Purpose

Lets you define what is higher than the pixel you clic and what is lower.

Syntax

calqueMatrix=image ThresholdCorrection(imageMatrix, [imageHandle, [name,
[calqueMatrix]]])

Description

Creates a matrix filled with 0 and 1 based on the value of the pixels you inserte
on the function and where you clic on the gride. The 0 values define the pixels
which have a value less or equal than the pixel you selected. The 1 values define
the pixels which have a higher value than the pixel you selected. The function
displays the image if you doesn’t give him a window where it is display (and,
in this case, it close this window at the end). When you left clic on the image,
it displays the generated matrix and waits for another clic. You can left clic
as many times as you want to select the best pixel. When you want to end
the function, you have to right clic anywhere in the gride. The function lets
you undo one clic, to do so, a middle clic anywhere in the gride restore the last
selected pixel.

The function calls the function select PixelGride (section 3.71, page 91)

Output variables :

calqueMatrix = N ×N matrix

Matrix filled with 0 and 1. The 0 values define the pixels which have a
value less or equal than the pixel you selected. The 1 values define the
pixels which have a higher value than the pixel you selected.

Input variables :

imageMatrix = N ×N matrix

Matrix used to determine which is higher and which is lower than the
selected pixel.

imageHandle = Number

Optionnal

Is the handle of the image matrix (if it is displayed). If not specified, or
set as 0, the function display the image matrix in a new figure, and close
it when the function terminates.

name = String

Text you want to be display in the figure created by the function.

73

calqueMatrix = N ×N matrix

Matrix filled with 0 and 1. The 0 values define the pixels which have a
value less or equal than the pixel you selected. The 1 values define the
pixels which have a higher value than the pixel you selected.

74

3.55 import ExperimentYoungEvent

Purpose

Imports young and event from RaftIngFuzzy files.

Syntax

MainExp=import ExperimentYoungEvent(MainExp)

Description

Imports young and event from RaftIngFuzzy files. Function promps the user to
indicate the localisation of these files.

Output variables :

MainExp = Cell

Modified MainExp with all the forceVolume object updated with their
young and event grides. ForceVolume files are modified through the set
function with the argument ’import Event’ or ’import Young’ followed by
the path of files.

Input variables :

MainExp =

Original MainExp.

75

3.56 import RaftIngEventGride

Purpose

Imports the position of pixels where at least one event was detected by the
RaftIngFuzzy software.

Syntax

eventGride=import RaftIngEventGride(FVFileName,grideSize)

Description

Imports the event postition computed by RaftingFuzzy from the file ”FVFile-
Name” with the specified gride size. It returns the events postition in one
matrices.

Output variables :

eventGride = n*n matrix

matrice composed by 0 or 1, 1 represtents the presence of at least one
event, 0 means no event detected at this postition.

Input variables :

FVFileName = string

path and file name from which the young modulus was computed with
the RaftIngFuzzy software (eg. /path/name/filename.001). The module
converts the file name to the young modulus and the point of contact file
name.

grideSize = n integer

Specifies the size of the scan gride.

76

3.57 import RaftIngYoungGride

Purpose

Imports young modulus computed by the software RaftIngFuzzy

Syntax

[youngGride, pocGride]=import RaftIngYoungGride(FVFileName,grideSize)

Description

Imports the young modulus computed by RaftingFuzzy from the file ”FVFile-
Name” with the specified gride size. It returns the young gride and the position
of the points of contacts in two matrices.

Output variables :

youngGride = n*n matrice

pocGride = n*n matrice

Input variables :

FVFileName = string

path and file name from which the young modulus was computed with
the RaftIngFuzzy software (eg. /path/name/filename.001). The module
converts the file name to the young modulus and the point of contact file
name.

grideSize = n integer

Specifies the size of the scan gride.

77

3.58 load bioForceCurve

Purpose

Load the force curves from the bioscope file

Syntax

[DEFLECTION A,DEFLECTION R] = load bioForceCurve(file, offset,
NumberCurvesPerLines, NumberPointsPerCurves, Z SCAN SIZE,
HARD Z SCALE, SensitDeflection)

Description

Output variables :

DEFLECTION A = Matrix

Each points (x,y) of the matrix correspond an approach force curve. So,
the point (x,y,i) is the ith point of the curve (x,y).Size of
(NumberCurvesPerLines2 ·NumberPointsPerCurves)

DEFLECTION R = Matrix

Each points (x,y) of the matrix correspond a retraction force curve. So,
the point (x,y,i) is the ith point of the curve (x,y).Size of
(NumberCurvesPerLines2 ·NumberPointsPerCurves)

Input variables :

file = String

Filepath of the file from which we want to extract the piezzo image.

offset = Scalar

Tells where are the data in the file.

NumberCurvesPerLines = Scalar

What is the definition used during the scan.

NumberPointsPerCurves = Scalar

Defines the number of points that contains each curves

Z SCAN SIZE = Scalar

Used for rescale the data obtained in the file.

HARD Z SCALE = Scalar

Used for rescale the data obtained in the file.

SensitDeflection = Scalar

Used for rescale the data obtained in the file.

78

3.59 load bioImageGride

Purpose

Load the piezzo image gride from the bioscope file

Syntax

ImageMatrix = load bioImageGride(file, offset, NumberCurvesPerLines,
ImageNumberLines, ImageSampsPerLine, ImageScale, SensZScan)

Description

Output variables :

ImageMatrix = Matrix

Each points of the matrix correspond to the altitude of the piezzo at the
end of the indentation, in [nm]. Size of
(NumberCurvesPerLines + 1) · (NumberCurvesPerLines + 1)

Input variables :

file = String

Filepath of the file from which we want to extract the piezzo image.

offset = Scalar

Tells where are the data in the file.

NumberCurvesPerLines = Scalar

What is the definition used during the scan.

ImageNumberLines = Scalar

What is the definition used during the scan.

ImageSampsPerLine = Scalar

What is the definition used during the scan.

ImageScale = Scalar

Used for rescale the data obtained in the file.

SensZScan = Scalar

Used for rescale the data obtained in the file.

79

3.60 move FVobjInList

Purpose

Moves a force volume object in the list.

Syntax

newExpStruct=move FVobjInList(oldExpStruct,FVname,direction)

Description

Moves the FVname force volume object in the list.

Output variables :

newExpStruct = Struct

Input variables :

oldExpStruct =

FVname = String

The forceVolume object name to move. The name is the one in oldExp-
Struct.name, not the one in the object (FC.name).

direction = String

Direction where you want to move your object.
Possible values :

• ’next’
Moves the object to the next position (n+1).

• ’prev’
Moves the object to the previous position (n-1).

• ’last’
Moves the object to the last position.

• ’first’
Moves the object to the first position.

80

3.61 navigate GridePosition

Purpose

Change the position values

Syntax

[Pos,IsEnd]=navigate GridePosition(PosX,PosY,NbrPixelPerLines,
’direction’,[DisplayWin])

Description

Changes the position values and tells if we are at the end of the gride

Output variables :

Pos.X, Pos.Y, Pos.Abs New position in the gride

IsEnd Switching variable

=1 if it reached the end of the gride
=0 otherwise

Input variables :

PosX, PosY = x, y

Position in the gride

NbrPixelPerLines = n

Number of pixel per lines. The gride is a square, then it’s also the number
of pixel per column.

’direction’ string

representing the direction where you want to go.

’first’ to go to the pixel (1,1)
’next’ to go to the next pixel
’prev’ to go to the previous pixel
’up’ to go to the next line, but the same colume
’down’ to go to th previous line, but the same column

DisplayWin Optionnal variable.

Tells if the function has to display a warning window when it has reached
an extremity of the gride.

= 0 (default) to not display
= 1 to display

81

3.62 plot EventsInFC

Purpose

Plots the curve and the detected events in the same plot.

Syntax

figureIndex=plot EventsInFC(curveX, curveY, events, [name, [figureIndex]])

Description

Plots the curve and the detected events in the same plot.

Output variables :

figureIndex = Float

Input variables :

curveX = (x1, , ...xn)

curveY = (y1, ..., yn)

events = Cell

See compute event for a complete description.

name = String

figureIndex = Float

82

3.63 plot ExpSeries

Purpose

Display a series of grides contained in an experiment

Syntax

MainExp=plot ExpSeries(MainExp,GrideToDisplay)

Description

This function extracts image matrix contained in all the forceVolume classes in
the experiment and display them as a gride in a single window. The images to
display are choosen in MainExp

Output variables :

MainExp = struct

Conain the experiment

Input variables :

MainExp = struct

Conain the experiment

GrideToDisplay = String

’Cache’ displays the cache (if existed) used to compute the stiffness

’Piezo’ displays the piezo height images

’Stiffness’ display the stiffness maps

’Clusters’ display the clusters detected

83

3.64 plot FC

Purpose

Plot the Force Curves

Syntax

figureIndex=plot FC(CurveX,CurveYAv,CurveYRe,[name,[figureIndex,[PoCDetection]]])

Description

Plot the approach and/or the retraction force curve (FC). If we want to plot
only one FC, the other needs to be specified as 0. If we want to detect the point
of contact, we have to specifie the name (can be empty string), and the figure
index (can be 0 if it doesn’t exist) too.

Output variables :

figureIndex =

Is the handle of the window.

Input variables :

CurveX = (x1, x2, ...xn)

CurveYAv = (yav1, yav2, ..., yavn) or 0

CurveYRe = (yre1, yre2, ..., yren) or 0

name = string

figureIndex = number

PoCDetection = 0 or string

accepted values are 0 for no detection or a string accepted by the com-
pute PointOfContact (page 30) function.

84

3.65 plot Gride

Purpose

Plots the matrix

Syntax

figureIndex=plot Gride(matrixToPlot, [text, [Contraste, [figureIndex]]])

Description

Plots the matrix in ’copper’ color with, optionnaly a text in the window, a given
contrast, and targeted in the selected window.

Output variables :

figureIndex = Number

Is the index to hold the correct window.

Input variables :

matrixToPlot =

m1,1 · · · m1,n

...
. . .

...

mn,1 · · · mn,n

Where mi,j are the individual values of the matrix

name = String

Optionnal Variable
Is the text you want to be displayed in the head of the window

Contraste = Number

Optionnal Variable
Sets the contrast of the displayed picture.

figureIndex = Number

Optionnal Variable
Is the index to hold the correct window.

85

3.66 plot grideOfPlot

Purpose

Plots several grides in one figure.

Syntax

figureHandle=plot grideOfPlot(figureHandle, colorMatrix, [dotMatrix],
[text]])

Description

Plots several color matrices in one figure. In these matrices can be plotted also
dots, which are defined in the dotMatrices. The optional value ’text’ is used to
write in the figure header.

This function use the generate grideOfAxes function (page 67)

Output variables :

figureHandle = Number

Handle of the figure.

Input variables :

figureHandle = Number

Handle of the figure. If not valide, or figure was closed, the function opens
a new one (which handle is return at the end of the function).

colorMatrix = (n× n×m)

Is the collection of m matrix of size n× n to be color ploted.

dotMatrix = (n× n×m)

Is the collection of m matrix of size n × n used to plot dots in the color
plot. The dots are defined with 1, and no dots with 0

text = String

Text you want to see on the top of the figure.

86

3.67 plot Indentation

Purpose

Plots the indentation vs force curve

Syntax

figureIndex=plot Indentation(Indentation,Force,CurvePartition,[name,
[figureIndex]])

Description

Plots the indentation vs force curve and the curves partition selected for the
stiffness computation.

Output variables :

figureIndex = Number

Is the index to hold the correct window.

Input variables :

Indentation = (I1, I2, ..., Ii)

coordinates in [nm] of the points of the indentation curve. I(1) is the
deepest point, I(i) is the point of contact.

Force = (F1, F2, ..., Fi)

coordinates in [Pa] of the points of the force curve. F(1) is the deepest
point, F(i) is the point of contact.

CurvePartition = (n0, n1, ..., nSegNbr)

Indices for the selection of the curve parts. The first segment is taken
between the n(0) and n(1) points, the second between the n(1)+1 and
n(2) points,... the last, between the n(SegNbr-1)+1 and n(SegNbr).

name = String

Text to appears in the top of the window.

figureIndex = Number

Is the index to hold the correct window.

87

3.68 plot Stiffness

Purpose

Plots the stiffness matrix

Syntax

figureIndex=plot Stiffness(matrixToPlot, [deep, [text, [Contraste,
[figureIndex]]]])

Description

Plots the matrix in ’jet’ color with, optionnaly a text in the window, a given
contrast, and targeted to the selected window if already exist.

Output variables :

figureIndex = Number

Is the handle of the correct window.

Input variables :

matrixToPlot = M a N ×N ×M matrix

Where mi,j,k is the kth stiffness of the pixel (i, j).

deep = Number (default = 1)

Optional Variable.
Sets the deepness of the Young modulus you want to display.

text = String

Optionnal Variable
Is the text you want to be displayed in the head of the window

Contraste = Number

Optionnal Variable
Sets the contrast of the displayed picture.

figureIndex = Number

Optionnal Variable
Is the index to hold the correct window.

88

3.69 plot TimeLapse

Purpose

Plots the timeLapse

Syntax

figureHandle=plot TimeLapse(Structure, [mainTitle, [figureHandle, [comment]]])

Description

Plots the time lapse in three windows.
One for the global stiffness, one for the relative stiffness on events at each
distances computed, and one fore the relative stiffness on random points at
each distances computed.

Output variables :

figureHandle = Float

Input variables :

Structure =Cell

mainTitle = String

figureHandle = Float

comment = String

89

3.70 select Path

Purpose

Select a path between two pixels

Syntax

ListOfPixel=select Path(Window,Size)

Description

Gives handle to the user The function compute then the pixels defining the path
between these two pixels.

This function calls select PixelGride (page 91)to select the two pixels.

Output variables :

ListOfPixel = Structure

is composed by two vectors which define the coordinate in the gride of the
pixels in the path.

ListOfPixel.X = (x1, x2, ...xt)

ListOfPixel.Y = (y1, y2, ...yt)

such as (x1, y1) is the first pixel, ... (xt, yt) is the last one.

Input variables :

Window = Number

Is the handle of the figure object. (usefull to know in which window you
want to select the path)

Size = Number

Is the size of the matrix displayed on the window. It is used to detect
when a clic is made outside of the matrix.

90

3.71 select PixelGride

Purpose

Lets the user select a pixel in a given gride.

Syntax

[PosX,PosY,[button]]=select PixelGride(Window,Size)

Description

Lets the user select a pixel in a given gride and return the position (x, y)

Output variables :

PosX = x

PosY = y

such as (x, y) is the selected pixel position in the gride.

button = n

Optionnal
Returns the button with which we clic. In this way, you can make different
behaviour depending the button you clic on the matrix.

Window = Number

Handle of the window where the user has to select the pixel

Size = Number

Size of the gride displayed in the selected window. It is used to detect
when the user clic outside of the gride, in such a case, the function still
wait for the pixel selection.

91

3.72 set

Purpose

Function to modify the forceVolume object

Syntax

FVObject=set(FVObject,Propertie)

Description

Output variables :

FVObject = Object

Is the modified forceVolume object

Input variables :

FVObject = Object

Is the initial forceVolume object we want to modify.

Properties Properties you can change and how:

One Parameter
’CorrectCurveDrop’ modify the end of the

curve if it drops down to
zero

’plotFC’ Plots the force curve.
’plotPiezzoImage’ Plots the piezzo image Ma-

trix.
’plotIndent’ Plots the indentation/-

force curve.
’plotStiffness’ Plots the stiffness matrix.
’plotTopography’ Plots the topography.
’plotDeepGride’ Plots the deep of indenta-

tion.

92

Two Parameters
’navigateFC’ {’next’, ’prev’, ’up’, ’down’ of

’reload’}
Navigates through the matrix
and puts in memory the corre-
sponding force curves

’Compute’ {’Start’, ’Stiffness’, ’Event’,
’Both’, ’Smooth Filter’}

Starts the computation of the
selected in the whole matrix.

’numberIndentationParts’ Number Sets the number of parts needed
for the stiffness computation.

’indentationDeep’ Number Sets the deep of each parts in
the indentation curve.

’HertzModel’ {’Sphere’ of ’Cone’} Sets the model used for the Stiff-
ness computation.

’import Event’ {path} Imports event gride (look in the
path specified).

’import Young’ {path} Imports young gride (look in the
path specified).

’PointTo’ {’Young Moduli Image’, ’Stiff-
ness’, ’PiezzoImage’, ’Topogra-
phy’ or ’Deep Image’}

Set the pointer to the selected
window to target the command
like contrast.

’Contrast Exposant’ Number Sets the contrast exposant, use
to have the correct value from
the slider change. Value af-
fected : fv.Contrast.Exp

’mainExpIndice Number Value affected :
fv.MainExpIndice

’Stiffness Deep’ Number Changes the stiffness displayed
when several deep has been
computed. Value affected :
fv.Stiffness.Deep

’GlassFit’ vector(1,2) Changes the value of the
slope of the curve in hard
sample. Value affected :
fv.Stiffness.Glass

’Automat’ {’On’ or ’Off’} This Value switches off all
navigation warning win-
dow. Usefull when doing
automated computation on
several files. Value affected :
fv.Parameters.Automate

93

Three Parameters
’FC’ {’Av’ or ’Re’} {’On’ or ’Off’} Sets the curves to be

plotted. Value affected :
fv.CurveToPlot.Av resp.
fv.CurveToPlot.Re

’Compute’ {’Stiffness’ or ’Event’} {’On’ or ’Off’} Sets what you want
to automatically com-
pute. Value affected :
fv.Compute.Event resp.
fv.Compute.Stiffness

’PoC’ {’Display’ or ’Detection-
Method’}

{’On’ or ’Off’} or {’Curve
Fit’ or ’Slope Change’}

Value affected :
fv.Display.PoC resp.
fv.PoC.DetectionMethod

’Indentation’ ’Display’ {’On’ or ’Off’} Value affected :
fv.Display.Indentation

’Contrast’ {’Stiffness’ or ’PiezzoIm-
age’}

Number Value affected are resp.
: fv.Contrast.Stiffness,
.Piezzo, .Corrected or
.DeepGride

”Smooth Filter’ {’Method’ or ’Size’} resp. String with {’X’, ’Y’
or ’Surf’} or Integer

Values affected are
resp.: MainFC.Parame-
ters.SmoothFilter.Me-
thod or MainFC.Parame-
ters.SmoothFilter.Size

94

Chapter 4

Modules Description

95

4.1 Gui

Purpose

Main module. Displays the graphical user interface (Gui.m and Gui.fig are
necessary).

Button and how they work

Date / Time This is a text field where the date and time when the force
curves are recored is displayed. The display is updated when the forceVolume
object is change by the popup menu ”Force Volume files in memory” in the
Experiment pannel (line 602).

ForceVolume - Navigate

Up

Upbutton (line 161)

Passes the ’up’ parameters to the function navigate FC through the set
function.
Finish by the internal function refreshAll (line 645).

Down

downbutton (line 172)

Passes the ’down’ parameters to the function navigate FC through the set
function.
Finish by the internal function refreshAll (line 645).

Prev

prevbutton (line 138)

Passes the ’prev’ parameters to the function navigate FC through the set
function.
Finish by the internal function refreshAll (line 645).

Next

nextbutton (line 150)

Passes the ’next’ parameters to the function navigate FC through the set
function.
Finish by the internal function refreshAll (line 645).

ForceVolume - Stiffness

parts

editNumberParts (line 343)

Edits the number of parts you need for the stiffness study. Passes the
parameters ’numberIndentationParts’ with the number to the set function.
The result is the update of the MainFC.Stiffness.SegmentNumber variable.

96

nm
editDeepIndent (line 369)
Edits the deep of each parts you need for the stiffness study. Passes the
parameters ’indentationDeep’ with the number to the set function. The
result is the update of the MainFC.Stiffness.Deep variable.

Hertz Model
popuHertzModel (line 395)
Popup to choose which model you want to fit the indentation curve.
Passes the parameters ’HertzModel’ with’Sphere’ or ’Cone’ to the set func-
tion. The result is the update of the MainFC.Stiffness.HertzModel vari-
able.

Compute File Displayed
pushbuttonCompute (line 429)
Updates first the values MainFC.Stiffness.SegmentNumber, MainFC.Stiffness.Deep
and MainFC.Stiffness.HertzModel with the displayed values.
Transfers the Glass.Fit value of MainExp to MainFC through the set func-
tion (with the ’GlassFit’ and the value for parameter).
The computation is done by the ’Compute’,’Stiffness’ parameter of the set
function. Finally the result is copied from MainFC to the corresponding
MainExp.ForceVolumeClass.

Compute all files
AllFileStiffnessCompute (line 731)
Sets the value of MainExp.Compute.All to 1 and calls the gui compute
function.

ForceVolume - Young Moduli Deep

Prev
PrevYM (line 717)
Display the deeper young moduli.
It first gets the current deep, and then increase the displayed deep if it is
less than the number of computed deep.

Next
NextYM (line 703)
Display the less deep young moduli.
It first gets the current deep, and then decrease the displayed deep. You
cannot set a deep less than one.

ForceVolume - Parameters

PoC detection method
PoCDetChange (line 775)
Changes the point of contact detection method.
Sets the MainFC.PoC.DetectionMethod to the wanted value through the
set function, with the ’PoC’, ’DetectionMethod’ and the value (a string).

97

ForceVolume - Display

Forward Force Curve

DisplayAvFC (line 270)

Display (marked) or not the forward force curve. Update the values of
MainFC.CurveToPlot.Av througn the set function with the ’FC’,’Av’ and
’On’ or ’Off’ argument.
Finally plots the results with the argument ’PlotFC’ of the set function.

Reverse Force Curve

displayRevFC (line 286)

Display (marked) or not the reverse force curve. Update the values of
MainFC.CurveToPlot.Re througn the set function with the ’FC’,’Re’ and
’On’ or ’Off’ argument.
Finally plots the results with the argument ’PlotFC’ of the set function.

Point Of Contact

checkboxPOC (line 323)

Display (marked) or not the point of contact detected with the choosen
method. If the user want to turn off, it first check if the indentation force
curve is displayed (). If it is the case, it displays an error explaining that
the software needs the point of contact detection in order to display the
indentation curve. You first need to turn of the indentation display.
If all is ok, the MainFC.Display.PoC value is set to 1 or 0 to display or
not the point of contact through the set function with the ’PoC’, ’Display’
and ’On’ or ’Off’ argument.

Indentation Curve

checkboxIndDisplay (line 301)

Display (marked) or not the indentation curve. Changes the MainFC.Display.Indentation
boolean value through the set function with the ’Indentation’,’Display’ and
’On’ or ’Off’ argument.

Piezzo Height Image

DisplayPiezzoImg (line 254)

Display (marked) or not the height of the piezzo at the end of the inden-
tation through the set function with the ’plotPiezzoImg’ argument, which
displays and returns the MainFC object with the handle of the window
(via the plot Gride function).

Young Moduli Image

checkboxDisplayYM (line 458)

Display (marked) or not the young modulus through the set function with
the ’plotStiffness’ argument, which displays and returns the MainFC ob-
ject with the handle of the window (via the plot Stiffness function).

98

Topography Image

checkboxDisplayTopography (line 474)

Display (marked) or not the topographical image through the set func-
tion with the ’plotTopography’ argument, which displays and returns the
MainFC object with the handle of the window (via the plot Gride func-
tion).

Indentation Deep Image

checkboxDisplayDeep (line 489)

Display (marked) or not the deep of the indentation through the set func-
tion with the ’plotDeepGride’ argument, which displays and returns the
MainFC object with the handle of the window (via the plot Gride func-
tion).

ForceVolume - Images

Popup

popupImageSelection (line 546)

Changes the window pointer (MainFC.figureIndex.Pointer) to the choosen
value via the set function with the ’PointTo’ and the choosen window for
argument.

Display Slice

ButtonSlice (line 810)

Display the slice of the image displayed in the window pointed through
a path. First takes the window handle and then calls the function se-
lect Path and display Slice.

Slider

sliderContrastValue (line 504)

Changes the contrast of the image displayed in the window pointed.

Exponent

editContrastExponent (line 586)

Changes the exponent of the slice. The slice can have a value from 1 to
10, so the exponent permit to increase the value.

99

4.2 gui LoadExperiment

Purpose

Loads AEX files resulting in a MainExp structure in memory.

Variables needed:

directories = list of directories used. First try to load Directories.ini, if it
doesnt exist, it is created.

Variables created:

directories = list of directories.

MainFC = See Variable description

MainExp = See Variable description

MainExp.Glass.Fit = (a; b)

where y = ax + b

Value of the slope in hard sample. Load it from the first experiment. If it
doesn’t exist, create the null vector.

MainExp.Glass.Sensitivity = n

Is the exposant value of the steps when calibrating the glass.

100

4.3 gui LoadForceVolume

Purpose

Loads DI force volume file.

Variables needed:

directories = list of directories used.

First try to load Directories.ini, if it doesnt exist, it is created.

MainExp = Optional

See Variable description (section 5.1, page 103). If it doesn’t exist, a new
experiment is created

Variables created or modified:

directories = list of directories.

MainFC = See Variable description

MainExp.NumberExperiment = Number

Is incremented by one. Stores the number of force volume object stored.

MainExp = See Variable description

The forceVolume object is placed at the end of the structure MainExp.ForceVolumeClasse.

MainExp.name = Structure

This structure stores the names of the force volume files in memory in
MainExp.ForceVolumeClasse. The order is the same (i.e MainExp.name{n}
is the name of the MainExp.ForceVolumeClasse{n} forceVolume object.

MainFC.mainExpIndice = Number

The indice indicates where in the MainExp.ForceVolumeClasse structure
the forceVolume object is stored.

FVPanel = gui panel

Set it to visible.

MainExp.Glass.Fit = (a; b)

where y = ax + b

Value of the slope in hard sample.
Is created if the force volume file is the first file of a new experiment,
otherwise it remains unchanged. The default value is (0; 0)

MainExp.Glass.Sensitivity = n

Is the exponent value of the steps when calibrating the glass.
Is created if the force volume file is the first file of a new experiment,
otherwise it remains unchanged. The default value is 1

101

Chapter 5

Variables Description

102

5.1 MainExp

MainExp.Auteur = string

Name of the autor of the experiment.

MainExp.Description =string

Description of the experiment.

MainExp.ForceVolumeClasse = struct

Where are stored the forceVolume object, as structure.
To point the object n :

MainExp.ForceVolumeClasse{n}

MainExp.Figure.GrideOfPlot = n

Handle of the figure in which the series of topography and events of each
ForceVolume object are display.

MainExp.Glass.Fit = (a,b)

Value y=ax+b of the first order fit vith curves on hard sample.

MainExp.Glass.Sensitivity = n

Sensitivity of the correction used for the calibration of the fit with curves
on hard sample.

MainExp.name = string

Names of the files include in the experiment.

MainExp.NumberExperiment = n

Number of files include in the experiment.

MainExp.Parameters = Struct

Several computation parameters shared by all forceVolume experiments.

MainExp.Parameters.Event = Struct

Parameters concerning the event computation.

MainExp.Parameters.Event.AngleConv

MainExp.Parameters.Event.DetectNoise

MainExp.Parameters.Event.VerticalConv

MainExp.Parameters.Event.VShape

MainExp.TimeLapse = struct

Contains the result computed by the computeTimeLapseButton Callback
function of Succellus.m, called when clicking the ”Compute TimeLapse”
button

103

.Deep{deepNb}.File{fileNb} = struct
This structure contains the values for the file fileNb at the deepness
deepNb

.EventsevtNb : struct
The characteristic of the event evtNb of the file fileNb at the
deepness deepNb is described here :
.self : number

is the stiffness of this event
.Arounddist : number

is the stiffness of each pixels aroud this event at the distance
dist

.Relativedist : number
is the relative stiffness of this event at the distance dist

.Event : struct The global characteristic of the events of the file
fileNb at the deepness deepNb is described here :
.mean : number

is the mean stiffness of the events of this file
.sem : number

is the standard error of mean of the stiffness of the events of
this file

.number : number
is the number of event taken in consideration to compute the
two latter numbers.

.Arounddist : struct
.mean : number

is the mean stiffness around the events of this file at the
distance dist

.sem : number
is the standard error of mean of the stiffness around the
events of this file at the distance dist

.number : number
is the number of values taken in consideration to compute
the two latter numbers.

.Relative : struct
.mean : number

is the mean relative stiffness of the events of this file
.sem : number

is the standard error of mean of the relative stiffness of the
events of this file

.number : number
is the number of event taken in consideration to compute the
two latter numbers.

.Vector{deepNbr} :
Is the vector for easy plot

.Event :
Structure containing the following elements :

104

.mean

.sem

.number
.Around.dist{pixelDist} :

Structure containing the following elements :
.mean
.sem
.number

.Relative.dist{pixelDist} :
Structure containing the following elements :
.mean
.sem
.number

For example, to access the relative stiffness of the event number 4 of the
file 10 at two pixel distance and first deep :

MainExp.TimeLapse.Deep{1}.File{10}.Events{4}.Relative{2}
MainExp.TimeLapseRand

MainExp.TimeLapseGlobal

105

5.2 MainFc

MainFC.calib.FacteurX = number

Contain the calibration constant to create the CurveX.
Created in @forceVolume/calibrationConstant.m

MainFC.calib.FacteurY = number

Contain the calibration constant to calibrate the CurveYAv and Re.
Created in @forceVolume/calibrationConstant.m

MainFC.calib.Vitesse = number

Contain the calibration constant.
Created in @forceVolume/calibrationConstant.m

MainFC.Compute.Events = Number

=1 to detect the events.
=0 to not compute it.

P.S. as the event detection is not yet implemented, the value has no effects
on the computation.

MainFC.Compute.Stiffness = Number

=1 to compute the stiffness.
=0 to not compute it.

MainFC.Current.CurvePartition = Vector

Contain the indices of each partition selected on the force/indentation
curve. Used to compute the several stiffness.

MainFC.Current.PoC.delta = Number

MainFC.Current.PoC.distDelta = Number

MainFC.Current.PoC.Errfity = Vector

MainFC.Current.Force = Vector

Contain the force curve of the current gride position.
Asked by textttcompute CurvePartition.

MainFC.Current.Indentation = Vector

Contain the indentation curve of the current gride position.
Asked by textttcompute CurvePartition.

MainFC.Current.PoC.Position = Number

MainFC.CurveToPlot.Av = Number

=1 to display the approach curve.
=0 to not display it.

MainFC.CurveToPlot.Re = Number

=1 to display the retration curve.
=0 to not display it.

106

MainFC.PoC.DetectionMethod = String

Specifies the way to detect the point of contact.
Values are :
’Mannual’,
’SlopeChange’
’CurveFit’

MainFC.Display.Indentation = Number

Indicates if the user wants to display the indentation curve
Values are :
= 1 to display
= 0 to not display

MainFC.Display.PoC = Number

Indicates if the user wants to display the point of contact
Values are :
= 1 to display
= 0 to not display

MainFC.Event.GridePos = Matrix

Contains the position of the detected events.

MainFC.Event.GrideRand = Matrix

Contains the random generated gride, to statistical studies (to compare
with the event gride).

MainFC.Events = Cell

Contain the description of each events.

MainFC.Events{nbr}.x contains the x coordinate of the event number
nbr.

MainFC.Events{nbr}.y contains the y coordinate of the event number
nbr.

MainFC.Events{nbr}.maxY contains the higher y value of the event num-
ber nbr.

MainFC.Events{nbr}.minY contains the lower y value of the event num-
ber nbr.

MainFC.Events{nbr}.maxX contains the x value corresponding to the
higher y value of the event number nbr.

MainFC.Events{nbr}.minX contains the x value corresponding to the
lower y value of the event number nbr.

MainFC.Events{nbr}.jumpSlope contains the slope of the jump during
the unbouding event (maxY−minY

maxX−minX)

MainFC.figureIndex = Struct

Contain the indexes of the displayed figures
They are :

107

MainFC.figureIndex.DeepGride links to the window where the deepness
of indentation is displayed.

MainFC.figureIndex.FV links to the windows where force-curves are
plotted.

MainFC.figureIndex.PiezzoImage links to the window where the height
of the piezzo is displayed.

MainFC.figureIndex.Pointer Specifies the window where the command
should be send.

MainFC.figureIndex.Indentation links to the window where the force/
indentation curves are plotted.

MainFC.figureIndex.Stiffness links to the window where the stiffness
of the sample is displayed.

MainFC.figureIndex.Topography links to the window where the topog-
raphy is displayed.

MainFC.file = string

contain the link to the bioscope file.

MainFC.ForceMatrix = Not used

I tried this to store all the force curves. But as they have all different
length.... Perhaps sould I try to store the whole curve, without thinking
about point of contact...

MainFC.FVCurveX = Vector

Contains the X values of the curve in memory.

MainFC.FVCurveYAv = Vector

Contains the Y values of the approche curve in memory.

MainFC.FVCurveYRe = Vector

Contains the Y values of the retraction curve in memory.

MainFC.FVDeflectionAvMatrix = 3D matrix

Contain the approche force curves.
It’s size is (NxNxM)
where N is equal to MainFC.header.NumberCurvesPerLines,
and M is equal to MainFC.header.NumberPointsPerCurves

MainFC.FVDeflectionReMatrix = 3D matrix

Contain the retraction force curves.
It’s size is (NxNxM)
where N is equal to MainFC.header.NumberCurvesPerLines,
and M is equal to MainFC.header.NumberPointsPerCurves

MainFC.FV.IndentMatrix = Not used

I tried this to store all the indentation curves. But as they have all different
length.... Perhaps sould I try to store the whole curve, without thinking
about point of contact...

108

MainFC.gridePos.Abs =1

Numbre containing the absolute position in the gride of the curve in mem-
ory

MainFC.gridePos.X = Number

Numbre containing the X position in the gride of the curve in memory

MainFC.gridePos.Y = Number

Numbre containing the Y position in the gride of the curve in memory

MainFC.header = struct

contain the headers

MainFC.ImageMatrix.Corrected = 2D matrix

Contain the total height of the sample at each points of the scanned area.

MainFC.ImageMatrix.Deep = 2D matrix

Contain the deep of indentation in the sample at each points of the scanned
area.

MainFC.ImageMatrix.Piezzo = 2D matrix

Contain the height of the piezzo at the end of the indentation each points
of the scanned area.

MainFC.ImageMatrix.PoC = 2D matrix

Contain the indice on the curve of the point of contact between the tip
and the sample each points of the scanned area.

MainFC.ImageMatrix.SmoothFilterHighFrequency = 4D matrix

SFHL = (PosX,PosY,Deep, Size) represents the value at the given po-
sition (PosX,PosY) in the deepth Deep with patch size Size.

MainFC.ImageMatrix.SmoothFilterLowFrequency = 4D matrix

SFLL = (PosX,PosY, Deep, Size) represents the value at the given po-
sition (PosX,PosY) in the deepth Deep with patch size Size.

MainFC.mainExpIndice = number

contain the position of the file in the MainExp structure.

MainFC.name = string

contain the name of the file.

MainFC.Parameters = Structure

Contain all parameters used for the computation. (see compute * for more
details)

MainFC.Parameters.Deep =[]

MainFC.Parameters.delta =[]

MainFC.Parameters.distDelta =[]

109

MainFC.Parameters.force =[]

MainFC.Parameters.Glass =[]

MainFC.Parameters.SegmentNumber =[]

MainFC.Parameters.Stiffness.HertzModel =[]

MainFC.Parameters.PoC.DetectionMethod =[]

MainFC.Parameters.SmoothFilter.Size = Integer
Represents the maximum size of the patches to apply when doing the
smooth filter.
Use in set function with parameters ’compute’,’Smooth Filter’
Set in set function with parameters ’Smooth Filter’,’Size

MainFC.Parameters.SmoothFilter.Method = String
Represents the method to apply when doing the smooth filtering of
the young modulus. ’X’ to do one dimentional patches horizontally,
’Y’ to do one dimentional patches horizontally, and ’Surf’ to do two
dimentional patches.
Use in set function with parameters ’compute’,’Smooth Filter’
Set in set function with parameters ’Smooth Filter’,’Size

MainFC.path = string

contain the path of the bioscope file.

MainFC.PoC.Current = Number

Contain the indice of the detected point of contact on the curve cur-
rently in memory. So if MainFC.PoC.Current = i, the point defined by
MainFC.FVCurveX(i),MainFC.FVCurveYAv(i) is the point of contact.

MainFC.PoC.force = Number

Used to force the point of contact detection, even if it was already com-
puted.
= 1 (default) force detection
= 0 doesn’t force
PS. This is a future feature, it has no effect now.

MainFC.Pointer = String

Specifies on which figure we want to target specialized instructions (like
setting the contraste,...).
Values are:

Stiffness

PiezzoImage

MainFC.Stiffness.Deep = Number

Specifies the deepness in [nm] of the indentation curve we want to compute
each stiffness.
default = 50

110

MainFC.Stiffness.Glass = (a, b)

Where y = ax + b
Specifies the value of the fit with a force curve taken in a hard sample.
This value can be changed by @forceVolume/set.m
This value is used by the function plot Indentation
MainFC.Parameters.Glass is update by this value for computation. Only
the updated value is used for computation of young moduli and is stored
in the saved file. So MainFC.Stiffness.Glass is a temporary item to fine
calibrate.

MainFC.Stiffness.HertzModel = String

Specifies which Hertz model we want to use to compute the stiffness.
Values are:
’Sphere’ (default)
’Cone’

MainFC.Stiffness.SegmentNumber = Number

Specifies the number of stiffness (each one having a deep of MainFC.Stiffness.Deep
[nm]) we want to compute.

MainFC.Stiffness.SemiAngle = Number

Contain the semi-opening angle [rad], used if the tip is modelized as a
cone (i.e. MainFC.Stiffness.HertzModel=’Sphere’)
default = (45/2) ∗ pi/180

MainFC.Stiffness.TipCar.Radius = Number

Contain the radius of the sphere, used if the tip is modelized as a sphere
(i.e. MainFC.Stiffness.HertzModel=’Sphere’)
default = 40

MainFC.test =0

Internal switcher to make test (if set to 1)

MainFC.YoungModulus = 2D Matrix

Contain the Young moduli

111

Chapter 6

AEX
Afm Exchange XML file
Format

<!DOCTYPE ForceCurveAnalyse [

<!ELEMENT ForceCurveAnalyse (date , auteur , description , NumberForceVolumeFiles ,

ForceVolumeNames , TimeLapse +)>

<!-- date specifie la date de creation du fichier -->

<!ELEMENT date (#PCDATA)>

<!ELEMENT auteur (#PCDATA)>
<!-- "description" contient un court texte decrivant l’experience realisee -->

<!ELEMENT description (# PCDATA)>

<!NumberForceVolumeFiles (# PCDATA)>

<!ForceVolumeNames (# PCDATA)>

<!ELEMENT TimeLapse (RelativeOnEvent+,

<TimeLapse FileInjection (# PCDATA)>

<RelativeOnEvent >

<ListOfEvents File (# PCDATA)>

<Events DeepNbr (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<Around DeepNbr (# PCDATA)>

<!ELEMENT description (# PCDATA)>

</Around >

</ListOfEvents >

<ListOfEvents File (# PCDATA)>

<Events DeepNbr (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<Around DeepNbr (# PCDATA)>

<data Distance (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<Relative DeepNbr (# PCDATA)>

<data Distance (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<RelativeOnRandom >

<ListOfEvents File (# PCDATA)>

<Events DeepNbr (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<Around DeepNbr (# PCDATA)>

<!ELEMENT description (# PCDATA)>

</Around >

112

</ListOfEvents >

<ListOfEvents File (# PCDATA)>

<Events DeepNbr (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<Around DeepNbr (# PCDATA)>

<data Distance (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<Relative DeepNbr (# PCDATA)>

<data Distance (# PCDATA)>

<!ELEMENT description (# PCDATA)>

<Global >

<ListOfEvents File (# PCDATA)>

<Events DeepNbr (# PCDATA)>

<!ELEMENT description (# PCDATA)>

]>

<!ELEMENT forceVolumeFile (description ,header ,image ,forceCurve)>

<!-- date spécifie la date de création du fichier -->

<!ATTLIST forceVolumeFile date CDATA #IMPLIED>

<!ATTLIST forceVolumeFile auteur DATA #IMPLIED>

<!-- "description" contient un court texte décrivant l’expérience réalisée -->

<!ELEMENT description (# PCDATA)>

<!-- L’ élément "Header" contient les entêtes traités par le programme -->

<!ELEMENT header EMPTY>
<!ATTLIST header SensZScan CDATA #REQUIRED >

<!ATTLIST header OpMode CDATA #REQUIRED >

<!ATTLIST header ScanSize CDATA #REQUIRED >

<!ATTLIST header NFL CDATA #REQUIRED >

<!ATTLIST header ScanListScanRate CDATA #REQUIRED >

<!ATTLIST header SensitDeflection CDATA #REQUIRED >

<!ATTLIST header ScanRate CDATA #REQUIRED >

<!ATTLIST header ForceListForwVeloc CDATA #REQUIRED >

<!ATTLIST header ForceListRevVeloc CDATA #REQUIRED >

<!ATTLIST header NumberCurvesPerLines CDATA #REQUIRED >

<!ATTLIST header ForceListFVScanRate CDATA #REQUIRED >

<!ATTLIST header Z_SCAN_START CDATA #REQUIRED >

<!ATTLIST header Z_SCAN_SIZE CDATA #REQUIRED >

<!ATTLIST header TTD CDATA #REQUIRED >

<!ATTLIST header ImageOffset CDATA #REQUIRED >

<!ATTLIST header ImageLength CDATA #REQUIRED >

<!ATTLIST header ImageSampsPerLine CDATA #REQUIRED >

<!ATTLIST header ImageNumberLines CDATA #REQUIRED >

<!ATTLIST header ImageScale CDATA #REQUIRED >

<!ATTLIST header ForceOffset CDATA #REQUIRED >

<!ATTLIST header NumberPointsPerCurves CDATA #REQUIRED >

<!ATTLIST header SpringConstant CDATA #REQUIRED >

<!ATTLIST header Z_SCALE CDATA #REQUIRED >

<!ATTLIST header HARD_Z_SCALE CDATA #REQUIRED >

<!ATTLIST header FV_SCALE CDATA #REQUIRED >

<!ATTLIST header RAMP_SIZE CDATA #REQUIRED >

<!-- L’ élément "image" contient les "altitudes" mesurées du piezzo à la fin de l’

indentation -->

<!ELEMENT image (#PCDATA)>
<!ATTLIST image contrast CDATA #IMPLIED>

<!-- "pointOfContact" contient les position (en pixel) des points de contactes détectés

sur les courbe de force -->

113

<!ELEMENT pointOfContact (#PCDATA)>
<!ATTLIST pointOfContact method CDATA #REQUIRED>

<!ATTLIST pointOfContact contrast CDATA #IMPLIED>

<!-- topography contient les informations sur la topographie de la zone scannée -->

<!ELEMENT topography (#PCDATA)>

<!ELEMENT event (data)>

<!-- ’curveID ’ désigne le numéro de la courbe auquel l’ évènement est attaché -->

<!ATTLIST event curveID IDREF #REQUIRED >

<!-- "position" se réfère à la position de l’ évènement sur la courbe curveNb , en nm

-->

<!ATTLIST event position CDATA #REQUIRED>

<!--- "grade" comporte des grades (verticalité , angle obtu , angle droit , PoC , Moyenne

) décrivant l’ évènement détecté -->

<!ATTLIST event gradeMean CDATA #REQUIRED >

<!ATTLIST event gradeVert CDATA #REQUIRED >

<!ATTLIST event gradeVAnge CDATA #REQUIRED >

<!ATTLIST event gradeRAngle CDATA #REQUIRED >

<!ATTLIST event gradeVPoc CDATA #REQUIRED >

<!-- "data" contient les points composant la courbe de rétraction faisant parti de l’

évènement détecté -->

<!ELEMENT data (#PCDATA)>

<!ELEMENT Stiffness (data*)>

<!-- information sur la profondeur prise en compte pour le calcul d’une dureté -->

<!ATTLIST Stiffness deep CDATA #REQUIRED >

<!-- information sur le nombre de dureté par pixel prises (chacunes d’elles reflète

la dureté sur une profondeur ’deep’) -->

<!ATTLIST Stiffness number CDATA #REQUIRED>

<!-- information sur la valeur de contraste lors du dernier affichage de la fenêtre

de dureté -->

<!ATTLIST Stiffness contraste CDATA #IMPLIED>

<!-- Information numérique sur la pente d’une courbe prise sur une surface dure -->

<!ATTLIST Stiffness glass CDATA #IMPLIED >

<!-- contient les données , autant de fois que la valeur number -->

<!ELEMENT data (# PCDATA)>

<!ELEMENT ForceCurves (CurveYAv*,CurveX)>

<!ELEMENT CurveYAv (# PCDATA)>

<!ATTLIST CurveYAv curveID ID #REQUIRED >

<!ELEMENT CurveYRe (# PCDATA)>

<!

<!-- Une seule courbe X est nécessaire puisqu ’elle est identique pour toutes les

courbes -->

<!ELEMENT CurveX (#PCDATA)>

114

APPENDIX C. SUCCELLUS DEVELOPER’S GUIDE

208

Bibliography

Abrami, L., Velluz, M. C., Hong, Y., Ohishi, K., Mehlert, A., Ferguson, M.,
Kinoshita, T., and Gisou van der Goot, F. (2002). The glycan core of
GPI-anchored proteins modulates aerolysin binding but is not sufficient: the
polypeptide moiety is required for the toxin-receptor interaction. FEBS Lett,
512(1-3):249–54.

Allen, S., Chen, X., Davies, J., Davies, M., Dawkes, A., Edwards, J., Roberts,
C., Sefton, J., Tendler, S., and Williams, P. (1997). Detection of antigen-
antibody binding events with the atomic force microscope. Biochemistry,
36(24):7457–63.

Allen, S., Davies, J., Davies, M., Dawkes, A., Roberts, C., Tendler, S., and
Williams, P. (1999). The influence of epitope availability on atomic-force
microscope studies of antigen-antibody interactions. Biochem J, 341 (Pt
1):173–8.

Anderson, R. G. and Jacobson, K. (2002). A role for lipid shells in targeting
proteins to caveolae, rafts, and other lipid domains. Science, 296(5574):1821–
5.

Arnoldi, M., Fritz, M., Bauerlein, E., Radmacher, M., Sackmann, E., and Boul-
bitch, A. (2000). Bacterial turgor pressure can be measured by atomic force
microscopy. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics,
62(1 Pt B):1034–44.

Ashkin, A. and Dziedzic, J. M. (1987). Optical trapping and manipulation of
viruses and bacteria. Science, 235(4795):1517–20.

Barman, S. and Nayak, D. P. (2000). Analysis of the transmembrane domain
of influenza virus neuraminidase, a type II transmembrane glycoprotein, for
apical sorting and raft association. J Virol, 74(14):6538–45.

Bavari, S., Bosio, C. M., Wiegand, E., Ruthel, G., Will, A. B., Geisbert, T. W.,
Hevey, M., Schmaljohn, C., Schmaljohn, A., and Aman, M. J. (2002). Lipid
raft microdomains: a gateway for compartmentalized trafficking of Ebola and
Marburg viruses. J Exp Med, 195(5):593–602.

Binnig, G., Quate, C., and Gerber, C. (1986). Atomic force microscope. Physical
review letters, 56(9):930–933.

Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1982). Tunneling through
a controllable vacuum gap. Applied Physics Letters, 40(2):178–180.

209

BIBLIOGRAPHY

Brandao, M. M., Fontes, A., Barjas-Castro, M. L., Barbosa, L. C., Costa, F. F.,
Cesar, C. L., and Saad, S. T. (2003). Optical tweezers for measuring red
blood cell elasticity: application to the study of drug response in sickle cell
disease. Eur J Haematol, 70(4):207–11.

Bretscher, M. S. (1973). Membrane structure: some general principles. Science,
181(100):622–9.

Brown, D. (1993). The tyrosine kinase connection: how GPI-anchored proteins
activate T cells. Curr Opin Immunol, 5(3):349–54.

Brown, D. A. and London, E. (1998a). Functions of lipid rafts in biological
membranes. Annual Review of Cell and Developmental Biology, 14:111–136.

Brown, D. A. and London, E. (1998b). Structure and origin of ordered lipid
domains in biological membranes. J Membr Biol, 164(2):103–14.

Brugger, B., Graham, C., Leibrecht, I., Mombelli, E., Jen, A., Wieland, F., and
Morris, R. (2004). The membrane domains occupied by glycosylphosphati-
dylinositol - anchored prion protein and Thy-1 differ in lipid composition. J
Biol Chem, 279(9):7530–6.

Burnham, N. A. and Colton, R. J. (1989). Measuring the nanomechanical prop-
erties and surface forces of materials using an atomic force microscope. Jour-
nal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films,
7(4):2906–2913.

Butt, H. J. and Jaschke, M. (1995). Calculation of thermal noise in atomic force
microscopy. Nanotechnology, 6(1):1–7.

Casey, P. J. (1995). Protein lipidation in cell signaling. Science, 268(5208):221–
5.

Dickenson, R. P., Hutton, W. C., and Stott, J. R. (1981). The mechanical
properties of bone in osteoporosis. J Bone Joint Surg Br, 63-B(2):233–8.

Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A., and Jacobson, K. (2002).
Relationship of lipid rafts to transient confinement zones detected by single
particle tracking. Biophys J, 82(1 Pt 1):274–84.

Digital Instrument (2000). Scanning Probe Microscopy, Training Notebook.

Domke, J. and Radmacher, M. (1998). Measuring the elastic properties of thin
polymer films with the atomic force microscope. Langmuir, 14(12):3320–3325.

Douglass, A. and Vale, R. (2005). Single-molecule microscopy reveals plasma
membrane microdomains created by protein-protein networks that exclude or
trap signaling molecules in T cells. Cell, 121(6):937–50.

Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B.,
Menne, J., Lindschau, C., Mende, F., Luft, F. C., Schedl, A., Haller, H., and
Kurzchalia, T. V. (2001). Loss of caveolae, vascular dysfunction, and pul-
monary defects in caveolin-1 gene-disrupted mice. Science, 293(5539):2449–
52.

210

BIBLIOGRAPHY

Drake, B., Prater, C., Weisenhorn, A., Gould, S., Albrecht, T., Quate, C., Can-
nell, D., Hansma, H., and Hansma, P. (1989). Imaging crystals, polymers, and
processes in water with the atomic force microscope. Science, 243(4898):1586–
9.

Drygin, Y. F., Bordunova, O. A., Gallyamov, M. O., and Yaminsky, I. V.
(1998). Atomic force microscopy examination of tobacco mosaic virus and
virion RNA. FEBS Lett, 425(2):217–21.

Dufrene, Y. F. (2000). Direct characterization of the physicochemical properties
of fungal spores using functionalized AFM probes. Biophys J, 78(6):3286–91.

Dulinska, I., Targosz, M., Strojny, W., Lekka, M., Czuba, P., Balwierz, W.,
and Szymonski, M. (2006). Stiffness of normal and pathological erythrocytes
studied by means of atomic force microscopy. J Biochem Biophys Methods,
66(1-3):1–11.

Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. (2003). Amyloido-
genic processing of the Alzheimer beta-amyloid precursor protein depends on
lipid rafts. J Cell Biol, 160(1):113–23.

Ferguson-Pell, M., Hagisawa, S., and Masiello, R. D. (1994). A skin indentation
system using a pneumatic bellows. J Rehabil Res Dev, 31(1):15–9.

Field, K. A., Holowka, D., and Baird, B. (1995). Fc epsilon RI-mediated re-
cruitment of p53/56lyn to detergent-resistant membrane domains accompa-
nies cellular signaling. Proc Natl Acad Sci U S A, 92(20):9201–5.

Fivaz, M., Vilbois, F., Thurnheer, S., Pasquali, C., Abrami, L., Bickel, P. E.,
Parton, R. G., and van der Goot, F. G. (2002). Differential sorting and fate
of endocytosed GPI-anchored proteins. EMBO J, 21(15):3989–4000.

Freigang, J., Proba, K., Leder, L., Diederichs, K., Sonderegger, P., and
Welte, W. (2000). The crystal structure of the ligand binding module of
axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell,
101(4):425–33.

Galbiati, F., Engelman, J. A., Volonte, D., Zhang, X. L., Minetti, C., Li, M.,
Hou, Jr, H., Kneitz, B., Edelmann, W., and Lisanti, M. P. (2001). Caveolin-3
null mice show a loss of caveolae, changes in the microdomain distribution
of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol
Chem, 276(24):21425–33.

Glogauer, M. and Ferrier, J. (1998). A new method for application of force to
cells via ferric oxide beads. Pflugers Arch, 435(2):320–7.

Gould, S., Marti, O., Drake, B., Hellemans, L., Bracker, C. E., Hansma, P. K.,
Keder, N. L., Eddy, M. M., and Stucky, G. D. (1988). Molecular resolution
images of amino acid crystals with the atomic force microscope. Nature,
332:332–334.

Gould, S. A. C., Drake, B., Prater, C. B., Weisenhorn, A. L., Manne, S., Kel-
derman, G. L., Butt, H. J., Hansma, H., Hansma, P. K., Magonov, S., and
Cantow, H. J. (1990). The atomic force microscope: a tool for science and
industry. Ultramicroscopy, 33:93–98.

211

BIBLIOGRAPHY

Grafstrom, S., Ackermann, J., Hagen, T., Neumann, R., and Probst, O.
(1994). Analysis of lateral force effects on the topography in scanning force
microscopy. The 1993 international conference on scanning tunneling mi-
croscopy, 12(3):1559–1564.

Guirland, C., Suzuki, S., Kojima, M., Lu, B., and Zheng, J. (2004). Lipid rafts
mediate chemotropic guidance of nerve growth cones. Neuron, 42(1):51–62.

Hansma, H. G., Sinsheimer, R. L., Groppe, J., Bruice, T. C., Elings, V., Gurley,
G., Bezanilla, M., Mastrangelo, I. A., Hough, P. V., and Hansma, P. K. (1993).
Recent advances in atomic force microscopy of DNA. Scanning, 15(5):296–9.

Hansma, P., Elings, V., Marti, O., and Bracker, C. (1988). Scanning tunneling
microscopy and atomic force microscopy: application to biology and technol-
ogy. Science, 242(4876):209–16.

Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E.,
Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Prater, C. B., Massie, J.,
Fukunaga, L., Gurley, J., and Elings, V. (1994). Tapping mode atomic force
microscopy in liquids. Applied Physics Letters, 64(13):1738–1740.

Harder, T., Scheiffele, P., Verkade, P., and Simons, K. (1998). Lipid domain
structure of the plasma membrane revealed by patching of membrane com-
ponents. J Cell Biol, 141(4):929–42.

Heisenberg, W. (1958). Physics and Philosophy: The Revolution in Modern
Science. Harper and Brother Publishers.

Herreros, J., Ng, T., and Schiavo, G. (2001). Lipid rafts act as specialized
domains for tetanus toxin binding and internalization into neurons. Mol Biol
Cell, 12(10):2947–60.

Hertz, H. (1882). Über die Berührung fester elastischer Körper. Journal für die
reine und angewandte Mathematik, (92):156 – 171.

Hochmuth, R. M. (2000). Micropipette aspiration of living cells. J Biomech,
33(1):15–22.

Kane, R. L., McMahon, T. A., Wagner, R. L., and Abelmann, W. H. (1976).
Ventricular elastic modulus as a function of age in the Syrian golden hamster.
Circ Res, 38(2):74–80.

Kasas, S., Gotzos, V., and Celio, M. (1993). Observation of living cells using
the atomic force microscope. Biophys J, 64(2):539–44.

Kasas, S., Riederer, B., Catsicas, S., Cappella, B., and Dietler, G. (2000a).
Fuzzy logic algorithm to extract specific interaction forces from atomic force
microscopy data. Review of Scientific Instruments, 71(5):2082 – 2086.

Kasas, S., Thomson, N. H., Smith, B. L., Hansma, H. G., Zhu, X., Guthold,
M., Bustamante, C., Kool, E. T., Kashlev, M., and Hansma, P. K. (1997).
Escherichia coli RNA polymerase activity observed using atomic force mi-
croscopy. Biochemistry, 36(3):461–8.

212

BIBLIOGRAPHY

Kasas, S., Wang, X., Hirling, H., Catsicas, S., Haeberli, C., Dietler, G., and
Thomson, N. (2000b). Setup for observing living cells using a commercial
atomic force microscope. Review of Scientific Instruments, 71(11):4338–4340.

Kasas, S., Wang, X., Hirling, H., Marsault, R., Huni, B., Yersin, A., Regazzi,
R., Grenningloh, G., Riederer, B., Forro, L., Dietler, G., and Catsicas, S.
(2005). Superficial and deep changes of cellular mechanical properties follow-
ing cytoskeleton disassembly. Cell Motil Cytoskeleton, 62(2):124–32.

Konofagou, E. E., D’hooge, J., and Ophir, J. (2002). Myocardial elastography–a
feasibility study in vivo. Ultrasound Med Biol, 28(4):475–82.

Kucerka, N., Pencer, J., Nieh, M. P., and Katsaras, J. (2007). Influence of
cholesterol on the bilayer properties of monounsaturated phosphatidylcholine
unilamellar vesicles. Eur Phys J E Soft Matter, 23(3):247–54.

Kusumi, A., Koyama-Honda, I., and Suzuki, K. (2004). Molecular dynamics
and interactions for creation of stimulation-induced stabilized rafts from small
unstable steady-state rafts. Traffic, 5(4):213–30.

Lafont, F., Abrami, L., and van der Goot, F. G. (2004). Bacterial subversion of
lipid rafts. Curr Opin Microbiol, 7(1):4–10.

Lalli, G., Bohnert, S., Deinhardt, K., Verastegui, C., and Schiavo, G. (2003).
The journey of tetanus and botulinum neurotoxins in neurons. Trends Mi-
crobiol, 11(9):431–7.

Lam, W. A., Rosenbluth, M. J., and Fletcher, D. A. (2007). Chemotherapy
exposure increases leukemia cell stiffness. Blood, 109(8):3505–8.

Laney, D. E., Garcia, R. A., Parsons, S. M., and Hansma, H. G. (1997). Changes
in the elastic properties of cholinergic synaptic vesicles as measured by atomic
force microscopy. Biophys J, 72(2 Pt 1):806–13.

Ledesma, M. D., Brugger, B., Bunning, C., Wieland, F. T., and Dotti, C. G.
(1999). Maturation of the axonal plasma membrane requires upregulation of
sphingomyelin synthesis and formation of protein-lipid complexes. EMBO J,
18(7):1761–71.

Ledesma, M. D., Simons, K., and Dotti, C. G. (1998). Neuronal polarity: es-
sential role of protein-lipid complexes in axonal sorting. Proc Natl Acad Sci
U S A, 95(7):3966–71.

Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., and Hrynkiewicz, A. Z.
(1999). Elasticity of normal and cancerous human bladder cells studied by
scanning force microscopy. Eur Biophys J, 28(4):312–6.

Li, X. M., Momsen, M. M., Smaby, J. M., Brockman, H. L., and Brown, R. E.
(2001). Cholesterol decreases the interfacial elasticity and detergent solubility
of sphingomyelins. Biochemistry, 40(20):5954–63.

Lyyra, T., Kiviranta, I., Vaatainen, U., Helminen, H. J., and Jurvelin, J. S.
(1999). In vivo characterization of indentation stiffness of articular cartilage
in the normal human knee. J Biomed Mater Res, 48(4):482–7.

213

BIBLIOGRAPHY

Manduca, A., Oliphant, T. E., Dresner, M. A., Mahowald, J. L., Kruse, S. A.,
Amromin, E., Felmlee, J. P., Greenleaf, J. F., and Ehman, R. L. (2001).
Magnetic resonance elastography: non-invasive mapping of tissue elasticity.
Med Image Anal, 5(4):237–54.

Marti, O., Ribi, H. O., Drake, B., Albrecht, T. R., Quate, C. F., and Hansma,
P. K. (1988). Atomic force microscopy of an organic monolayer. Science,
239(4835):50–2.

Martin, Y., Williams, C. C., and Wickramasinghe, H. K. (1987). Atomic force
microscope–force mapping and profiling on a sub 100-[a-ring] scale. Journal
of Applied Physics, 61(10):4723–4729.

Mate, C. M., McClelland, G. M., Erlandsson, R., and Chiang, S. (1987). Atomic-
scale friction of a tungsten tip on a graphite surface. Physical Review Letters,
59(17):1942–1945.

Mayor, S. and Rao, M. (2004). Rafts: scale-dependent, active lipid organization
at the cell surface. Traffic, 5(4):231–40.

Meyer, G. and Amer, N. M. (1988). Novel optical approach to atomic force
microscopy. Applied Physics Letters, 53(12):1045–1047.

Mills, J. P., Qie, L., Dao, M., Lim, C. T., and Suresh, S. (2004). Nonlinear
elastic and viscoelastic deformation of the human red blood cell with optical
tweezers. Mech Chem Biosyst, 1(3):169–80.

Morgenthaler, F., Knott, G., Floyd Sarria, J., Wang, X., Staple, J., Catsicas, S.,
and Hirling, H. (2003). Morphological and molecular heterogeneity in release
sites of single neurons. Eur J Neurosci, 17(7):1365–74.

Morone, N., Fujiwara, T., Murase, K., Kasai, R. S., Ike, H., Yuasa, S., Usukura,
J., and Kusumi, A. (2006). Three-dimensional reconstruction of the mem-
brane skeleton at the plasma membrane interface by electron tomography. J
Cell Biol, 174(6):851–62.

Mou, J., Sheng, S., Ho, R., and Shao, Z. (1996). Chaperonins GroEL and
GroES: views from atomic force microscopy. Biophys J, 71(4):2213–21.

Muller, P. and Herrmann, A. (2002). Rapid Transbilayer Movement of Spin-
Labeled Steroids in Human Erythrocytes and in Liposomes. Biophys. J.,
82(3):1418–1428.

Nguyen, D. H. and Hildreth, J. E. (2000). Evidence for budding of human
immunodeficiency virus type 1 selectively from glycolipid-enriched membrane
lipid rafts. J Virol, 74(7):3264–72.

Niethammer, P., Delling, M., Sytnyk, V., Dityatev, A., Fukami, K., and
Schachner, M. (2002). Cosignaling of NCAM via lipid rafts and the FGF
receptor is required for neuritogenesis. J Cell Biol, 157(3):521–32.

Nohe, A., Keating, E., Fivaz, M., van der Goot, F. G., and Petersen, N. O.
(2006). Dynamics of GPI-anchored proteins on the surface of living cells.
Nanomedicine, 2(1):1–7.

214

BIBLIOGRAPHY

Ophir, J., Alam, S. K., Garra, B., Kallel, F., Konofagou, E., Krouskop, T., and
Varghese, T. (1999). Elastography: ultrasonic estimation and imaging of the
elastic properties of tissues. Proc Inst Mech Eng [H], 213(3):203–33.

Owicki, J. C. and McConnell, H. M. (1980). Lateral diffusion in inhomogeneous
membranes. Model membranes containing cholesterol. Biophys J, 30(3):383–
97.

Putman, C. A., van der Werf, K. O., de Grooth, B. G., van Hulst, N. F., Greve,
J., and Hansma, P. K. (1992). New imaging mode in atomic-force microscopy
based on the error signal. Scanning Probe Microscopies, 1639(1):198–204.

Putman, C. A. J., der Werf, K. O. V., Grooth, B. G. D., Hulst, N. F. V., and
Greve, J. (1994). Tapping mode atomic force microscopy in liquid. Applied
Physics Letters, 64(18):2454–2456.

Radmacher, M. (1997). Measuring the elastic properties of biological samples
with the AFM. IEEE Eng Med Biol Mag, 16(2):47–57.

Radmacher, M. (2002). Measuring the elastic properties of living cells by the
atomic force microscope. Methods Cell Biol, 68:67–90.

Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P., and Hansma, P. K.
(1996). Measuring the viscoelastic properties of human platelets with the
atomic force microscope. Biophys J, 70(1):556–67.

Ramstedt, B. and Slotte, J. P. (2002). Membrane properties of sphingomyelins.
FEBS Lett, 531(1):33–7.

Ren, X., Ostermeyer, A. G., Ramcharan, L. T., Zeng, Y., Lublin, D. M., and
Brown, D. A. (2004). Conformational defects slow Golgi exit, block oligomer-
ization, and reduce raft affinity of caveolin-1 mutant proteins. Mol Biol Cell,
15(10):4556–67.

Rotsch, C. and Radmacher, M. (2000). Drug-induced changes of cytoskeletal
structure and mechanics in fibroblasts: an atomic force microscopy study.
Biophys J, 78(1):520–35.

Sabharanjak, S., Sharma, P., Parton, R. G., and Mayor, S. (2002). GPI-
anchored proteins are delivered to recycling endosomes via a distinct cdc42-
regulated, clathrin-independent pinocytic pathway. Dev Cell, 2(4):411–23.

Samori, B., Siligardi, G., Quagliariello, C., Weisenhorn, A. L., Vesenka, J., and
Bustamante, C. J. (1993). Chirality of DNA supercoiling assigned by scanning
force microscopy. Proc Natl Acad Sci U S A, 90(8):3598–601.

Scheiffele, P. (2003). Cell-cell signaling during synapse formation in the CNS.
Annu Rev Neurosci, 26:485–508.

Scheiffele, P., Roth, M. G., and Simons, K. (1997). Interaction of influenza
virus haemagglutinin with sphingolipid-cholesterol membrane domains via its
transmembrane domain. EMBO J, 16(18):5501–8.

215

BIBLIOGRAPHY

Sharma, P., Varma, R., Sarasij, R. C., Ira, Gousset, K., Krishnamoorthy, G.,
Rao, M., and Mayor, S. (2004). Nanoscale organization of multiple GPI-
anchored proteins in living cell membranes. Cell, 116(4):577–89.

Sheets, E. D., Holowka, D., and Baird, B. (1999a). Critical role for cholesterol in
Lyn-mediated tyrosine phosphorylation of FcepsilonRI and their association
with detergent-resistant membranes. J Cell Biol, 145(4):877–87.

Sheets, E. D., Holowka, D., and Baird, B. (1999b). Membrane organization in
immunoglobulin E receptor signaling. Curr Opin Chem Biol, 3(1):95–9.

Sheets, E. D., Lee, G. M., Simson, R., and Jacobson, K. (1997). Transient
confinement of a glycosylphosphatidylinositol-anchored protein in the plasma
membrane. Biochemistry, 36(41):12449–58.

Shogomori, H. and Futerman, A. H. (2001). Cholesterol depletion by methyl-
beta-cyclodextrin blocks cholera toxin transport from endosomes to the Golgi
apparatus in hippocampal neurons. J Neurochem, 78(5):991–9.

Silver, F. H., Bradica, G., and Tria, A. (2001). Viscoelastic behavior of os-
teoarthritic cartilage. Connect Tissue Res, 42(3):223–33.

Simons, K. and Ikonen, E. (1997). Functional rafts in cell membranes. Nature,
387(6633):569–72.

Simons, K. and Toomre, D. (2000). Lipid rafts and signal transduction. Nat
Rev Mol Cell Biol, 1(1):31–9.

Simons, K. and van Meer, G. (1988). Lipid sorting in epithelial cells. Biochem-
istry, 27(17):6197–202.

Simons, K. and Vaz, W. L. (2004). Model systems, lipid rafts, and cell mem-
branes. Annu Rev Biophys Biomol Struct, 33:269–95.

Simson, R., Sheets, E. D., and Jacobson, K. (1995). Detection of temporary lat-
eral confinement of membrane proteins using single-particle tracking analysis.
Biophys J, 69(3):989–93.

Singer, S. J. and Nicolson, G. L. (1972). The fluid mosaic model of the structure
of cell membranes. Science, 175(23):720–31.

Skibbens, J. E., Roth, M. G., and Matlin, K. S. (1989). Differential extractabil-
ity of influenza virus hemagglutinin during intracellular transport in polarized
epithelial cells and nonpolar fibroblasts. J Cell Biol, 108(3):821–32.

Smith, L. M., Rubenstein, J. L., Parce, J. W., and McConnell, H. M. (1980).
Lateral diffusion of M-13 coat protein in mixtures of phosphatidylcholine and
cholesterol. Biochemistry, 19(25):5907–11.

Smith, S. B., Finzi, L., and Bustamante, C. (1992). Direct mechanical mea-
surements of the elasticity of single DNA molecules by using magnetic beads.
Science, 258(5085):1122–6.

Sneddon, I. N. (1965). The relation between load and penetration in the ax-
isymmetric boussinesq problem for a punch of arbitrary profile. International
Journal of Engineering Science, 3:47–57.

216

BIBLIOGRAPHY

Sooksawate, T. and Simmonds, M. A. (2001). Effects of membrane cholesterol
on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated
rat hippocampal neurones. Neuropharmacology, 40(2):178–84.

Steck, T. L., Ye, J., and Lange, Y. (2002). Probing red cell membrane cholesterol
movement with cyclodextrin. Biophys J, 83(4):2118–25.

Suresh, S. (2007). Biomechanics and biophysics of cancer cells. Acta Biomater,
3(4):413–38.

Suresh, S., Spatz, J., Mills, J. P., Micoulet, A., Dao, M., Lim, C. T., Beil, M.,
and Seufferlein, T. (2005). Connections between single-cell biomechanics and
human disease states: gastrointestinal cancer and malaria. Acta Biomater,
1(1):15–30.

Tansey, M. G., Baloh, R. H., Milbrandt, J., and Johnson, Jr, E. M. (2000).
GFRalpha-mediated localization of RET to lipid rafts is required for effec-
tive downstream signaling, differentiation, and neuronal survival. Neuron,
25(3):611–23.

Tao, N. J., Lindsay, S. M., and Lees, S. (1992). Measuring the microelastic
properties of biological-material. Biophysical journal, 63(4):1165 – 1169.

Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., and Prusiner,
S. B. (1995). Cholesterol depletion and modification of COOH-terminal tar-
geting sequence of the prion protein inhibit formation of the scrapie isoform.
J Cell Biol, 129(1):121–32.

Tokumasu, F., Jin, A. J., Feigenson, G. W., and Dvorak, J. A. (2003).
Nanoscopic lipid domain dynamics revealed by atomic force microscopy. Bio-
phys J, 84(4):2609–18.

Touhami, A., Nysten, B., and Dufrene, Y. (2003). Nanoscale mapping of
the elasticity of microbial cells by atomic force microscopy. Langmuir,
19(11):4539–4543.

van der Merwe, P. A. and Barclay, A. N. (1994). Transient intercellular adhesion:
the importance of weak protein-protein interactions. Trends Biochem Sci,
19(9):354–8.

Vie, V., Van Mau, N., Lesniewska, E., Goudonnet, J., Heitz, F., and Le Grimel-
lec, C. (1998). Distribution of ganglioside gm1 between two-component, two-
phase phosphatidylcholine monolayers. Langmuir, 14(16):4574–4583.

Wang, N. and Ingber, D. E. (1995). Probing transmembrane mechanical cou-
pling and cytomechanics using magnetic twisting cytometry. Biochem Cell
Biol, 73(7-8):327–35.

Weihs, T. P., Nawaz, Z., Jarvis, S. P., and Pethica, J. B. (1991). Limits of
imaging resolution for atomic force microscopy of molecules. Applied Physics
Letters, 59(27):3536–3538.

Weisenhorn, A. L., Hansma, P. K., Albrecht, T. R., and Quate, C. F. (1989).
Forces in atomic force microscopy in air and water. Applied Physics Letters,
54(26):2651–2653.

217

BIBLIOGRAPHY

Weisenhorn, A. L., Khorsandi, M., Kasas, S., Gotzos, V., and Butt, H. J. (1993).
Deformation and height anomaly of soft surfaces studied with an afm. Nan-
otechnology, 4(2):106–113.

Williams, M. (2002). Optical Tweezers: Measuring Piconewton Forces. Bio-
physical Textbook Online.

Yeagle, P. L. (1985). Cholesterol and the cell membrane. Biochimica et Bio-
physica Acta (BBA) - Reviews on Biomembranes, 822(3-4):267–87.

Yersin, A., Hirling, H., Steiner, P., Magnin, S., Regazzi, R., Huni, B., Huguenot,
P., De los Rios, P., Dietler, G., Catsicas, S., and Kasas, S. (2003). Interactions
between synaptic vesicle fusion proteins explored by atomic force microscopy.
Proc Natl Acad Sci U S A, 100(15):8736–41.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8:338–353.

Zenhausern, F., Adrian, M., Emch, R., Taborelli, M., Jobin, M., and Descouts,
P. (1992). Scanning force microscopy and cryo-electron microscopy of tobacco
mosaic virus as a test specimen. Ultramicroscopy, 42-44:1168–1172.

218

Charles Roduit Tel : +41(0)21 550 0456 Driver license Cat B
ch. des retraites 4 Mobile : +41(0)76 234 7677 Origin : CH (Leytron VS)
CH-1004 Lausanne e-mail : charles.roduit@a3.epfl.ch Born the 24.09.1976

Charles Roduit

Education and Scientific Formation
2003-2007 Phd in Neurosciences Science de la Vie, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
1997-2002 Master degree in Biology University of Lausanne, Switzerland.
1995-1997 Physics EPFL, Switzerland.
1995 Swiss General Certificate of Education section Economy, Switzerland

Language
French Mother tongue
English Fluent
German Basic

Personal Interest
Traveling Switzerland, France, Italy, Turkey, USA, Canada
Sport Snowboard, Ski, Hiking, Cycling, Horseback
Divers Reading, Astronomy, Computing, Photography, ...

Other Activities
2007 Sales + Support of the AFM Data Processing Software, which was developed during my thesis, Veeco

(Digital Instrument)
2000 Webmaster, under contract with Swissmatbéton, Lausanne (VD), Switzerland
1998 - 1999 Startup creation, Computer advise and sales, Lausanne (VD), Switzerland
1997 - 1998 Snowboard teacher, Swiss Ski Scool, Ovronnaz (VS), Switzerland

Computer Skills
Operating system Linux, Mac OSX, MS-Windows
Office OpenOffice.org, Gnumeric, MS-Office, Latex
Graphics The Gimp, Inscape, Blender, Scribus
Programming Python, Matlab, bash, R

Teaching Experences
2005 - 2007 Organizing and coaching practical works AFM 3 days , 3rd year student, Biology (Unil) , "Study of neuronal

membrane elastical properties, drugs effects on rafts."
2004 - 2005 Coaching TP "Biologie cellulaire I", 1rst year student, Life Science (EPFL)
2004 - 2005 Teaching (2x1h) + Practical Work "Introduction to AFM", 1rst year student, Life Science (EPFL)

Postgrade Formation
2007 Biophotonics, Doctoral course, EPFL
2007 Biomedical approach for drug evaluation, Doctoral course, EPFL
2007 Python advanced, IT domain course, EPFL
2007 Python basic, IT domain course, EPFL
2007 ADN Biophysic, Doctoral course, EPFL
2005 Introduction to neuroscience, Doctoral course, EPFL

Research Activities
2003 – 2007 PhD work in Neurosciences, Laboratoire de Neurobiologie Cellulaire (LNC), Science de la Vie, Ecole

Polytechnique Fédérale de Lausanne, Switzerland. Membrane elastic heterogeneity studied at nanometrical
scale on living cells. Head : Dr. S. Kasas and Pr. S. Catsicas.

2002 Master work biology, University of Lausanne, Switzerland. Subject : Effect of a putative pheromone on the
Bacillus subtilis W23 tarA transcription: analyse of the function of the factor sigma ECF (Extra
Cytoplasmic Function), σX; Head : Dr. C. Mauël.

2002 Certificat of Experimental Microbiology, Université de Lausanne. Subject: Study of the gene product yqgA
of Bacillus subtilis. Head : Dr. P. Margot.

2001 Certificat of Gene Signaling and Regulation, University of Lausanne. Subject: Expression of the defense
gene during interaction between insects and Arabidopsis thaliana; Head : Dr. P. Reymond, Pr. EE. Farmer.

2005 Introduction to cellular neurobiology, Doctoral course, EPFL

International Conferences
01/2007 C. Roduit, S. Kasas, F. Lafont et S. Catsicas. "Relative Stiffness of Rafts Microdomains revealed by Atomic

Force Microscopy." (Posters) Annual Linz Winter Workshop . Advances in Single-Molecule Research for
Biology and Nanoscience. (A)

01/2007 C. Roduit, A. Yersin, F. Lafont, G. Dietler, S. Catsicas et S. Kasas. "Stiffness Tomography by Atomic Force
Microscopy" (Posters) Annual Linz Winter Workshop . Advances in Single-Molecule Research for Biology
and Nanoscience. (A)

09/2006 C. Roduit, A. Yersin, F. Lafont, G. Dietler, S. Catsicas et S. Kasas. "Stiffness Tomography by Atomic Force
Microscopy" (Poster) Neuroscience meeting, Diablerets (CH) .

09/2005 C. Roduit, S. Kasas, F. Lafont et S. Catsicas. "Relative Stiffness of Rafts Microdomains revealed by Atomic
Force Microscopy." (Poster) Neuroscience meeting, Diablerets (CH).

12/2003 C. Roduit, A. Yersin, G. Dietler, F. Lafont, S. Catsicas et S. Kasas. "New Tool for Exploring Cell Surface
Properties Using Atomic Force Microscopy" (Poster) Veeco User meeting, EPFL (CH)

Publications
2006 Yersin, A., Hirling, H., Kasas, S., Roduit, C., Kulangara, K., Dietler, G., Lafont, F., Catsicas, S. and Steiner,

P. (2006) Elastic properties of the cell surface and trafficking of single AMPA receptors in living
hippocampal neurons Biophys J, 92(12):4482-4489.

2007 Roduit, C., van der Goot, F. G., De Los Rios, P., Yersin, A., Steiner, P., Dietler, G., Catsicas, S., Lafont, F.,
and Kasas, S. (2007) Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane
domains. Biophys J, 94(4):-------.

Patent and Licenses
2007 Stiffness tomography by atomic force microscopy, S. Kasass, C. Roduit, F. Lafont, S. Catsicas. Date

International Application Number : PCT/US07/64727
2007 Sale of an exclusive license of the Force-Volume and Tomography Software to Veeco.

	Title
	Summary
	Résumé
	Remerciements
	Acronyms
	Introduction
	Atomic force microscopy
	History
	Principle
	The AFM operating modes
	Contact mode
	Tapping mode
	Force Spectroscopy

	Cell mechanical properties
	Cell Membrane
	The membrane organization
	The lipid raft model
	Role of the rafts
	Signal transduction
	Secretory pathway
	Endocytosis
	Cell adhesion and migration
	Disorders

	Aim of the project

	Materials and methods
	Biochemistry
	Proteins
	Antibodies

	Cell cultures
	293T Cells
	HeLa Cells
	Hypocampal neurons

	Immunochemistry
	AFM
	AFM Tip
	In vivio measurements
	Force Volume measurements
	Force-Volume analysis software
	Data representations

	Post Processing software
	Introduction
	Results
	Zero Force Image
	Stiffness Computation
	Event detection
	Relative Stiffness
	Merging the results

	Conclusion

	Mechanical properties of GPI domains
	Introduction
	Results
	Binding specificity of aerolysin
	Distribution of GPI-anchored proteins
	Tip contamination
	Determining the local stiffness inhomogeneity
	Relative stiffness of GPI domains
	Cholesterol extraction effect on GPI domains relative stiffness
	Cholesterol extraction effect on the number of detected GPI domains
	Cytoskeleton digestion effect on the relative stiffness of GPI domains
	Binding protein events influence on the relative stiffness
	Cell type influence on GPI domains relative stiffness
	Protein diffusion influence on GPI-domains relative stiffness
	Cholesterol extraction effect on membrane global stiffness heterogeneity

	Discussion
	GPI-anchored proteins are specifically detected by the aerolysin coated tips
	GPI domains are local stiffer zones
	GPI domains relative stiffness is not dependent on protein-protein interactions
	GPI domains relative stiffness does not depend on actin cytoskeleton
	GPI domains relative stiffness has similar properties in several cell lines
	Protein diffusion does not alter the GPI domains relative stiffness measurement
	Cell stiffness global heterogeneity is altered by cholesterol extraction

	Conclusion

	Stiffness Tomography
	Introduction
	The theory

	Results
	Finite elements simulations
	Application of the Stiffness Tomography (ST) to living systems
	Effect of cytoskeleton digestion
	Tomographic view of neurites

	Conclusion

	Blender script
	createTopoYoungEvent.py
	TomographyLoader.py

	Succellus User Guide
	Succellus Developer's Guide
	Bibliography
	Curriculum Vitae

