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Abstract

Advances in the technologies of smart mobile devices and tiny sensors together with the increase in

the number of web resources open up a plethora of new mobile information services where people

can acquire and disseminate information at any place and any time. Location-based services

(LBS) are characterized by providing users with useful and local information, i.e. information

that belongs to a particular domain of interest to the user and can be of use while the user remains

in a particular area. In addition, LBS need to take into account the interactions and dependencies

between services, user and context for the information filtering and delivery in order to fulfil the

needs and constraints of mobile users. We argue that consequently it brings up a series of technical

challenges in terms of data semantics and infrastructure, context-awareness and personalization,

as well as query formulation and answering etc. They can not be simply extended from existing

traditional data management strategies. Instead, they need a new solution.

Firstly, we propose a semantic LBS infrastructure on the basis of the modularized ontologies

approach. We elaborate a core ontology which is mainly composed of three modules describing

the services, users and contexts. The core ontology aims at presenting an abstract view (a model)

of all information in LBS. In contrast, data describing the instances (of services user and actual

contextual data) are stored in three independent data stores, called the service profiles, user

profiles and context profiles. These data are semantically aligned with the concepts in the core

ontology through a set of mappings. This approach enables the distributed data sources to be

maintained in a autonomous manner, which is well adapted to the high dynamics and mobility

of the data sources.

Secondly, we separately address the function, features, and our modelling approach of the three

major players, i.e. service, context and user in LBS. Then, we define a set of constructs to

represent their interactions and inter-dependencies and illustrate how these semantic constructs

can contribute to personalized and contextualized query processing. Service classes are organized

in a taxonomy, which distinguishes the services by their business functions. This concept hierarchy

helps to analyze and reformulate the users’ queries. We introduce three new kinds of relationships

in the service module to enhance the semantics of interactions and dependencies between services.

We identify five key components of contexts in LBS and regard them as a semantic contextual

basis for LBS. Component contexts are related together by specific composition relationships that

can describe spatio-temporal constraints. A user profile contains personal information about a

given user and possibly a set of self-defined rules, which offer hints on what the user likes or

dislikes, and what could attract him or her. In the core ontology clustering users with common



features can help the cooperative query answering. Each of the three modules of the core ontology

is an ontology in itself. They are inter-related by relationships that link concepts belonging to two

different modules. The LBS fully benefits from the modularized structure of the core ontology. It

allows restricting the search space, as well as facilitating the maintenance of each module.

Finally, we studied the query reformulation and processing issues in LBS. How to make the query

interface tangible and provide rapid and relevant answers are typical concerns in all information

services. Our <what, when, where, what-else> query format not only fully obeys the ’simple,

tangible and effective’ golden-rules of user-interface design, but also satisfies the needs of domain-

independent interface and emphasizes the importance of spatio-temporal constraints in LBS.

With pre-defined spatio-temporal operators, users can easily specify in their queries the spatio-

temporal availability they need for the services they are looking for. This allows eliminating most

of irrelevant answers that are usually generated by keyword-based approaches. Constraints in the

various dimensions (what, when, where and what-else) can be expressed by a conjunctive query,

and then be smoothly translated to RDF-patterns. We illustrate our query answering strategy

by using the SPARQL syntax, and explain how the relaxation can be done with rules specified in

the query relaxation profile.

Keywords: Location-based services, ontology, context-awareness, personalization.



Résumé

L’avancée des technologies mobiles et des capteurs miniatures conjointement avec l’augmentation

du nombre de ressources disponibles sur Internet a favorisé le développement de nouveaux services

géolocalisés qui permettent l’acquisition et la dissémination d’informations à tout moment et à

tout endroit. Les services géolocalisés sont caractérisés par leur capacité à fournir à leurs utilisa-

teurs des informations utiles et localisées, c’est-à-dire des informations correspondant au domaine

d’intérêt de l’utilisateur et qui lui sont utiles par rapport à sa localisation géographique actuelle.

De plus, les services géolocalisés doivent prendre en compte les interactions et les dépendances

entre les services, l’utilisateur et son contexte afin de filtrer et de retourner de l’information

satisfaisant les besoins et contraintes des utilisateurs mobiles. De ce fait, cela induit différents

défis techniques concernant la sémantique et l’architecture des données, la personnalisation et

la prise en compte du contexte, ainsi que la définition et l’exécution des requêtes. En effet, le

développement de services géolocalisés nécessite de définir de nouvelles solutions allant au-delà

de l’extension simple des stratégies traditionnelles de gestion et d’interrogation de données.

Nous proposons tout d’abord une architecture de services géolocalisés reposant sur une ontologie

modulaire. Nous avons élaboré une ontologie centrale composée principalement de trois modules

décrivant respectivement les services, les utilisateurs et les contextes. L’ontologie centrale a pour

objectif de présenter une vue abstraite de toutes les informations décrites dans l’infrastructure

de services géolocalisés. De leur côté, les données décrivant les instances de services, du contexte

et des utilisateurs sont stockées dans trois banques de données indépendantes, appelées profils de

services, profils d’utilisateurs et profils de contextes. Ces données sont mises en correspondance

avec les concepts de l’ontologie centrale via un ensemble de règles de correspondance. Cette

approche, qui permet de maintenir chaque source de données de façon autonome, est parfaitement

adaptée à la mobilité et à la dynamique des sources de données des services géolocalisés.

Ensuite, nous avons étudié séparément les fonctionnalités, les caractéristiques et la modélisation

des trois principaux acteurs de notre approche, c’est-à-dire les services, les utilisateurs et le con-

texte. Nous avons défini un ensemble de concepts pour représenter leurs interactions et inter-

dépendances, puis nous avons montré en quoi ces concepts sémantiques contribuent à linter-

rogation contextuelle et personnalisée des données. Les classes de service sont décrites dans

une taxonomie qui distingue les services sur la base de leurs fonctionnalits commerciales. Cette

hiérarchie de concepts facilite l’analyse et la reformulation des requêtes utilisateurs. Nous avons

introduit trois nouveaux types de relations dans le module des services afin de mettre en évidence



la sémantique des interactions et des dépendances entre services. Nous avons identifié cinq com-

posants clés définissant la notion de contexte; ils constituent la base de notre approche con-

textuelle pour les services géolocalisés. Ces contextes peuvent être reliés entre eux par des re-

lations spécifiques de composition qui permettent de décrire des contraintes spatio-temporelles.

Le profil utilisateur renferme les informations personnelles relatives à un utilisateur donné et

éventuellement un ensemble de règles (définies par l’utilisateur lui-même) décrivant ce qu’il aime

ou n’aime pas et ce qu’il pourrait désirer. Dans l’ontologie centrale, les utilisateurs sont regroupés

selon leurs caractéristiques communes, ce qui facilite le traitement coopératif des requêtes. Cha-

cun des trois modules de l’ontologie centrale est lui-même une ontologie. Ils sont reliés par des

relations qui mettent en correspondance des concepts appartenant à deux modules différents.

Notre approche de services géolocalisés est grandement facilitée par la structure modulaire de

notre ontologie centrale. Elle permet en effet de restreindre l’espace de recherche lors des requêtes

et aussi de faciliter la maintenance de chaque module.

Enfin, nous avons étudié la reformulation et l’exécution des requêtes pour les services géolocalisés.

Dans une telle approche, les défis principaux concernent lergonomie de l’interface de requêtes ainsi

que le temps de réponse et la pertinence des données retournées. Notre format de requête,�quoi,

quand, où, quoi-dautre�, répond non seulement aux trois règles d’or de la conception d’interface

utilisateurs, ”simplicité, tangibilité et efficacité”, mais il satisfait aussi les besoins d’indépendance

de l’interface par rapport au domaine et il met en valeur l’importance des contraintes spatio-

temporelles pour les services géolocalisés. Lors de la formulation des requêtes, les utilisateurs

peuvent ainsi facilement spécifier la validité spatio-temporelle désirée pour les services recherchés à

l’aide d’opérateurs spatio-temporels. Cela permet d’éliminer les réponses non pertinentes qui sont

généralement générées par les approches basées sur la spécification de mots clés. Les contraintes

définies dans les différentes dimensions (quoi, quand, où, quoi-dautre) peuvent être exprimées

à l’aide d’une requête formée de conjonctions et ainsi être traduite facilement en patrons RDF.

Nous avons illustré notre stratégie de traitement de requêtes à l’aide de la syntaxe SPARQL.

Enfin nous avons expliqué comment la relaxation des requêtes peut être réalisée avec des règles

spécifiées dans un profil de relaxation de requêtes.

Mots-clés: services géolocalisés, ontologie, personnalisation, prise en compte du contexte.
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Chapter 1
Introduction and Motivation

1.1 IT Support for Mobility

The quest for mobility has always been a characteristic of humans. Our ability to move has gradually evolved

from using our legs to using animals, animal-driven devices (e.g. chariots), self-driven devices (this is exactly

the meaning of ”automobile”), mass transportation systems (e.g. trains and boats), and finally ending

up with the ability to flow through atmosphere (planes and space rockets). But while mobility increased,

complexity of the world also increased and our knowledge about the world has become by far inadequate to

support our activities on the move. In particular, we recently became so information and communication

addicted that it is almost beyond imagination to think that being on the move would mean being deprived

of the ability to communicate and to get access to information available from the information technology

(IT) world. Fortunately, IT development has been able to start matching our requirements. Mobile and

wireless data networks (e.g. GPRS1 and UTMS2) [Tis01] provide the communication infrastructure that

allow staying connected if not everywhere at least in many places around the world. Global positioning

systems (GPS), mobile phones and personal digital assistants (PDAs) provide the devices that users keep

with them and cherish to be able to jump into the IT world whenever they want. Sensor networks [ZG04]

are the latest addition to this panoply of innovative technologies and provide up-to-date information that

may be quite useful in adjusting information to current situations (e.g., to suggest the best itinerary to

reach the airport given current traffic conditions). The convergence of so many technological advances

is revolutionizing human’s socio-economical life. The computing environment has added to the traditional

desktop-bound fashion a new ubiquitous computing [Wei93] mode of operation. At first, ubiquitous computing

just took advantage of wireless services to make available to moving users the traditional facilities of desktop

computing, such as access to web pages and emails. It has since become clear that ubiquity leads in fact to

a larger spectrum of facilities [GF05] up to services offering intelligent and personalized services to people

on the move, wherever they are and whenever they ask for service. Faster than expected, many science-

fiction scenarios are turning into reality, e.g. intelligent meeting room, portable hotel reservation assistance,

1GPRS: acronym for General Packet Radio Service.
2UMTS: acronym for Universal Mobile Telecommunications System.
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1. INTRODUCTION AND MOTIVATION

continuous heath-care monitoring, environmental monitoring, etc. Among the novel services, Location-Based

Services(LBS) aim at providing moving users with ”right on the spot” information, i.e., information that

relates to the area where the user is currently located, belongs to a particular domain of interest to the

user and can be of use while the user remains in the area. LBS are becoming increasingly popular as they

correspond to a real need that everyone of us can experience. Moreover, they are already available in some

places, which facilitates their dissemination through public media to the general public. LBS provide the

framework for this dissertation.

This chapter briefly introduces different categories of services using locational information. The spread of

positioning technology paved the path to nowadays and future LBS. We then sketch how LBS were defined by

previous researchers and give our definition. We highlight what distinguishes LBS from other mobile services

paradigms, and the main challenges in designing and implementing LBS. Finally, the contributions and the

organization of the dissertation are given.

1.2 Positioning Services

Location-based Services have not been invented from scratch. They stem from earlier positioning services3

which were developed for military use in the 1970’s in the USA. Positioning services respond to the most basic

requirement related to mobility: the need to know where moving people and objects are currently located.

Their aim and scope is answering requests such as ”Where am I?” or ”Where is XXX?”. This functionality has

become available since the earliest GPS (Global Positioning Services) systems. Through the measurement and

computation of satellites signals received by the GPS device, GPS-enabled positioning services are nowadays

able to offer good performance in most outdoor services. This enables numerous interesting applications,

e.g. computer-aided navigation [Gar04], road emergency assistance, and tracking the target assets in fleet

management. However, positioning precision and timeliness largely degrade when deployed in indoors or

urban area due to the well-known effect ’urban canyon’. In such cases, other positioning technologies, such as

GSM, Bluetooth, and RFID, are utilized to provide complementary positioning services. One typical example

is the infrared-based Active Badge system [WHFG92].

A positioning service provides the location of an object according to a given format and a precision

level (resolution). It can also provide more sophisticate location utility services. An overall review of the

characteristics, precision and applicable coverage scope of fundamental positioning technologies, such as GPS,

DGPS, GSM, E-OTD can be found in [DB03].

In an effort to prevent or solve heterogeneity issues, the OpenLS4 initiative promotes standards to facilitate

and consolidate the interoperation of geo-spatial data and geo-processing of location services, especially for

geo-coding and reverse geocoding, route determination, and map/features display etc. By definition any LBS,

whether its infrastructure is simple or complex, or whether it supports indoor or outdoors or both [ZGL03],

3The term ’location services’ is sometimes used as a synonym for ’positioning services’. In our work we prefer using

’positioning services’ to avoid any confusion between ’location service’ and ’location-based services’.
4OpenLS (Open Location Services) is a proposal for location-related standards initiated by OGC (Open Geospatial Consor-

tium). For more details, see http://www.opengeospatial.org/functional/?page=ols.
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includes at least one ’positioning service’ embedded in or associated with it. Standard functionalities therefore

appeal to LBS for enhancing the spatial-awareness, and the interoperability of heterogeneous spatial data

involving end-users and data services in LBS.

During the last decade a series of novel technologies (improved networking capabilities and interface

characteristics [SW03]) promoted the use and adoption of mobile handheld device, further popularizing

positioning services. The prevalence of positioning services makes it commercially feasible to obtain and

manipulate the location of mobile objects so as to boost the development of more sophisticate mobile services.

In order to better understand the state of art of current ’information services’ in mobile environment, we

discuss some of these paradigms in terms of their basic states and functionalities in next section.

1.3 Information Dissemination Services

Most services are geared towards information dissemination, using either one of two fundamental dissemina-

tion paradigms: on demand access (also called pull mode), and broadcast (also called push mode). Obviously,

hybrid approaches are also available, providing information according to either one of the two modes depend-

ing on information content and user selections.

In the on-demand access mode, the user has the active role to initiate the interaction with the service by

submitting a request to the server. The server processes the queries and sends the answer to the requester.

But its performance could rapidly decline due to the sudden increase of workload, e.g. immense requests

about the latest ranking of World Cycling Championship. This mode suits the need for ad hoc queries,

assuming the answer to the query can be computed in reasonable time (e.g. a few seconds). Its drawback

in current mobile systems is the same as in desktop systems: information flooding and poor relevance of the

retrieved information whenever the request is not looking for a precise piece of information. For example,

a query to retrieve the departure times for trains from Lausanne to Geneva in between 2pm and 3pm on a

weekday will return precisely what is being requested. Instead, a Google-like query to retrieve information

about St John’s cathedral will return a list of all web pages that have to do with cathedrals, John, and street

or saints (St).

The information broadcast mode offers an alternative way to efficiently disseminating information to mul-

tiple users at a fixed cost. In this mode the user is passive. Information automatically comes to her/him

without having to be solicited. More precisely, information broadcasting denotes the communication tech-

nique where emitting sources disseminate information to the surrounding world, without targeting a specific

individual receiver. Receivers are active mobile devices located within the range of emission and which have

the capability to capture the information. The typical example is the welcome message delivered by mobile

service providers when a cellphone user roams to another country. The message delivery occurs without the

user making any request, i.e. in a full push-mode.

In contrast to the current 4A paradigm (i.e. Anybody, Anytime, Anywhere, Anything) that has enthu-

siastically supported the spread of ubiquitous computing and characterizes services such as browsing and

3



1. INTRODUCTION AND MOTIVATION

searching on the web, the information broadcasting paradigm can be characterized by the combination ’Any-

body, Anytime, Anywhere, Something’. Anywhere here only indicates any point within the scope of signal

emission, mainly relying on the type of wireless networking (e.g. wireless cellular networks, wireless LAN,

wireless ATM and Wireless PAN/BAN). Something denotes a content that is defined and delivered uniquely

by the service provider. Most of the benefit is for the disseminator rather than for the receiver. For example,

broadcasting of commercial messages to cellphones within a shopping mall can be very effective to attract

more customers to a shop. In a shopping mall a large amount of information sources may be available with

a very limited emission range. But from the user viewpoint shopping in the mall may become annoying to

the point that they switch off their cellphone (yet modern broadcasting to cellphones has enormous advan-

tages versus traditional broadcasting via loudspeakers). The unfortunate best and worst example is spam on

email. Broadcasting offers the advantage of the simplicity of its operation but is no remedy to insufficiency

and irrelevancy of information reaching the user.

A compromise between simplicity of broadcasting and user interest in the broadcasted information is

realized through the publish/subscribe strategy [HGM04]. Information services using this strategy improve

the information relevancy to recipient’s needs by matching new information against user’s predefined in-

terests. In this paradigm, the receivers still passively wait and receive information published by providers.

Thus, its design is information-driven and service-oriented rather than user-motivated. GUIDE [DCMF99]

push-style information dissemination is an example of this strategy. However, information dissemination in

publish/subscribe broadcasting aims at delivering some specific information (e.g. the advertisement message

from certain shops) to some specific users (those who have subscribed to receive this type of information).

This strategy is currently very popular for information dissemination via email (users subscribe to a dis-

tribution list) and via the web (chats, blogs and alike). It is not specifically related to moving users and

mobile information systems. It can be characterized as ’Somebody, Anytime, Anywhere, Something’. A

mobile variant of publish/subscribe can be illustrated using the same shopping mall example. Imagine that

the various shops broadcast (within a limited range to avoid interferences) their advertisement messages to

people in their vicinity. Here the action of subscribing is replaced by the action to move into the emission

range of a shop. This is an ’Anybody, Anytime, Somewhere, Something ’ mode of operation. Imagine now

that users’ cellphones are equipped with a system that allows filtering incoming messages based on users’

predefined interests. Whether the filtering is done by the shop or by the user, and assuming messages are

only broadcasted by a shop during its opening hours, the operation mode becomes 4S: ’Somebody, Sometime,

Somewhere, Something ’. This can be an interesting complement to the current 4A paradigm and ’push’

paradigms. Unfortunately, it is getting too little attention from both industry and academia.

An interesting alternative to the publish/subscribe paradigm for a ’Somebody, Anytime, Anywhere, Some-

thing’ mode of operation is the publish/publish mode. The information provider still has the active role to

”publish” new information. On the other side, users play the same active role by ”publishing” their profile, i.e.

the definition of the type of information they are interested in. A broker matches information characteristics

(data profile) with user profiles and whenever a match reaches a given threshold the information is transferred

to the user in a push mode. The broker can be an autonomous software or part of the provider system. This
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mode, where both users and providers become publishers, enables active and asynchronous matching between

the current users’ specifications (understood as potential automatic subscriptions to whatever matches the

specification) and existing information made publicly available by any information provider. It is a first step

towards more advanced techniques aiming at personalization and intelligence of information services. Though

such broadcasting paradigms enable the system to deliver the timely information to relevant users, they are

not tailored to answer ad-hoc requests when the user is on the move. Such requests call by definition for a

user-pull mode.

The aim to achieve more personalized information services is taken further by context-aware computing

solutions [CDM+00]. These embody paradigms where generic contextual information, not merely location

or user profile, can be specified and used to increase relevance in providing information or services [DA99].

The definitions and categorizations of context can be found in e.g. [SAW94], [DA99], [vBFA05]. They are

usually coupled with sensor networks, which collect, process, integrate and supply basic contextual data that

is mainly not user-related. From the information dissemination perspective, context-aware systems enable to

use and/or adapt user’s current context to present information (e.g. show a list of printers close to the user

walking in the building), or to trigger a service execution (e.g. to send the printing job to the nearest printer

for the user). However, the information delivered in most context-aware systems is accordingly narrow and

application-specific.

1.4 Mobile Information Services and LBS

We refer to ’mobile information services’ in general as information services able to provide information support

to roaming users through their mobile devices. Mobile information services have much in common with e-

services [RK03] in terms of their network-enabled modality and mobility. But, unlike most e-services, they

are not always transactional. Mobile information services can be implemented using any of the information

dissemination paradigms we have presented in the previous section. We focus hereinafter on the push mode,

i.e. on responding to user’s ad-hoc requests for information. Moreover, we focus on dealing with requests

from mobile users in search of information about the geographical area in which they happen to be. This is

typically the case for users on vacation (tourists) or on a business trip (mobile employees). In short, we focus

on Location-based services. The difference between generic mobile information services and LBS is that for

the latter knowledge of current time and user’s current location and its evolution is a critical element ruling

how the LBS will perform the information extraction process in response to user’s requests. The former do

not necessarily use the time and location information. For example, providing web access via a cellphone

qualifies as a mobile information service but not as a location-based service. Notice that the user location

is an input parameter to the interaction with the LBS. It does not need to be the location where the user

physically is at the moment. This entails that LBS can be tuned as web services, i.e. they can provide the

same service to users accessing from anywhere on the web, as long as the accessing user defines the location

where (s)he virtually wants to be. For example, while in New York a user can ask the query ”assuming I am

in Lausanne, place St. François, at 4pm on a weekday, is there a close-by museum I still would have enough
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time to visit on the same day?”. The answer could be ”Museums close at 5pm, so you may have some time

to visit the Design Museum or Historical Museum, both located near the cathedral,. Alternatively, as you

are interested in art, you may visit the art galleries that are within 5 minutes walk from St François. On

Friday you may instead visit the Musée de l’Elisée (photography) who remains open till 8pm on Fridays”.

Location-based Services, also denoted as location-dependent services and location-aware services have

become an increasingly popular topic, and both academia and industry are intensively investigating their

development and applications.

Location-based services hold the potential to revolutionize many fields of our socio-economical life, from

environmental monitoring and conservation, to manufacturing and business assets management, logistics

management, to automation in the home appliances and health-care. Its development can also be extended

to entertainment markets, such as online games and virtual museum visit. Surveys on application of LBS

can be found in the literature [Spi04].

Most researchers have a common but loose definition about LBS, i.e. a service provided to mobile users

based on their geographical location. However, such a definition is vague and insufficient to characterize LBS.

In addition, although location and time often are primary determinants in the service provided by LBS, we

believe personalization and context-awareness are also very significant in LBS. Although these two aspects

are very generic and may apply to any kind of information service, we feel in the short-term future they will

represent a mandatory feature of successful LBS. Our rationale relies on the fact that interactions between

mobile users and LBS are characterized by the need to reach a satisfactory response to user requests in a

very short time. A mobile user is not likely to go through much iteration to find out relevant information

from the flood of information that is returned in the absence of personalization and context-awareness. As

a counter-example, it is known that going to the web to find some information, while appearing at first as a

matter of a few minutes if not seconds, turns out in fact to easily take up to half an hour and a lot of page

browsing before a satisfactory answer is determined. This iterative browsing is definitely a kind of service

that is irrelevant to mobile users. Hence, realizing what LBS are and what functionalities LBS would provide

are only the first step towards designing a practical and intelligent LBS infrastructure. In this section, we will

investigate notations about LBS, explore the functionalities of existing LBS, and further discuss its formality

and specificity that make LBS different from other mobile services.

1.4.1 Location-based Services Evolution

Active Badge [WHFG92], developed at Olivetti Research Lab in 1992, is generally acknowledged as the

first research experimentation of LBS. It took advantage of the availability of new positioning services to

improve the efficiency of an in-house call forwarding application. Knowledge of the current locations of mobile

employees in the building made it possible to forward calls directly to the targeted employee rather than

generically broadcast the call through the entire building to make sure it reached the employee. Similarly, in

project GUIDE and CyberGuide, proximity-based tourism information can be delivered to the mobile users.

Other industrial products include friend-finder at AT&T, WebSphere-based LBS at IBM and MapPoint-

enabled LBS at Microsoft. In practice, at NTT-DoCoMo, i-area has been able to operationally deliver users
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a broad spectrum of facilities nearby according to their current location. These designs exemplified the same

denotation as [SV04], ’LBS are applications integrating geographic location (i.e. spatial coordinates) with

the general notion of services’.

Another set of projects focused on mobile objects trajectories rather than individual locations. Jensen

et al. [JFCP+01], for example, while adopting the loose definition of LBS as e-services for mobile objects

that involve location information, enriched the concept and functionality of location information by adding

speed and velocity to position of mobile objects. In a data-warehousing perspective, their method makes

it easier to analyze and derive the user’s activity from their interactions with the LBS. Other related work

including tracking trajectory and location-based continuous queries [GBE+00] [ZZP+03] [TFPL04] [XS05] are

of great value on predicting and evaluating the services provision. They are especially useful in route naviga-

tion [TMK+06] where, for example, knowing the direction of user’s trajectory allows avoiding unreasonable

answers (e.g. on the highway, refilling ahead is preferred to driving back).

The concern for personalization appears in some systems, such as Hippie [OSJ99], CRUMPET [SBNPZ02],

COMPASS [vSPK04] and TIP [HV03]. In these systems, users may specify their interests and profiles. As

indicated in TIP, their LBS system enabled to deliver various types of information to mobile devices, based

on location, time, profile of end users, and their ’history’, i.e. their accumulated knowledge. These LBS came

up with more attention on the importance of user profiles and facilities to express users’ own preferences for

personalized information delivery.

Thanks to the miniaturization of electronics technologies and the proliferation of sensor networking

[HSK04], a variety of context in different abstractions became available to LBS. Thus, the location is no

longer the only context available to affect the discovery and delivery of right information-services [SBG99].

Nowadays, LBS emphasize the ability to take into account the spatial, time, and contextual characteristics

of their interactions with the users to provide the most appropriate services based on the local environ-

ment [YSCA04]. Hence, the functionality of LBS is implicitly progressing from location-dependency towards

context-awareness and personalization.

1.4.2 Our Vision of Location-based Services

We see Location-based Services as information services characterized by the following features:

• They are generic information services, not tailored for a specific application (e.g. path finding, road

navigation, hotel and restaurant listings).

• They aim at providing information about objects and facts pertaining to a geographic sphere that

surrounds the current user’s location. The size of the sphere is roughly defined as focusing on the

places the user can reach in reasonable time within the same day using local public transportation

facilities. For example, for a user in Lausanne the relevant geographic sphere will focus on the city itself

and its immediate surroundings (i.e. detailed information about places within this range is expected

to be available) but will also include information about Geneva and the nearby cantons (e.g. Vaud,

Valais, Neuchatel, Fribourg and possibly Bern) as these may well be the target of a day excursion. The
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larger area may be described by less detailed information and is consequently most likely to hold the

information the moving user wants to retrieve in order to decide about his/her behaviours in the short

term (within the coming hours or days).

• They use decentralized knowledge management techniques. LBS in our opinion should not be designed

to hold and maintain a centralized database. This is known to have many disadvantages when, as is

the case for LBS, information is not the property of the service using it. We expect information in LBS

to be gathered from one or more local data sources (e.g., databases and web pages from local tourist

offices, local institutions, local domain specific information providers) independently managed by the

respective owners. Mediators and wrappers (i.e. services to homogeneously understand different data

abstractions and formats), typical of heterogeneous distributed knowledge management, do belong to

the set of techniques LBS rely on, and provide service descriptions in different abstractions. As a whole,

LBS can be seen as mediators between a generally unknown, usually mobile user and heterogeneous

data sources that may have to be dynamically discovered. Thus, LBS contrast with the centralized

data approach in mobile yellow-page services, while both aim at providing local information.

• They are primarily geared towards a push mode of operation. They deliver information in response to

user’s requests rather than in an unsolicited way.

• They rely on positioning services to capture the current location of the moving user (if not explicitly

given by the user herself) and similarly rely on the system clock to capture the current time when they

are invoked with a request.

• They have to be able to rapidly answer user requests, before the user decides to abandon the request

because of the waiting time she endures. This entails that available knowledge has to be screened ”on

the fly”, i.e. avoid techniques that rely on static analysis and preparation of meta-knowledge.

The above features are those we associate with current LBS. As we focus hereinafter on the next generation

of LBS we add one more feature we already mentioned:

• They are capable of elaborating personalized and context-aware information. To achieve personal-

ization, they have to exploit user profiles, which contain information about the user. To provide

context-dependent information, they need to know about external (i.e. not user-dependent) contexts

that may be relevant to elaborate a more precise formulation of the query on hand (the same requests

from the same user in different contexts could have different meanings), as well as data contexts that

may characterize the available data and allow filtering it on the basis of the combination of current

user and external contexts. In these LBS, service matching between user requirements and data service

providers is not only based on the service functionalities and spatial and temporal constraints, but also

on user profiles and other contexts relevant to user’s current request.

We call knowledgeable LBS those LBS equipped with personalization and context-awareness. They are

defined as follows:
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1.4 Mobile Information Services and LBS

Knowledgeable location-based services are services able to allow mobile users to specify their requests and

profiles on the move and provide them with context-aware and personalized local information relevant to their

current activity and request.

1.4.3 Challenges for Location-based Services

The design and development of location-based services faces a wide variety of challenges, some generic to

mobile information services some specific to LBS:

Supporting Infrastructure Building the technical infrastructure for LBS requires adopting or developing

solutions for many concrete issues regarding positioning technologies, wireless communication, sensor

networks, and peer-to-peer computing. A given positioning technology, for example, determines the

precision of the coordinates it provides. Functionality and performance in these domains continue

to evolve, raising the challenge to design LBS independently of the current state of technology while

being able to benefit from the latest advances. New software solutions also have to be invented, e.g.

continuous queries processing. All these technological aspects are beyond the scope of this thesis.

User Interfaces This is an issue for all services addressing users interacting with their cellphone, PDA or

similar. It groups physical issues related to how to intelligibly display information given the constraints

of the device such as limited screen size, limited communication bandwidth, limited storage memory,

little or no caching facility, and so on. It also includes software issues such as how to organize information

delivery given limitations on the quantity of information that can be displayed at a time, and which

paradigm to use in interacting with the user: keywords-based, menus, natural language, limited natural

language, command-driven, etc. We do not address user interface issues in this thesis other than

assuming that the user request are formulated as a set of structured keywords expressing the ”what,

where, when, what-else” of the request. The what specifies what information is being requested, the

where and when specify the spatio-temporal constraints that have to be used to filter information, and

the other is a set of predicates of the form ”keyword = value”.

Knowledge Representation Spatial and temporal information are intrinsic components of LBS knowledge

management. Consequently, LBS have to be equipped with a data modelling paradigm that allows

representing this type of information, e.g. where a museum is located (geographically speaking, not

just the address, otherwise distance computations, for example, would not be possible) and when it is

open. The data model has also to support spatio-temporal modelling in order to be able to take into

account the dynamics of users’ movements (i.e., their trajectory) and more generically any aggregated

variability of values in space and time. For example, assume user Shirley is driving at 10pm on the

highway to Geneva Airport. She would like to refill her car before arrival. In such situation, LBS would

seek gasoline services near the highway considering her current location, driving direction, and open

time and location of gasoline stations. The information services the LBS relies on can also be often

regarded as spatio-temporally constrained. For example, a pizza delivery service is formally represented

9
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as a time-variant polygon, a bus line is represented as a time-variant poly-line, a gasoline station is

represented as a time-variant point.

Data Management As already stated, LBS knowledge is intended to focus on a limited geographical region.

It would be easy to centralize all data into a single database. But this information is highly volatile

and its regular updating is the responsibility of the information providers, not of the LBS that simply

plays a role of user versus the providers. Moreover, access services to these data sources deliver data in

their own format and with their own semantics. Distribution and heterogeneity issues can be addressed

using a peer-to-peer paradigm. Each information source or service can be considered as an autonomous

peer. Query processing would then require a series of operations on services, using service descriptions

to perform the searching, composition and orchestration of the relevant services. Although these op-

erations are currently investigated in semantic web research, they cannot be done automatically yet.

Therefore this thesis assumes a more traditional distribute data paradigm, where a centrally controlled

repository (called data profile in the sequel) holds a description of the knowledge in available local

services and its semantics. Their semantics contains the functionalities and spatio-temporal constraints

of the underlying or encapsulating services. Nevertheless, we assume that an LBS can communicate

with another LBS in a peer-to-peer mode whenever it cannot find the information requested by the

user. Our query processing strategy is discussed in chapter 8.

Personalization Personalization is a desirable feature for almost all information services, with possible

exceptions motivated by privacy concerns. Yet it is difficult to achieve, as it requires appropriate

knowledge about the user. Many web services prompt users to provide their profile by answering a

questionnaire. Such a static and rigid solution can hardly be the approach for LBS interactions with

mobile users. Application-specific solutions are also plentiful, but LBS are not application-specific.

Other approaches rely on regular interactions with the same user to gradually learn a profile for this

user. A LBS may not have a history of interactions to build on. In short, many questions are still

looking for an answer, e.g.: What should the content of a user profile be? How should it be organized

and described? What are the rules to use it and to maintain it?

Context Awareness Would you be satisfied if a LBS suggests you to take the 5.44pm train to get to the

airport, while this train does not run on week-ends and you are leaving during the week-end? What

if the suggestion is to reach the airport by car, which usually takes 40 minutes, without noticing that

the day of your trip there is the automobile show in the building next to the airport, which entails

high probability of heavy traffic jams? These are examples of the problems the user may face by

user a context-unaware LBS. Unfortunately, well established rules for context description, acquisition,

use and maintenance remain to be invented, despite the many efforts that have addressed context

definition and management. Similarly for how to formally represent and apply the contexts and their

dependencies (i.e. dependencies between contexts and services or between contexts and user profiles)

in semantic information matching. How to select the most relevant context for a given query and

how to automatically detect a switch in context from one interaction to the next, if possible, are
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other challenges. These are semantic issues, more complex than, for example, choosing and switching

interfaces/channels in mobile HCI.

1.5 Standardization initiatives relevant to LBS

The shift of Internet business modes from B2B to B2C entails that customers more actively than ever

involve themselves in the business transactions as the seller, buyer, or the third-party. Such blurring of the

distinction between customers and providers has contributed to the emergence of the concept of service as

a generic abstraction. Meanwhile, the popularity of the WWW and the maturity of wireless technologies

opened up more opportunities for the advancement of Web services. The latest draft of W3C defines Web

Service as follows:

A Web service is a software system designed to support interoperable machine-to-machine interaction over

a network. It has an interface described in a machine-processable format (specifically WSDL5). Other systems

interact with the Web service in a manner prescribed by its description using SOAP-messages, typically

conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.

To allow services to interact or interoperate without human’s intervention, Web services activity actually

entails a series of initiatives and standards. As shown in the definition above, the most elementary ones cover

the common syntax XML, language description (i.e. WSDL), the format and processing rules of messages

(i.e. SOAP6), the registry-like directory (i.e. UDDI7). In addition, web services encompass other issues, such

as security, versioning, and multiple interfaces. All of this is certainly relevant to LBS developers.

The term ’Semantic web’, coined by Tim Berners-Lee, describes a dreaming vision where the meanings

of web sources can be made explicit in a language which facilitates the searching and integration of web

information. Thus, how to efficiently add and manipulate semantics to web service descriptions has been the

gist to achieve semantic web services. In our view of LBS, service descriptions play an important role for the

definition of what we term the data profile.

Recently, knowledge description standards for the semantic Web have been proposed and are still being

refined. Among, the pioneering ones are OWL-S8 and WSMO9. OWL-S attempts to separate semantic

matching from aspects of profile modeling, process modeling and grounding. In WSMO, the basic idea

is to express the web services and goals as different ontologies and these ontologies can support semantic

interoperation using different mediators. Ontologies definitely contribute to the functionality we expect from

knowledgeable LBS.

Another initiative that obviously relates to the LBS world is GML, the Geography Markup Language

specified by Open Geospatial Consortium for the description of spatial and temporal data. It provides more

5WSDL: acronym of Web Services Description Language, candidate recommendation proposed by W3C. For details, please

refer to http://www.w3.org/2002/ws/desc/.
6SOAP: acronym of Simple Object Access Protocol, proposed by W3C. For details, please refer to

http://www.w3.org/TR/soap/.
7UDDI: Repository for Universal Description, Discovery and Integration technical reference information. For detailed spec-

ification, refer to http://www.uddi.org/specification.html.
8OWL-S is an OWL-based Web service ontology. http://www.w3.org/Submission/OWL-S/.
9WSMO: acronym of Web Service Modeling Ontology. For details, refer to http://www.w3.org/Submission/WSMO/.
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comprehensive and formalized representations on geospatial phenomena, observations and values. Especially,

it explicitly specifies the spatial and temporal properties, domains and units of the schema in XML and

supports user-customized data-type. It has come to being a practical geospatial reference for geographical

web services and support for spatial data integration.

1.6 Thesis Focus

Consistently with the research directions of our laboratory, LBD, this thesis focuses on semantics-related

aspects in LBS. The main contributions of this thesis are expected in following aspects:

• To propose a semantic architecture for knowledgeable LBS. By semantic architecture we mean that

we identify functionalities rather than software components (although in a given implementation each

functionality could be assigned to a separate software component). The purpose of the proposal is

to give LBS designers and application designers a better understanding on what functionalities LBS

should provide to mobile users and how to apply other information (such as context and profiles) to

improve LBS services.

• To identify context-related functionalities in LBS and propose a conceptual modeling approach on

managing contexts and supporting context-awareness in LBS. The goal is to apply relevant context

information to provide right information at right time and right place.

• To define a conceptual model for user profiling in LBS to facilitate mobile users to specify their profiles

and to customise the information delivery on the move.

• To propose an ontology-assisted query processing strategy based on a service-oriented paradigm and

allowing for heterogeneity in services descriptions. The proposed strategy shall efficiently perform

searching and semantic matching considering user requests, contexts, user profiles, and data profiles.

1.7 Thesis Outline

The thesis is composed of nine chapters. The remaining parts of the thesis are organized as follows:

Chapter 2 presents the State of Art of Location-based Services. It sets out with our design of a semantic

framework for Location-based Services. The framework mainly consists of seven functional components,

which autonomously but cooperatively support user query formulation, context information management,

ontological semantic assistance, user profiling, data profiling, syntactic alignment, and query matching. Next,

the relevant techniques and applications in literature are investigated and discussed.

Chapter 3 explains how a semantic data infrastructure can efficiently organize and maintain the knowledge

in LBS. Characterized by ’Locality, Mobility, Dynamics’, LBS calls upon a new strategy in data management.

This data infrastructure is mainly composed of a modular core ontology and a set of profiles. Rather than

storing or integrating the data instances as in conventional information management, LBS just relates the

profiles’ data with their corresponding concepts in the modular core ontology. It also introduces the basic
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elements and features of this data infrastructure, i.e. class, properties, relations etc. In addition, it explains

the characters and functionalities of temporal and spatial modules in LBS. Finally, it ends with a discussion

of evolution issues in LBS.

Chapter 4 presents the key role in LBS, i.e. data profiles and service profiles. A tree-alike skeleton is the

key to structure data services in diverse domains or views with a Is-A taxonomy. In addition, other particular

relations, such as condition, functional similarity, orchestration are defined for further services’ selection and

cooperation. Finally, it concentrates on explaining how to align and map the LBS’s data (service) profiles

originating from various domains or providers to the core ontology.

Chapter 5 discusses an important player in location-based services, i.e. context. Everything is context-

dependent. In particular, contexts appear in user profiles, data profiles, even and the user query. Basically,

contexts in LBS is presented with a composition hierarchy, i.e. space, time, environment, communication, and

socio-cultural context. It also presents the specific constructs between contexts, i.e. synchronized/sequential

composition constructs. Finally it addresses the feature of multiple representations of the context.

Chapter 6 explores two aspects of issues: the essential problems of modeling user profiles to provide

intelligent and customized services; the links between concepts of diverse modules and their effects in contex-

tualized and personalized query processing. Each user can possess more than one user profile. Each profile

may be relevant for one or more contexts. Profiles from different users can be analyzed and clustered together

according to their similarity and to context, thus leading to the possible definition of user groups. By iden-

tifying the objects, relationships, and dependencies between properties of a profile at different abstraction

levels and granularities, a conceptual modeling approach of user profiles is proposed.

Chapter 7 defines the query expression and reformulation in LBS. To make it concise and precise, the

query is simply expressed with a tuple as <what, when, where, what-else>. It allows users to flexibly express

their queries in a free-text format. In addition, the user can further elaborate constraints on thematic target,

the spatial range, temporal availability and specific preferences. It provides a unified interface for different

data services and the first context information (i.e. location and time) configured or complemented without

external hardware setting-up, e.g. sensor networks.

Chapter 8 describes query answering and relaxations in LBS. It starts with presenting the overall query

processing algorithm. Context and user profiles pervasively influence the whole process of services match-

ing and personalization. Firstly, deterministic and influential constraints related to the original query are

identified, using the relationships with the targeted service class. Correspondingly, the query is rewritten

after compromising these hard and soft constraints. By transforming the conjunctive query into one of RDF-

compatible query languages, i.e. SPARQL, we show how to match the query against the core ontology and

service profiles. When the user asks for additional information or perfect matching can not be achieved,

LBS are supposed to offer alternative answers by discovering the misconceptions and relaxing constraints in

original query. The relaxation rules for each service class are specified in the corresponding query relaxation

profile.

Chapter 9 concludes the thesis and addresses what could be improved in future work.
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Chapter 2
Foundations of Location-based Services

A model is an abstraction of something for certain purposes, rather than the universe of discourse. This

research work addresses modeling issues in designing context-aware and personalized LBS. We attempt to

explore three interrelated but different facets of modeling issues in LBS, i.e. user profiles (UP), service data

profiles (DP), and context information (CI), and to illustrate how to apply the above-mentioned information,

their interrelations and dependencies to enhance the LBS information selection and exchange. Different

researches have independently delved into one or more of these realms. However, to our best knowledge,

neither other database models nor emerging ontology-based method have proposed within one framework all

the modeling and manipulation facilitates that are pursued in our design. In addition, our modeling approach

not only provides an abstraction of information involved in LBS per se, but also their proposition may turn

to enlightening and boosting the practical modeling ways in other emergent services.

This chapter will present our framework of LBS from a data management viewpoint, and give a rep-

resentative survey of each player within the infrastructure. In detail, this chapter will investigate different

approaches of representing and reasoning context in literature, and up-to-date issues such as manipulating

and transforming sensed data to context information. The review will also cover various means of discovering

and modeling user preferences, and standards to describe user’s preferences and privacy using XML such as

CC/PP by W3C. Through our discussion, traditional strategies on service management, such as ’yellow page’

are insufficient for distributed and diverse services in LBS. The interface and query formulation in existing

applications will be compared and discussed at the end of the chapter.

2.1 Overall Architecture

The design of a new framework must be able to relieve off of the work that preceded it, or be able to resolve

the new problems. In this section, firstly we will discuss the related work on the frameworks for LBS from

different viewpoints, and then we will present our design and explain the functions of each component and

their interactions.
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2.1.1 Application-Specific Location-based Services

Through a GPS device, the location service can deal with requests such as ’where am I’ for route navigation

[Gar04], and ’SOS’ in road emergency, or track the target assets in fleet management. Indoor LBS scenarios

address requests such as ’find my colleague in the building’, as illustrated in EasyLiving [SKB+98], and call-

forwarding services as elaborated by Active-Badge [WHFG92], aimed at obtaining the latest target’s location

with Bluetooth1 or RFID [HSK04] technologies in a given building. In these systems, LBS infrastructures are

relatively simple and mostly oriented towards a single application so that a central database generally suffices

for efficient management based on user’s ID and location, and the interactions are centrically controlled by

the local server.

Apart from traditional turn-by-turn routing (i.e. a routing means like ’at the second street-cross, turn left,

and then go ahead until ..., turn right...’), ’where is the nearest restaurant’ alike requests increasingly emerge,

and call for the convergence of self-positioning technology, advanced location-service support2, and facilities

management. In the telecommunication market, tools are already commercially available that deliver a broad

spectrum of content to users’ mobile phones according to the location of the subscriber. For instance, in

i-area3 developed by NTT-DoCoMo, the networking base stations can automatically capture the location of

the user without explicit specification by users, and the facility information (e.g. map, accommodation, and

traffic etc.) to be retrieved about a specific region can be chosen from the menu provided by the system.

However, its facility management still resorts to a centralized strategy (i.e. a local or cellar-based database),

and its interactions are carried out within a simple and universal interface, i.e. a set of pre-defined menus.

It is because the variety of users’ software systems and the diversity of applications that the application-

independence LBS in true B2C mode is still faraway from the market. We will continue to discuss the

complex LBS with multi-applications in next section.

2.1.2 Diverse Frameworks for LBS

Not only can an LBS provide mobile users with useful and local information, like ’the nearest facility’, but it

is expected to be able to implement sophisticated and divergent mobile services based on detailed knowledge

of customer profiles, history, needs, and preferences [RM03]. Moreover, an LBS gathers information from

heterogeneous sources, usually in response to users’ requests (pull style), rather than receiving unsolicited

(push) information broadcast [SAJY05]. Such an elaborate LBS needs careful design and analysis.

The GUIDE system [DCMF99] relies on numerous interconnected wireless cells to deliver nomadic users

with relevant tourist information (geography & context sensitive). Departing from centralized storage ap-

proaches, the data is locally stored and processed within each cell. The information about the objects (e.g.

museum, castle or cafe-room.) in each cell is associated with a set of HTML pages and interrelated according

to the location, nearness, and type of the objects. The main disadvantage of GUIDE is that the broadcast

mechanism does not support user preferences and user-driven filtering.
1 http://www.bluetooth.com/bluetooth/
2 advanced location-service support may include a series of services, such as Geocoding/Reverse Geocoding, Map Portal,

transportation networks
3 i-area is a service that automatically selects and displays i-mode content related to the location of the i-mode user.
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Middleware-based architectures [Ber96], characterized by application-independence, crossing plat-

forms, dynamicity and evolution, and supporting standards, is a popular option to construct a robust dis-

tributed information system with a wide variety of applications across many industries. In [Jac04], by

integrating a location & position service, a middleware model holds the potential to support the development

and deployment of end-to-end LBS. In this framework, LBS middleware is the pivot to interact and offer

different kinds of services to the subscriber, network operator, and application provider. In a typical sequence

of pull-service mode, after looking up user’s personal information (i.e. subscription and authentication), iden-

tifying relevant location, the LBS invokes the application, and then the application matches against content

providers and returns the results to LBS; finally, the LBS responds to user’s request. Similar proposals are

also embodied in [dIL01], [CDM+03] and commercial products at IBM4, ORACLE and Microsoft.

The CRUMPET project [SBLPZ03] uses standard-based agent technology to enable the fast creation

of robust, scalable, seamlessly accessible nomadic services within the tourism domain. Generically, the

architecture of Crumpet5 is featured by the client-mediator-server three-tier approach. Through unique

interfaces, both the GIS services and distributed service providers can set up the transparent communications

with brokers using different and proprietary protocols. In particular, this project applies and influences a

series of standards, such as networking standards (i.e. ETSI GPRS standards6 and 3GPP UMTS standards7)

for communication protocols, FIPA agent standards8 for interoperability, W3C standards for service delivery,

and Open Geospatial Consortium’s standards for spatial information alignment.

Other LBS designers rely on event-based systems, emphasizing the impact of external events on the

relevance of information delivered to the mobile users. For instance, [HV03] combines an event notification

system with LBS to deliver history-accumulated information to users of the LBS.

Different LBS have different strategies to couple location information with location-based applications.

The AROUND [JMRD03] architecture allows applications to freely select services associated with their cur-

rent location. It is mainly composed of three models, proximity model, scope model and functional model.

Di Flora et al. [dFFRV05] propose to integrate different positioning technologies in the same LBS to ensure

continuously tracking mobile users wherever he/she moves to (i.e. indoor or outdoor). Several recent projects

[BJ05] [HL04] [DG03] develop privacy-enhanced LBS infrastructures to cope with sensitive privacy issues.

The data manipulation and modeling approaches in abovementioned works are distinctive in terms of

frameworks, protocols and standards. Data-related features in LBS, i.e. multi-dimensions, multi-resolution,

imprecision and continuous changes, have been discussed in [JFCP+01], where the authors focus on a data

warehouse-based management approach. In [Jen04], the author intensively discusses the database aspects

of LBS, especially, the objects modeling issues in LBS, i.e. transportation infrastructure, from spatial data

modeling to data update and caching. [TP05] distinguishes three types of data, i.e. domain data, content

4 LBS at IBM, Location-based services-wherever you are, wherever you go, get the information you want to know,

http://www-128.ibm.com/developerworks/library/i-lbs/.
5CRUMPET WP3 - Nomadic Application Support, Public Deliverable 3.3,

http://www.elec.qmul.ac.uk/crumpet/docs/deliverables/d33.pdf. Document ID: 20147/Sonera/DS/D33/A1.
6 http://portal.etsi.org/Portal Common/home.asp
7http://www.umtsworld.com/technology/overview.htm
8 FIPA standards for interoperability among software agent platforms. www.fipa.org/
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data and application data, and models these data in UML, using ontologies to enhance the semantics and

expression power.

2.1.3 Our Framework

This section describes our infrastructure of LBS, which differs from previous work by our emphasis on

modeling and exploiting the data and their semantic interrelationships within the LBS (i.e. context, user

profiles, and data sources). Regarding the positioning issue, we abstract from adopting a specific solution, and

just assume a location-service is inherently embedded in the LBS and holds the knowledge about the location

and possibly the movements of mobile users, as well as location and available coverage of location-based

applications.

I want to know ...

I want to book...

Location -bas ed
Services

User Profiles

Web pages

XML &
RDF files

Context
Services

Ontology Assistance

Syntactic
T

ranslator

Databases

Universe of Discourse

Figure 2.1: An illustrative Framework for Location-based Services.

As shown in Figure 2.1, our framework contains the following components:

• User’s mobile device

Basically, a usually handheld device functions as the visual interface between the user and the LBS for

information (and service) request and further interaction. Most devices enable to position the mobile

user (e.g. through GSM or GPS) and cache the recent requests. In addition, via the device, the user

can specify and manipulate his/her profiles and privacies locally (in the device or user’s database) and

keep the consistency globally (with the LBS’ servers). As discussed in [KS05], due to different software

systems operated on different devices and the distinctive capabilities of devices, to deliver application-

independent service is an uneasy task not only for LBS, but for all mobile services. Hence, the standards

on mobile devices9 that aim to unifying the device’s properties representing capabilities, configurations,

9Device Independence (DI): Access to a Unified Web from Any Device in Any Context by Anyone, refer to

http://www.w3.org/2001/di/.
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user preferences10 and environmental conditions has become one of the important initiatives within the

W3C community.

• User Profiles

Each user has one or several profiles [YAJS05]. A user profile generically contains three categories of

information: factual information (e.g. age, language and education), preferences and privacy specifi-

cation. User profiles may change and evolve as the context changes. They can be explicitly specified

by the user and kept in his/her personal database locally; alternatively, the local version can be used

to update user profiles maintained at LBS server side. In our work, we propose a modeling approach

for representing the user profiles and enabling the LBS to understand and apply them for personalized

information delivery. User profile issues are further discussed later in this chapter and in more detail

in chapter 6 hereinafter.

• Context Services

Context services are those services that are able to provide suitable abstractions of context data so

as to make LBS aware of their contextual impact on user’s request. Different from the categorization

in [vBFA05] [HIR02], we refer to the context data as only the environmental data. For instance,

either a local weather broadcast website, a monitoring system in shopping hall, or an event notification

system can be regarded as a context services. An LBS has to hold the knowledge on the relevance and

relationship between the context and other components (i.e. applications and user profiles) for a given

request. At the same time, a context service can serve as context provision and information provision

for LBS. For instance, when a user asks for the local weather in the afternoon, the weather broadcast

website naturally becomes direct information source of LBS.

• Ontology Assistance

As suggested in [UG04], the applications of ontology can be functionally classified into four categories

in terms of terminology authoring, common access to information, ontology-based specification, and

ontology-based search. In our LBS, ontology has multiple facets and specific functions. At a lower

level, it can be used as a dictionary to provide linguistic translations. More interestingly, it provides

”a formal, explicit specification of a shared conceptualization” [Gru93] for each term. In our framework

the ontology assistance component provides access to a set of ontologies, defined by the LBS itself

or imported from other sources to cover different functionalities. Besides the above functionality, the

ontology assistance component also aims at facilitating the mediation between different ontologies, e.g.

by adding context of ontology using C-OWL, and at addressing syntactic translation issues between

different ontology languages, e.g. between WSMO and OWL.

• Syntactic Translator

A translator is a necessary part to ensure LBS ability to syntactically understand the categories and

functions of the location-based sources whenever a new one is discovered or joins the LBS. The potential
10Refer to CC/PP: Composite Capabilities/Preference Profiles, http://www.w3.org/Mobile/CCPP/.
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is high that location-based applications be represented in diverse syntactic formats, e.g. Database

Schema, Data Warehouse, XML file, or Webpage.

• Data Services

Each of them is an independent and autonomous data source or application, closely associated with the

LBS. They allow LBS either to directly manipulate their data (i.e. query their data source) or access

to their unique interface for further operations (e.g. booking). Each data service is associated with one

or more concepts in the data profile of the LBS, supporting specific functions and meanings.

• Location-based Service Core

There are several internal components residing in the core of an LBS. First of all, the data management

base of an LBS is the core ontology, since it enables LBS to understand what data or application is

available and where, analogous to the schema for the database. We will give the details of the LBS’s

core in the next chapter.

2.1.4 Summary

In this section we investigated the existing work ranging from the basis and prototype of LBS, i.e. location

services to the typical conceptual frameworks of LBS. As we observed, several approaches may be distinguished

from each other, such as the application-specific client-server modeling, middleware-based modeling, agent-

based modeling, and ontology-based modeling, since the architecture of LBS is greatly motivated by different

aspects of factors, such as the functions, the end-users, the domain, the modal/channel, the networking

etc. We proposed our infrastructure of LBS aiming at the conceptual level. All components and their

functionalities relevant to LBS have been identified. The following sections present a state of art review for

the different components of the proposed framework.

2.2 Context Information Support

2.2.1 Definitions of Context

The Merriam Webster dictionary proposes two definitions for the term Context. The first one reads ”the

parts of a discourse that surround a word or passage and can throw light on its meaning”. The second one

is ”the interrelated conditions in which something exists or occurs (synonym: Environment, Setting)”. The

first definition is close to linguistics and dialogue studies, while the second one has a very generic scope and is

close to the common-sense of ’context’ in daily life. Both definitions are relevant to LBS. The former can be

referred to the first task of an LBS, that is to improve its understanding of the meaning of a query submitted

by the user. Queries in LBS are limited to as few terms as possible to make it realistic to be entered by the

user on her device. It is therefore important for the LBS to explore the ”hidden parts” that would have been

formulated if using a full natural language interface and will throw more light on the meaning of the query.

Similarly, the second definition may be referred to the additional information, external to the query, that can
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more precisely determine what the user is looking for and generate additional predicates to get more relevant

data.

In the computer science community the term context was initially introduced and formalized in the late

1980’s to deal with the problem of generality in artificial intelligence, and a formal language was provided to

represent and reason with multiple contexts and express lifting axioms [MB98]. With the recent development

of ubiquitous information delivery via the web and its further emphasis in addressing mobile users the idea

of using contexts to increase information relevance has emerged as a necessary condition for user satisfaction

[Dou04]. Evidence of the importance of context can be found e.g. in the call for proposals to be issued by the

European community for its FP7 programme. In that document, the terms context and context-awareness

appear in most of the proposed areas where innovative project proposals are sought.

Several papers define and exploit different notions of context (e.g., [SAW94], [DA99] and [Dou04]). A

frequently quoted definition states that ”context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and applications themselves.” [Dey01]. On the other

hand, a formal characterization of context is still missing, and existing research on context-aware services

usually relies on ad-hoc and application-dependent definitions of what constitutes context data.

Restricting the scope to LBS services, context can be more specifically defined as any information which

may determine or influence the selection of information to be returned to the user in response to a given query.

This includes information that may lead to a more focused interpretation of a query. To avoid any possible

confusion, in our LBS framework we further restrict the definition of context as only referring to information

that describes the surrounding environment but not the user or the data in the data stores (i.e., context data

is both user-independent and data-independent). Typical examples for such context information include

atmospheric data, traffic conditions, calendar data (including national and local holidays), and cultural

settings. We separate the user-centric context information [vBFA05] from our notion of context and fuse it

into user profiles, and similarly define the data profile to hold characterizations of data available from the

data providers.

2.2.2 Context-aware services

According to [HIR02], context is classified as sensed, static, profiled and derived context. Sensed context

refers to the context obtained from some sensors, e.g. the user’s location is one of sensed context; Static

context generally remains fixed and have high confidence, e.g. the device type and its channels; Derived

Context is calculated using derivation functions and known context, e.g. with the locations of two objects,

to judge if they are close to; Profiled context is context directly provided by user, e.g. the agenda. From

the application’s viewpoint, context data can be either input by the user and the system developer, or be

acquired by the sensors [ZG04].

In the earlier work, e.g. CyberGuide [AAH+97], the context data is sensed and supplied for certain

application(s) in a tight-coupling fashion. This leads to the difficulty for software engineering practices to

implement goals such as reusability and multi-abstractions of context. For instance, two applications may
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require location information of certain product in different resolutions (coarser: in the building; finer: precise

location). Dey et al. [DSA01] proposed a conceptual framework and corresponding building blocks (i.e.

context widgets, context interpreters, context aggregators and context services) to provide an efficient way

to design and implement context-aware applications, to realize context reusability and facilitate application

evolution. Similarly, in project [LSI+02] conducted at IBM, a middleware-based context service infrastructure

is put forward to support context acquisition and dissemination for context-aware applications. These frame-

works allow the context-customers to directly obtain and operate on the high-level abstractions of context

data, rather than dealing with low-level data management issues, such as how to collect, clean and aggregate

the sensed context data [ZG04].

We can envision that in future ubiquitous services, context services based on loose-coupling techniques

will be highly appreciated. Our LBS framework assumes we can directly use the context data delivered by

the context services within the LBS. We rather focus on defining how to relate the context abstractions to

other data (such as profiles and data services), and how their relevance affects the query answering process

[YAJS05].

2.2.3 Context modeling in Context-aware Services

Context data is distinct from other traditional data by many features, such as ephemerality, uncertainty,

imprecision, heterogeneity, multi-representation, and spatio-temporal dynamicity [GS01] [HIR02] [vBFA05]

[Lei05]. In addition, there exist intricate interrelations between contexts themselves, e.g. the weather context

can influence the traffic context but usually not the other way round. Moreover, for a given task only certain

context(s) may be relevant and have an impact on the selection and interactions of data and services, even

triggering certain actions. As listed in [Dey01], a context-aware application can support one or more features

as follows: 1) presentation of information and service to a user, 2) automatic execution of a service for a

user, and 3) tagging of context to information to support later retrieval. Hence, context modeling calls for a

powerful methodology, largely different from conventional ones, e.g. ER and object-oriented modeling, and

rule-based systems.

As already stated, earlier context modeling approaches are relatively simple, since most of them are

restricted to a specific environment and use given types of sensors. For example, the work [STW93] proposes a

scalable and pairwise-alike context modeling approach, and their basic sensed context information is location.

Context is generally described by a set of variables and their values.

Grey and Salber [GS01] present the context data in terms of the subject of sensed context, relevant quality

attribute plus properties of the sensors that provide the information, and illustrate how to apply them to

design and develop context-aware applications. Their work provides a baseline for further exploration on

context modeling approaches, but is still constrained within the meta-information and lacks formality and

generality.

Henricksen et al. [HIR02] elaborate a conceptual modeling approach extending from ORM. Their model,

alike in object-modeling, includes similar specifications of entity types and attribute types, but adds a new

category of associations and their dependencies to capture some essential features and relationships of context
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information, i.e. its static, dynamic, sensed, derived and profiled nature. Furthermore, in [HI04], the authors

focus on their experiences on the imperfection of context in context-aware software design, and identify the

information quality arising from the imperfections as a special entity Certainty in their model.

An OWL-encoded context ontology (CONON) is proposed in [WGZP04] to support interoperability of

and logic-based reasoning for context information. Relying on an upper context ontology, different semantics

of the same context concept can be captured and applied in diverse domains. Their reasoning involves two

categories: ontology reasoning and user-defined reasoning.

2.2.4 Summary

Context and context-awareness is becoming a pivotal player in LBS. Since it is fundamentally different from

the conventional types of data, and has crucial impact on selection and interaction of services in the LBS,

there is a demanding call upon a novel approach to represent and model the context data. By surveying

previous work on context data abstraction at the low-level and modeling at the high-level, we offered a basic

vision on the existing methodologies on context modeling. Our work focuses on how to relate the appropriate

abstractions of context information to the information services and user profiles for a given query, and how

their relevance determines the selection of data services. Our definitions of context and of their relevance for

service selection will be further discussed in chapter 5.

2.3 Ontology Assistance

Originally, ontology is a philosophy discipline. In computer science, ontology has become an artifact, whose

most commonly quoted definition is the one given by [Gru93] ”An ontology is an explicit specification of

a conceptualization”. In [Gua97], the author introduces a distinction between top-ontologies, holding the

inherent semantics of its concepts, and domain, task and application ontologies, whose concept meaning

definitions are intended for a specific domain, task and application. Guarino also points out the difference

between generic knowledge-bases and ontologies, seen as a particular kind of knowledge bases that respond

to the purpose of materializing an agreement by a community of users on a shared meaning of its vocabulary.

The recent literature is rich in contributions on ontology engineering, ontology infrastructures, ontology

representation and reasoning, and ontology applications (see e.g. [GPFLCG04] [SS04b]).

LBS operate in a dynamic framework characterized by a multiplicity of different and very volatile partners

with heterogeneous views of the world. This entails the need for the LBS to elaborate its own view, i.e. its

own ontology denoted as the LBS ontology (LBSO) to provide a stable reasoning base for its services. LBSO

is mainly driven by data providers specifications (which basically delimit the domain to be covered) and local

knowledge (e.g. local naming and cultural conventions). Its initial definition is due to evolve according to user

queries, and users or providers satisfaction. Users in particular introduce a high potential for heterogeneity

in the concepts used and in the terms to denote them. Unless they are constrained into predefined static

analysis of their requirements as materialized by menu-based interfaces, users raise ontological issues (to

determine the meaning of their queries) which call for various forms of ontological assistance:
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• Dictionary Support

To express the right meaning, we need to choose meaningful words [Mil95]. Terminological knowledge

is a necessary component of any information system, and LBS in particular, providing support to users

in their need to articulate meaningful requests, be it by inputting keywords or choosing items from

available lists. The obvious goal is meaningful interactions, where user input can be understood by

the LBS, and accordingly the LBS output can be understood by the user. This is not always easily

achieved, especially for LBS, due to the mobile user’s unfamiliarity with the local knowledge the local

possibly implicit rules to express something. Abridged words and acronyms, for example, are often used

to refer to something, somewhere, or somebody. They are indeed particularly convenient and expressive

in LBS interactions due to the limited display capability of mobile devices [BGMP00]. Terminological

ontologies can provide dictionary-like support for lexicographic look-up within the LBS.

• Data Interoperability

LBS are naturally expected to conform to the principles of semantic web services, where the data sources

and services in general are assumed to come with self-explained and machine-readable specifications

[BLHL01]. Ontologies are the knowledge infrastructure of semantic web services. Ontologies in LBS

allow the diverse data sources to interoperate despite different formats and representations in terms of

abstractions, similar to the ’Common access to information’ in [UG04]. Today LBS can already use any

of the ontologies developed by the W3C community and made available via a public ontology library

covering a broad spectrum of fields11. These ontologies, whether they are private or public, whether

they describe other ontologies or themselves, can definitely help information sharing and reuse within

an LBS.

• Data Mediation

This is a typical aspect of data interoperability. Mediation services build bridges between ontologies

with different syntactic specifications or in different ontology languages. In the semantic web services

community, for instance, syntactic mediators have been proposed for reconciliation between OWL-S

and WSMO specifications. This seems especially useful for our LBS infrastructure that allows different

formats of service descriptions from service sources.

2.4 Data Profiling

Data profiles describe data services, providing the information about what data and functions a service can

offer [YAJS05]. They are similar to database schemas in the fact that they are metadata containers, but play

a different role. A database schema defines and enforces the rules that constrain the data to be stored in the

database. Data profiles inform the LBS about the nature and semantics of data that is stored by the data

providers. The data profiles within an LBS independently stem from heterogeneous, distributed, interrelated

11http://www.daml.org/ontologies/
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service providers. Centralized data management as in traditional DBMS is not necessarily the best strategy

for managing data profiles. Decentralized strategies have also been investigated.

In earlier work on LBS, such as CyberGuide [AAH+97] and Active Badge [WHFG92], the data sets cover

the identification of user’s badge, latest locations of mobile users, and nearby sources. This relatively focused

scope makes a centralized data server adequate for information collection and query answering. In GUIDE

[DCMF99], tourism spot information is split based on the GSM cell’s coverage and is maintained by the local

cell server. As the user is on the move, the user can always communicate with the current cell server to

get the information on surrounding attractions. Despite its data distribution, data management in GUIDE

resorts to the traditional centralized strategy. The HP CoolTown project [KBM+02] presents the difference

and correlations between three interrelated worlds, i.e. ’human cognitive world’, ’real world’ and ’virtual

web world’, where the web pages are centrally organized at the server, when the context of nomadic user

changes(e.g. location), the content will be tailored for the current context(e.g. open the web-page on the

introduction of nearby art).

Departing from database techniques, Jensen et al. [JFCP+01] investigate a data warehousing approach

to deal with the multi-dimensionality of LBS data (i.e. location, movement and time) and support the

diversity of measures characterizing analytical queries. Their ultimate goal is supporting location-based

question answering. In [JKPT04] the authors elaborate a more articulated view on their multi-dimensional

data model, by enhancing the usual partial containment rule for dimensions and by extending the algebraic

support of multi-dimensional data, in particular for the special requirements on LBS location data, e.g. users’

history tracks, data of transportation network.

Middleware-based LBS develop an alternative solution to support the multiplicity of independent, au-

tonomous, and heterogeneous services that make up the basis of any LBS. Through the middleware or

mediator(s) [SBNPZ02], these services can communicate with the LBS core to provide users with transparent

information. In this case, the individual services can maintain their own data, while the LBS maintains

higher abstraction about what data and function the service can have. Middleware LBS are a compromise

between the centralized and decentralized approaches.

In the ontology-based COSS project [BPvS+04], each data service is modeled by its type, inputs and

outputs, and attributes. Ontologies are used for disambiguating the terms in the system, such the location,

time, and context. The AROUND project [JMRD03] implements a geographical organization of the under-

lying services. Services are organized by spatial criteria and location-based query processing strategies are

applied to navigate among services while providing optimization based on spatial constraints.

The DBGlobe project [PPT02] clearly adopts a decentralized management strategy. It proposes an ad-

hoc database model to locate correlative data stores and exchange similar information within a specific

community. The data is classified into the content data, and profile data (i.e. user profile, device profile and

movement profile).
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2.5 User Profiling

2.5.1 Functions of User Profiles

User profiles provide information that may help in achieving intelligent and personalized information or

services. They have already attracted much attention, in particular from research in artificial intelligence

[PPPS03], addressing issues such as acquisition of user profiles, learning from user preferences [PB97] [WIY01],

use of profiles for better information filtering and delivery [FD92] [NUR03] [LYM04] and web space navigation

[CG00] [RG01]. Different profile-aware filtering algorithms have been implemented in applications such as

recommendation systems and web browsing.

Most of the proposals advocating the use of user profiles to improve web services selection are tailored

for some specific computing environment or pre-defined application (see, e.g., [SC00]). For example, user

profiles are routinely used by web services, many of them asking users to fill a predefined form to register to

the service, as in My Yahoo! [MPR00], Monster.com for job searching, and PointCast for news subscription

[RD98]. The main goal is to return personalized information to registered users. Another visible effect of users

profiles is given by web services that, once they know the country of residence of the user, display their web

pages in the language spoken in that country. For example, entering ”Switzerland” as country of residence

results in getting the next web page in German, although the user may be located in the French-speaking or

Italian-speaking parts of Switzerland.

Moreover, user profiles can be of great value to information sharing within the same interest group. To

enhance social-awareness, GUIDE allows city visitors to interact and cooperate between system-users in the

same geographical context (e.g. area), and is of great benefit to evaluate the popularity of attractions referring

to comments from other users [CSM+01]. As interviews with potential users of LBS have shown [Kaa03], user

expectations about personalization services focus on privacy control, generic and dynamic user profiling, and

the ability to share information with others. Users also express their strong intention to build their personal

information related to locations, while they are not willing to separately define profiles for each service and

each context of use.

In location-based services, due to the inherent mobility framework, the computing environment is con-

tinuously changing, as well as the type and functionality of available data sources. Static approaches are

therefore poorly useful. In LBS, both the environment and the user profile may change anytime due to change

in user’s location, in the social environment (e.g., entering or leaving a meeting), and in the user’s activity

(e.g., from professional to leisure) [YSCA04]. Hence, LBS rather have to focus on more generic and dynamic

techniques, anytime capable of adjusting their services to the current environment and current user profile

[SAJY05].

2.5.2 Acquisition of User Profiles

Explicit acquisition of user profiles, e.g. using questionnaires and registration forms as we just mentioned,

has the clear advantage that the acquired information is precise and reliable as it is entered and validated

by the user herself. Beyond the tediousness inherent to form-filling, the disadvantage of the approach is
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its poor adaptability to changing contexts. Users are unlikely to repeatedly modify their profiles in order

to adapt them to changes in the offered services or in the supporting interfaces and environment [Kaa03].

Users also resent answering a lengthy questionnaire for a simple service. Systems willing to avoid resorting

to form-filling interactions use techniques for implicit acquisition of user profiles. For example, it is possible

to infer user preferences through the observation of the interactions between the user and system and of the

information selection choices done by the user. Alleviating in this or similar ways the burden on users looking

for personalizes services has a price, that is sacrificing on the precision and reliability of the inferred profiles.

In particular, in multi-context environments such as LBS, it is not easy to correctly determine the impact of

a specific context (among the combination of contexts that rules each interaction) on user’s decision-making

process. One realistic way is the combination of the implicit and explicit acquisition strategies. Additionally,

LBS that maintain a data profile (as in our proposed framework) can use it to focus user profile acquisition

to what may actually be useful, thus limiting the number of interactions with the users devoted to user

profile acquisition. For example, it is obviously useless to ask users which type of cuisine they prefer if the

description of restaurants in the data sources does not include the type of cuisine they offer. Matching of the

user profiles with the data profile identifies the relevant intersection between the two. User profiles acquisition

can be incremental, growing with the number of interactions. It can be made more intelligent by taking into

account other criteria such as usability, selectivity of attributes and frequency of use. It may also be enriched

by coupling its elaboration with ontological reasoning aiming at deriving complementary data.

Not all projects we mentioned so far consider user profiles. Typically, broadcasting approaches ignore

almost by definition who their users are. The GUIDE project, for example, disseminates information merely

in a broadcast manner so that there is no possibility for end-users to describe their interests or indifference to

selected types of data. The system merely attempts to enhance its social-awareness via information exchanges

between individuals with same interest at the same place. The most common approach in existing LBS is

to allow the user to build up an individual ontology to express his/her preferences, in which all concepts are

chosen from a bird-view of available services, so that the system can provide customized information once

the nomadic user is approaching services matching the keywords in her user profile [HV03] [TP05].

Comparatively, CRUMPET [SBNPZ02] goes a few steps further in personalization. Building on its aware-

ness of the location of the mobile user and on its knowledge about user preferences, the system provides users

with proactive sighting tips and personalized adaptive maps. In addition, it supports ways to implicitly way

to acquire user profiles and allows user to update and override their content. However, the tight coupling

between the domain taxonomy and the user profiles challenges the suitability of user profiles once the services

evolve. Additionally, other contexts beyond location are apparently not applied in its user profiling process.

2.5.3 Preference Modeling and Operations

Personal preferences can and should influence every aspect in user-system interaction. Unfortunately, prefer-

ence definition, use and management are still very much open research areas. A good preference model affords

a formally defined and generic way to manipulate and maintain preferences. Öztürk et al. [OTV05] define

the basic notions in preference modeling, and review different formalism such as fuzzy set and non-classical
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logics complementary to the classical modeling approach. In the database community, [Kie02] proposes a

strict partial order semantics for preferences, which facilitates treating preferences as soft constraints when

answering queries, especially in e-commerce applications. [KK02] and [KHFH01] embed these preferences

modeling techniques into the SQL and XPATH standards to make them commercially available. More re-

cently, [CCC+04] presented a description-logic based framework for preference modeling and matching against

service descriptions.

However, the aforementioned proposals fail to provide adequate modeling techniques for preferences in

LBS, since preferences in LBS are context-sensitive. In [HV03] and [STW93] the user profile is simply

composed of keywords and/or a set of attribute-value pairs. Since the concepts in the user profile are

constrained within the range of the subject hierarchies pre-defined by the system itself, the user profile

can not be easily reused and adapted for new applications extending beyond the domain boundaries of the

existing system. Tryfona et al. [TP05] consider user profile and device profile data and describe them using

ontologies. Each user profile is aggregated with different roles, each of which holds diverse keywords that can

be matched against service descriptions to facilitate their automatic selection.

Preferences can change as other contexts change. For example, in a user profile, the favorite sports may

be defined as ”surfing and diving” in summer, and as ”skiing and indoor swimming” in winter. The favorite

sports item in this profile is season-sensitive. To the best of our knowledge, few formal models consider

the impact of context on preferences. The model in [HK04] is an ER-based preference model where each

context (’situation’ in their terminology) is modeled as an aggregation of location, time, personal influence

(i.e. role and activity) and surrounding influence (e.g. device). Each user has a set of application-specific

configurations. Thus, for each user and for each application, a context holds a specific set of attributes.

However, it is impossible to reuse existing context knowledge to current application for current user, for

instance, context in a similar application for the same user.

2.5.4 Preference Interoperability Standards

Ubiquitous computing environments (e.g. hot spots and wireless services freely made available in public areas

and meeting places) have made web services available to mobile users. Current technologies however seem

cumbersome and inflexible, their use raising a series of new challenges, such as how the system can understand

the features and capabilities of different devices, how to customize the information content presentation to

each user’s device, how to apply different models to deliver information in diverse contexts, etc. To address

such challenges, the WC3 community is focusing on enhancing the standardization on device specification,

customizing content selection, authoring web service provision and many other standards contributing to

support web access for anyone, anywhere, anytime, and using any device. The typical paradigm beneath

these efforts is ’the Ubiquitous Web Domain’ paradigm.

One of the earlier W3C initiatives in preference-driven services is CC/PP. It aims at making easier for

user agents and web devices to specify their capabilities and preferences to customize the content selection

(e.g. resolution) and presentation. Its RDF-based framework also enables user to create vocabularies for

expressing device and agent capabilities without insurmountable obstacles in HTTP format. Currently, the
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work on CC/PP has integrated in ’Device Independence’ working group. This group extends the original

motivation from CC/PP to focuses more on providing mobile users with access to a unified web from any

device in any context. This means it not only takes into account the device’s capability and user’s preferences

as CC/PP, but also encompasses the potential influence of context on web information delivery to a specific

request, e.g. concerns of modal, connection, location, environmental and level of discourse nature.

In particular, a series of complementary works are developing specifications to support multi-modality for

web interaction in ’Multimodal Interaction Activity’ (MMI12), to boost delivering real web content to mobile

devices in ’Mobile Web Initiative’ (MWI13) and to apply web technology to help users to access services from

telephone with speech and DTMF14 in ’Voice Browser Activity’ (VBA15).

In addition, privacy issues are recognized as a prominent but poorly-explored part in web-driven processes.

On one hand, activities in P3P16 made a great contribution towards unification of the underlying concepts

and privacy protection for web users and web sites to present their data in a standardized and machine-

recognizable way. On the other hand, the user can hold a clear snapshot about how the websites collect and

utilize their data when users access to and interact with the web sites. Moreover, it enables users to control

the exposure degree of their data to the websites by configuring the browsing schema.

2.5.5 User Profile Summary

User Profiles are a good means for mobile users to describe their personal information, preferences and

privacy protection requirements. In this section, we investigate the work on user preferences, in particular,

preferences in LBS, context-sensitive preferences, preference acquisition, preference modeling, and standards

on preferences in terms of device, modality and privacy. However, there is still open space for further

exploring and formalizing the interrelations between preferences and relating the preference to the context

in the semantic matching process between context-sensitive preferences and services.

2.6 Interface and Query Formulation

Classical means for searching for information or services include yellow-pages, the Internet, and company

experts. When the user is on the move, her mobile device (e.g. mobile phone, GPS) may become the

most important and even the unique bridge to access mobile services and information. A practical and

easy-operable interface is critical for a successful service design.

Due to the diversity of the knowledge domains to be covered and the complexity of the task, different user-

interaction techniques and interfacing styles have been applied in practice, such as keywords-based webpage

searching (like Google), forms filling to express database queries, drop-down lists to choose among and within

function categories. Google’s Froogle17 Service has been recently launched by Google Lab in order to provide

12http://www.w3.org/2002/mmi/
13http://www.w3.org/Mobile/
14Dual-tone multi-frequency, http://en.wikipedia.org/wiki/DTMF
15http://www.w3.org/Voice/
16Platform for Privacy Preference Project, http://www.w3.org/P3P/
17http://froogle.google.com/
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a means to combine keywords search with drilling down through categories to help users find products within

15 classes defined in the regular browser. In the SPIRIT project [FJA05], the query is specified as a subject of

interest and a geographical location. With the assistance of a structured text interface and a map, the query

can be further disambiguated using a domain ontology and a geographical ontology. In some GIS-enabled

services, sketch-based querying is prevalent because of its visual intuitiveness.

Gong and Tarasewich [GT04] discuss mobile interface design and build on the ”golden rules” for interface

design defined by Shneiderman [SP05] to eventually abstract four important guidelines: 1) Enable frequent

users to use shortcuts, 2) Offer informative feedback, 3) Design dialogues to yield closure so as to enable the

system to answer all potential questions in the dialogues, and 4) Support internal locus of control according

to the knowledge organization in the system. Hence, the gist of mobile interface design is to be intuitive and

universal. However, in the above methods, they neglect the importance of the context on interface design.

Whatever interface is used, firstly the goal must be clearly specified. The most popular query expression

is keyword-based, such as Google, Yahoo. Other approaches includes the combination of keywords input and

category selection, such as Monster.com for job searching. For LBS, location is often the most important

condition in a query. Unfortunately, to the best of our knowledge, only few services (e.g. SPIRIT) allow users

to explicitly specify spatial constraints in their query expression. Rather than offering real spatial services,

most interfaces include spatiality specifications only as a filter on places names to be used in retrieving data

from web-pages. Recently, the web services community has proposed WSMO as an environment allowing

users to specify their query as a set of goals. However, the limited display capabilities of mobile devices

restrict the usability and feasibility of the approach.

2.7 Summary and Future Trends

The semantic web is intended to make more and more information and services available to anybody, any-

where and anytime. As a paradigm of semantic web services, Location-based Services have gradually come

into prominence because they hold the potential to revolutionize many fields of our socio-economical life,

from environmental monitoring and conservation, to manufacturing and business assets management, to au-

tomation in the home appliances and health-care in the accelerating mobile environment. However, their

design and implementation remains an open issue. In this chapter, we have defined an overall architecture

and provided a review on related work for each component involved in this infrastructure. Until now, there

is no adequate design for context-aware and personalized LBS, where different components must consistently

interoperate, so it still calls upon the confluence of many emergent techniques, e.g. wireless sensor networks,

context-awareness, semantic web, ontologies, user preference modeling, privacy protection, data integration,

etc.
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Chapter 3
LBS Semantic Data Infrastructure

3.1 Introduction and Motivation

Traditional data management applications operate in well-structured information environments, e.g. in

database-centered frameworks, and benefit from full-fledged strategies (e.g. SQL) that provide the needed

functionality to represent, manage and query the well-structured data. Web-based application environments,

on the other hand, face a cumbersome task trying to provide the same functionality for the huge amount of

heterogeneous data resources that the web makes available to occasional as well as regular users. Deprived

from the database paradigm enabling standard and formatted description of data structures, web data man-

agement has developed new solutions to overcome the poor, unstable and unclear organization of web data.

The new trend is characterized by an emphasis on elicitation of data semantics, to improve the chances for

correct interpretation of the data by heterogeneous partners (users and agents) that do not adhere a priori to

common coordinated behavior. The semantic focus is at the heart of the semantic web to support its organi-

zation as a universe of interacting services. In parallel, current LBS have grown as services for users on the

move. They usually rely on traditional centralized data management techniques, integrating all the data they

need into a single repository and providing all their users with the same services. We foresee that a second

generation of LBS will be developed in a way that is more consistent with the semantic web framework, so

that these new LBS may be used not only by users on the move, but also via the web, exchanging data and

services with any agent within the semantic web. LBS however will retain their specificities, namely:

• Locality, Mobility and Dynamics. Today, the role of LBS is to provide information related with the

current location of the user. For LBS seen as web services, this can be rephrased saying that LBS provide

information about a specific region, in particular information related with the current real or virtual

location of the user. To fulfill this capability, LBS build knowledge repositories describing all locally

relevant data stored in a limited number of data sources. When the user moves from her/his current

place to a remote one, the previous sources and knowledge become useless for upcoming queries from

the user. An LBS aiming at being able to follow its users from one place to another needs the capacity

to dynamically acquire new sources and build the corresponding new knowledge into its repositories.
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Alternatively, LBS can be specialized to only serve a specific region. In this case, it will be up to users

to switch from one LBS to another (just like cellphone users today switch from one telecommunication

provider to another one). This second approach is simpler, although it requires that standards for LBS

be developed to avoid users getting lost because of too high heterogeneity of interactions with LBS

from different providers. In this chapter we discuss how LBS become knowledgeable about a specific

region. This is basic functionality, whatever the approach.

• Trading comprehensiveness for rapidity. LBS are intended to serve people on the move, i.e. they

have to provide rapid rather than comprehensive responses to user queries. Well-known centralized

management strategies that call for long set up processes and static solutions are not well suited to

LBS needs. For example, LBS handling of heterogeneity of autonomous data sources dynamically en-

tering and leaving the scene calls for on the fly and incremental techniques for syntactic and semantic

alignment, while these are traditionally time-consuming and cost-expensive tasks. This departs sig-

nificantly from e.g. data warehousing frameworks that have similar data heterogeneity problems but

different data quality and comprehensiveness requirements.

• Modularity. LBS obviously have a strong specific focus on spatial and temporal information and

related constraints. They need new knowledge extraction techniques to acquire such information from

web pages and XML files. For example, common knowledge extraction techniques based on natural

language analysis (e.g. text frequency computation) have poor performance on understanding the data

in the spatial and temporal dimensions. In addition to space and time challenges, LBS aiming at

context-awareness have to be highly sensitive to the current state of affairs when looking for answers to

user queries. Indeed, they get ad-hoc requests from any kind of user and requests can be about almost

anything that is locally related. They have to develop strong skills for context-awareness if they want to

be successful. For the same reasons, they have to care about personalizing services based on knowledge

they can acquire about user’s characteristics. This multiplicity and diversity of concerns make LBS a

complex software whose processes constantly need to adjust to running circumstances. To make this

possible while keeping performance we propose hereinafter a modular data architecture, better suited

than the usual centralized database assumed in current LBS.

Many different techniques can be used in an LBS to organize, acquire and maintain the knowledge needed

by the LBS to provide efficient query answering despite the dynamicity and heterogeneity of the data sources

and the variety of queries that users can formulate. A key feature is that while the universe of discourse for

user interactions is theoretically infinite (i.e. users can ask queries in any possible knowledge domain), from

a practical perspective users’ queries most frequently remain within a restricted domain that can be easily

characterized. For example, LBS used by tourists typically face a limited number of queries regarding the

available facilities for tourists (hotels, restaurants, museums, shows, festivals, etc.) and about usual concerns

of travelers (e.g. transports, and itineraries). The relevant items in this universe of discourse can be easily

identified by looking at leaflets provided by tourism offices worldwide, leaflets that show strong similarity in

the way they structure the information. Consequently, the core piece of knowledge supporting LBS operation
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can be seen as a domain ontology, e.g. a tourism ontology. It can be derived using existing ontologies in the

same domain and tuned towards local features using service descriptions given by data providers. However,

what LBS need is not a domain ontology in the traditional sense, i.e. a definition of concepts relevant to a

domain and independent of any specific application. LBS are a kind of application, whose goal is providing

information from the available sources. Following a service-oriented paradigm (i.e. replacing information with

information services), the ”domain” of the LBS ontology is the definition of available (or potentially available)

services found in the local information sources. Consequently, the LBS ontology is an ontology of services and

service usability, rather than an ontology of abstract concepts. Because of this service orientation, the LBS

ontology is to be equipped with specific features, such as links between services to show functional equivalence

used to plan alternative services or the concept of input property to define knowledge that has to be provided

when calling for a specific service. We call core ontology the LBS ontology of services. Being an ontology of

services does not mean that the scope of the ontology is limited to service description. The LBS also needs

knowledge about local features that are not services but provide contextual information that is essential to

refine service usability given the current state of the local world. They also need generic knowledge that

allows understanding the terms and the semantics of users’ queries, as well as understanding the relevant

characteristics of users and how they can help in personalizing and contextualizing LBS operations. These

additional facets (users, context) enrich the core ontology and LBS quality of service. As a complement to

this core LBS ontology, the LBS must be able to access external ontologies for example to find out about

services currently unknown to the LBS. Another enhancement to the knowledge in the core ontology is to

maintain a rich terminological diversity to cope with the variety of cultural and linguistic habits of a totally

open and unpredictable population of users.

This chapter presents the knowledge architecture that organizes the various pieces mentioned above,

and how this knowledge is incrementally set up and maintained. More details on the service and context

description and the user profile component are given in the following chapters.

3.2 LBS Data Architecture

Let us start with a preliminary remark that introduces our focus on LBS for a specific region. We see

the LBS operating according to a mixed paradigm, i.e. primarily centralized but occasionally decentralized

[YSCA04]. From the centralization viewpoint, each LBS server holds an integrated view of data sources local

to a specific region (e.g. a city and its suburbs). We however assume that when the current LBS server is

unable to answer the user query because the local data does not lead to a possible answer, before replying

negatively it forwards the query to the geographically neighboring LBS servers. Hence, each LBS server

can be regarded as an independent peer, directly connected to the neighboring servers. For instance, let

us assume that user Shirley is in Lausanne now and will go to Geneva for a meeting this afternoon, and

she would like to check the relevant bus time-table in Geneva in advance. Should the LBS at Lausanne be

unable to answer her query, the query will be forwarded to the neighboring LBS servers, e.g. the LBS at

Geneva. Thus, our LBS data infrastructure adopts a typical peer-to-peer strategy. However, this thesis only
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concentrates on semantic data management for a single LBS. Issues about query forwarding and processing

between LBS peers are beyond the scope of this dissertation.

Regarding data management at the local server, we do not intend to integrate or align all data sources in

a single repository. Instead, LBS only have an abstract view of the data sources (i.e. data profiles, see the

definition in Section 4.3). The detailed description of a service as stated by the service provider remains at

the data source, while the abstract view records only the main characteristics of the service that are needed

to quickly estimate if, given a specific query, the service may be relevant or not. To obtain more detailed

information about a service, if needed, the data sources are directly queried to extract the instantiations and

other properties of services that may be of interest to the requesting user. Our approach shows two benefits:

firstly, data sources can autonomously maintain their data, and LBS are just responsible for suggesting users

where to find appropriate data services; secondly, the data sources can protect their data based on their own

privacy regulations and can constrain users’ access so as to only provide their data if certain conditions are

satisfied.
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Figure 3.1: The Basic Data Infrastructure in our LBS.

In order to build a knowledgeable LBS system capable of actually relating concepts from different sources,

disambiguating the terms in queries, and supporting query matching in multiple dimensions, so as to effi-
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ciently respond to user queries, the data infrastructure we propose includes six repositories interconnected

via the LBS matching services, as shown in Figure 3.1. Two repositories, called Core Ontology and Shared

Terminology, contain the knowledge sub-stratus built by the LBS and its administrators. Three other repos-

itories contain knowledge on the external actors with whom the LBS interacts, users, services, and context

providers. We say these repositories contain the user profiles, the data profiles and the context profiles. Fi-

nally, a working repository contains the queries processed by the LBS, holding data specific to a given query.

For similarity, we say these data are created and maintained as query profiles. The infrastructure components

are briefly described hereinafter to give an overall but intelligible view of the infrastructure. Each one will

be described later in more depth in a dedicated chapter.

Core Ontology1. The core ontology (CO) is the repository for the semantics of the data managed by the

LBS. It is the kernel of the LBS’s data infrastructure and it is used to structure the diverse aspects of service-

related information and perform reasoning about it. It is presented here as an ontology (although it could also

be modeled as a database schema) as ontologies are nowadays the predominant approach towards knowledge

sharing, reasoning and management in a semantic web environment. It basically describes taxonomies of

interest, encompassing a set of definitions of classes, properties, relations, axioms and constraints. These

taxonomies organize information in complementary sub-domains. Services, users, context, space and time

are the main sub-domain we have identified as essential to LBS. These sub-domains are quite heterogeneous

and each one can be pretty complex in itself. Therefore, for better management and improved performance,

we propose that the core ontology be a modular ontology composed by one module per sub-domain. A

module is defined as a smaller ontology, part of a larger one, which covers a sub-domain within the domain

of the larger ontology. This fits perfectly with the LBS core ontology and its multiple taxonomies. Moreover,

building modular ontologies is nowadays feasible. Several proposals exist on how to build a modular ontology,

how to maintain modules individually as well as maintain the inter-module links that allow interactions

between modules, and how to perform distributed reasoning within a modular organization [PSS08]. Modular

ontologies have been claimed to solve scalability issues and speed up reasoning, benefits that are for sure also

relevant for LBS. However, the primary benefit we see in a modular ontology is its improved understandability

and easiness of design and administration. A modular organization allows giving responsibility for each

module to an administrator with specific expertise in the sub-domain. This administrator will be able to

focus on the sub-domain and will do a much better job than a global administrator in charge of the whole

ontology with all its sub-domains. Given that human factors are likely to become the typical bottleneck (or

critical cost factor) of future software, modularization seems to be the best way to increase the quality of

information in an LBS. Moreover, thinking of the semantic Web and its world of specialized services, we can

imagine there will be services specializing in context data, other services specializing in user profiling, and so

on. At that point, each module administrator will be able to use these services to elaborate her/his ontology

module in the best possible way. Indeed, one of the other benefits expected from the development of modular

approaches is improved reusability. If good sub-domain repositories are available, it will much easier to reuse

them than to elaborate a brand new one from scratch.
1See the formal definition at Definition 3.1

35



3. LBS SEMANTIC DATA INFRASTRUCTURE

Whether modular or not, reuse is anyway the approach to follow when starting building the core ontol-

ogy. Initializing the core ontology means inserting all concepts that are assumed to be useful for the targeted

application(s). Once identified the targeted knowledge domain, a clever designer will look for existing on-

tologies in the same or similar domain. If any one is found, its import can form the initial set-up for the

core ontology. For example, if a tourist-support application is targeted, the designer will look for, and find, a

tourism ontology whose concepts include accommodation, food, transport, and leisure services. Very likely,

many of the imported concepts will be generic enough to be suitable for the new LBS and its service module.

However, not all of them will be relevant for local use, and not all of them will be formulated in a way that

is consistent with local habits. Therefore, in a second step, the core ontology is turned into a local domain

ontology (e.g. tourism support in the Canton de Vaud, Switzerland). This can be done by acquiring and

adding location-specific information (i.e. contextual data), such as local landmarks and local calendars, and

enriching existing information, such as adding the preconditions for using a given available service, e.g. to

use a motor-boat rental service the user needs to hold a valid sailing certificate. Conversely, making the

ontology local also includes removing generic concepts that are locally irrelevant (e.g. downhill skiing for an

LBS about The Netherlands).

At this point, the LBS is fully ready to start operation. As long as the LBS is in use, the core ontology is

expanded based on the queries received and answers given. Identification of new requirements by the ontology

manager will also lead to ontology expansion, but this is very much similar to normal ontology evolution,

not specific to LBS, and will not be discussed here. Notice that for the administration of the core ontology

given this incremental strategy it is advisable that elements in the ontology be qualified as either prospective

or confirmed. A prospective element is one that has been entered in the initialization phase but has not yet

been used (up to now). A confirmed element is one that has been actually used during the processing of

at least one query. Prospective elements should sooner or later become confirmed elements. Elements that

remain prospective elements for too long are candidate for deletion, to be triggered by the ontology managers

whenever it is felt that this is a reasonable enhancement to ontology performance (smaller ontologies may

be explored and updated faster than large ontologies). More sophisticated maintenance strategies may be

defined, based on usage metrics, relevance feedback and other usability criteria. They are not investigated

here.

Shared Terminology2. The shared terminology is a superset of the core ontology that focuses on

terminological support to facilitate interoperability among components of the data infrastructure. It aims at

figuring out the heterogeneity (from the syntactic level to semantic level) in the vocabulary of data sources,

core ontology and user queries. In particular, it functions as a dictionary to disambiguate the words/phrases

in LBS. It is helpful for example when a concept in the core ontology is semantically equivalent to, but

syntactically different from, a concept in the query or in a data-profile. The shared terminology functions

as background information to be used when using the core ontology does not suffice for example to identify

a concept that the LBS has found in a query. For instance, it may happen that a French-speaking user

formulates a query in French while the core ontology is in English. The LBS, having failed to find the

2See the formal definition at Definition 3.10
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concept in the core ontology, will look into the shared terminology. The latter may hold a multi-lingual

version of the core ontology and therefore enable the LBD to understand the user’s terms.

Initially, the shared terminology is populated with the concepts in the core ontology, which we call internal

terms. Next, each internal term is complemented with its definition(s) extracted from certain thesauri.

Subsequently, the shared terminology is further enriched by introducing what we call external terms, i.e.

terms (from the thesauri) that are somehow relevant to the internal terms, but are absent from the core

ontology. Relevant means there is a relationship between the internal term and the imported external term.

For instance, the internal term ’car rental’ may be related to the external term ’hire a car’ with a semantic

equivalence (synonymy) relationship. During LBS operation any new term appearing in user queries or in

service-profiles will be identified thanks to the shared terminology manager and added to it in order to capture

the terminologies of users and services that differ from the terminology of the LBS designers. Because the

shared terminology manager can use any external ontology to identify the unknown term, we do not expect

the identification process to fail. Should this happen, the query or service description using the term cannot

be accepted and further human interaction is needed to solve the issue.

Data Profiles. In our LBS data infrastructure, the descriptions of specific services (e.g. a local car rental

service) are autonomously created by service providers and are kept and maintained at the corresponding

data sources, external to the LBS. These service descriptions, together with a global description of the data

source (e.g. owner name, last update date), form what we call a data profile. Data profiles are provided

to the LBS by the data source administrators when the data source joins the LBS. The LBS records the

new data profile and proceeds to recognize the services it describes (i.e. to understand what services it can

provide, what functionality each service has, what spatial region each service covers, when it is available,

etc.). Characterization of services is based on their matching with knowledge in the service module in the

core ontology.

Service Profile Matcher. This component, SP matcher, is responsible for acquiring data from the

data profiles, in particular data from the service descriptions. It holds a set of pre-defined syntactic and

semantic rules to transform the heterogeneous data profiles into the format consistent with LBS core ontology.

Conversely, it is also responsible for managing the mapping of the core ontology into service descriptions, i.e.

the syntactic and semantic support needed to transform users’ queries into the format that the data sources

can understand. Its first task is to identify the terms in the service profiles and to find out their corresponding

terms in the core ontology or in the shared terminology. The process is repeated for the classes, properties,

and other features that the service profile encodes: they are identified and associated to the core ontology.

The goal is not to fully copy the service profile descriptions into the ontology, but to ensure that the core

ontology service module holds enough information about the service to be able to evaluate the effectiveness

of the service as a response to users’ queries.

User Profiles. The LBS needs to know about its users to implement its personalized services goal.

Descriptions of users are traditionally called user profiles. We consider these profiles are stored in a dedicated

repository that may be within the LBS or in a dedicated site elsewhere but accessible by the LBS. Moreover,

we assume each user profile exists before the user formulates a query. We do not investigate how the user
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profile is defined and how it is maintained. An LBS could be equipped with machine learning mechanisms

to enhance user profiles according to the queries users ask and how they react to the proposed services, but

this aspect is beyond the scope of our investigations. The fact that there is no evidence that the same user

will repeatedly and frequently enough use the same LBS (a prerequisite for machine learning) is one of the

motivations not to address user profile evolution. As for service profiles, users profiles need to be understood

by the LBS, i.e. the LBS must identify what the data in the user profile means and how it can be related to

context and service data. The LBS user module maintains the concepts generically related to users, possibly

abstracted from the actual user profiles.

User Profiles Matcher. This component, UP matcher, has similar role as the SP matcher, but applied

to user profiles. It holds similar transformation rules as the SP matcher. It is responsible for acquiring data

from the user profiles, i.e. matching the user profile and the user module in the core ontology, in particular

the data that is relevant for the processing of a given query. Conversely, it extracts from the user profile data

that are relevant for presentation of the query results to the user.

Context Profiles. The LBS obviously needs to know what characterizes locality of information services.

Locality includes local factual data, e.g. the description of places of interest within a city, as well as local

temporary data, e.g. which events, festivals, etc. are scheduled. Locality also applies to knowledge, such as

cultural habits. All of this is used to build the context module, but needs to be regularly refreshed (obvious

for temporary data). Context profile is the repository describing the information sources where the context

data can be obtained or extracted. It could contain, for example, a set of URLs with associated description

of which kind of data is available and how it can be extracted, or a pointer to a tourist office database or set

of XML files such as an event schedule.

Context Profiles Matcher. Similarly to the other matchers, this one is responsible for establishing

and maintaining a correct connection between the context module and the context profiles.

Query Profiles and Query Relaxation Profiles. Each user query undergoes a multi-step processing

by the LBS before its result can be returned to the user. Several steps have to do with reformulation of the

original and intermediate versions of the query, for example to take into account user and context information.

Consequently, the LBS has to maintain for each query a description of its successive formulations as well as

the relevant subsets of the user profile (conveying the user data that has been found relevant for this specific

query) and of the context data (conveying the contextual data that has been found relevant for this specific

query). These ”query profiles” are stored within the LBS as element of a sequence of queries that we call a

user interaction. A user interaction represents an exchange between the user and the LBS that leads the user,

through a series of questions & answers, to get the desired information. In addition, query relaxation is a very

common topic in LBS. It happens whenever the user need additional information or the perfect matching

can not be accomplished. For each service class in the core ontology, it corresponds to a query relaxation

profile. The relaxation profile contain a set of relaxations rule for each property and its possible values. In

addition, a ranking function is also included in the relaxation profile to determine how to select/rank the

relaxed query when multiple relaxations are available. Each query relaxation profile is associated with one
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or multiple query profiles with the same service class. The analysis of query profiles can assist to refine the

relaxation rules and ranking functions for better recommendation and more reasonable query relaxation.

Before developing a detailed description of the core ontology and shared terminology, the two repositories

internal to the LBS, we briefly show a usage scenario to illustrate the interplay of the different components

in the data infrastructure. We first show a set-up scenario, followed by a query scenario.

Set-up Scenario. Let us assume a software company has an LBS skeleton, i.e. all the software to

run the planned location-based services, and wants to set-up a first version of its LBS servicing tourists

visiting the city of Lausanne. Setting up this specific LBS is a knowledge acquisition process. As we already

mentioned, the first task is to find and import one of the existing ontologies for the tourism domain (see, for

example, the public ontology at W3C website). The imported concepts will form a first draft for the service

module, generically describing standard services in support of traveling tourists (something similar to the

organization of yellow pages). The second initialization step is acquisition of the local context. This can be

achieved through import of data files acquired from local providers (e.g. the local tourism administration,

and tourism-related organizations such as cultural associations, local press, movie distributors, transport

companies, and so on). Alternatively, data can be captured from public websites using knowledge extraction

techniques (e.g. [TLKT01]). Captured and acquired data are formatted to define and populate the context

module. Such a priori knowledge of context may be needed to perform the following step, which is acquisition

of service descriptions from local service providers. As stated, we assume that local providers will make their

service descriptions available, not necessarily following a fixed format or adhering to a fixed terminology. This

is where the LBS will start building the shared terminology, in its attempt to understand what a given service

description means. For example, retrieving the service description term from WordNet and associating it to

the corresponding term already in the service module. Acquiring service knowledge is a sophisticated task,

as the goal is not to import service descriptions but to build the abstract view of services that forms the

service module. This knowledge abstraction step relies on linguistic techniques (to identify major relevant

terms) as well as on semantic techniques (to only retain what is useful in differentiating the service from the

other services). Building the service module obviously includes building the mapping between the module

and the data profiles. Once the service and context modules are set up, the LBS is ready to start receiving

queries from users. Here the question is whether user profiles will come from the user device or will have to be

retrieved from some external repository of user profiles. Given the sensitivity of the issue, the former is likely

to prevail. This means the LBS has to run a user profile understanding process, equivalent to the service

profile understanding process. Indeed, some generic knowledge about users characteristics can be initialized

a priori within the user module. Actual user profiles will be matched against this initial set-up, the matching

possibly leading to enriching the user module and the shared terminology.

Query Scenario. How user queries are processed is discussed in detail in chapters 7 and 8. Here we just

sketch what happens in the proposed LBS. User queries in our approach are formulated by stating which kind

of service the user is interested in, and the spatial (e.g. proximity) and temporal (e.g. current availability)

conditions that are to be taken into account while selecting specific services in response to the query. The user

query can also specify thematic (non-spatial and non-temporal) conditions to refine the search for services
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of the given kind. The hypothetical query ”give me nearby restaurants still serving Swiss traditional cuisine

after 2pm today” illustrates denotation of a kind of service, restaurant, together with the specification of

spatial, temporal, and thematic conditions. Query processing within the LBS includes the following phases:

1) understanding the query (are the terms and the service they denote known in the core ontology or in the

shared terminology? If not, search external ontologies); 2) retrieving from the service module the prototypical

description of this kind of services in order to check preconditions for using services of this kind and check

that conditions stated in the query can be actually evaluated (e.g. that the price for the service is available);

3) personalizing the query, i.e. check if relevant knowledge in the user profile allows refining the query, e.g.

refining a query for a hotel into a query for a centrally-located hotel; 4) contextualizing the query, i.e. check

if context data allows further refinement, e.g. replacing the expression cheap hotel with the expression hotel

with price less than 80 CHF; 5) executing the query, i.e. find relevant services in the order of preference, if

any, as stated in the reformulated query. Notice that the order in which to execute phases 2, 3, and 4 can be

changed without influencing the final result.

We can now move on to a first detailed description of the core ontology and shared terminology.

3.2.1 The Core Ontology

The core ontology is the key component of the LBS data infrastructure. According to the view of LBS as tools

providing users with information about services, we can say that the central component of the core ontology

is the service module. This module holds the metadata about what services the LBS can offer, how these

services are structured (as hierarchies of interrelated classes), and has links to the context and user modules to

identify contextual and user-related information that can influence the choice of services in response to users’

queries. The hierarchical structure provides a service taxonomy primarily based on a standard classification

of services in the domain covered by the LBS. Most likely, a domain taxonomy can be imported from external

sources, and then refined (i.e. restricted or extended) to take into account the specificity of locally available

services. For instance, it is possible to import a generic tourism ontology and then improve its local relevance

by adding more details on ski-services if the region of interest is Switzerland, or deleting ski-services as

irrelevant if the region of interest is Hong Kong. Knowledge in the service module is complemented with

knowledge that the other modules maintain to support a global apprehension of service data. Spatial and

temporal knowledge is obviously needed to be able to describe and reason about the geographical location

of services (for queries such as ”retrieve the nearest ...”) and their potential usability in a given timeframe

(for queries such as ”retrieve a nearby restaurant that still serves lunch after 2:30 pm”). Space and time

modules provide the basic tools for expressing spatial and temporal knowledge. Context and user modules

hold the knowledge that is by definition needed to achieve the goal of personalized and contextualized service

retrieval. In the sequel of this chapter we describe the generic concepts used to structure the core ontology.

The following chapters provide a detailed discussion of the specialized concepts that we advocate for an LBS

to materialize the service, context, and user modules.

Following current trends in ontology management, the following description of the content of the core

ontology is inspired by the Description Logics (DL) paradigm, the most frequently used paradigm in the
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ontology research community. More precisely, we refer to OWL-DL because this specific version is likely to

be the one on which the Semantic Web will be developed in the short-term future. Known advantages of

OWL-DL include: 1) it provides a solid basis for defining the semantics of information, 2) the underlying open

world paradigm is well suited for interoperability in a web-based framework, 3) it provides a set of built-in

constructs that support more semantics than RDF on class and property, e.g. disjoint, cardinality, property

restriction, etc., and 4) its specifications are decidable. DLs, however, are not very reader-friendly, in the

sense that their expressiveness in terms of data structures is very limited (equivalent to functional or binary

relationship models, as represented by e.g. ORM, the object-role model3 used in the DOGMA approach to

ontologies [JM02]), leading to heavy description mechanics when confronted with complex objects, complex

attributes and rich relationships. Another limitation of DLs is their poor support for modeling dimensions,

e.g. space and time, that are essential to LBS. Therefore, to improve readability and simplify our discourse,

we will sometimes refer to conceptual modeling constructs (taken from the MADS data model developed by

our laboratory [PSZ06]) to explain requirements that we associate with the core ontology and are not simply

expressible in OWL-DL.

OWL-DL ontologies consist of classes, properties, individuals and their axiomatic definitions. Classes are

the nodes of the ontology at the metadata level. Individuals are the nodes at the data level (i.e., instances).

Properties are binary connections between classes (object property) or between a class and a value domain

(data type property). Accordingly, our LBS core ontology is defined as follows:

DEFINITION 3.1. Core Ontology (CO). The LBS core ontology is a set of ontological modules. In
our approach this set contains the service module, the context module, the user module, the space module
and the time module. Each ontological module consists of classes, roles (including object properties and data
properties), individuals (or instances), data types, is-a links and the corresponding defining axioms. We use
the following notations:

• C denotes the set of all classes in the ontology. It groups all classes from the different modules. The set
of classes in a module are denoted as: Cservice ⊆ C is the set of service classes, Cspace ⊆ C is the set
of spatial classes, Ctime ⊆ C is the set of temporal classes, Ccontext ⊆ C is the set of context classes,
and Cuser is the set of user classes.

• I denotes the set of all individuals in the ontology. It splits into two disjoint subsets: Iclass is the set of
class instances, each of which is uniquely identified by its identifier; Idata is the set of data values. Data
values belong to system data types (integer, string, etc.) or to user-defined data types. For example,
landmarks to be found in a specific city are instances of the Landmark class in the context module.

• DT denotes the set of user defined data types. It includes the spatial and temporal data types we
discuss hereinafter. User-defined data types allow modeling value constructs that go beyond the simple
value domains supported by OWL-DL. The current state of art in ontology reasoners does not support
user-defined data types, but work is in progress, for example to support complex values.

• R denotes the set of roles, i.e. binary relations between classes or between classes and data value
domains. In OWL-DL the former are called object properties, while the latter are called data value
properties. Roles may be internal to a module, e.g. linking two classes in the service module, or be
inter-module, i.e. linking a class in one module to a class or a data value domain in another module.

3 Refer to http://www.orm.net/.
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Inter-module roles link, for example, service classes to context data on which services may rely. We
will talk about roles and role instances to differentiate links at the metadata level from links at the data
level.

This chapter focuses on generic constructs for the core ontology that apply to all its modules. Specific

constructs are discussed in subsequent chapters. We abstract from the possibility to define sub-modules within

a module (e.g. defining a sub-module on products within the service module, describing products available

from the known services). The semantics of the modules is self-explanatory. The service module describes all

service-related information. It holds information inherent to services (e.g. which kinds of services exist, how

they are characterized, what do they offer as product, if any), and holds relevant links to the other modules.

Examples of links are link to the space module to spatially locate the services, links to the temporal module

to characterize opening hours for the service, links to the context module whenever services are described

as sensible to context (e.g. services located nearby a football stadium and selling alcohol may have to close

operation some hours before and after a football match), and links to the user module (e.g. for services selling

alcohol to state that they need knowledge about user’s age to check their accessibility). The service module

is discussed in the next chapter.

The spatial classes in Cspace are the classes that convey the spatial features supported by the ontology

software. Spatial features are usually defined to include point, line, surface, polygon, etc. They are frequently

used to convey information on the spatial extent of objects, i.e. the geometric shape of the object and its

location. For example, if theaters are defined in the service class or in the context class, they may be linked say

by a hasSpatialExtent inter-module role to the point or the polygon class in the space module to provide their

geographical location and support proximity queries. Spatial objects (i.e. objects having a spatial extent)

may be handled by a GIS, which can provide many computational services to the LBS to satisfy queries that

call for such computations (e.g., a ”nearest cash dispenser” query). Similarly, the temporal classes in Ctime

are the classes that convey the temporal features supported by the ontology software. Temporal features are

usually defined to include instant, interval, etc. Associated to a class describing objects, for example using a

hasTemporalExtent inter-module role, they denote the objects in the associated class as temporal objects, i.e.

objects whose temporal extent is characterized by a temporal subset of the timeline underlying the ontology.

Temporal feature are equipped with reasoning rules that support computational services such as computing

the overlap between two time intervals. Examples of temporal objects include local calendars, local festivals,

and temporal references such as Christmas, the ”Jeûne fédéral” in Switzerland, or the coming Montreux Jazz

festival. These temporal references can be used in queries, defining the timeframe of interest. The same

object class can convey both a temporal and a spatial reference. For example, the ”Montreux Jazz festival”

denotes a place, Montreux, and a timeframe, in July. It supports query predicates such as during/before

Montreux Jazz festival, and near the main-site of Montreux Jazz festival. Spatial and temporal modules are

described in the sequel of this chapter.

The context module describes generic local knowledge that is relevant for improving the selection of

appropriate services in response to users’ queries. Examples of context knowledge include local weather and
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traffic conditions, events, and local specificities such national holidays. The context module is discussed in

chapter 5.

3.2.2 Class Taxonomies

The skeleton of an ontology is its class hierarchy, expressing a taxonomy of concepts. In our LBS framework,

the core ontology is a modular ontology. Each module is a self-standing ontology, equipped with the capability

to hold and use inter-module links (roles) to enrich, whenever needed, its knowledge and reasoning capabilities

beyond the actual boundaries of the module. Each module holds its own class taxonomy. When defining a

class, the module it belongs to has to be specified. Whatever the module they belong to, classes are defined

by one or more axioms. We build on the elementary axioms below to characterize a class as belonging to one

of the following categories: atomic class, enumerated class, discriminated class, and set-based class.

DEFINITION 3.2. Module Class. A module class c is a class in C (the set of all classes in the core
ontology) explicitly defined as a triple (c, module, axioms) where c is the name of the class, module is the
name of the ontological module the class belongs to, and axioms is the set of axioms that concur in defining the
class. Axioms are either elementary axioms stated according to one of the following possibilities or complex
axioms where class names are replaced by class definitions:

• c. This atomic axiom defines c as a new class without relating it to any of the other defined classes. If
axioms for c only contains an atomic axiom, c is an atomic class and is direct subclass of �, the top
concept in the respective module, i.e. ¬∃ci, ci ∈ C, ci �= �, c � ci.

• c ≡ i1, . . . , in. This enumeration axiom defines c as an enumerated class where i1, . . . , in are the set of
individuals in the module stated by the axiom as belonging to the class.

• c ≡ cj 
 discriminator(c). This discriminating axiom defines c as a subclass of the class cj belonging
to the same module as c. discriminator(c) is a class definition that defines a membership criterion for
individuals of cj to belong to c. Typically, discriminator(c) is a restriction on the roles defined on cj.

• c � cj. This inclusion axiom also defines c as a subclass of the class cj belonging to the same module
as c. This definition does not allow inferring which individuals in cj belong to c.

• c ≡ ci
cj, c ≡ ci�cj, and c ≡ ¬ci. These derivation axioms define c as a derived class whose individual
are determined by the specified set operation: 
(Intersection), �(Union), and ¬(Complement) on
classes ci and cj belonging to the same module as c.

Atomic classes. We call atomic classes the classes that are direct subclasses of �. Atomic classes play

a fundamental role in the design of an ontology. They are the ones that precisely define the extent of the

domain covered by the ontology, and serve as the semantic root nodes of the ontology (while � serves as the

syntactic root). All other classes participate in structuring and refining the domain of discourse defined by

the atomic classes. Atomic classes are classes defined by an atomic axiom (or classes appearing in an axiom

and having no definition) and such that no other axiom in the ontology leads to infer they are subclass of

another defined class. For example, let us assume the designer of the service module defines the Bus and

Train classes using only an atomic axiom per class. In the Service module these two classes will appear

as atomic classes, subclasses of �. If some time later the designer creates a new class Transport using a
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derivation axiom Transport ≡ Bus � Train, Transport will be positioned in the Service module by the DL

reasoner as a subclass of � and as a common superclass of Bus and Train. Consequently, Bus and Train will

no longer be atomic classes.

In textual OWL specifications atomic axioms are stated using the owl:Class axiom specification. For

instance, the following atomic axiom defines a class named ”TransportService”:

<owl:Class rdf:ID ="TransportService"/>

The axiom adds the class to the ontology. The class can be further characterized by additional axioms

defining its relations, properties, restrictions and individuals.

Enumerated classes. Similar to their definition in databases, enumerated classes are classes whose instances

are defined by enumerating them. These classes materialize the informal concept of repertoire. They are

used to specify elements of the domain that are very specific to the context of the targeted applications.

For example, an enumerated class can hold the names of the diploma delivered by a specific university, or

the set street names in a given city. In a Swiss LBS service module, an InternationalRail class intended to

describe major train services between cities in Switzerland and cities in neighbor countries may be defined

as a subclass of the Railways class and be instantiated by an enumerated class definition, as follows:

InternationalRail � Railways

InternationalRail ≡ {”TGV”, ”DB”, ”Cisalpino”, ”ÖBB”}
The same definition can be achieved in textual OWL using the oneOf property axiom to exhaustively list

the desired instances. As shown in the example, a class defined by an enumeration axiom can also be defined

by another axiom.

Discriminated class. We say a class c is a discriminated class if it is related to another class csup (its

superclass) by an inclusion axiom (c � csup)or by a discriminating axiom (c ≡ csup
 discriminator(c)) where

discriminator(c) is a class expression that constrains properties of the superclass csup to obey some given

rules. Considering that ontologies are basically enriched taxonomies, most of their classes are discriminated

classes. The explicit definition of a discriminator allows an automatic instantiation from the superclass to

the subclass that complements the standard automatic instantiation from the subclass to the superclass.

It is therefore preferable, whenever possible, to always use a discriminator in defining a subclass. Typical

examples are easily found in the service module. For example, given an LBS Service module where rental

services are available, the following definitions may hold:

Renting

RealEstateRental ≡ Renting 
 ∃hasRentalProduct.RealEstate

CarRental ≡ Renting 
 ∃hasRentalProduct.Car

ApartmentRental ≡ RealEstateRental 
 ∃hasRentalProduct.Apartment

The first axiom defines Renting as an atomic class, assuming Renting has no other defining axiom. Renting

groups all rental services available in the LBS. The second axiom defines RealEstateRental as the subclass of

Renting grouping all instances of Renting that are linked by at least one instance of the hasRentalProduct
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role to an instance of the RealEstateRental class. The third axiom similarly defines car rental services as

another subclass of Renting. Finally, the fourth axiom defines apartment rental services as the subclass of

real estate rental services such that the services have at least one offer for an apartment.

By exhaustively replacing the defined classes using their defining axioms, we may expand the axioms on a class

to only include the atomic class and a set of discriminating restrictions. For instance, the Apartment rental

axiom given above can be turned through concept expansion and subsumption into the equivalent axiom:

ApartmentRental† ≡ Renting 
 ∃hasRentalProduct.RealEstate 
 ∃RealEstateType.Apartment

Assuming subclasses of Renting are defined as disjoint classes, given a query on ”apartment rentals” the

LBS can prune the classes HouseRental, ParkingPlaceRental, and CommercialPlaceRental, so as to constrain

the search space within the class ApartmentRental.

The discriminator can define a restriction based on cardinality constraints on a property. OWL provides

built-in constraints on cardinalities, namely: owl:allValuesFrom(∀), owl:someValuesFrom(∃), owl:hasValue(∈),

owl:minCardinality, owl:maxCardinality, and owl:Cardinality. Using these constraints the above axiom defin-

ing the Apartment rental class is written:

<owl:Class rdf:ID="ApartmentRental">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#Apartment"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasRentalProduct"/>

</owl:onProperty>

</owl:Restriction>

<owl:Class rdf:about="#RealEstateRental"/>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Set-based Class. We call set-based classes the classes defined as derived from existing classes on the

basis of the set operations on classes. This allows deriving classes as union (owl:unionOf) or intersection

(owl:IntersectionOf) of two other classes. In particular, an intersection between two classes describes a new

class that is subclass of two different not disjoint classes, i.e. a class supporting multi-inheritance. A new

class can also be defined as the complement of another class using the negation operator (owl:complementOf).

In particular, negation can be used to define disjointedness, as already illustrated in previous examples. For

example, the following axioms define a partition of transports into public and private transports

PublicTransport � Transport, PrivateTransport ≡ Transport 
 ¬PublicTransport

The derivation expression can generalize to any composite expression using set operators and class defi-

nitions as operands.
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3.2.3 Relationships

Like for any structured repository, the semantics of ontology content relies both in the information nodes (here,

the classes) and in the ways these nodes are linked (here, OWL object properties or DL roles). To analyze

what kind of links we feel are needed in the LBS core ontology, we follow the conceptual modeling perspective,

speaking of links as relationships. The rationale for the terminology change is not to be constrained by the

limited kind of links that are currently supported by ontology models.

Is-a relationships form the backbone of any ontology and are a basic feature of all ontology models. We be-

lieve that in fact what is needed for correct knowledge management rather is Discriminant Is-a relationships,

i.e. Is-a relationships whose definition includes the specification of the discriminating conditions that make

an element in the superclass also an element in the subclass. The semantics of any Is-a relationships is the

well-know population inclusion semantics, and its inferred property inheritance mechanism. A complemen-

tary backbone to build semantically rich data structures is the part-of relationship between a composite class

and its component classes. In our approach, part-of relationships (equipped with cardinality constraints, as

any kind of relationship) are synonym to whole-part, composition, and aggregation relationships discussed by

other authors. The semantics of part-of relationships is that the composite class describes a whole that may

alternatively be seen as a composition of parts of different types. Part-of is a binary relationship between

the composite class and one of its component classes. This does not prevent the composite class to have

components in different classes.

These two categories of relationships are discussed below. Other kinds of relationships will be introduced

in the following chapters, as they are seen to be more relevant within a specific module, such as service,

context, and user modules.

Is-a relationships and Discriminant Is-a relationships. Inherent to ontologies is the structure defined

by inclusion axioms on which subsumption reasoning is based. In database terms, these axioms represent Is-a

relationships between a subclass and a superclass. Because of its population inclusion semantics, properties

and constraints attached to a superclass also hold for instances in its subclasses, while subclasses may be

additionally characterized by their own properties and constraints. Is-a relationships in conceptual database

schemas usually do not specify the membership predicates that characterize the different subclasses of a

given superclass. In other terms, the criteria that distribute the superclass population among the subclass

populations is not known. This lack of knowledge leads to unnecessarily long search process when looking for

instances satisfying a predicate that corresponds to the membership predicate. As LBS care about quickly

finding an answer to the user query, we favor for the core ontology an approach that allows to include

the specification of membership predicate. We call discriminant property the property that discriminates

instances of the superclass into populations of the subclasses. We call Discriminant Is-a relationships an Is-a

relationships that explicitly bears a discriminating criterion. Thus, Is-a and Discriminant Is-a relationships

are the basic links between classes in the core ontology.

DEFINITION 3.3. Is-a relationships. An Is-a relationships is a partial order relation � on a set of
classes such that C1 � C2 implies that every instance of C1 is an instance of C2.
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The notation C1 � C2 may be equivalently read as C1 is a subclass of C2, C2 is a superclass of C1, C1 is

contained in C2, and C2 contains C1.

DEFINITION 3.4. Discriminant Is-a relationships. A Discriminant Is-a relationship is a strict partial
order relation ⊂D on a set of classes such that C1 ⊂D C2 implies that C1 ≡ C2 
 D, where D is a restriction
on C2 and D �= �.

DEFINITION 3.5. Sibling Classes. Two classes C1 and C2 are said to be sibling classes if both are
related to the same class C3 via Discriminant Is-a relationships C1 ⊂D1 C3 and C2 ⊂D2 C3 (C1 ≡ C3 

D1, C2 ≡ C3 
 D2), and the restrictions D1 and D2 are defined using the same discriminating property but
different values.

In the simplest case, the restriction D is composed of a property and its value constraint. Let us consider

again the apartment rental class defined by a Discriminant Is-a relationship with the RealEstate class that

uses the RealEstate property RealEstateType as discriminating property:

ApartmentRental � RealEstate 
 RealEstateType.Apartment

A sibling to this class could be a cottage rental class defined as:

CottageRental � RealEstate 
 RealEstateType.Cottage

Conversely, the class

HolydayRental � RealEstate 
 RentalDurationUnit.Week

defining holiday rentals as real estate rentals whose rental duration is counted in weeks, is not a sibling of the

ApartmentRental class because its definition uses a different property of the RealEstate class as discriminating

property.

Whenever the discriminating property is functional (e.g. a real estate belongs to only one real estate type,

or when using an allValuesFrom restriction with disjoint data ranges), it is inferable that the sibling classes

based on this property are disjoint.

While Is-a and Discriminant Is-a relationships are directly expressed in DL and OWL axioms, finding

the potential siblings of a given class needs reasoning on the definition of all classes defined as discriminated

classes. It may be worthwhile, in order to expedite query processing, to introduce an explicit sibling relation-

ship between two classes, implemented for example as a predefined role (object property) with the reserved

name ”Sibling”.

Disjoint Relationship. Similarly and for the same efficiency reasons that lead us to introduce a Sibling

relationship, we suggest introducing a Disjoint relationship between classes to directly state disjointedness

between two classes. This can be implemented as a predefined role (object property) with the reserved name

”Disjoint”. At the conceptual level the Disjoint relationship can be defined as an n-ary relationship:

DEFINITION 3.6. Disjoint relationship. A Disjoint relationship is a relation ��D(S) where S is a set
of classes, S = (s1, s2, . . . , si),(i ≥ 2), and for any two classes sm, sn in S, it always holds that sm � ¬sn.

This n-ary form is nothing but a shortcut to the specification of the corresponding set of binary disjunc-

tions.
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Query processing in the LBS can benefit from knowing that a set of classes are disjoint. For example, if

the LBS finds an appropriate service in a class, it will not expect finding similarly appropriate services in

classes that are disjoint to the first one. This avoids useless searches. For example, if an appropriate health

care service is found in the class Hospital, the LBS will not further look into the class PetClinic, as PetClinic

is defined to be disjoint with Hospital.

Part-of Relationship. Any description of real world data is likely to have to support descriptions of the

same things at different levels of abstractions, corresponding to different perceptions and leading to different

representations. A very typical example is the whole versus set of parts duality: in one perception, a real-

world entity is seen as a whole and described as a single object; in another perception, the same entity

is seen as a composition of parts that are individually identifiable and each one described as a separate

object. In the LBS framework, we may have composite services, e.g. a HouseCleaning service that denotes

a global service that actually consists in a grouping of individual underlying services, e.g. RoomCleaning +

WindowCleaning + CarpetCleaning services. Similarly, a context class Environment may represent a global

view of a set of context classes AthmosphericData, TrafficData, etc. where each of the latter classes covers

a specific sub-domain in the environment domain. This corresponds to a perception where the environment

domain is composed of several sub-domains.

We use the part-of term to denote the relationship that link the class representing the whole object with

the class representing objects composing the whole. Classes may be organized into part-of hierarchies, such

that one level in the hierarchy conveys a more synthetic perception and the lower level coveys a more detailed

perception.

DEFINITION 3.7. Part-of relationship. A Part-of relationship is a binary relationship between two
classes C1 and C2, noted � (C1, C2), such that C1 represents a whole and C2 represents a part of this whole.

These relationships are described in DL as roles between two classes (and in OWL-DL as object properties).

These roles are normal roles, in the sense that they have no distinguishing characteristic. To keep the

part-of semantics, we propose that these roles bear the reserved name hasComponent, and their inverse

the reserved name isComponentOf. Cardinalities defined for these roles complete the definition of their

semantics, specifying whether components may be shared by different composites, depend for their existence

on the composite, are necessary or optional components for the composite.

The same composite object may be decomposed in different ways. For example, a century can be de-

composed into years or into decades. This entails that it is possible to have many Part-of relationships

between a composite class and sets of component classes. Therefore not to loose the semantics of aggrega-

tions we need a way to state which components belong to one given decomposition (i.e. cluster components

by decomposition). To achieve this we introduce the concept of cluster of components:

DEFINITION 3.8. Cluster of Components. A cluster of components is a set of classes Sc such that
each class in Sc is related to the same class C by a Part-of relationship where C is the composite and Sc

contains the classes needed to compose C according to a given composition process. We use the notation
� (C, Sc), where C is a composite class, and Sc is a set of component classes, Sc = C1, · · · , Cm, (m≥1) such
that for each class Ci ∈ Sc � (C, Ci) holds.
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Example 3.1. Home Clean vs. Room Clean, Window Clean, and Carpet Clean.
�(S, Sw)
Whole Service: HomeCleaning,
Component Services: RoomCleaning, WindowCleaning, and CarpetCleaning.
�(HomeCleaning, {RoomCleaming, WindowCleaning, CarpetCleaning})

Other variants of the Part-of relationship will be introduced in the following chapters, due to their service-

orientation and context-orientation.

3.2.4 Attributes

In conceptual modeling, each object type and each relationship type may be described by associated at-

tributes and methods. Methods are not part of the ontological world, so we will not discuss methods in

this work. Conversely, attributes are available, in DL as roles between a class and a data value domain

and in OWL as data type properties. The main difference between the database and the ontology view of

attributes/properties is that the former view an attribute as only existing as component of something (its

”owner” construct) while the latter sees it as an independent thing, just like classes and roles. In databases

an attribute is by definition a component of a single composite construct, be it an object type, a relationship

type or another attribute. In an ontology it is possible to define a role/property independently of any spe-

cific relationship with other ontology items. Specifically, in OWL-DL a property can exist independent of the

classes, and is defined as a tuple ([domain]4, property, [range]). Syntactically, domain is a built-in component

which, if it exists, links the property to one or more class descriptions (e.g., a union of classes). Similarly,

range is a built-in component which links a property to either a class description or a data range. OWL-DL

provides built-in axioms to specify the characteristics (symmetric, transitive, inverse, ...) and cardinality

constraints that may hold for a property.

According to the characterization of attributes in [PSZ06], the attributes in databases can be: either

simple or complex, either mandatory or optional, and either monovalued or multivalued (of type set, list, or

bag). Attributes in ontologies are simple, either mandatory or optional, and either monovalued or multivalued

with an implicit set collection type. Complex attributes are not supported in ontologies, consistently with

their binary relationship view of the world. Thus, whatever in a conceptual database view would be a complex

attribute is defined in an ontology as a class.

In this subsection we briefly discuss attributes from the LBS perspective. We point out a specific char-

acterization for service description attributes, which we call input attributes to convey the semantics that

these attributes denote information that has to be provided when invoking a service to be able to operate

the service. This allows the LBS query processor to determine a priori if a service found to be relevant can

actually be invoked given the information available within the query. Finally, we introduce some additional

attribute categories that play a specific role in the description of services in a LBS framework.

Cardinality Constraints. In a database context, given its closed world assumption, a mandatory attribute

conveys a constraint on the creation of the object/relationship/complex attribute the attribute belongs to.

4Brackets [ ] specify the component as optional.
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This cardinality constraint forces newly created instances/values of these objects/relationships/complex at-

tributes to provide a value for the mandatory attribute. For example, if a Student object type holds a

mandatory stcard# attribute, it is not possible to enter a new student instance into the database if the value

of her/his student card number is not known. The same holds if a mandatory participation of an object type

into a relationship type is specified: object instances can be created only if an instance of the relationship

type is simultaneously created for this object instance. Ontological reasoning is based on the open world

assumption. This makes mandatory constraints inoperable, despite the fact that it is possible to define min-

imal cardinality restriction. It is possible to create objects with no value for a mandatory property, simply

because the reasoner assumes that the missing value may exist in the real world. Its temporary absence

from the ontology is episodic and does not contradict the axiom defining the property. Actually, OWL-DL

provides cardinality constraints restrictions (ı.e. owl:minCardinality, owl:maxCardinality, owl:Cardinality)

which allow defining the desired range for the number of values for a property of a class. Properties are

by default multivalued, but the functional property axiom defines a property as monovalued, independently

of any specific source domain. It is called a global cardinality constraint because it holds no matter which

class the property is applied to. A mincardinality specified as 0 and a missing specification of a minimal

cardinality denote that the associated property may not exist.

We believe LBS would benefit from the capability to specify and verify cardinality constraints. For

example, LBS could use mandatory properties to define the necessary conditions for service individuals to

be added into the available services. Similarly, properties that appear in the discriminator associated to

the definition of a discriminated class typically are mandatory properties as knowing their value is needed

to evaluate to which discriminated class an individual of the superclass belongs. Service descriptions could

more precisely define their usability using mandatory properties, as explained below.

Input Property. We call input property is a mandatory property that expresses a constraint on the acces-

sibility of the class it is attached to. More precisely, when querying the class, the class is considered to be

not visible (hidden) if the query does not specify a value for each input property. Input properties of a class

can be regarded as mandatory attributes of the query accessing the class. They are a valuable specification

in particular if attached to a service class. In this case the semantics is clearly to define which attributes

have to be valued in a query to make sense accessing the service. For example, a query to find a shop selling

a product does not make sense if the type/name of the product is not specified in the query. Similarly, any

query for a flight-ticket has to specify at least the departure and destination cities, possibly also the day/time

of the desired flight.

Simple Attributes vs. Complex Attributes. In traditional conceptual modeling, attributes are qualified

as simple (or atomic) if they directly hold a data value, if monovalued, or a collection of data values, if

multivalued. Conversely, attributes are said to be complex if they do not directly hold a value but are used to

denote the set of their component attributes that in turn are either simple or complex. Complex attributes

are very useful when implementing conceptual modeling specifications to materialize attributes that have

non-traditional, non-supported semantics. For example, to implement a time-varying simple attribute, e.g.
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address, in a representation model that does not support time-varying attributes, the attribute is turned into

a multivalued complex attribute, e.g. temporalAddress, with two components, one to define the actual value,

e.g. address, and one to define the corresponding time, for example the day when the address started to hold.

In our LBS we are specifically interested in supporting four types of complex attributes: composite property,

multi-resolution property, dependent property, and range property. To represent these specific semantics in

OWL-DL we need to add one component to the original complex attribute, say the semantic component,

whose value domain is the enumerated set of supported semantics.

Composite property. As its name suggests, the composite property is composed of a set of properties such

that none of the component properties can individually represent the semantics of the composite property.

For instance, property price is composed of two simple properties amount and currency. Either amount or

currency can not individually define the property price. Both are needed to specify the semantics of price.

Either of them can be a simple property or a complex property.

Range property. A range property is a property whose value is a value range rather than a single value. It

has two components: the minimal value and the maximal value of the property. For example, the lunchTime

property holds a temporal range, e.g. 12:00, 14:30, with time granularity minute. Range properties are a

kind of composite property, namely they are composed of two properties with the same value domain, and

this domain is an ordered domain.

Dependent property. A dependent property is a property whose value depends on the value of another

property or a fact. For instance, in car rental descriptions the price of the carRental1 depends on the property

car-category (i.e. all cars in the same category are rented for the same price), and the deposit of the carRental2

depends on the fact whether the requester is a member of the EuropCar club or not (i.e. members of the

EuropCar club do not need to provide a deposit while non-members need to provide a deposit). Dependencies

are discussed in the next section.

Multi-resolution property. In spatial databases, multimedia databases and data-warehouses, for example,

it is very common to represent the same object according to multiple resolutions. For instance, using different

resolutions a given building can be characterized by a point extent or an area extent. Similarly, from

the semantic viewpoint, an attribute can be represented at multiple levels of abstractions, i.e. different

semantic resolution. For instance, the property openingTime can be a multi-resolution property. At a coarser

level of abstraction it may only convey ’from Monday to Saturday’. At a finer level of abstraction, it may

convey more details on the opening period for each working day, e.g. 9:00-19:00 (Monday-Friday) and 8:00-

18:00 (Saturday). Conceptual multi-resolution attributes are typically implemented as multivalued complex

attributes composed of an attribute to hold the value and a second attribute to specify the corresponding

resolution.

3.2.5 Constraints

In traditional data management, constraints are as essential as objects, relationships and attributes to build

a semantically rich definition of the data. A specific and important role for constraints is to rule data

consistency by providing the specification of admissible instances and data values. Narrowing syntactically
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correct data to the subset of admissible instances and values relies on the closed world assumption: What

is in the database is true and nothing else is true. Instead, ontological approaches rely on the open world

assumption, stating that what is in the ontology is only a subset of the true facts that exist in the outside

world. False is restricted to denote facts that contradict what is already known. This is why consistency

concerns in ontologies basically check for satisfiability (i.e. non contradiction). Some real-world constraints

can be expressed using axioms that lead to contradiction if data that does not conform to the constraint enters

the ontology. A typical example is disjointedness constraints, such as man and woman representing distinct

populations, which can be expressed by inclusion axioms linking man to the complement of woman and vice

versa. However, restrictions based on using the existential quantifier and minimal cardinality constraints

behave differently in ontologies and databases.

In terms of constraints, LBS requirements are different from those of databases and ontologies. Databases

are tuned to manage very large amounts of data, with significant amounts of new data being acquired every

day. Maintaining correctness and consistency of the data is the guarantee that applications can operate safely.

Constraints play an important role in filtering the data that comes into the database and controlling that

later updates preserve their consistency. LBS do not really have such concerns. They are more concerned

with the quality of the metadata they acquire or elaborate. They contain relatively small amounts of factual

data. Factual data is present, for example within the context module to identify local spatial and temporal

references of interest (e.g. local landmarks and local holidays). The bulk of factual data within the LBS is the

detailed description of available services, stored in the local sources, which are in charge of their acquisition,

control and maintenance. In this setting, constraints exist (as for any data management application) but are

not critical. The amount of data to be checked is small, and data acquisition is basically done once, when the

LBS starts operation. Only if the local turnover of services is high it may become interesting to introduce

constraints to check that new and updated service descriptions provide correct information. However, even

in this perspective constraints would rarely be normative, given that there is no standard definition of what

is admissible in a service description. This is not to say that LBS do not need constraints. The focus is,

however, on accessibility constraints. For example, LBS may need to define that an alcohol-selling service is

only accessible to users whose age is at least the minimal age defined in the local context information.

Regarding constraints in ontologies, their role is usually limited and not normative. To this extent, LBS

resemble ontologies. Indeed, LBS main concern is collecting higher-level knowledge, i.e. concepts, links and

properties that provide the semantic background to understand user queries and find appropriate answers.

Constraints, as we have seen, are mainly restrictions used to characterize subclasses so that queries can be

addressed to the most relevant class. However, LBS radically differ from ontologies in their goal. Ontological

approaches target knowledge collection and enrichment in a cooperative way, where ideally every contributor

is welcome to add new knowledge anytime without any central control. The ontology system takes care

of checking satisfiability, and provides automatic placement of concepts thanks to its reasoning facilities

(namely, subsumption reasoning). LBS target a much narrower scope. The knowledge they collect is limited

in size and most frequently comes from authorized sources (e.g. public institutions) and domain experts.

The number of players in charge of knowledge acquisition is small and control is centralized rather than
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distributed. Another likely difference with ontology systems is in query processing. LBS target is to quickly

find some relevant answers rather than computing all possible answers including those that appear possible

thanks to incomplete knowledge. To quickly find relevant answers, the closed world assumption seems more

appropriate as it limits the scope of searches to the data that is there.

In traditional data management some kinds of constraints are directly supported by the data model and

can be expressed using the constructs of the data model. Cardinality and uniqueness constraints are examples

of these embedded constraints. Expressing other constraints relies on some integrity constraint description

languages (basically some form of first order logic) flexible enough to describe whatever ad-hoc constraint is

needed by the application. The relational approach has emphasized a specific kind of constraint: Functional

dependencies (FDs). FD may be defined as follows: Given a relation R, a set of attributes X in R is said

to functionally determine another attribute Y, also in R, (written X −→ Y) if whenever two tuples of R

share the same value for X they also share the same value for Y (also stated: each X value is associated with

precisely one Y value). Relational functional dependencies are defined to apply within a single relation and

form the basis of the relational design paradigm. For LBS relying on a different data modeling paradigm, the

definition of functional dependencies needs to be revisited to constrain the value of an attribute based on the

values of other attributes in the same or in different interrelated classes, as long as there is a monovalued path

from the target attribute to the source attributes of the dependency. As a first approximation, the extension

of the definition is straightforward. Consider joining the set of classes containing the source and the target

of the FD, i.e. the X and Y attributes (the join is performed using the roles linking these classes together).

The result of the join can be established as a relational table. The FD holds if it holds as relational FD

in this resulting table. However, a deeper investigation is needed to formally define FDs in non-relational

models. This effort is the topic of a companion work within the laboratory [CP07]. Hereinafter we use the

term dependency to denote this concept of non-relational functional dependency. As an illustration, let us

consider the following example: a class City describes local cities, in a multilingual country. City holds an

attribute spokenLanguage giving the language officially used within the city. City is linked by a functional

role isInLR to the class LinguisticRegion (each city is related to only one linguistic region). LinguisticRegion

has an attribute officialLanguage stating what is the official language within the region. The dependency

(City.isInLR.LinguisticRegion.officialLanguage) −→ City.spokenLanguage

expresses that all cities related to linguistic regions having the same official language speak the same

language.

More interesting for an LBS is the capability to express that the language spoken in a city is actu-

ally the same as the official language of the linguistic region the city belongs to. This corresponds to the

MADS concept of derived attribute. Derived attributes are attributes whose value is computed instead

of being input by users. The definition of the attribute specifies the computation formula. The sim-

plest formula sets the derived value to be equal to the value of another attribute elsewhere. This would

be the case if City.spokenLanguage is defined as derived attribute, according to the computation formula

City.spokenLanguage = City.isInLR.LinguisticRegion.officialLanguage where both sides of the equality are

monovalued paths starting from the same instance of City. In OWL-DL terms this derivation would be
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expressed as: The range of the property hasOfficialLanguage with domain City would be defined for each City

instance as equal to the range of the property hasOfficialLanguage with domain LinguisticRegion in the Linguis-

ticRegion instance that has the value of its name data property equal to the value of the hasLinguisticRegion

property in the City instance. The example illustrates the simplest derivation case, consisting in copying

the derived value from elsewhere. How far we can go with derivation depends on the language available for

expressing the derivation formula. Usually, such languages are a kind of data manipulation language. In

simplistic words, what is derivable is data that can be extracted using an SQL command. This does not

fulfill all requirements. Derivation rules may be complex and require algorithms and computations, which can

only be expressed using a full-fledged inference rule language. For example, an inference rule could compute

the transport means a person is using, based on the observation that a given range of movement speed for a

person moving along a given trajectory corresponds to a given transport means (e.g., a regular average speed

below 3km/hour could denote the person is walking, while an average speed greater than 3km/hour could

denote the person is using taxi, unless the trajectory shows stops at bus stop locations, in which case the

person is assumed using a bus). Knowing the transport means may influence the contextualization of a query

by the moving person, in particular queries involving distance and traveling time criteria. The transport

means may determine a specific context. For example, if the LBS infers that the user is traveling by train

(given speed of movement and a trajectory constrained by the railway network), the user request for online

music-listening service will be processed considering the on-train context as the communication networks may

provide services of different qualities according to the location (e.g. in a tunnel) and speed (e.g. high-speed)

of the moving user. The capability to express inference rules can make a significant difference for LBS quality

of service.

Another very interesting feature for an intelligent LBS is the capability to tie up plausible combinations

of data. For example, looking at user profile data we may wish to state that a preference for 5 star hotels is

not plausible if the information on revenue level shows the user as a low-income person. This is a kind of soft

constraint, recommending rather than inhibiting. Similarly, it would be appropriate to state that restaurants

with outdoors sitting (a terraces) could be given priority oven indoors-only restaurants only if the weather is

nice. Soft constraints, i.e. recommendations and preferences, are expressed in our approach as links between

data in the service, user, and context modules, and are discussed and illustrated in the following chapter.

3.2.6 Multi-representation Modeling

Semantically rich and flexible data management calls for the capability to support and describe multiple

perceptions and multiple representations of the same real world phenomena. This is particularly important

for enabling LBS to achieve their contextualization and personalization goals. The multiple representation

features of the MADS data model have been extensively described in [PSZ06]. They provide generic solutions

to express:

• How information is organized (in terms of data structure). For instance, connectionSpeed information

may be modeled as a data type property, with range {good, normal, bad}. Alternatively, it can be

described by a set of sub-properties, such as hasUploadSpeed, hasDownloadSpeed, etc.
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• How information is encoded (dimension and unit). For instance, the hasAntiVirusSoftware property

can correspond to a Boolean value, or can more precisely hold the name of the anti-virus software.

Spatial and temporal data can be represented in diverse granularities.

• How the information in diverse representations is associated to form a consistent perception of the real

world, tailored for the actual processing requirements. For instance, assuming the user is visiting a

museum and wants information on art works on display, very precise knowledge of the user position,

i.e. precise (x,y,z) coordinates, is necessary to identify the art work involved in the query. Instead,

when the user finishes the visit and inquires about the bus-stops near the museum, the coarser location

of the user (e.g. in the museum) is sufficient for evaluating the query.

We use the class Representation and a property hasRepresentation to denote the multiple represen-

tations feature of data. Further, it can have sub-properties, such as hasScale for Location class, hasUnit

(e.g. day or hour) for temporal class. To describe that a property is multi-represented, the representation

information needs to be encoded in the property by declaring it as a representation-dependent property. The

way to define this is similar to the way to define space-dependent properties in the upcoming section.

As a consequence, when expressing relationships between data elements, it is necessary to add the rep-

resentation information to the involved class or property, in order to make clear what representation of

information will be involved in the relationship.

Finally, while we advocate that multi-representation features are essential for LBS, we do not elaborate

further on the issue as we simply suggest using the result of previous work done in the laboratory [PSZ06].

These results provide the needed facilities and we do not see requirements that would be specific to LBS and

not covered by the proposed approach.

3.2.7 Temporal Module

Temporal and spatial modeling is intrinsically part of the knowledge description in an LBS. Being able to

characterize the temporal and spatial features of ontology classes is therefore essential, whether these classes

describe concepts, services, contexts, or user preferences. Everything may be temporal and spatial, simply

because everything exists somewhere sometime. It is up to the designer to define for which things spatio-

temporal features must be described and for which other things they can be ignored. Examples of interesting

temporal features abound. Shops have regular open time. Online merchandise can be purchased anytime but

only be delivered during a given time interval. Public transports have specific temporal schedules for each

stop on each route. A restaurant may become a disco after a given hour. Temporal specifications may have

different granularity, i.e. use different temporal units: hour, day, year. In this section we show how definition

of temporal extents and temporal values for LBS needs is supported.

In our data management approach, the temporal modeling dimension is orthogonal to the other modeling

dimensions. The temporal characteristics of a class can be added, deleted or modified without harming

the other features in the definition of the class. This supports the idea that a temporal module can be

developed independently from the other modules, while its goal is to provide other modules with all the
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capabilities needed to describe and use temporal features. In our temporal module, support for temporal

aspects concentrates on three objectives: 1) To define the temporal abstract data types needed to precisely

specify the kind of temporal values (e.g. instant, interval) associated to a modeling construct (e.g. a class,

a relationship, an attribute). The set of temporal abstract data types is defined as a hierarchy of classes.

2) To define some generic temporal properties that will be frequently used in LBS data descriptions, e.g.

opening hours for services. 3) To define the temporal concepts and relations that help in the formulation and

evaluation of user queries.

Temporal Data Types. The basic building brick in supporting time is temporal data types. They define

the data value domains that temporal specifications may use. Elementary temporal data types are generally

referred to as Instant and Interval data types, the former defining values that represent a single instant in time

while the latter defines a time interval between a starting instant and an ending instant. Instant and Interval

data types are generalized into a generic SimpleTime data supertype. Collection of respectively instants

and intervals form the InstantSet and IntervalSet data types, sharing a common ComplexTime supertype.

Finally, SimpleTime and ComplexTime are given a common supertype, Time, root of the temporal data types

hierarchy. An OWL implementation of these simple hierarchy of data types has been reported in [Sot06],

where two disjoint OWL classes TSimple and TComplex are defined as disjoint subtypes of the most generic

Time class, root of the temporal hierarchy. The TSimple class is populated with instances of Instant and

Interval. The TComplex class is populated with instances of InstantSet and IntervalSet classes.

These basic definitions of the temporal data types support further definitions in the temporal modeling

dimension, such as the definition of temporal properties and other context classes, for example the atmo-

sphericConditions or trafficConditions classes that obviously represent time-varying phenomena.

Several time granularities (e.g. day, month, year, week) need the specification of a calendar system to fully

acquire their semantics. Frequently, the Gregorian calendar is used by default. However, an LBS that may

be used worldwide must be able to support other calendars than the default one (e.g. the Chinese calendar or

the Islamic calendar). Typically, the definition of the calendar in use is part of contextual specifications, for

example as a functional property calendarType with an enumerated value domain. Using the OWL built-in

axiom owl:sameAs, the same day in different calendars (e.g. Chinese Lunar Calendar and standard Gregorian

Calendar) can be asserted as Same individuals in the temporal extent.

Temporal Properties. Temporal properties are properties whose value is from a temporal data type. In

the core ontology of LBS, the temporal features of any class may be encoded as temporal properties, subtype

of the generic temporal datatype property hasTime whose range is Time.

For example, LBS may define service classes to hold a mandatory hasOpenTime property, which describes

the time intervals where the service is open/accessible. Its domain restriction is Service Class and range

restriction is Time. The actual value of hasOpenTime for a given service is either of type SimpleTime or type

ComplexTime.

More complex temporal properties may exist. For example, there may be temporal properties whose

value depends on another property or fact. An example may be a property hasDeliveryDuration of a
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delivery service that has different delivery delays depending on destination (e.g. Europe, Asia, and Amer-

ica). In this case, one way to define these properties in OWL is to relate them to the same superclass

hasDeliveryDuration:

<owl:DatatypeProperty rdf:ID="hasDeliveryDuration">

<rdfs:domain rdf:resource="#Delivery"/>

<rdfs:range rdf:resource="&xsd;duration"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasAmericaDelivery">

<rdfs:subPropertyOf rdf:resource="#hasDeliveryDuration"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasAsiaDelivery">

<rdfs:subPropertyOf rdf:resource="#hasDeliveryDuration"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasEuropeDelivery">

<rdfs:subPropertyOf rdf:resource="#hasDeliveryDuration"/>

</owl:DatatypeProperty>

Temporal References and Temporal Relations. In daily communication, people often use some conven-

tional/cultural temporal terms to refer to a specific timeframe. We refer to these terms as temporal references.

For example, the terms now, today, tomorrow, and Christmas have universal and agreed meaning. Now de-

notes an instant, while today, tomorrow, and Christmas denote an instant or an interval depending on the

granularity in use. These terms should be understood by the LBS and therefore be included in the core

ontology. Many other terms have similar temporal semantics but their precise semantics depends on the local

context. For example, New Year is a different day in China and in the Western world. National Day depends

on the country. Morning has similar semantics everywhere, but may be defined using a different time interval

(e.g. it may be 7-12am for working hours and 9-12am for a conference schedule). Context-dependent terms

will appear in the context data (discussed in Chapter 5). Temporal references may obviously be used in

queries to express a temporal constraint, e.g. Before Christmas.

Generally, these terms are described as axioms with Time values. For instance, tomorrow is encoded as

Instant temporal data type with granularity Day format, such as yyyy:mm:dd. The term afternoon can be

encoded as an Interval with granularity Minute such as afternoon ≡ ∀t (after(t, 13:00) 
 before(t, 18:00)).

Each temporal reference in the core ontology can be defined in OWL-DL using two properties, one to hold

its identifier (usually a string value, e.g. Easter) and a second one related to a temporal data type (Time or

one of its subclasses) which represents the temporal semantics of the time reference.

The LBS may use the classical temporal relations (e.g. before, after, during, around, from ...to..., and

at), mainly for matching the availability of services against the temporal selection criterion in the user query.

The semantics of these relations is well known. It is recalled in the following table, where t and T are either

time instants or time intervals:
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3.2.8 Spatial Module

Spatial modeling is very similar to the temporal modeling, both in motivation and in the way it is handled.

LBS cannot exist without spatial information, and locating objects in space is quite the same issue as

locating objects in time. The major difference between the two is the greater complexity of space, a two-

or three-dimensional environment depending on application requirements, while time is a one-dimensional

environment. Defining a time extent means identifying a set of points on a line (the timeline). Defining a

space extent opens up to a variety of possible geometric forms and their combinations. As for the temporal

module, spatial data management is supported by a dedicated spatial module in the core ontology. The

module focuses on three aspects: 1) To define the spatial data types used in LBS, 2) To define the spatial

properties in LBS, and 3) To describe the spatial terms and relations used in query formulation.

Spatial Data Types. Generally acknowledged definitions about spatial data types have been elaborated

by the Open Geospatial Consortium (OGC), and have been included in GML, OGC’s standard markup

language for GIS data description. The work by [Sot06] has defined OWL descriptions for a similar hierarchy

of spatial data types, the one of the MADS data model. The hierarchy has a generic Geo type as root, who two

subtypes, SimpleGeo and ComplexGeo, respectively gathering all atomic geometries and all more complex

geometries. Basic SimpleGeo subtypes are Point, Line, and Area, while basic ComplexGeo subtypes are

PointSet, LineSet, and AreaSet. ComplexGeo in itself denotes complex geometries, whether homogeneous

(e.g. sets of points) or heterogeneous (e.g. a mix of points and lines). The definition of spatial data

types provides the base for further definitions in the spatial modeling dimension, i.e. spatial properties and

spatial relationships. Spatial data types come with many computational facilities (e.g. computing a distance,

a buffer) that are essential to spatial data management. Unfortunately, current DLs have very little, if

any, support for spatial data. While implementing spatial data using DLs is feasible (see e.g. [Sot06]),

implementing spatial computations in a DL environment would be neither easy nor efficient. The reasonable

approach is to associate the LBS with a GIS (or a DBMS with spatial data support). Hence, the spatial data

types in the LBS core ontology are likely to conform to the definitions in the associated Geo-software.

Spatial Class and Spatial Property. Alike for temporal properties, intrinsic spatial properties may

be used to describe the spatial features of classes. We define a basic spatial property named hasSpace,

serving as common superclass to all other spatial properties. In particular, thinking of services from the

geographical perspective, each service has at least one spatial property, called hasServiceSpace, that denotes

Table 3.1: LBS temporal relations and their logical expressions.
Temporal Relations Logical expressions
before(t, T) t < T
after(t, T) t > T
at(T) t = T
fromTo(t, T1, T2) t≥T1 ∧ t≤T2 (T1<T2)
during(t, T) t ⊂ T
around(t, T, �) t≤(T+�) ∧ t≥(T-�)
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the geographic coverage of the service. For instance, a restaurant can provide food service at its location

which can be regarded as a Point spatial data type, a bus service can provide public transport service along

a set of polylines within a given timeframe, a delivery service can disseminate commodities within a given

region.

When encoding the spatial property value of the service into the associated Geo-software, the LBS keeps

a self-defined value type (the pointer id-space) in the spatial facility as follows:

<owl:objectProperty rdf:ID="hasServiceSpace">

<rdfs:subClassOf rdf:resource="#hasSpace"/>

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Service"/>

<rdfs:range rdf:resource="#GeoReference"/>

</owl:objectProperty>

Hospital

Spatial
Extention

Bi-files

Legend:

Right-top: Services in LBS ontology;
Right-bottom: Spatial references in a spatial ontology;
Left-top: Spatial objects in Geo-map;
Left-bottom: Geo tools and engine, including shape-files, index, DBMS

spatial extensions, and other GIS functions e.g. networking.

Blue-line: Mapping between the spatial property of a service in LBS and its correspondence in
Geo-facility;

Red-line: Mapping between the spatial property of reference object and its correspondence in
Geo-facility;

Green-line: Link between spatial object and its geometry file which is manipulated by Geo-facility.

Figure 3.2: Using spatial references to connect the core ontology and the external Geo-software.

Figure 3.2 illustrates this relationship and interactions between the Geo-software and the LBS ontology.
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The GeoReference class in the core ontology is used to associate the ontology with the geometry data in

the Geo-software. In the following example, both BuslineRefWeekend and BuslineRefWeekday are subclass

of GeoReference.

The spatial property may depend on other properties or facts, as discussed for temporal property. Sim-

ilarly, we apply the same strategy by adding a new class for describing the depended property or fact. For

instance, the bus service range may change with time, e.g. at weekends it only runs on part of the whole

route it travels on weekdays. In OWL, we describe this temporal-spatial property as follows:

<owl:objectProperty rdf:ID="hasWeekdaySpace">

<rdfs:subClassOf rdf:resource="#hasServiceSpace"/>

<rdfs:domain rdf:resource="#Bus"/>

<rdfs:range rdf:resource="#BuslineRefWeekday"/>

</owl:objectproperty>

<owl:objectProperty rdf:ID="hasWeekendSpace">

<rdfs:subClassOf rdf:resource="#hasServiceSpace"/>

<rdfs:domain rdf:resource="#Bus"/>

<rdfs:range rdf:resource="#BuslineRefWeekend"/>

<owl:disjointWith rdf:resource="#hasWeekdaySpace"/>

</owl:objectProperty>

Spatial references and relations. The Geo-software associated to the LBS mainly provides three

functions: 1) to keep and manipulate the geometry data of the service instances, 2) to identify and operate

on reference places in query specification, 3) to handle the spatial queries, and provide more advanced services

e.g. routing and map visualization.

Alike for temporal references, spatial references identify places users may refer to in their queries while

assuming that these places are known to the LBS. For example, while in Lausanne a user query may ask

for a hotel near the Olympic Museum. While at EPFL a user may ask if there is a cafeteria in building

INJ. Olympic Museum and INJ building are spatial reference objects. As they have local semantics, these

particular objects will be described as part of the spatial references in the corresponding context data.

Spatial references may be organized by their geographical distribution in the local grid, and by func-

tionality or other criteria. This leads to consider that, in general, the GeoReference class contains both its

identifier and geometry-type in the Geo-software, and its real world functionality such as museum, school,

office etc. The precise geometry of the spatial coverage is represented in spatial data type as below.

<owl: Class rdf:ID="GeoReference">

<owl: dataProperty rdf:ID="hasIdentifier">

<rdf:type rdf:resource="&owl; FunctionalProperty"/>

<rdfs:domain rdf:resource="#GeoReference"/>

<rdfs:range rdf:datatype="&xsd;string"/>

</owl:dataProperty>

<owl: objectProperty rdf:ID="hasFunctionType">

<rdfs:domain rdf:resource="#GeoReference"/>

<rdfs:range rdf:datatype="#FunctionType"/>

</owl:objectProperty> ...
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<owl: objectProperty rdf:ID="hasSpace">

<rdfs:domain rdf:resource="#GeoReference"/>

<rdfs:range rdf:datatype="#Geo"/>

</owl:objectProperty>

The spatial relations that the LBS shall support mainly rely on the associated Geo-software. In different

spatial DBMS, spatial relations can be different. They usually include topological relations. Other types

of spatial relations, e.g. directional relations, may be of interest to applications, although not necessarily

supported by commercial Geo-software. Table 3.2 illustrates the most common spatial relations in LBS (i.e.

near, within..., on, inside, along) and their correspondence in Oracle 10g.

Table 3.2: LBS spatial relations and their correspondence in Oracle.
Spatial Relations Spatial operations in Oracle 10g
near(s, S) SDO NEAR
within(s, S, �) SDO WITHIN DISTANCE
fromTo(s, S1, S2) SDO ON
in(s, S) SDO INSIDE
along(s, S) SDO On
inDirectionOf(s, D, d) No direct correspondence.

3.2.9 Shared terminology

The diversity of the culture, language and habits of LBS users and service providers, combined with the

flexibility in query formulation and service description our LBS aims at (i.e. allowing users to express a

query in their own natural language terms and similarly allowing service providers to describe their services

in natural language terms) unavoidably leads to heterogeneity between the concepts and terms in LBS’s core

ontology and users’ queries and data profiles. Hence, the LBS has to face the problem to understand and

disambiguate the terms/phrases that show up in queries and service descriptions. The shared terminology

repository is there to provide semantic assistance in this task. It extends the core ontology with additional

concepts and definitions, playing the role of an enhanced dictionary. It provides synonyms and other relations

between words/phrases, and identifies multiple interpretations of the same concepts/phrases.

To propose our formal definition of the shared terminology, we have first to distinguish between term and

contextualized-term and explain the relations between the contextualized-terms.

- Terms. A term is either a word or a short phrase, as a headword5 in the dictionary. The terms in

the shared terminology are generally classified into two types: 1)internal terms. Internal terms refer to

the terms directly imported from the core ontology, including the names of classes, the names of properties,

and the names of instances (e.g. TGV is an instance of train service-class). 2)external terms. To enrich

the vocabulary of the internal terms, we introduce the external terms from the external source(s) (e.g. an

ontology or a thesauri, or a standard product catalog) or from the terms in user-queries after the LBS enters

the operation phase.
5See the explanation in ”Guide to the Use of the Dictionary” of The Concise OXFORD Dictionary, the 8th edition.
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- Contextualized-terms. A contextualized-term is the association between a term and a context that

uniquely and explicitly identifies a meaning for this term. Indeed, out of context, a single term often holds

implicit and versatile meanings, which should separately correspond to diverse entries in the dictionary. A

contextualized-term is composed of a single term and the context identifier, which in our approach denotes

the source of the contextualized-term. For an internal term, its identifier is the core ontology (we assume the

name of any concept in the core ontology is unique). For the external term, its identifier denotes the external

source where the meaning is found. In the case the source has multiple meanings for the term, the identifier

also denotes which unique meaning is the one associated to the term in this entry of the shared terminology.

For example, contextualized-terms from WordNet6 comprise a term and its synset.

- Relationships between contextualized-terms. Contextualized-terms may be linked by relationships that

are useful to somehow extend the knowledge about a term in a given context. Typical relationships are

semantic and linguistic relationships. For example, the synonym/equivalence relationship means that two

contextualized terms share the same semantic meaning, so they can interchangeably be used, e.g. car-rental

= hire-a-car, or car-rental = location-de-voiture.

We formally define the contextualized-term and shared terminology as follows:

DEFINITION 3.9. Contextualized-term in Shared Terminology. A Contextualized-term in the
shared terminology is a tuple t = (w,i), where w is a word or phrase, and i is the unique identifier of
w’s meaning, such that ∀ tm, tn, and tm = (wm, im), tn = (wn, in), it holds tm �= tn −→ im �= in.

Example 3.2. Some contextualized-terms in the shared terminology.

w i definition in its source

car rental �CO �Car rental Rental � (∃ hasRentalProduct.Car)

car rental �WN �hire Car�(nounWordSense:1) a rented car.

celluloid �CO �Celluloid Medium � (∃ Usedfor.Photography)

celluloid �WN �celluloid �(nounWordSense:2) a medium that disseminates moving pictures.

. . . . . .

film �CO �Film Entertainment � ∃ldots

film �WN �film �(nounWordSense:1) a form of entertainment that enacts a story...

film �WN �film �(nounWordSense:2) a medium that disseminates moving pictures

. . . . . .

film rental �CO �Film rental Rental � (∃ hasRentalProduct.Film)

. . . . . .

rental �WN �rental �(nounWordSense:1) property that is leased or rented out or let.

The example above illustrates how we define the contextualized-terms in the shared terminology. Each

row represents a single contextualized-term in the shared terminology. The first column labeled with w

holds the word/phrase of the contextualized-term; the second column i holds the unique identifier of the

contextualized-term; notice that the definitions of the contextualized-terms that appear in the third column

are not kept in the shared terminology, but at their sources. To simplify the notation, CO stands for ’core

ontology’ and WN stands for ’WordNet’. The different components of the identifier are separated by ’�’.

6A lexical database for the English language. http://wordnet.princeton.edu/
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The first part in the identifier stands for the source of the contextualized-term (e.g. core ontology, Wordnet,

etc.), the second part is the label of contextualized-term in the source. Whenever a single term has multiple

interpretations, it needs more information pinpointing the precise explanation of the contextualized-term in

the source, e.g. the term’s WordSense in WordNet. This is the (optional) third part of the identifier.

Using contextualized-terms provides many advantages: 1) they enable to provide (lexical, semantic or

logical) interpretations on certain terms. 2) they enable to disambiguate the semantic differences between

terms that are syntactically equal, cf. the many entries for ’film’. 3) they enable to enrich the vocabulary

with lexical relations, e.g. synonyms ’celluloid’ and ’film’ from the WordNet. 4) they make it easier to

analyze phrase patterns, e.g. ’xxx rental’. Frequently, different terms from the ontology follow the same

naming rules (i.e. the same pattern), e.g. ’DVD rental’ and ’car rental’ follow the ’xxx rental’ which denotes

services consisting in offering some good for rental. Exploiting such patterns the ambiguity in a query may be

reduced, in particular when the query cannot be matched exactly with the terms in the shared terminology.

In summary, contextualized-terms provide basic vocabulary support for the LBS query answering. But

currently, the list-alike organization of the contextualized-terms is still insufficient to relate the contextualized-

terms so as to facilitate the terms management and matching with queries. Formally, we define the shared

terminology as a set of contextualized-terms and a partial function over pairs of contextualized-terms:

DEFINITION 3.10. Shared Terminology (ST). The shared terminology is a tuple <T,R> where T is
a set of contextualized-terms, for each t ∈ T, t = <w,i>, and R is a set of relations over the contextualized-
terms, R ⊆ T × T is a partial function from the set of all pairs of contextualized-terms T into a set of
identifiers specifying whether the first term has a relation in R to the second term.

Building the Shared Terminology. The process of constructing the shared terminology basically relies

on the core ontology, i.e. the terms that define or characterize the location-based service. Then, with domain

experts, the shared terminology can be further enriched by adding more terms and deriving the relations

between them and with existing terms. Deciding which extra terms will be added and how they are related

to the existing shared terminology, is the responsibility of the LBS designer and experts. Here we give an

overview of the building process and then discuss three potential types of relations between contextualized-

terms.

• Step 1: Import the class names and their identifiers from the core ontology to the shared terminology.

We assume all classes in the core ontology are named in a literally meaningful way (e.g. ’restaurant’),

instead of partial term or meaningless abbreviation (e.g. ’restau’ or ’r1’). This helps to understand

what function the service can provide.

• Step 2: Find out the naming patterns of class names. In many cases, the class names can not be

simply described by a single word, but a short phrase, e.g. ’car rental’. We can expect that service

providers follow some implicit naming rules when defining service classes. Similarly for LBS designers

and the definition of context classes or user-related classes. These rules (or patterns) can be learned

from some natural language processing techniques. Simply speaking, ’the patterns that we would apply

center around a single word and incorporate a small number of words on either side’ [AR02]. For
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instance, ’car rental’ adapts to the pattern ’product + business function’; ’car accessory’ follows the

pattern ’category + product’ and so on.

• Step 3: Import the relevant terms from external thesauri and give their relationship with existing

terms. The external thesauri can be a domain knowledge base, a lexical thesauri (e.g. WordNet), a

data file added by the local experts, etc. Here we just discuss how to integrate the synonyms into the

shared terminology. The first task is to find out the syntactic same terms from WordNet for terms of

the shared terminology. Then we determine if they are semantic same or choose the semantic same one

among several senses. Then, all synonyms and their identifiers are imported to the shared terminology

and their relationships with the original terms are built up. Other terms and relationships can be

integrated into the shared terminology in similar ways.

• Step 4: Refine the terms and relationships in the shared terminology. The refinement consists in

cleaning the possibly repetitions in contextual-terms, authoring the definition for a term (when there

are different definitions from various thesauri), and possibly allowing to modify, add or remove the

contextualized-terms in the shared terminology as the strategy is really applied in LBS query processing.

Relationships in the Shared Terminology. As we discussed, the terms in the LBS core ontology are the

starting point for building the shared terminology. The building process further enriches the terminology by

incrementally involving the reachable external thesauri and ontologies. The new terms acquired from external

sources are those terms found to be related to the internal terms by some relationships. These relationships

belong to the following categories.

Linguistic Relationships. The main purpose of introducing linguistic relationships is to support semantic

matching and reasoning rather than merely exact keyword matching. The most important terms imported

into the shared terminology are the synonyms of the internal terms. External terms identified as synonyms

are related with the corresponding internal terms by a ’synonym/equivalence’ relationships.

Linguistic relationships also include relationships of a term with its hypernyms (terms with a more general

meaning), hyponyms (terms with a more general meaning), mereonyms (terms describing parts of a term).

What linguistic relations will be introduced in LBS considerably depends on the needs of the LBS. Currently,

WordNet, a lexical thesaurus widely used in natural language processing and information retrieval, already

has an RDF/OWL representation7, which entails and standardizes more linguistic relations between words

as important references for researchers and developers.

Contextualized Relationships. Due to the specific locality of the context knowledge used by an LBS,

the terms in the current LBS can be different from similar and equivalent terms in another LBS covering

a different region. Differences may relate to diversity of country, language (and dialect), culture, religion,

etc. For example, collège in France means secondary school, while in Anglo-Saxons countries college means

university. It is easy to get confused. Similar relationships can be explored by involving local contextual

knowledge. For example, in Switzerland (only) the term ’Natel’ is widely used as a synonym to ’mobile

phone’, yet Natel is a trademark of the Swiss telecommunication company Swisscom.
7http://www.w3.org/TR/wordnet-rdf/
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Spatial/temporal Relationships. We agree that space and time are regarded as two significant types of

context, as suggested by many classifications methods , e.g. [GS01] [HI04] [vBFA05]. But in our shared

terminology, they are separated from the Contextualized Relationships because they function in a context-

free mode for query matching in different dimensions, i.e. spatial and temporal. When specifying a spatial

reference in a query, it is very common that the references are vague. For example, St. François in Lausanne

can correspond to more than one reference. Let us assume there are three possible references such as Church

St. François, Place St. François and bus-stop St. François. With the local knowledge, we quickly recognize

that the Church and the Place can be easily taken as landmarks, and that for many queries the two are

in fact equivalent landmarks, seen as denoting the same location (the church is actually within the square

with the same name). However, it heavily depends on the subject of query and current location of the

user. For instance, when one is asking for the bus information, the reference potentially means the bus-

stop. Similarly, terms can be related according to their temporal relationships. For instance, the term Easter

Holiday can be differently understood in different cultures, religions or countries. With the official calendar in

Switzerland, the term denotes the period in days from Good Friday until Easter Monday. Hence, the temporal

relationship between the three terms above can be defined as EqualT (Easter Holiday, Between(Good Friday,

Easter Monday)).

The organization of the shared terminology is sketched in Figure 3.3, which shows the types of relationships

it contains: Linguistic relations, Contextualized relations, and Spatial/Temporal relations.

Shared Terminology

Terms

Linguistic
Relations

Contextualized
Relations

Spatial/Temporal
Relations

Figure 3.3: Composition of a Shared Terminology in LBS Data Infrastructure.

3.3 Evolution and Update of Ontologies in LBS

Evolution management is a serious challenge for any information system. Different from the database evolu-

tion, when ontology evolves, we must consider not only the effect of ontology changes on the way applications

access instance data, but also the effect of these changes on queries for the ontology contents itself [NK04].

According to it, ontology evolution can be characterized as either traced or untraced. ”Traced evolution

65

ThesisFigs/EPSfigs/ch3_shared_terminology.eps


3. LBS SEMANTIC DATA INFRASTRUCTURE

largely parallels schema-evolution where we treat the evolution as a series of changes in the ontology. After

each operation that changes the ontology (e.g., add or delete a class, attach a slot to a class, change restric-

tions on slots, etc.), we consider the effects on the instance data and related ontologies, depending on the

dimension of compatibility we use. The resulting effect is determined by the combination of change operations.

With the untraced evolution, all we have are two versions of an ontology and no knowledge of the steps that

led from one version to another. We will need to find the differences between the two versions in an auto-

mated or semiautomated way.” In particular, in our LBS setting, when either the core ontology or another

knowledge repository evolve, we must consider the effect of these changes on queries for contents of the old

core ontology, as well as the effect of these changes on the contents of the old mappings between the core

ontology and other repositories. In our work, we suggest to deal with ontology evolution in the traced mode

because: 1) in the untraced mode the core ontology will produce too much redundant data as the ontology

evolves, which will result in less efficient query answering and knowledge reasoning. 2) in our infrastructure,

any evolution basically involves two ontologies. In the traced mode, it is reasonable to address the issues

of evolving interdependent ontologies; in contrast, in large distributed ontologies environment, complicated

cross-dependencies between ontologies are a great challenge for the evolution strategy.

The work in [NK04] provides a sound background to handle the possible operations and their effects

and corresponding manipulations on the ontologies in the LBS. On this basis, we investigate and extend

certain potential operations as applied to the evolution of the core ontology, as shown in the Table 3.3. We

identify the most common operations on the core ontology and the effects and appropriate manipulations

to keep the ontologies consistent. Often, the execution of an operation potentially triggers one or several

relevant operations, similarly to what happens in databases. In the literature, the study of ontology evolution

has drawn much attention and some tools for ontology merging or mapping are available (e.g. Prompt,

OntoMorph and ONION). We do not investigate the details of designing and optimizing the algorithms for

each operation in the evolution and update of ontologies. This is beyond the scope of the thesis. We only

illustrate some strategic solutions when some operations occur as shown in the following example.

Table 3.3 briefly summarizes the possible operations when the ontology(s) evolves and updates. The

operations 1-16 show that the evolution of the metadata of core ontology potentially results in corresponding

updates of the mapping ontology, e.g. to delete a service class A in the core ontology may result in modifying

all mappings with the target element ”service class A” in the mapping ontology. The operations 17-20

describe the updates of the mapping ontology when a service instance is added, deleted or updated. We will

continue to discuss the maintenance of service profiles in LBS in the next chapter.

3.4 Chapter Summary

In this chapter, we first discussed the features characterizing data management in an LBS, i.e. locality,

mobility, dynamics, heterogeneity, on the fly interoperability, and modularity. These characteristics call for

a dedicated data management strategy, based on global decentralization (using peer to peer strategies) and

a locally centralized approach to structure the service-related data. The rest of the chapter focused on
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Table 3.3: Evolution and Update of Ontologies in LBS.

Operations Effects/Manipulations on CO Effects/Manipulations on ML Examples

1 Add a Service Class Cs non non Add CarRental to CO

2 Delete a Service Class Cs put instances of Cs to Cs super-class the targetElement values for all in-
stances involving Cs are lost

delete Cs CarRental

3 Add a Property p non non Add p deposit to CO

4 Delete a Property p the values of p for all instances are lost the targetElement values for all in-
stances involving p are lost

5 Attach p to Cs non non Attach p ’deposit’ to Cs ’CarRental’

6 Remove p from Cs the values of p for instances of Cs are
lost

the targetElement values of all in-
stances involving p of Cs are lost

Remove p ’deposit’ from Cs ’Car-

Rental’

7 Add a subtype relation be-
tween two service classes,
such as Csub ⊆ C

Csub Inherits all properties from C Mappings which apply to C can also
apply to Csub

Add the axiom CarRental ⊆
Renting

8 Remove the subtype relation
between Csub and C

Csub will loss all properties inherited
from C, and loss all values of those
properties.

Mappings which apply to C can no
longer apply to Csub, and the tar-
getElement values of all instances in-
volving properties inherited from C in
Csub are lost.

Delete the axiom CarRental ⊆
Renting

9 Move a property p from a
subclass Csub to a super-
class C

Class C and its all subclasses such as
(C, C1, C2, . . .) will have property p

Mappings involving p in Csub can also
apply to p for (C, C1, C2, . . .)

Move property deposit of class Car-

Rental to Renting

10 Move a property p from a
superclass C to a subclass
Csub

Class C and its all subclasses except
Csub will loss property p and all val-
ues of p in instances.

Mappings that apply to p of Class C
and its all subclasses are no longer
applicable except Csub. And all tar-
getElement values for all instances in-
volving p of Class C and its all sub-
classes except Csub are lost.

Move deposit from Renting to Car-

Rental

11 Modify the restriction for a
property p

Some instance values of p may be in-
valid with the new constraints.

Mapping instances can include the in-
valid values of p due to the new con-
straints.

deposit’s range changes from
boolean → currency.

12 Encapsulate a set of proper-
ties P attached to a class Cs

into a new class Cnew

Create the property relating Cs and
Cnew , copy values of all P in Cs to
Cnew and remove P from Cs .

In the mapping instances, the tar-
getElement’s range involving the en-
capsulated properties will change, but
the targetElement’s range involving
the values of the encapsulated prop-
erties will not change.

Encapsulate properties email, tele-

phone and fax in CarRental into
new class Contact

13 Modify a simple property p

to a complex property pc in
a class Cs (e.g. a multiple-
representation property, de-
pendent property, or com-
posite property discussed in
Section 3.2.4)

Modify the values in the complex
properties.

Modify the targetElement in the map-
pings from p to pc(or pc ’s prop-
erty), and update all instances of p in
the mapping instances with all corre-
sponding values of pc.

Modify property car-type in class
CarRental from a simple property
to a multiple-representation
property, with two semantic
representations ’Fuel-based’ and
’Function-based’.

14 Change a complex property
pc to simple property(s) p in
Cs

Attach property p to Cs and add the
data values of p, remove pc from Cs.

Mappings involving pc and its values
are lost, new mappings involving em-
php and its values can be added.

Multiple-resolution property de-

posit changes to the currency type
of values.

15 Merge service classes C1 +
C2 ⇒ C (In our work, we
mainly focus on merging the
sibling classes or merge class
and its sub/super-class.)

Merge the class, properties and in-
stances in classes C1 + C2, it may
requires to modify some properties,
their constraints and values, which
will trigger some operations above.

Merges the mappings involve in C1 +
C2, their properties and instances by
refereing to the merging result of C1
+ C2 in CO.

HouseRental + ApartmentRental ⇒
HomeRental.

16 Decompose a service class
C ⇒ C1 + C2 (It means
to generate two specific sub-
classes to replace old class
C)

Attach the appropriate properties sep-
arately to C1 and C2,

Update mapping instances accord-
ingly, targetElement change from C to
(C1 and/or C2)

HomeRental ⇒ HouseRental +
ApartmentRental

17 Add a service instance S and
its data Ds

Add S to a class Cs in CO, add Ds

to properties in CS , it may requires
to trigger some operations above, e.g.
add a property, modify a property,
modify the constraint of a property
etc.

Add the mappings of S and Ds to
ML.

Add Car Rental1 and its data to
CarRental ...

18 Delete a service instance S

and its data
Delete S corresponding service in-
stance s in Cs, and may delete its
properties’ data

Delete the mappings between S and s,
mappings of properties and values be-
tween them.

Delete Car Rental1 and its data to
CarRental ...

19 Update the property’s con-
straints and values of a ser-
vice instance

Update the property instance of Cs in
CO

Update the targetElement value of
property p in Mi

Update the property price’s value
in service Car Rental1.

20 Update the property values
of a service instance

Update the properties of instance in Update the targetElement value of
property p in Mi

Update the property price’s value
in service Car Rental1.
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the definition of the semantic data infrastructure we propose to take into account LBS requirements. We

emphasized the split in data organization between knowledge that is elaborated by the LBS itself (the core

ontology and the shared terminology) and knowledge that is provided by external partners (users and service

providers). In parallel, we stressed the benefit of using a modular approach for the development of the core

ontology, and identified the basic modules that are essential to LBS: service module, user module, context

module, and space and time modules. The service and user modules hold abstractions derived from the

service descriptions (created by service providers) and from the user profiles. They are meant to represent

the essence of the available services and the interacting users. Mappings link these essential representations

to the corresponding data in user profiles and service descriptions. The context module, elaborated in

cooperation with the potential context sources (e.g. local administrations), holds the contextual data that

may have an influence on the selection of services in response to user requests. Finally, the space and time

modules provide the supporting concepts for description of spatial and temporal features in all the other

modules and repositories within the LBS.

The core ontology represents the domain-specific conceptual views in a unified fashion. In addition, the

shared terminology provides terminological support to overcome the heterogeneity problem that often results

from the diversity of the cultures and languages, as well as from the lack of the knowledge of the LBS’

structure and naming for users.

The goal of presenting a semantic infrastructure is to clearly identify the stake-holders of LBS data

management. Clarifying the issues is the focus of this thesis. When adopting an implementation perspective,

repositories may be organized differently in view of achieving best performance. For example, the core

ontology and the shared terminology may be implemented as a single repository holding the syntactic and

the semantic knowledge about the domain of the LBS. As another example, the space and time modules may

be embedded in the capabilities of the system, rather than as components of the ontology. It will be up to

the implementation team to revisit the semantic infrastructure for efficient implementation.

In the following chapters, we will delve into more details on the management of context and user profiles,

on service-profiles management, and on the relationships between the modules in the core ontology and

between the core ontology and the service and user profiles.
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Chapter 4
Services and Data Profiles

4.1 Introduction

4.1.1 From Web Services to Semantic Web Services

Web Service technologies provide a new paradigm to share and communicate between heterogeneous and

dynamic web applications. Each web service can publish its service functionalities, define the exposed interface

(e.g. WSDL), and specify communication protocols (e.g. SOAP) to a service registry (e.g. UDDI). By

looking up the registry or issue a query, a web service requester can find and further invoke/bind with the

corresponding web service. Among the existing web services, Amazon is a typical example, where each service

provider can publish their service/product information to Amazon website (i.e. the registry) according to

its products’ category, then the service/product requester can search and proceed the payment transaction

with the chosen service provider. Additionally, a web service can seek and orchestrate with another web

service to achieve a more complex web service, called composite web service. The communication means

of web services requesters and providers, i.e. ”publish-find-bind”, enables web services to be borderlessly

connected and communicate within the large community of web services. However, due to the lack of semantic

consistency, web services still need the interference and interactions of human to some extent, to disambiguate

the service descriptions, and to execute and compose web services in an appropriate manner. Consequently,

the emerging Semantic Web Services (SWS) enhance the capabilities of self-explanation, automated discovery

and invocation, composition or orchestration of web services.

To achieve semantic web services, it is necessary to define an appropriate conceptual model, well-operated

infrastructure, a formal language with strict syntax and semantic specifications, potentially with definitions

in communication and executions. In W3C community, different SWS infrastructures and descriptions have

been proposed, e.g. OWL-S, WSMO, and SWSF.

OWL-S1. It is an OWL-based web service ontology as its name denotes. It consists of three parts of up-

per ontologies, i.e. service profile, process model, and service grounding, to describe different aspects of web

services, i.e. ”what does the service provide for prospective clients?”, ”how is the service used?”, and ”how

1 Refer to the document http://www.w3.org/Submission/OWL-S/
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does one interact with the service?”. Its service profile ontology describes the information of service provider,

service’s functional features, input/output constraints, and preconditions/effects. In addition, an OWL-S ser-

vice profile may be associated with property serviceCategory, which suggests a generalization/specialization

relationship between services. The ServiceModel profile provides the details how a service can be interacted

and executed, i.e. viewed as a process. Hence, the process profile involves a set of interaction parameters

such as input/output, precondition/result, and participants. In addition, the service process model distin-

guishes the service processes in three types, i.e. atomic processes, simple processes, and composite processes.

Furthermore, to facilitate the services composition and execution, process profile provides a set of constructs,

e.g. sequence, split, split-join, any-order, if-then-else etc. The grounding profile describes how a service can

be accessed, such as the protocols and message formats. OWL-S is based on OWL, a standard web markup

language. The OWL language provides three increasingly expressive sub-languages for different uses, i.e.

OWL-Lite, OWL-DL and OWL-Full. They are based on different logics, providing diverse expressiveness

and having to deal with diverse complexities in decidable computations.

In OWL-S approach, each service is an instance of web service ontology. Unlike web services, OWL-S

infrastructure does not explicitly define a registry model which a service can be advertised to. Instead, the

service profile’s declarative representation enable the services to be employed in different types of registries.

For instance, with the serviceCategory property, a car-rental service can be associated with car service category

of certain registries. However, how to associate a service to a registry is still an open question and may have to

resort to human interference or the assistance of external ontology. Alternatively, there is no registry in p2p

environment, where the decentralized SWS infrastructure calls upon different strategies of service matching

and discovery.

WSMO/WSML/WSMX2. As another important initiative in the SWS community, WSMO (Web Ser-

vices Modeling Ontology) is motivated at a different conceptual model to represent and manage semantic

web services from OWL-S. Rather than defining the metadata of web services separately from function,

process and protocol aspects, WSMO differentiates its top-level elements according to their roles in interac-

tion and interoperation, i.e. ontologies, goals, web services, and mediators. Ontologies provide the formal

semantic support for concepts used in all WSMO components; web services ontology defines the common

elements in describing services, such as nonFunctionalProperties, usesMediator, and hasInterface etc.; cor-

respondingly, goals ontology specifies the user’s request in terms of nonFunctionalProperties, usesMediator,

requestsCapability and requestsInterface etc.; mediators ontology is the core of mediating the heterogeneous

elements between different WSMO components, ranging from the terminology mismatch, to protocol or pro-

cess conflicts. Therefore, each top-level component in WSMO is independent of other components and it can

communicate with other components with the assistance of appropriate mediators. In WSMO, goals ontology

and web services ontology clearly express the service requests from clients’ viewpoint and service provision

from services’ viewpoint. Furthermore, WSMO extends the goal ontology with service-quality specification,

2 Refer to http://www.w3.org/Submission/WSMO/
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enabling users to customize their requests, on the basis of the existing goals ontology [WSMO Final Deliver-

able D4.17]. In accordance with WSMO architecture, WSML is mainly based on F-Logic and provides the

language support to describe the ontologies, goals, web services and mediators. In addition, WSML develops

a set of language variants to investigate the applicability of different language formalisms. WSMX is specially

designed for testing the practicability of the WSMO for SWS discovery, matching, orchestration, semantic

interoperation and sources management. In comparison to OWL-S, WSMO/WSML/WSMX concentrate on

investigating diverse means to providing a conceptual model, defining an appropriate formal language for the

SWS, tackling the heterogeneous issues between ontologies with mediators, and examining their viability in

a dynamic SWS execution environment. However, to define or find the right mediator for a new data source

still demands the efforts in automated ontological alignment and matching.

SWSF3/SWSO4/SWSL. Influenced and inspired by OWL-S, SWSF is a more recent proposal of Se-

mantic Web Services Initiatives. It mainly consists of two components: an ontology and its corresponding

conceptual model, i.e. SWSO; a language used to specify the concepts and behaviors of semantic web services,

i.e. SWSL. SWSO presents a conceptual model to better describe semantic web services in terms of ontology

and presents a description of first-order logic axiomatization of the ontology, called FLOWS (First-Order

Logic Ontology for Web Services). Similar to service profile in OWL-S, FLOWS includes the properties such

as service name, service author, service URL etc. in Service Descriptor. Moreover, FLOWS enhances the

descriptions of services process by extending its infrastructure on the basis of PSL (Process Specification Lan-

guage). Consequently, FLOWS Process Model is composed of six ontology modules: FLOWS-Core, Control

Constraints, Ordering Constraints, Occurrence Constraints, State Constraints, and Exception Constraints.

Accordingly, SWSL is a language to formally describe web services concepts and individual web services. It

comes up with two variants, i.e. SWSL-FOL and SWSL-Rules. The former is based on first-order logic and is

used to specify the service ontology (SWSO); the latter is a logic programming language, which provides the

language support for service discovery, communication, policy definitions etc. In addition, SWSL provides a

platform to bridge the semantic transformation between SWSL-FOL and SWSL-Rules due to their common

language base First-order Logic.

In addition, there are alternative approaches to specifying and inter-operating semantic web services, such

as IRS-III5 and WSDL-S6. Initiatives in SWS community concentrate on enhancing the semantics of web

service descriptions in two key aspects: to define the conceptual models and infrastructures for automated

SWS discovery, execution and choreography; and to specify the formal languages to define concepts, process

and communication of SWS. Consequently, these approaches provide generic guidelines on SWS architectures

and unified definitions for diverse applications’ needs. OWL-S aims at defining a set of generic classes and

properties, which can be easily referred in describing individual services and thus being inter-operated by

end-users and software agents. WSMO goes further in modeling services into diverse domains/applications,

3 SWSF: Semantic Web Services Framework, http://www.w3.org/Submission/SWSF/
4 SWSO: Semantic Web Services Ontology, http://www.w3.org/Submission/SWSF-SWSO/
5 IRS: Internet Reasoning Services. For the details, see http://kmi.open.ac.uk/projects/irs/
6 Web Service Semantics. http://www.w3.org/Submission/WSDL-S/
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separates the goal and service ontologies from user and service viewpoints, and takes into account the me-

diation issue in the architecture design. SWSL provides the more solid language support in service process

specification than its ancestor OWL-S by smoothly integrating the logic programming into its infrastructure.

Due to the diversity of motivations of SWS approaches, their architectures, strategies of service manage-

ment and requests processing are distinguished from each other. OWL-S does not present an infrastructure to

manage SWS, instead, it specifies the individual SWS with a root concept Service and extends it with three

ontologies. In other words, each individual SWS can be regarded as an automated and self-explained agent.

Relying on the properties serviceCategory, and corresponding values in the service profile, individual SWS

can be identified and related to each other, i.e. subclass/superclass. Similarly, according to the specifications

in the Service Process and Service Grounding ontologies, OWL-S services can achieve the automated invo-

cation, compositions and interoperation. In contrast, WSMO targets at exploring different ways to manage

SWS, by designing a more full-fledged architecture to deal with different parts of SWS interactions and their

interactions in SWS in various ontologies. In addition, WSMF explicitly defines registry-like components to

publish and manage these ontologies.

The current efforts in SWS community are mainly concentrated on unifying the definition of SWS and

designing a proper SWS infrastructure. In the next step, the researchers and practitioners will take a close look

on SWS and potentially concentrate on some pragmatic issues, such as how to employ these infrastructures

and definitions in different applications for diverse purposes, how to make efficient request processing and

matching, how to standardize APIs to release application developers from reprogramming etc.

In particular, for LBS services management, we are concerned about not merely how to identify and

maintain the individual services, but also how to propose efficient services management strategy in order to

rapidly respond to user’s requests. Therefore, we must take into account following issues:

• How LBS identify the heterogenous semantics of the service profiles and make them tangible to end

users,

• How LBS organize the services data and make them inter-operable, such as a well-organized taxonomy

(specialization/generalization) and commonly-used relations (e.g. disjoint, part/whole or orchestra-

tion),

• How LBS define the service profiles at the syntax level, e.g. mandatory properties like spatio-temporal

characteristics of services. Moreover, definitions in our LBS are preferred to be compatible with the

standard definitions of SWS community.

4.1.2 Our Approach to Describing and Managing Services

As stated in chapter 3, our LBS ontology is an ontology of services and service usability, rather than an

ontology of abstract concepts. This is motivated by the feature ”Locality, Mobility and Dynamics” of LBS.

In other words, core ontology only contains service concepts that are available and relevant to current LBS,

rather than generic ones specified in OWL-S. Our definition of service class is based on OWL-S service

profile, i.e. each class has a set of properties. However, we extend the service definition in OWL-S with
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a set of predefined relations, e.g. functionality similarity and orchestration. These relations defined in our

work are concerned about different aspects. For instance, functionality similarity relation describes different

services having similar functionalities in certain context, which can help to offer satisfactory services to

end-users even in case the exact matching can not be obtained. The services involved in a functionality

similarity relation need to hold similar functionalities with certain constraints, but they do not necessarily

have inter-operation. In contrast, Orchestration engages the simple or complex processes between services

or inside a complex service. The orchestration relation is basically defined on the basis of some ”state”

information, such as pre-condition and post-effect etc. In both OWL-S, SWSO and WSMO present the

definitions on the process of services using various ways and can be possibly integrated in our LBS. Our

relation definitions are not contradictory to the definitions of service process in SWS proposals; instead,

they are the important complement because they are some specialization of service processes defined in

SWS proposals. Our definitions provide the guideline and facilities to LBS designers and developers, since

they more explicitly specify the relation semantics than those generic ones in SWS definitions. Moreover,

considering the influence of context/users on the service selection, we will further define the inter-module

links and mappings between concepts in different modules in chapter 6.

Regarding the syntax of service profile in LBS, they mainly follow the definitions in OWL-S, and extend

with certain mandatory properties, i.e. spatio-temporal semantics, e.g. OpenHour and ServiceCoverage.

From the practical viewpoint, we introduce the concept data profile, which describes a data source consisting

of a set of service profiles. A data profile can be the schema of a database or a website. In addition, we do

not emphasize the automated inter-operations between the services, i.e. descriptions on service process and

grounding, because we assume LBS mainly serve as an information provision portal and just have limited

rights to execute/interact real services with representative of end users.

In addition, the service module of core ontology is seen as a service registry and its concepts are organized

in a taxonomy. Different from the tacitly assumed taxonomy in OWL-S, our taxonomy is clearly specified in

the core ontology. Moreover, it is interactively and incrementally built up on the basis of the services available.

In other words, the taxonomy is initiated with a reference taxonomy, e.g. CYC or Google directory, and then

it is gradually tailored to the availability of services in LBS. This adaptive taxonomy building approach fits

with the ”dynamics” character of the LBS. The relations defined in chapter 3, such as (Discriminant) Is-A,

Disjoint and Part-of, can be commonly used between services in the service classes taxonomy.

To tackle to the semantic heterogeneity of service profiles, the core ontology also serves as the semantic

alignment authority in service module. When a service profile enters in LBS, its content will be parsed and

further associated with certain service class in core ontology. To achieve this objective, different components

associated with service module (mainly including the service profile matcher, mapping library and service

repository as presented in Figure 4.2) must closely cooperate. Further, to ensure the consistency and inter-

operability between the core ontology and service mappings, the mappings between service profiles and core

ontology are also represented in ontologies.
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4.1.3 Chapter Outline

This chapter takes a close look on the service module. We start with the introduction of service classes

taxonomy and then give our definitions of certain properties/relations for service classes. Next, we explain

the definitions of data profile and service profile at the syntax level, as well as their compatibility with

SWS definitions in W3C. Finally, we present our approach of mapping service profiles against core ontology,

maintaining the service profiles, and representing the mappings in terms of ontology.

4.2 Service Module

4.2.1 A Taxonomy of Service Classes

In the previous decades, people got used to looking up the yellow-pages to find out local services. By checking

up the list, users can easily select the service in a certain category. It was also the initial prototype of current

services web portals, such as Yahoo!local7 or Google!Maps. Moreover, these web-based local portals enable

users to find out a business within a specific geographical location or region. And the function and location

of the services are indexed and organized by the search engines as a priori.

Similarly, the core ontology is based on an a priori taxonomy of services that provides a conceptual view

of the domain independently of the idiosyncracies of heterogeneous data organization in the data sources. It

serves as the conceptual layer to organize the services into hierarchies and to provide a general view about

heterogeneous data profiles (i.e. data layer).

The taxonomy in LBS is an hierarchical taxonomy, i.e. a tree structure of classifications for the services

in the core ontology. As the frame of the service classes, the taxonomy primarily starts with a set of top-level

nodes (the ones immediately below the root node �). And these top-level nodes represent a set of disjoint

business functions, since services are usually denoted as: rental, cleaning, selling, consulting, etc. We consider

that services in the same business function class potentially share the similar business mode, conditions and

process. For instance, all ’rent’ services may require a deposit or the users provide an ID card, and follow a

process workflow like ’choose the product ’ ⇒ ’pay a deposit ’ ⇒ ’use the product ’ ⇒ ’return and pay’. This

disjoint business categorization can also help reducing the search space, as the business terms (e.g. rent,

repair...) can be used to match the query. For instance, assume the query is ”rent a car”. Analyzed by

a query pattern, it fits the pattern ”verb+noun”, so that the business function is ”rent” and its subject is

”car”. Further the query can be rewritten in the format which the core ontology can deal with, i.e. Rent


 ∃hasRentalProduct.car. Regarding the query formulation and processing, it will be discussed in detail in

the Chapter 7 and 8.

After having the initial taxonomy, the LBS designer will study the locally available services, and enrich

and modify the taxonomy. In our approach of building the core ontology, the test services data comes from the

yellow-page. when assigning services to the initial taxonomy, it is potential that the taxonomy is unsuitable

for classifying available services. In this context, the initial taxonomy needs to be modified (combined, added,

or removed). For instance, some similar service classes can be combined into a single class, the less important

7 http://local.yahoo.com/
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properties can be regarded as optional ones. Services which do not exist in the initial taxonomy but often

occur in queries should be searched and identified in local service profiles. In contrast, the service classes

that have never been found in local service profiles should be removed.

In Figure 4.1, we show part of the service taxonomy in the core ontology and suggest our approach of

organizing the services according to the business functions.

Renting ...EducationSelling Repairing

Car _rental

Real _estate _rental

DVD _rental

Apartment
rental

House
rental

Parking _Place
rental

Commercial _ Place 
rental

Pet -product
selling

Second -hand 
selling

Professional 
training

Language 
school

...

Figure 4.1: Part of the Service Taxonomy in our LBS core ontology.

4.2.2 Service Classes

In last chapter, we presented the definition of Module Class (see Definition 3.2). Following that definition,

we can easily have the definition of Service Class by specifying the class belonging to service module:

DEFINITION 4.1. Service Class. A Service Class cs is a class in Service Module Classes Cs, defined as
a triple (c, service, axioms) where c is the name of the service class, service specifies the module name of cs,
and axioms is the set of axioms that occurs in defining the class. (Refer to the axiom definition of Module
Class in Definition 3.2)

Our definition of service class is also compatible with the definition of service profile in OWL-S. An

OWL-S profile depicts a service as a function of three types of information: who provides the service, what

function the service computes, and a set of features that specify characteristics of the service. Similarly, our

”service class” provides an abstract and consistent description by being associated with a set of properties,

e.g. mandatory properties as spatio-temporal properties or input/output property. Beyond OWL-S profile,

our service class definition allows the explicit semantic definition in terms of ”axiom” and explicitly specifies

the value of serviceCategory by referring its superclass(es) to class(es) in the service class taxonomy. The

axioms provides the richer and disambiguating semantics than the description in OWL-S, by enumerating its

individuals, defining its superclass and/or discriminating property(s).
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4.2.3 Precondition and Post-effect Properties

In the last chapter, we presented certain attributes in the LBS. For instance, the input property specifies

the necessary input parameter to execute a service for users, e.g. the property pickup-city for the car rental

service. Input property information is provided by the query to the service. Without it, the service cannot

properly operate. Execution of a service can also be subject to certain conditions being satisfied. As stated

in OWL-S specifications, if a process has a precondition, then the process can not be performed successfully

unless precondition is true. Preconditions rely on information that is not provided via input properties.

The non-satisfaction of a precondition entails that the service should not be used, although it could operate

correctly. We could say that input properties are inherent to the service, while preconditions restrict the

context in which the service can be used.

As the execution of a service may influence the execution of another service, knowledge of preconditions

is complemented with knowledge of post-effects. Intuitively, a post-effect is a change in the state of the world

that is due to the execution of a service and that is significant with respect to the operation of other services.

As discussed later in this chapter, preconditions and post-effects can be combined to organize and monitor

(”orchestrate” in semantic web term) the execution of a group of services.

In OWL-S, the result of a service’s execution is represented in terms of coupled outputs and effects in

diverse conditions, i.e. under what condition, certain outputs and effects will be ensured to occur. Outputs

refer to the information of target services acquired by the user, and effects mean the post-effects described

above. In LBS setting, both precondition and post-effect are important properties to describe the service’s

functionality and potential results. We do not discuss the outputs property of a service, since the output of a

service can be highly different. It largely relies on many factors, such as the display capability of the mobile

device, constraints of OS or software embedded in the device, the details of the service profile, or the further

interaction between the user and LBS. Rather than discussing further on services’ automated discovery and

orchestration, we are motivated by simplifying and explicating the preconditions and post-effects to end-users

so as to enable users to understand the service’s execution, precondition and potential results.

DEFINITION 4.2. Precondition Property. A Precondition Property is an OWL objectProperty between
a service class and an axiom, such as hasPrecondition(S, C), where S is a service class, and C is a module
class or an axiom (
, �, ¬ based class expression).

For instance, hasPrecondition(Bar, AdultUser) where Bar is the service class, and AdultUser ≡ User 

∃hasAge.≥18. In this example, the class AdultUser is a discriminated class, with the constraint on property

hasAge of the class User. In addition, the precondition is distinguished from input property, since the service

can still be discovered without knowing if the precondition is satisfied, but in that case, LBS can not ensure

the success of the service execution. For instance, if the user is younger than 18-years old but does not specify

that in her(his) user profile, the bar service can be found by LBS, but the user may finally fail to access to

the bar if (s)he is unable to prove his/her age older than 18-years old.

The post-effect describes the corresponding changes of the state of the world after the service execution.

As addressed earlier in this chapter, we do not emphasize the automated inter-operations between services,
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the introduction of post-effect property is mainly aimed at suggesting users with diverse conditions and their

corresponding post-effects of a service. The post-effect can be particularly useful in expressing the multiple

means of the service achievement. For instance, a visa can be obtained via sending as a registered courier by

the visa authority, alternatively, it can also be received via picking up by the user herself (himself). Similar

to precondition property, the post-effect property can be defined as follows:

DEFINITION 4.3. Post-effect Property. A Post-effect Property is an OWL objectProperty between a
service class and an axiom, such as hasPostEffect(S, C), where S is a service class, and C is a module class
or an axiom (
, �, ¬ based class expression).

For instance, to rent a car, when the user has chosen a car rented by a service provider, the user (id:uID)

may be given a confirmation number. This confirmation number may be an input property use the cancelation

functionality of the car-rental service. Thus, the confirmation number can be described as post-effects as

follows: hasPostEffect(CarRental, ConfirmationNumber), where ConfirmationNumber is a number sent to the

user to confirm the car-rental reservation and to enable to cancel the reservation using it. In the later

part of this chapter, we will show how to apply the precondition and post-effect property to illustrate the

orchestration relation of services.

4.2.4 Relations

Beyond the obvious Is-A relation (and its more precise variant, the discriminant Is-A relation) other relations

are used to link service classes in the core ontology to make the search for services more efficient. An

important one is the functional similarity relation, which allows a service to be taken as an alternative to

another service. When for some reason the latter is not available, the former may be used instead. In a

query answering strategy, using these relations, the LBS can achieve more successful searches (enlarging the

set of potential answers to a query). Also useful to expedite search is the disjoint relation, which allows

discarding irrelevant classes to more rapidly focus on the relevant ones. We also use transmission relations,

which allow explicating the conditions under which a service class C2 should be used instead of a service

C1. Finally, whole-part and orchestration relations support the organization and scheduling of complex

non-atomic services.

Functional similarity relation. These relations are used to relate service classes that despite being

different (not one subclass of the other) may offer similar functionality in a given context. It means for a

certain query, services that are associated with the functional similarity relation can accomplish functionally

similar requests. For instance, in Example 4.1, bus and regional train can offer the same public transportation

function. If the request is concerning about ’bus’, but bus service fails to fully satisfy the user’s query (e.g.

temporal constraint), in this case, its functional similarity class regional train service may replace the bus

service to respond to user’s request.

However, although functional similar service classes can alternate in some contexts, they still differ in some

aspects represented by properties or conditions. When LBS recommends the service to users, these properties

and conditions must be taken into account. For instance, consider the query ’the movie Titanic tonight’, and

77



4. SERVICES AND DATA PROFILES

three different services concerning movie offered in diverse formats: cinema, DVD, and file download. All

of them can potentially satisfy the query, but they differ in the format of the movie entertainment, visual

effect, price and extra requirements, as shown in Example 4.2. Using the functional similarity relation, LBS

can relax the original query Q(A) by replacing the service concept A with another service concept B (A and

B are two service classes defined in the same functional similarity relation), when the original query can not

be satisfied. We give a formal definition on the functional equivalency relation and illustrate it with two

examples Example 4.1 and Example 4.2.

DEFINITION 4.4. Functional Similarity relation. A Functional Similarity relation is a relation on a
set of classes, such as �FS(S, a, C), where

• S is a set of service classes, such as s1, . . ., si and i ≥ 2;

• ∃ concept a, ∀si ∈ S, si � a, where a describes the common functionality of S;

• ∀si, sj ∈ S, si �= sj and si � sj;

• C is a set of axioms to describe extra conditions than its functional similar classes if they exist.

Example 4.1. Bus vs. Regional train between Lausanne and Renens.
Similar Functionality: alternative city public transportations with same departure ’Lausanne’ and destination
’Renens’.
Important Differences : journey duration, times of transit.
Condition: no special condition.

�FS (tlr: public transport between Lausanne and its neighboring commune Renens)8:
Stlr = {RegTrain, Bus},
Ftlr = {RegTrain � PublicTransport 
 ∃Departure.{Lausanne} 
 ∃Destination.{Renens},

Bus � PublicTransport 
 ∃Departure.{Lausanne} 
 ∃Destination.{Renens}},
Dtlr = {RegTrain � ∃TransferNo.=0 
 ∃JourneyMinute.≤10,

Bus � ∃TransferNo.≥1 
 ∃JourneyMinute.≥20},
Ctlr = ∅.

In the above example, there are two functional similar classes RegTrain, Bus which serve as the public

transport between city Lausanne and neighboring commune Renens (and other neighboring communes or

villages or cities are possible as well, such as Lutry and Morges). From the description above, the relation

can be also regarded as a view which helps LBS to provide the more suitable service when the exact matching

can not achieve. For instance, assume the query has additional condition on temporal dimension, i.e. ’at

0:00am’. Since the bus can not provide any service between 0:00am and 6:00am, but the regional train service

still runs on the route from Lausanne to Renens until 0:20am, the request can be satisfied with its functional

similar counter-part Regional train service. In addition, when the user prefers the shorter duration or less

transfer times, LBS would recommend the train other than the bus.

Example 4.2. Movie service: Cinema, DVD rental or Download.
Similar Functionality: provide the movie entertainment.
Pre-condition: deposit is mandatory for DVD rental and internet connection is required for movie download.

8 The examples in this chapter are expressed in the DL/DL-Extension format as described in [BaaderKW05] of the DL

handbook
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Important Difference: the visual effects are different, and the modes to access to the movie service are
different.
�FS (movie):
Smovie = {Cinema, DVD, MovieDownload},
Fmovie = {Cinema� EntertainmentService 
 ∃Mode.{Movie},

DVD � EntertainmentService 
 ∃Mode.{Movie},
MovieDownload � EntertainmentService 
 ∃Mode.{Movie}},

Dmovie = {Cinema � ∃VisualEffect.{Excellent} 
 ∃ ScriptsLanguage.{French},
DVD � ∃VisualEffect.{Good} 
 ∃ ScriptsLanguage.{French, English, German},
MovieDownload � ∃VisualEffect.{Good} 
 ∃ ScriptsLanguage.{French}},

Cmovie = {Cinema � ∃hasCondition.⊥,
DVD� ∃hasCondition.RentalDeposit,
MovieDownload � ∃hasCondition.InternetConnection}.

In the above example, we show the different but alternative modes of services on movie: Cinema, DVD

and MovieDownload. Different from the example Example 4.1, this example shows the different properties

and specific conditions of all services classes in Smovie. For the cinema service, it is featured by the excellent

visual effect, and scripts-language is only in French, without any condition. Alternatively, the DVD service

can provide good visual effect and offer scripts in French, English, German, but needs to pay the deposit as

the condition of the service.

In this example, we do not consider the spatial and temporal constraints of all services. For instance, the

cinema service must be accessed in a cinema during certain interval, the DVD rental can be chosen within

the open-hour of the DVD rental shop, and the download process takes certain time to obtain the whole

film file etc. Regarding the query processing and service ranking, other context information becomes useful

to determine what types of service is most appropriate for current user’s request. It will be discussed in

detail in Chapter 7 & 8 by taking into account all dimensional information, such as the temporal and spatial

constraints in the query, user preferences and other contextual knowledge.

Transition Relation. Transition relation associates a set of functional equivalent classes which will transit

from one to another if certain rule is satisfied. The transition can be symmetric or asymmetric. As shown

in Example 4.3, when it is over 0:00 am, the normal bus service terminates, and it is replaced by a different

service class, i.e. taxi-bus. The taxibus has the similar functionality, and possibly has same running route.

But after 6:00am, the taxi bus terminates, and the bus services run again. The two service classes transit to

provide city bus service following the certain temporal rules.

DEFINITION 4.5. Transition relation. A Transition relation is a relation on a pair of classes, such
as ��T (s1, s2, r), where s1 and s2 are a pair of service classes, and r is an axiom to describe how the the
transition happens from s1 to s2.

Example 4.3. Bus vs. Taxi-bus.
Same superclass : city bus service.
transition rules : running time are complement over the lifecycle 24-hours. Bus service operates from 6:00am
to 12:pm and taxi-bus operates from 0:00am to 6:00am. This transition is a bi-directional (or cycling)
transition.
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��T (24h-bus: Bus and Taxibus transition in 24 hours)
s1 = Bus, s2 = Taxibus,
r = {Bus � CityBus 
 ∀RunningTime.Daytime,

TaxiBus � CityBus 
 ∀RunningTime.¬Daytime}

In this example, the transition relation between the bus and taxi-bus describes their complement roles

in 24-hours bus services. Both of them can provide bus service to users, and they operate on complement

intervals of a life-cycle, i.e. a day. This example shows how to correlate temporal complementary services,

i.e. they transit from one to the other following temporal rules. Similarly, other types of transition relations

between services may occur. For instance, baby-care services can transit to enfant-care group if the baby is

older than 3-years. It can be noticed that the example of baby-care transition is not symmetric.

In addition, it is worthwhile explaining the difference between the transition relation and the functionally

similar relation. The former one occurs between sibling service-classes, and there exists the transition rule,

in the above example, the transition occurs on complement service time-intervals. But for the latter one, it

is not necessary that the services in the relation are sibling service-classes, e.g. regional train and bus, and

they are often similar (or equivalent) in the spatio-temporal characters.

Orchestration. It defines how a set of unit-services9 can coordinate together to achieve the composite

service. Beyond the aggregation relation, the orchestration is not only a simple binary relation between

the whole and its units, further, it renders the sequential & conditional relation between the unit-services,

i.e. coordination. In other words, unit-services must be carried on in a certain execution sequence (i.e.

chronological order); for each unit-service, it can carry on if and only if all conditions (if one exists) have been

satisfied. Another distinction between the orchestration and aggregation relation is that, the orchestration

allows multiple ways of coordination. For instance, a service S can be achieved by orchestrating unit-services

as a → b → c → e in this order; alternatively, S can also be achieved by orchestrating different unit-services

set such as a → d → f . In the semantic web service community, many efforts have been made on automated

semantic web services discovery and orchestration. To describe the orchestration relation in LBS, we refer to

the definition of location-based service flow in [NSD+05] and present it as follows:

DEFINITION 4.6. Location-based Service Flow. A location-based service flow with respect to some
initial conditions P0 is a finite sequence of services SF(P0) = (s1, s2, . . ., sn) where for each service si

∈ SF (i=1. . .n), si = <di, pi, ei> (di is the description of service si, pi is its precondition, and ei is its
post-effect.), all the following conditions hold:

• for s1, P0 � p1;

• for si, i > 1, P0 � e1 � e2 � . . . � ei−1 � pi;

• for si, i > 1, for each concept A occurring in ei, P0 
 e1 
 e2 
 . . . 
 ei−1 � A.

The Definition 4.6 describes the service flow composing of a set of services with a set of preconditions and

post-effects. Let us describe the orchestration relation between a whole service and a set of service flows as

follows:
9A unit-service refers to a service as a part of the whole service.
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DEFINITION 4.7. Orchestration Relation. An orchestration relation is a relation
∮
(S, (SF1, . . .,

SFi)) where the service S = <D, P0, E > and a set of service flows (SF1, . . ., SFi) (i ≥ 1), where

• D is the service description of S, P0 and E are respectively the precondition and post-effect of S.

• for each service flow SFj ∈ (SF1, . . ., SFi), it holds SFj provides the service S.

• for any two service flows SFa, SFb, SFa �= SFb.

Example 4.4. Visa Application Service.
Descriptions: The visa can be applied in two ways: 1) Call reservation → Interview → Visa Pick-up; 2) Call
reservation → Interview → Visa Delivery.∮ Orch = (Svisa, (SF1, SF2)):
S = Svisa, SF1 =(Scall, Sinterview , Spickup), SF2 = (Scall, Sinterview , Sdeliver).

Scall Sinterview

Spickup

Sdeliver

callP E P

P

P

E

E

E

call interview( ), interview( ),

deliver deliver( ),

pickup pickup( ),

In the Example 4.4, the visa application can be achieved by following two possible service flows, i.e. for a

composite service, there exists one or multiple service flows. Each flow is composed of respective unit-services

with certain preconditions and effects. In this example, both share a common starting service (i.e. Scall)

but have different ending services (i.e. Sdeliver and Spickup). Since the issues of service composition and

orchestration are not the main focus of our work, we will not go further on this topic. However, it suggests

that existing work and definitions concerning SWS discovery and orchestration can be easily integrated into

our work.

Condition. In the Orchestration relation, we introduced the term condition, which must be satisfied to

proceed the next unit-service and eventually to achieve the whole service. In LBS, there is a specific relation

between service classes, called Condition Relation. It represents that a service A can be accessed iff a

service B has been successfully achieved by the user. It is different from the service orchestration since the

classes involved in condition relation are independent service classes, and they do not intend to achieve the

same objective as defined in Definition 4.7. For instance, beginning-level ski-course may be the condition of

attending the middle-level ski-course. We defined the condition relation between two classes as follows:

DEFINITION 4.8. Condition Relation between Classes. A Condition relation is a partial order
relation ≺ on a set of classes such that c1 ≺ c2 implies that c1 is a necessary condition of c2.

In OWL, we directly define the condition relation between two classes as a global property hasClassCondi-

tion. In cases that the precondition is not applied to all instances of a class, the property is not total property

and the cardinality will be set as ”0” by specifying the property restriction owl:mincardinality. Accordingly,

both range and domain of property hasClassCondition are classes, and any condition relation between two

services is defined as an instance, and this property is neither symmetric nor reflexive.
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4.3 Data Profile and Service Profile

We assume all service descriptions come from a set of data profiles. A data profile describes a data source

that either directly provides services or has complete knowledge about who can provide the services in certain

domain(s). In other words, a data profile describes a service provider or a service portal. For instance, as

shown in Example 4.5, a car service provider presents its basic information and a set of sketchy service

descriptions in its data profile. Alternatively, a data source can hold the information on a set of services from

different providers, e.g. the cinema web-site10 provides the recent movie information of all cinemas within

Lausanne city. However, the data profile only needs to present the basic information about its services, rather

than all intensional data. For instance, the data profile of a book selling service may only present its function,

i.e. selling book, or in more details, the categories of books (e.g. text book, children books etc), but the

information such as the book names and ISBN are kept at the data source.

DEFINITION 4.9. Data Profile. A data profile is a tuple describing a data source, such that D = (ID,
<P, I>, S), where ID is the unique identifer of the data profile D, P is a set of properties of the data source,
I is the corresponding instances of the properties P, S is a set of service profiles such as S =(s1, . . . , si) and
i≥1.

Example 4.5. A data profile. In this example, we present the data profile of a car agency. It contains the
mandatory properties such as name, location and open time. Definitely, the non-functional properties of the
data profile are not limited to these ones. From the data profile, we also know that this car agency provides
three types of services: car rental, car repair and car accessory.

Data Profile: Car agency 1:

- name: La Roche Agency

- location: Av. de la Confrérie 19, Lausanne.

- open time: everyday.

- service:

Service 1. car rental.

- deposit: 300 CHF - 400 CHF

- price: Honda(100CHF/day), Benz(150CHF/day), Smart(100CHF/day).

Service 2. car repair.

- specialized mark: Benz.

- number of technicians: 4.

Service 3. car accessory

- CD and radio.

With the help of the service profile mappings (see Definition 4.11), the service profile(s) can be aligned

to the core ontology, and the information in the service profile will be added into the core ontology as

instance of corresponding service class. In addition, the necessary information presented in the data profile,

e.g. location, open-time, or information provider, will be added to the corresponding instance in the core

ontology. Example 4.7 briefly presents a data profile together with one of its service profiles. From the

Example 4.7, we observe some features of the service profiles: 1) a service profile often inherits a set of

10http://lausanne.cinemas.ch/home.php
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basic information from its data profile such as identifier (or name), service provider, location and open

time; 2) service profiles can present different properties, e.g. car type and car mark ; 3) service profiles may

present data values of the same property differently, i.e. in different data types, and/or at different levels of

abstraction. For instance, ’deposit’ property has value yes or a value range (300-400 CHF) in two profiles.

We give the formal definition of service profile as follows.

Example 4.6. Service profiles. In this example, we present two car rental service profiles. They may be
from the same data source specialized in car rental service information, or from different data sources.

Car rental 1 Car rental 2

service provider = La Roche Agency;
location = Av. de la Confrérie 19, Lausanne;
open time = Monday - Saturday;
deposit = 300 CHF;
car type = Diesel, petrol vehicle;
car mark = Honda, Ford, Toyota, Fiat;
price = Honda(100 CHF/day), Ford(120 CHF/day),
Fiat(100 CHF/day), Toyota(80 CHF/day).

service Provider = La Vinci Agency;
location = Av. de Morges 118, Renens;
open time = (Monday-Friday) 9:00-19:00,
(Saturday) 8:00-18:00, (Sunday) close;
deposit = (EuroCar-member) No, (non-
EuroCar-member) Yes;
car type = car, truck, coach.

DEFINITION 4.10. Service Profile. A service profile is a data tuple describing a single service, such
that S = (sID, <P, I>), where sID is the identifier of the service profile S, P is a set of properties of S, I is
the corresponding instances of the properties P.

Example 4.7. Example Specification of the service profile Car Rental 1 : It firstly presents the
schema of the service profile in OWL, then gives the facts on the concepts and properties.

<owl:Class rdf:ID="SProfile">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasServiceCategory"/>

</owl:onProperty>

<owl:mincardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:mincardinality>

</owl:Restriction>

</rdfs:subClassOf>

...

</owl:Class>

<owl:DataProperty rdf:ID="hasServiceCategory">

<rdfs:domain rdf:resource="#SProfile"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DataProperty>

<owl:ObjectProperty rdf:ID="hasAddress">

<rdfs:domain rdf:resource="#SProfile"/>

<rdfs:range rdf:resource="#SP_Address"/>

...

</owl:ObjectProperty>
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<owl:DatatypeProperty rdf:ID="hasOpenTime">

<rdfs:domain rdf:resource="#SProfile"/>

...

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasCarManufactor">

<rdfs:domain rdf:resource="#SProfile"/>

<rdfs:range rdf:resource="#SP_CarManufactor1"/>

</owl:ObjectProperty>

<owl:Class>

<owl:oneOf rdf:parseType="Collection">

<owl:SP_CarManufactor1 rdf:about="#Honda"/>

<owl:SP_CarManufactor1 rdf:about="#Ford"/>

<owl:SP_CarManufactor1 rdf:about="#Toyota"/>

<owl:SP_CarManufactor1 rdf:about="#Fiat"/>

</owl:oneOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasCarType">

<rdfs:domain rdf:resource="#SProfile"/>

...

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasDeposit">

<rdfs:domain rdf:resource="#SProfile"/>

...

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPrice">

<rdfs:domain rdf:resource="#SProfile"/>

...

</owl:ObjectProperty>

...

<SProfile rdf:ID="Car_Rental_1"/>

<hasAddress rdf:resource="#Address_Car_Rental_1"/>

<ComplexAddress rdf:ID="Address_Car_Rental_1">

<hasPostCode rdf:datatype="&xsd;int">1004</hasPostCode>

<hasStreet rdf:resource="#Av.de_la_Confrrie_19"/>

</ComplexAddress>

...

NOTE: the set of properties P describes the characteristics of a service, it includes the necessary properties

of a service, such as its spatio-temporal availability, the service category (i.e. business function), and the

condition to access the service. It may also contain some specific properties of the service; I is a set of

instances over properties P, for each property pj, if pj is necessary, its corresponding value instance ij �=
NULL. In the Example 4.6, both services belong to ’car rental’ service class in the Core Ontology, but they

have different properties such as car mark. The same property car type renders diverse semantics in two

profiles, i.e. fuel-based (i.e. {Diesel-driven car, Petrol-driven car, . . .}) and Function-based (i.e. {car, truck,

coach, . . .}).
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4.4 Service Profile Matcher

Semantic matching is a major problem in large-scale distributed data management, its applications range from

schema integration, ontology matching, e-commerce, to semantic query processing and currently emergent

web-based services management. Its relevant works encompass schema (or ontology) alignment, merging,

articulation, fusion, integration, evolution, and so on. In [RB01], authors define Match as a fundamental

operation in the manipulation of schema information, ”which takes two schemas as input and produces a map-

ping between elements of the two schemas that correspond semantically to each other”. Similarly, Kalfoglou

et al. [KS03] describe the ontology mapping as the task of relating the vocabulary of two ontologies that share

the same domain of discourse in such a way that the mathematical structure of ontological signatures and

their intended interpretations, as specified by the ontological axioms, are respected.

In LBS setting, naturally, semantic matching is a challenge of LBS data management because the het-

erogenous data services maintain and represent their data in an autonomous and independent way. As

suggested in Figure 3.1, Service profile matcher plays the important role of conveying and unifying the data

semantics between the core ontology and heterogeneous data profiles in LBS. The ”matcher” actually per-

forms two tasks: 1) to match and fuse heterogeneous service profiles into the core ontology; 2) in return, at

the query processing phase, to transform the query’s semantics in terms of core ontology to that of source

service profiles. In addition, while a service profile is matched to the core ontology, the core ontology may

require to be updated and/or extended. Accordingly, the changes of the core ontology potentially propagate

to the evolution of the dependent mappings. In Figure 4.2, we briefly describe the architecture of the Service

Profile Matcher and illustrate the matching process.

Modular Core Ontology

Service
Module

Space & 
Time

User
Module

Context 
Module

Mapping Processor Service Profile

Core Ontology Update

Dependent 

Mappings Update

Service Profile 
Fusion

Service Profiles 
Repository

Mappings 
Library

Mapping 
rules

Shared 
terminology

Mapping 
Discovery

Figure 4.2: The Basic Architecture of Service Profile Matcher

Initialization of the Service Profile Matcher. Initially, both the mapping library and service profile

repository are empty. The mapping discovery tool(s) and/or a set of mapping rules may exist in the mapping

processor. In literature, researchers and practitioners explored various approaches and techniques to lift and
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normalize, map the words at the syntactical, structural and language levels, e.g. [VJBCS97]. The issues

on how to discover the mappings between the service profile and core ontology are beyond the scope of this

dissertation.

Update of the Service Profile Matcher. As LBS enters into use, whenever a single service profile is

uploaded to Service Profile Matcher, each element in the service profile will be identified by the mapping

processor. The elements’ similarity measures may be computed considering the linguistics, taxonomy and

property. Then it will recommend a list of mappings to relate the element in the service profile with the core

ontology. The identification of the mappings might be (semi-)automatically achieved and/or supervised by

the LBS experts. While the service is completely fused into a service class of the Core ontology, the service

profile will be stored in the Service Profile Repository and their identified mappings between service profile

and Core Ontology will be added to the Mapping Library.

Under some circumstances, the structure of target service class in core ontology may not suit for needs of

real service profiles. For instance, in the core ontology, service class ”restaurant” has a property ”address”

whose value constraint is string. However, in most ”restaurant” service profiles, property ”address” is defined

as a complex property composed of ”city” and ”street”. In this case, in order to make efficient the profiles

matching as well the query processing, it is recommended to modify the structure of target service class of the

core ontology accordingly. This modification may have a determinant effect on the dependent mappings in the

mapping library. The dependent mappings denote a set of mapping instances in the mapping library, which

associate an evolved element of the core ontology as the evolution of the core ontology. For instance, in the

example above, all mapping instances including the property ”restaurant->address” under the class restaurant

are dependent mappings when property ”restaurant->address” is changed as a complex property from a simple

property. It functions in a similar fashion as the trigger in the database. Thus, the corresponding update

of the dependent mappings is necessary and the updated mappings will replace the old ones in the mapping

library. In addition, the unsuitable definitions of cardinality or property constraint at the initial design can

also result in the evolution of the core ontology.

In last decade, researchers and practitioners from database & ontology community proposed diverse

approaches of schema matching or integration and produced a large amount of results. The schemas include

the relational database schemas, XML and compatible schemas (e.g. DTD and XSD), and OWL-based

ontologies. In [RB01], authors provide a comprehensive survey on existing approaches of schema matching

and classify them into schema-level and instance-level, element-level and structure-level, language-based and

constraint-based. Rather than creating a new matching approach or optimizing the algorithms, we concentrate

on employing existing approaches to deal with the semantic matching issues in LBS.

In the remaining of the section, we set out with the representation and manipulation of mappings based

on the architecture presented in Figure 4.2. We also explain how to match and fuse a single service profile

to the core ontology with the mappings. Then issues on core ontology evolution and mapping update are

investigated. Issues on how the mappings can help to transform and process the query will be discussed in

detail in chapter Semantic Query Processing.
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4.5 Discovery and Representation of Mappings

In the literature, there exist diverse definitions and representations on schema mapping and ontology mapping.

From the database perspective, Rahm and Bernstein, in [RB01], defined the match operation as a function

that takes two schemas S1 and S2 as input and returns a set of mapping elements between two schemas as

output. Each mapping element indicates that certain elements of schema S1 are mapped to certain elements

in S2. Due to the specifics of the representations of schemas, (i.e., ER model, object-oriented model, XML

model) different types of mapping relations, functions or expressions between schema elements can be chosen

and defined.

Regarding the existing mapping approaches, the mapping expressions can be generally classified into two

types: schema-level mappings and instance-level mappings. At the schema-level, the mappings can be further

classified as name-based, constraint-based, and structure-based. The name-based mappings often employ

the linguistics relations/functions between the elements, such as equality, synonym and hypernym etc. The

constraint-based mappings are based on the exploitation and analysis of the structure of the database schema,

such as the is-a relation, relationship cardinalities, and referential constraints. Structure-based mappings are

applied by comparing the neighborhoods of the two elements separately in their schemas. Regarding the

instance-level mappings, they generally fall into two categories: text-oriented and constraint-oriented. The

former mainly apply Bayesian learners to find the relevant texts in the instance value; the latter discover

the consistency between the domain values, character/numerical data patterns, even the distribution and

average. These mappings are usually implemented by employing additional programming languages like Java

or C.

Even though the database schema and ontology share many commonalities from the data management

perspective, they distinguish from each other in terms of logic expressiveness, the delimitation between class

and instance, the approaches of dealing with the data and structure evolution etc. as investigated in [NK04].

In particular, e.g. in OWL, specific properties and axioms such as functional-properties, inverse-properties,

domain and range constraints, property constraints all need to be taken into account during the mapping

process. This makes the ontology mapping more complicated than the schema mapping. Moreover, the

way in which ontologies represent and reason over the data makes ontology matching different from the

schema matching, so that the feasible approaches to representing and manipulating ontology mappings can

differentiate from those of schema matching. In [Noy04], the author outlines three types of approaches to

representing mappings between ontologies:

• to represent mappings as instances in an ontology of mappings, e.g. MAFRA framework [MMSV02],

work done in [CM03], and definition in [ES05];

• to define bridging axioms in first-order logic to represent transformation, e.g. OntoMerge system

[DMQ03];

• to use views to describe mappings from a global ontology to local ontologies, i.e. GAV(global-as-

view)/LAV(local-as-view), e.g. OIS framework [CGL01].
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Figure 4.3 provides the generic view of the semantic bridging ontology in MAFRA, where the mappings are

defined as a set of instances of semantic bridges in an ontology. It is composed of three basic types of entities

(i.e. Concepts, Relations and Attributes), the class Semantic Bridge relating the source entity and target

entity, the class Service describing the transformation resources, the class Rule, Transformation, Condition

which are used to specify the transformation-relevant information or constraints, and the modeling primitives

Composition and Alternative used to support the relations over the semantic bridges, such as composition

and mutual exclusiveness.

Figure 4.3: The Bridging Ontology view in UML. (i.e. Fig. 3 in [MMSV02])

Motivated by the mapping representations in MAFRA, we describe the mappings between the ontology

and service profile in a similar way, i.e. any mapping can be represented as an instance in the mapping

library, and two elements are separately from the core ontology and the service profile (see Definition 4.11).

Different from the specifications in MAFRA, we do not specialize the mappings according to the types of the

elements such as concept-bridge, relation-bridge and attribute-bridge. The elements involved in the mapping

can be of type concept, property, relation, or individual, and can be either a single element or a complex

one. Further, we allow two elements associated in a mapping relation to be of different types. For instance,

the source property car type (i.e. property in service profile) is a simple property, and its value domain is

constrained as an enumerated set {Diesel, Petrol}. However, the target property (i.e. property in the core

ontology) can be a complex property, e.g., a property with multiple representations such as {Diesel, Petrol

‖ Car, Truck, Coach}. In OWL, the complex property is generally described as a concept, as discussed

in the Section 3.2.4. In this case, we need to map an element of property type to an element of concept
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type. The mapping also describes certain relations or functions between two elements. A typical one is the

function ’Equal-to’(=) or ’Similar’(�). Other types of relations are also possible and have been investigated

in literature, such as concatenation, aggregation, decomposition, etc. ([CGL01] [KS03] [Do06]). In a recent

review [Noy04], the author classifies the approaches of ontology-mapping discovery into two categories: 1) to

use the shared ontology to make a common grounding for knowledge sharing between ontologies; 2) to apply

some heuristics and machine learning techniques to find the mappings. In the infrastructure of service profile

matcher, we allow the various or combined deployment means of discovering mappings. We give the generic

definitions on mapping library and mapping as follows:

DEFINITION 4.11. Mapping. A mapping is a tuple describing a relation or function over two elements
such that M = (id, es, et, MAP) where id is the unique identifier of the mapping instance, es is the source
element from a service profile, et is the target element from the core ontology, and MAP is the binary relation
between es and et, and {≡, ∼=, �, �, UNION } � MAP.

In OWL, the mapping M is defined in terms of class, elements es, et and identifier id are separately defined

as its mandatory properties. For different classes of mappings (i.e. service mapping, property mapping and

individual mapping), there exist diverse constraints on the cardinalities, domains and ranges of es, et. In the

following OWL definition, we suggest the constraints on the cardinality of the property hasSourceElement,

and the constraints on hasSourceElement can be defined in a similar way.

<owl:Class rdf:ID="Mapping">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSourceElement"/>

</owl:onProperty>

<owl:mincardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:mincardinality>

</owl:Restriction>

</rdfs:subClassOf>

...

<owl:ObjectProperty rdf:ID="hasSourceElement">

<rdfs:domain rdf:resource="#Mapping"/>

...

</owl:ObjectProperty>

...

</owl:Class>

DEFINITION 4.12. Mapping Library in LBS. A Mapping Library describes the mappings between the
core ontology and the service profiles, such as ML = {M|m1, . . . , mi}.

M is the mapping defined in Definition 4.11, ML is a union of all mappings defined in LBS. According

to the target elements of mappings, the mappings can be categorized into service mappings (i.e. class-level),

property mappings and individual mappings.

Example 4.8. An example of the mappings between a ’Car rental’ service profile and core
ontology. In the figure below, we illustrate part of the core ontology, a service profile Car Rental, and some
of the mapping between them.
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Service ProfileCore Ontology
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Car rental
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1. Service Mapping. As shown in the Example 4.5, the service Car-rental is mapped to the service class

’Car rental’ in the core ontology. The mapping can be described in terms of a tuple such as M=
Service = (id,

esvc
s , esvc

t , Equal), where esvc
s is the whole service ’Car-rental ’, esvc

t represents the service class ’Car rental ’ in

core ontology, and Equal (≡) declares the ’Equivalent’ relation between esvc
s and esvc

t . Because in this mapping

the source element represents the whole service profile, this type of mapping is called Service mapping, denoted

as MService. When the mapping ontology is encoded in OWL, we define a super class Mapping, which has

sub-types such as ServiceMapping defined below (i.e. the mapping MService aforementioned). The relation

Equal is also sub-type of relation Map of the Definition 4.11. Further, we can make more constraints on

the SourceElement and TargetElement beyond its super type as defined below and the axiom specifies the

equivalent mapping between two elements. However, OWL provides a built-in axiom owl:EquivalentClass to

represent two equivalent classes. It seems a straightforward way to represent the equivalent relation between

two elements. However, certain advanced mapping relations, such as aggregation, decomposition, can not be

directly represented by using OWL built-in axioms and require external transformation functions.

<owl:Class rdf:ID="ServiceMapping">

<rdfs:subClassOf rdf:resource="#Mapping" />

...

</owl:Class>

...

<owl:ObjectProperty rdf:ID="hasSourceElement">

<rdfs:domain rdf:resource="#ServiceMapping"/>

<rdfs:range rdf:resource="#SProfile"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasTargetElement">

<rdfs:domain rdf:resource="#ServiceMapping"/>

<rdfs:range rdf:resource="#Service"/>

</owl:ObjectProperty>

<ServiceMapping rdf:ID="ServiceMapping_Car_Rental1">

<hasSourceElement rdf:resource="#Car_Rental1"/>

<hasTargetElement rdf:resoucrce="#CarRental_xxx"/>
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</ServiceMapping>

<SProfile rdf:ID="Car_Rental1">

<CarRental rdf:ID="CarRental_xxx">

...

Axiom on M=
Service = (idc, esvc

s , esvc
t , Equal):

⇒ ((hasSourceElement, ?e1, ?m1) and (hasTargetElement, ?e2, ?m1) and (∈, ?m1, M=
Service))

exists (e1 = e2)

Different from the generic mapping in existing approaches, the relation in our mapping can render certain

semantics. More often, relation Equal is an ideal one between two classes since there usually exists some

difference in the structure or constraints. In the above example, we just illustrate the mapping between

service class and service profile, and relation Equal indicates both have equivalent service functionalities,

rather than merely the equivalent structures and terminologies between two classes. Similar to some generic

mapping relations, other relations such as subset(⊂), overlap, are common in LBS.

2. Property Mapping. Consider a class being characterized by its logical definition, properties with other

classes/individuals, and text descriptions. Obviously, the properties of a service class are crucial to describe

the service class, and to suggest relations with other services. In LBS, a service profile describes a single

service class without offering much information on the role hierarchy with its super-types/sub-types or the

relation with other service classes. Therefore, property-mappings that we will discuss mainly fall into one of

the these two categories: dataProperty mappings or alternative dataProperty mappings (i.e. certain complex

properties, e.g. the property address in the core ontology is composed of two simple dataProperty ’address’

and ’postcode’). Similar to the service mapping, the property in the service profile will be mapped to the

property of the corresponding service class. For instance, the property Work Time has the same meaning and

property constraint with property ’OpenTime’ in the class CarRental. In this case, the property Work Time

can be directly converted into ’OpenTime’, and the mapping can be written as M=
Prop = (id, eprop

s , eprop
t ,

Equal).

However, it is very common that the property in the service profile is inconsistent with the target property

in CO, the inconsistency may occurs in terms of the structure, the value domain or the constraints. In that

case, it is necessary to either transform eprop
s to the syntactic of eprop

t , or tailor eprop
t to eprop

s if necessary. For

instance, in Example 4.5, eprop
s location needs to be decomposed into two simple properties, i.e. ’address’ and

’postcode’. In return, when eprop
s is a complex property and eprop

t is a simple one, it is possible to aggregate

the simple properties of eprop
s to the format of eprop

t .

M�
Prop = (id, eprop

s , eprop
t , Transform)

eprop
s = Car Rental1.location

eprop
t = CarRental.location

= CarRental.location.address + CarRental.location.postcode
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In the above example, when we transform source property ’Car Rental1.location’ to two simple properties,

it is optimistic to keep the property-ranges (as well the constraints) of the source and the target properties

consistent. For instance, the postcode information can be included in eprop
s Car Rental1.location in terms

of string, but postcode in eprop
t explicitly specifies its property-range as non-negative integer. To transform

between different data-types, e.g. string � integer, extra programming are needed.

However, in some circumstances, it seems difficult to represent the mappings (or functions) when the struc-

tures or the constraints of source/target properties are inconsistent. For instance, in the Example 4.7, for the

service Car Rental2, property deposit is dependent on the user-relevant information ’EuroCar-Membership’

and has property-range ’boolean datatype’ (i.e. ’Yes/No’); for the Car Rental1, property deposit is a dat-

aProperty with property-range ’currency’. In this example, we can find out the property-ranges of two source

properties are distinguished in rendering their own semantics on the same property. In literature, there are

mainly two ways to reconciling the inconsistency in structure and constraints: 1) to keep alignment with a

target (or standard) property, but probably with the risk of losing some information of the source property,

2) to allow multiple representations on the same property, which often applies to transform the sources to

a single data-warehouse [BR00] or to represent the object/property in a multiple-representation database

[PSZ06]. In our work, two approaches can be combined to fit for different situations. For instance, for the

property ’deposit’, it is possible to specify it as a multiple-representation property. But for the property

open time in Car rental2, it needs to be aligned with the target property OpenTime since OpenTime is a

mandatory property and needs to be in a unique format specified by LBS designer.

3. Individuals Mapping. In the database mapping, the individual mappings are important phase to

completely import the source instances to the target database. When schema-level mapping is achieved, it

is common to make the element-level mappings, e.g. two records separately from two relational tables. In

our scenario, when a service profile maps to a service class in the core ontology, it is necessary to establish a

link assigning a service profile to a service class in the core ontology. In occasional cases, it is possible that

for a real-world service instance, there exist two different service profiles. The term different does not only

mean they are from different data profiles, but also suggests two individual service profiles potentially have

various structures and representations. Therefore, as a service profile is input to the LBS, it will firstly be

identified and recognized if it is the same individual service described by another individual service profile

already in the LBS. The approaches to evaluating the equivalency of two individuals can be diverse, but we

mainly concentrate on what LBS will proceed once the equivalency between individuals is found. Similar to

the solution of resolving the heterogeneity between two properties, to handle the individuals in heterogenous

representations, one is to align it with a standard one, (i.e. integrate all properties in two service profiles

into one individual service); the alternative is to keep multiple representations individually, but to link them

as equivalent service individuals using axiom. The following assertions describe the mapping between two

individuals, where one is from CarRental class in core ontology and the other is from the Car Rental1 service

profile. As stated before, while a service profile is identified as a new service instance for LBS, it will
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be fused to the core ontology and a service profile instance will be inserted to the core ontology such as

#CarRental 123.

<owl:Class rdf:ID="IndividualMapping">

<rdfs:subClassOf rdf:resource="#Mapping"/>

</owl:Class>

<IndividualMapping rdf:ID="IndividualMapping_1">

<hasSourceElement rdf:resource="#Car_Rental1"/>

<hasTargetElement rdf:resource="#CarRental_123"/>

</IndividualMapping>

...

<SProfile rdf:ID="Car_Rental1">

<CarRental rdf:ID="CarRental_123">

Example 4.9. Class CarRental in CO vs. a Service Profile Car Rental2. In this example, we
simply illustrate how to insert a service instance in the LBS and build up corresponding mappings in ML.
The fourth operation shows a series of operations in Core ontology and mapping library and consequent
update of all relevant property mapping instances to this property evolution. The left part of Figure 4.5
refers to the metadata of the service class CarRental in the core ontology, and the right part represents a
service instance.

CarRental

Opentime

Location

Address

ZipCode

(1,1) string

(1,1) integer

(1,1) Complex-Time 
DataType

Price (0,n) currency

Car-type (0,n) string

Deposit (0,n) Currency

Car Rental

Worktime

Address (1,1) string

(1,1) Complex-Time 
DataType

Car type (0,n) set string

Deposit

Av. de Morges 118, 1003

Monday-Friday 9:00-19:00;
Saturday : 8:00-18:00;

Sunday :Close .

Eurocar -member : 0;
Non-Eurocar -member : 200CHF

Eurocar -
membership

Depositvalue

(1,1) Boolean

(1,1) Currency

Car, truck, coach

Id: Car_rental_2

1. Add a service instance in LBS.

m1 = (Car rental 2, CarRental 102, Equal)
⇒ Create a sevice mapping m1 in mapping library ML,
⇒ Associate service profile CarRental 102 with class CarRental in CO.

2. Decompose a simple property address to a composite property location.

m2 = (address, location, decompose)
⇒ Add property mapping instance m2 to mapping library ML,
⇒ Associate value Av. de Morges 118 with CarRental 102’s location.address,
⇒ Associate value 1003 with CarRental 102’s location.zipcode.
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3. Directly insert a property.

m3 = (worktime, opentime, Equal)
⇒ Add property mapping instance m3 to mapping library ML,
⇒ Associate value Monday-Friday 9:00-19:00; Saturday: 8:00-18:00; Sunday:Closed
with CarRental 102 ’s Opentime.

4. To modify the class CarRental ’s simple property to a multi-representation property, insert the new

property mapping and its value in ML, and update all relevant mappings to Deposit in ML.

m4 = (DepositCar rental 2, DepositCarRental, Map)
⇒ Modify the property Deposit of class CarRental to a complex property,
⇒ The new property Deposit associates two properties Europcar-membership and
Deposit-value,
⇒ Add constraints on the cardinality of Europcar-membership as (0,1),
⇒ Add constraints on the cardinality of deposit-value as (1,1),
⇒ Insert value (Yes, 0) to CarRental 102 ’s (Europcar-membership, Deposit-value),
⇒ Insert value (No, 200) to CarRental 102 ’s (Europcar-membership, Deposit-value),
⇒ Update all property instances of Deposit of class CarRental,
⇒ Update targetElement of all Deposit’s property mapping instances of class
CarRental in ML.

4.6 Chapter Summary

The service module provides the semantic abstraction of services in LBS, i.e. the taxonomy of services, the

definitions of services with a set of properties, the relationships with other services. In this chapter, we start

with the discussion on the characteristics of web services and semantic web services. However, their definition

and data infrastructure do not suit well for the LBS needs, e.g. ”Locality, Mobility and Dynamics”. This calls

upon a new service data management strategy for LBS. Differently, the service module in our core ontology

have three aspects of functionalities: 1) a service registry which organizes the services in a hierarchical

taxonomy, 2) a service alignment authority which can help to identify the semantics of service profiles and

further assign it to a certain service class in the core ontology, 3) it helps to relate services in some practical

ways, e.g. to relate the functional similar services, to express the detailed processes inside a service. In

addition, we explain one of the important components relevant to service module, i.e. the service profile

matcher. It handles the semantic heterogeneity between service profiles and core ontology, and illustrates

some manipulations on service profiles. Finally, we present the mapping ontology, which stands for the

mappings between core ontology and service profile, ranging from service class and property to values. In

following chapters, we will delve into the details on the data management of context and user profiles, and

explain how to define the ”Connections” between different modules, i.e. Connection between service module

and context module, and Connection between service module and user module. In return, these connections

will facilitate to achieve the context-awareness and personalization of LBS.
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Chapter 5
Context Information Management

5.1 Introduction and Motivation

As stated in chapter 2, our work focuses on how LBS can provide mobile users with context-aware and

personalized services in terms of information delivery and exchange. Semantic support for these services

is rooted in the knowledge that the LBS can exploit. LBS knowledge should describe the characteristics

of the user, the content available in the data sources, and the environment (in the broad sense) in which

LBS/user interactions are embedded. Hence, context information, user profiles and data profiles play a crucial

role in raising the quality of the services provided by the LBS. More importantly, it is the interrelations

and interactions between these pieces of knowledge that build the knowledge substrate determining how

semantically effective will the information services be.

A common philosophical assumption asserts that everything is context-dependent. Indeed, for example,

the name of a person, often seen as an inherent and unchangeable characteristic of the person, is in fact

context-dependent as the same person may have an official name but also a nickname in an email address

book, a familiar name used at home by family members, an alias used to chat on Internet, a code name as a

member of a group, etc. However, when downsizing the universe to the world that is relevant to some specific

IT application, things like a user name can become context-independent, meaning that whatever the usage

of the information within this restricted application world, the value for that characteristic will be the same.

For a smart LBS, the assumption that everything is context dependent materializes in the fact that every

user query is checked against context data to see if the query should be reformulated differently because of

the additional knowledge extracted from the context repository. For example, the query for a shopping area

with a Chinese restaurant needs knowledge about the local shopping areas, knowledge that would typically

be stored in the current spatial context. Conversely, once the LBS has returned the name of a suitable

restaurant, the query whether this restaurant is open on Wednesday may be directly evaluated without

looking at context data, because the concepts of open-days and Wednesday have a unique interpretation

within the LBS. Given that LBS are characterized by the diversity of users and the unpredictability of their

requirements, how to best understand users’ intention thanks to the explicit/implicit context relevant to the

query, how to represent and manipulate the context, and how to apply the pieces of context information in
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information selection become the new challenges for emergent context-aware services in general and for LBS

in particular.

In addition, as discussed in chapter 2, context, user profiles, and service profiles are separate but closely

interrelated parts in LBS. Especially, context often serves as the base and pivot to link and elaborate other

parts so as to achieve the objective of context-awareness and personalization in LBS. For instance, user

preferences may be context-dependent, such as ”favorite sports can change from summer to winter” where

both summer and winter are context concepts and the sports value will change according to the value of

context class season. Services can also be regarded as context consumers because some services are sensitive

to or even determined by some specific context, e.g. ski services being only available if there is sufficient

snow.

In the sequel of this chapter, we firstly analyze the use, definition and modeling of context in the literature.

Next we discuss how context data can be organized within an LBS, and propose and justify our approach to

cope with the functionality of context in LBS. Finally, we present our approach of defining and manipulating

the context information, and describing the relations and dependencies between contexts, with the motivation

towards an adaptive and knowledgeable information selection.

5.2 Related Work

5.2.1 Context Definition

In the literature, the studies on context encompassed many significant research issues in diverse disciplines

and applications, ranging from psychology, linguistic [BB05] and artificial intelligence, to nowadays context-

aware computing [Dey01]. Generally speaking, in any open data management environment it is an essential

issue to better understand what information the user is seeking before matching the request with the data.

For example, an application domain that tends to become a major consumer of context data is web Search

[Law00], where use of context is extremely relevant to the targeted goal of reducing the amount of pages

returned to users while improving their relevance. In a static framework such as desktop web interactions,

context may be determined by explicit user action, e.g. choosing a category (e.g. the results of ’hotel’ in

category ’travel’ are different from those in category ’employment’), or by implicitly inferring contextual

elements from the documents edited/browsed by the requesting user. However, in dynamically evolving

computing environments, e.g. mobility frameworks, other types of context information driven from this

dynamicity (e.g. user’s location, activity, surroundings, etc.) become a crucial additional player in the

information/service selection. This leads to the usual definition of context in LBS as below.

Context in information services can be generically defined as any information which can determine

or influence the selection of information to be delivered to the user in response to a given query

(in a ’pull’ style) or as a follow-up to some user’s pre-specification (in a ’push’ style).

To separate concerns, in our LBS framework we restrict the scope of context as only referring to infor-

mation that describes the surrounding environment relevant to user’s query, excluding user preferences and
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service profiles. Typical examples of context information in this sense include atmospheric data, traffic con-

ditions, calendar data (including national and local holidays), and cultural and communication settings. This

information depends neither on the user nor on the local service data. It is often available from local author-

itative data sources, e.g. atmospheric data from the local weather broadcast agency. Context also includes

higher-level information that can be inferred based on reasoning rules known to the LBS. An example is user’s

current activity (e.g. doing shopping, being at a meeting) which may indeed greatly influence the semantic

interpretation of a query. Despite being related to the user, user’s activity belongs to context (rather than

to user’s profile) as it is derived using a rule that is not user-dependent. Many efforts in reasoning high-level

context have been made by using a logic-based system, e.g. first-order logic [RC03] or OWL-based reasoning

[CF03] [WGZP04].

As LBS environments are not devoted to general purpose knowledge management, but to the specific

task of providing local information extracted from available sources, context in LBS is restricted to hold

information that may be useful in processing user queries, i.e. that can play a role in the match between

user profiles and contexts (to determine which profile and which elements of a profile are relevant for the

current context) and/or a match between context and the data profile (to be able to have a context-dependent

selection of services).

5.2.2 Context Modeling

When targeting context-awareness, an immediate concern is how to encode and represent context information

within the LBS framework. Context modeling and manipulation challenges include how to properly handle

the many distinguishing characteristics of context data, i.e. their spatial, temporal, dynamic, distributed,

interrelated, imperfect and ambiguous features [Dey01] [HI04] [vBFA05]. A well-defined conceptual model

is needed to facilitate the development and evolution of context-aware services. Some abstract requirements

for context models and subsequent evaluation of some family of models can be found in [SLP04]. We adopt

a somehow more concrete view of the domain, as follows.

Context information in LBS describes what is the current status of the real world (sometimes called the

current situation) when looking at it from a variety of perspectives. If there is a concern about time, for

example, context information can inform about what time is it in the current time zone, which calendar

system is in use in the current country, whether the current day is a weekday or a weekend day, etc. Context

information can almost be everything, as everything can be perceived as potentially influencing human

thinking and action, which is what we want to apprehend as precisely as possible in LBS. Context data is

there to provide the current value of a selected variable information given the current context. This explains

why earlier works on context simply represent it as a set of attribute-value pairs, the choice of the attributes

being driven by the specific requirements of the targeted application (see e.g. [SAW94] for a definition of

context data for environmental change management). The simplicity of this solution is counter-balanced

by its poor expressive power, its ad-hoc basis meaning lack of portability, and its poor ability to support

evolution. Basically, the solution does not support the functionality needed for smart context management,

such as multi-level context definition or interrelationships among context data.
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To achieve better expressiveness, a popular idea since has been to look at context data as forming a

context database, and consequently use traditional conceptual data models for the description of this context

database. Indeed, context data is a representation of some piece of reality, as we just pointed out, and

that is exactly what databases are. Hence it is reasonable to plan using a database model to design the

context database. Among the followers of this idea, Henricksen and Indulska have proposed an extended

ORM (object-role modeling1) approach, in which context information is constructed as a set of objects

(e.g. person, device, and communication channel for a message delivery scenario), each one described by its

attributes and possibly linked to another object via binary associations. Their extensions to ORM include on

the one hand allowing quality metadata to be associated to context elements, which partially addresses one

aspect, trust, related to data uncertainty, and on the other hand providing support for derived attributes,

which in particular allows higher level context information to be automatically computed from lower level

context information. They also add time constructs, but no space construct, thus failing to be able to describe

the spatio-temporal features of context objects and associations that are so essential for LBS contexts. The

same limitation, i.e. some time but no space, flaws the context model of the DAIDALOS European project2,

a generic conceptual data model very similar to the one by Henricksen and Indulska. The DAIDALOS model

includes an activation/deactivation functionality, to express which context elements are active, associating

it to attributes and associations only. Instead, support for multiple representation (another essential feature

to enable LBS to handle context at various levels of granularity of from different perspectives) is planned as

future work, while the same feature is already partly supported by Henricksen and Indulska via their concept

of alternatives. Our approach also assumes that a powerful conceptual model (or an equivalent ontological

formalism) is used to describe context data. We advocate that MADS, the conceptual data model developed

by our laboratory, is best suited for the task as it fully supports spatio-temporal features as well as multiple

representation.

Not surprisingly, the last trend in context modeling is to model context data as a context ontology. An

example is the CONON context ontology [WGZP04] where context definition is separated into the definition

of an upper ontology, i.e. a high-level ontology capturing general features of basic contextual entities (e.g.

location, person, activity, service, device), and the definition of additional domain-specific ontologies. The

advantage of using an ontology formalism, e.g. OWL-Lite, is its support of reasoning, a functionality that

database technology and its conceptual models do not support yet. CONON uses reasoning for checking the

consistency of context data and for inferring high-level context data from low-level context data. However,

the authors do not explicitly state which consistency check they want to perform. As for inferring high-level

context data, the same functionality may be supported by conceptual models allowing for derived attributes

[HI04]. Thus, the benefit for CONON of using an ontology remains questionable.

For completeness of this short survey on context modeling it should be mentioned that multidimensional

modeling techniques have also been investigated for dealing with context data. This is a computational

(rather than modeling) trend focusing on using context data as raw data in a data warehousing perspective.

1ORM: http://www.orm.net/
2hrefhttp://www.ist-daidalos.org/http://www.ist-daidalos.org/
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The goal is to use OLAP processes (in particular statistical and trend analysis) in order to derive higher-level

context data from basic context data. Jensen et al. [JKPT04] develop a comprehensive solution for data

warehousing with spatial data, focusing on dimensions based on partial containment. Context Cube [HLA+04]

and [RSP05] apply the traditional cube concept to context data and show various application frameworks

where higher-level context can be computed from a cube. One of the examples deals with inferring activity

of seniors at home from the raw data collected via multiple sensors monitoring the movement of the persons

within the house.

5.2.3 Context Classification and Management

Classification is a basic and very useful technique to shed some light onto a complex domain so that some

generic understanding can emerge. To facilitate understanding what context data can be and how it can be

handled, several proposals for classifying context information have been published. Basically, a distinction

can be made between operational and semantic categorizations [vBFA05]. The operational classification in

[HI04] is based on how context data is acquired and classifies context data as sensed, user supplied (static or

profiled) and derived (i.e. higher level information). Each class may be characterized by e.g. a specific quality

metrics. Semantic categories group context data according to the concept they are related to, irrespectively of

how they are acquired. For example, Dey et al. [Dey01] introduce four context categories (identity, location,

status or activity, and time) and apply them to places, people and things, thus determining twelve possible

context classes. The characteristics of the classes driven from these two types of classification are discussed

in [vBFA05]. As our work focuses on semantic issues in LBS, we naturally follow the semantic approach to

determine the categories of context that will be discussed hereinafter.

More efforts, in particular from the software engineering community, have been devoted to the develop-

ment of context management frameworks. A variety of tools/prototypes are available to handle acquisition,

storing, aggregation, and delivery of context information in different abstractions for context consumers, thus

facilitating the design and development of context-aware applications. Examples include Context Toolkit

[DSA01], the platform-specific tools for the Symbian [KMK+03] and Solar [CK02] platforms, and IBM’s

Context services [LSI+02]. For example, [KMK+03] designed a client-transparent infrastructure supporting

basic features of context such as being noisy, uncertain and rapidly changing. The infrastructure allows

clients to subscribe, query and use any context information. The system is equipped with a Bayesian rea-

soner to supply and deliver context information ranging from atomic to higher-level information, and holds

an ontology that defines the context structure and concepts to enhance context reuse and sharing.

5.2.4 Summary and Introduction to Our Approach

Most of existing research on modeling and using context information focused on either ad-hoc development

of context-aware applications or the development of infrastructures providing generic context management

services to their users. Fewer efforts have been devoted to define generic rules and structures enabling

an intelligent use of context data for the selection and dissemination of information, i.e. to determine

when, where, and what information can be disseminated to which users in broadcast solutions (push style),
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or on request, what information can be relevant to satisfy user’s requests (in pull style) given the current

context. In particular, existing conceptual data modeling approaches provide limited expressive capability for

representing context data and their inter-dependencies. For instance, in [HIR02], the location context is just

encoded as coordinates, but using this single data type seems inconvenient to directly support interactions

with end-users. Instead, a coarser representation of the location, e.g. ”at office” rather than the office

coordinates (x,y,z), can be more convenient and more informative for user’s dialogs with the LBS. Ontology-

based approaches have a great innovative potential thanks to their solid logic-support, their easiness for reuse

and extensibility, their capability to represent data in multiple representations and their suitability to serve

in Semantic Web solutions, but there still exist a series of open questions, such as how to represent the

spatial and temporal features of context entities especially when the context entity is moving and evolving,

and how to describe the relationship between the context value and quality or effect of services. Finally, data

warehousing approaches provide only limited support for specifying and reasoning on the rules defined by

context-aware applications or end-users.

Our vision of and contribution to context data management is basically methodological and structural.

The methodological perspective provides pragmatic answers to questions such as what is context (i.e. what

context information is to be kept), how shall we structure context information and how it is used. Similar to

the duality, advocated in CONON [WGZP04], between upper ontology and domain ontology, we assume a

duality between an initial version of the LBS context data and subsequent enriched versions progressively built

during the operation of the LBS. The initial version may be created from scratch by the LBS administrator, or

be imported from some LBS context provider, or be automatically extracted by some knowledge extraction

process embedded in the LBS and capable of learning from the available sources what are the relevant

characteristics of the local context. This initial version of the LBS context (equivalent in purpose to CONON’s

upper ontology) contains context data describing the specific local environment, i.e. generic knowledge about

the region covered by the LBS, independent from the services that will be made available to users once the

LBS is operational. For example, local cultural habits typically provide such kind of initial context data.

Further running versions of the LBS context result from augmenting the initial version with all context data

driven from the definition of the service profiles that are progressively added into the LBS. For example,

the context extraction process may examine the pre-conditions specified within a service description. Each

pre-condition makes the service dependent on the current query or the current profile of the user or on the

current state of the real world (the current ”situation”). The latter is relevant to context maintenance and

may trigger context enrichment. For example, if a service description has as pre-condition ”open on weekdays

only”, it is inferable that context data must be able to determine if the current day is a weekday or not. If

that information is not already in the context, it should be added to the context.

Context creation and enrichment, as well as later context use, is facilitated if context data is structured

into intelligible semantic categories. The initial version of the LBS context contains predefined categories

felt to be generically important to discriminate between different aspects of context. Space and time are in

our opinion two categories that are inherently part of any initial LBS context. Environment, communication

framework and socio-cultural features are additional examples. The enriched versions may add service specific
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categories, as they appear to be important to discriminate among the services made available via the LBS.

For example, a religion context may be added if there are services that are religion-dependent, and an age-

class context may be defined if data is available on how different services may target various age classes.

Given the richness and complementarities of context data, the context repository holds many alternatives

describing different context configurations. In terms of context usage, this entails the necessity to be able

to identify which elements form the current/active context and to know what it means to change from the

current context to another context.

From the structural perspective, we favor the adoption of a suitable conceptual model, namely MADS,

for describing contextual data elements, their structure and their interrelationships. A MADS description

can be translated into an equivalent relational schema and associated constraints and triggers. A system

of predefined triggers allows the hosting relational DBMS to perform ontological reasoning on the MADS

equivalent schema [AJPS07], thus providing a solution that combines advantages of both the conceptual

and the ontological modeling approaches. Moreover, MADS multi-representation mechanism can be used to

characterize the elements that belong to the current context, thus fulfilling another requirement for context

management. This stated, the following sections in this chapter mainly abstract from the MADS background

while presenting the basic constructs for context definition: classes, relations and constraints that we propose

for handling context data. We rather focus on the relations and constraints that are typical of context data

and of their use in matching service data (matching context with user profile data is discussed in the next

chapter on user profiles).

We conclude this introduction by stressing again some essential targets in context modeling and manage-

ment in LBS:

• Spatio-temporal scope. Context is heavily spatial and temporal dependent. Its spatial and tem-

poral features need to be accurately described and processable. Therefore we discard as not suitable

approaches where these aspects are not taken into account or are badly represented (for example, by

representing location as an individual entity/class related to context entities that hold a spatial extent).

Processability means that the chosen modeling approach has also to provide for spatial topological re-

lationships and temporal synchronization relationships, so that at least basic reasoning on space and

time can be supported. For example, the LBS may infer high-level context data on user’s activity

(i.e. determining current activity as ”shopping”) from low level data showing that the user position

is currently topologically inside the extent of a shopping mall combined with the knowledge that the

current timing is within a day qualified as ”weekend”.

Knowledge of spatio-temporal contextual elements (as described by space-and-time varying attributes

in MADS) is also essential when monitoring user behavior to detect context changes. For example, a

visitor to a museum keeps moving (her/his position changes continuously) and the moves may trigger

a (discrete) change of context, e.g. when moving from an exhibition room to the museum cafeteria

the context changes from cultural to leisure or food, entailing different information requirements. LBS
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aiming at being always up-to-date in their management of current context have to be able to monitor

spatio-temporal phenomena to automatically detect possible context changes.

• Multiple representations. Like factual information, contextual information may call for many al-

ternative representations, which make its interpretation and use more complex. Context providers and

context consumers may have different understandings of the same contextual information, and possibly

in different resolutions (also called level of detail or level of abstraction). Hence, it is necessary for LBS

designers to determine which context in which resolution is relevant to a given task. For instance, to

look for a nearby restaurant, the current location in terms of coordinates is important, but to answer

whether a low-cost airline office exists the precise user location is irrelevant, a coarser location value

that just identifies the city in which the user is located is sufficient. Another example showing alterna-

tive representations of the same concept in different contexts is the definition of ’at leisure’ in terms of

timeframe as one of {after daily work, on vacation, at weekend} or in terms of activities as one of doing

sport, shopping, visiting museum.

• Customized context semantics. In daily communication, humans (end-users and service providers)

tend to use some predefined context terms that implicitly convey a possibly personal contextual seman-

tics. The definition of customized contextual terms is often based on the observation and knowledge of

local conventions or individual habits. For instance, ’at lunch-time’ is used in Switzerland as denoting

a temporal interval usually from noon to 2pm, and may implicitly suggest a casual atmosphere, i.e. a

context in which information not related to work can be pro-actively pushed. By specifying their per-

sonal semantics of contextual terms, users can tune the LBS to adjust automatically to their view of the

world. For instance, a Spanish user visiting Lausanne may query for a restaurant open at lunch-time,

but his view assumes lunch-time to denote the 2pm-4pm time period. To get a personalized answer,

the user must be able to explicitly state her/his definition of ”lunch-time”. Similarly,’after work’ for a

regular-hour worker denotes the interval from 18:00 to 24:00, but for a night-duty worker it means an

interval from 8:00 to 17:00. Unfortunately, few approaches provide users and service providers with the

facilities to express their own context semantics with ease.

• Condition and dependency. Contextual data can be used as hard or soft criteria in the selection

of relevant services. Hard criteria lead to discard the services that do not meet the criteria, while

soft criteria are used to order the set of selected services. For example, users moving on highways are

normally interested in the services ahead of their current driving location rather than those behind.

This determines a hard criterion to select services based on their location. In addition, the selected

services can be sorted according to their distance from the user’s current location (soft criterion). The

service selection will also use current time (from the context data) to make sure that only currently

available services are selected. Therefore, conditions and dependencies between contextual data and

user/service data have to be carefully taken into account to elaborate the best possible answer.
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5.3 A Framework of Context Interactions in LBS

Context information, like service information, is twofold. It includes the description of contextual data that

has been selected as useful for the LBS and has to be maintained during LBS operation, and it includes the

specification of contextual data that is specific to a given interaction with a user or specific to interactions

with a given service. The first component, the generic local context, materializes the context module we have

mentioned as being part of the core ontology (cf. chapter 3). It is described in detail in the next sections. The

second part, a multiplicity of specific contexts, is stored in a context repository under the control of a context

manager module within the LBS (cf. Figure 5.1). The context manager provides query and maintenance

functionality through traditional management APIs (not shown in the figure). It interacts with the various

sources of sensed context that capture and supply context data in the diverse resolutions and abstractions

that are needed for the LBS. The term sensed context is used here loosely to denote any source for context

information, be it a real sensor or a web page or any other information holder from which the LBS may obtain

data to initialize and maintain the context ontology. The context manager also interacts with the user and the

services worlds for acquisition of additional context data: context data extracted from interactions with the

user and, similarly, context data extracted from interactions with service profile definitions. This architecture

is illustrated in Figure 5.1 and conforms to a rather standard view of context management infrastructure

(see, e.g. [LSI+02]). We do not develop a discussion of the architecture any further, as related issues are not

a concern for our work focusing on semantic aspects. We directly proceed with the description of the generic

local context embedded in the core ontology.

Space Context 
Driver

Time Context 
Driver

...
 Context Driver

Environment 
Context Driver

Internal Utilities

Context cache
Work pacer

Event Engine
Privacy Engine

Context Driver 
Interface

Context Driver 
Interface

Context Driver 
Interface

Context Driver 
Interface

Dispatcher

LBS Client API

Context Module 
in Modular Core Ontology

Figure 5.1: A general framework for context data acquisition and dissemination in LBS.
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5.4 The Context Module in Our Approach

As discussed at the beginning of this chapter, context is a collection of information that may be useful in the

selection of services by the LBS. For better comprehension and possibly more efficient management, context

is structured as a taxonomic tree, e.g. the one illustrated in Figure 5.2. From a semantic viewpoint, each

single element of context data can be seen as a (partial) context in itself. Hence it would make sense to

organize context data as an is-a hierarchy of contexts, from the largest one (the all-embracing context) to

the contexts with the narrowest scope. This view of context may be formally correct (i.e. consistent with the

assertion that everything is context), but a more realistic or pragmatic (and more intuitive) understanding

of the concept suggests that context is a multi-faceted complex concept. In this view the context tree is seen

as a (de)composition structure, where an intermediate node is composed of its successor nodes. For example,

referring to Figure 5.2, we can look at the generic top-level concept of context as a collection of many domain-

specific contexts such as space, time, etc. However, the more intuitive view sees context as composed of a

spatial component, a temporal component, etc. The duality of interpretations between composition and is-a

is due to the fact that in case of contexts the nature of the components is the same as the nature of the

composed. On the other hand, some of the edges in the tree are definitely is-a links, e.g. the arc between

Calendar and LocalCalendar. Unwilling to enter a philosophical debate on whether a part can be the whole,

we take the pragmatic approach and adopt the solution to model the tree as a composition tree that may

occasionally include is-a links.

As we did in the previous chapter on service profiles, we use OWL-DL and SWRL to represent the context

information and the relations between context, services and users. These languages have the expressiveness

and simplicity that allow a concise and formal description of the main concepts, which is what we want to do

here. Details about the properties of the concepts are left out. Therefore, each of the classes and relations that

we discuss hereinafter should be seen as complemented with a full description of their properties, including

the spatial, temporal and spatio-temporal properties, according to a mapping into OWL-DL of the MADS

modeling constructs and rules [PSZ06].

Let us now comment on the context structure shown in Figure 5.2. First, the root of the tree is the most

abstract concept of context and basically serves as input to any search for contextual data. In a non-modular

view of the LBS ontology, it singles out context data from other types of data such as service profile data

and user profile data. Using OWL-DL axioms this disjunction is stated as:

Context ⊆ ¬ Service

Context ⊆ ¬ User

The next level in the context tree shows the different semantic categories of context. This level is

application-dependent, but as most LBS tend to be used for similar purposes some of the semantic cate-

gories can be considered as inherent to LBS functionality. This is certainly the case in our opinion for the

space and time categories, which directly correspond to the concept of ”location-based” services. But other

categories are very likely to be generic and cover a large spectrum of the potential application-domains for
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Figure 5.2: A possible taxonomy of context classes in LBS.

LBS. We include here as examples the categories that inform on local environmental conditions, available

communication facilities and local socio-cultural habits and norms.

According to the taxonomy in Figure 5.2, the context classes and their taxonomy can be defined in

OWL-DL axioms as follows:

Communication Context ⊂ Context

Communication Context ⊆ ¬ Socio-Cultural Context

Communication Context ⊆ ¬ Environment Context

Communication Context ⊆ ¬ Space

Communication Context ⊆ ¬ Time

Network ⊂ Communication Context

Network ⊆ ¬ Device etc.

The above axioms only show creation of context classes. These axioms have to be complemented with the

definition of the properties for each context class, e.g. their spatial and temporal characteristics. As for the

classes in the service module, a context class can be a primitive class, an enumerated class, a set-based class,

or a discriminant class as defined in chapter 3. For example, the temporal context may support multiple

calendars, including a high-school calendar defined as a discriminant class as follows:

HighSchoolCalendar ≡ Calendar 
 ∀hasProfessionalDomain.HighSchool

The discriminating property hasProfessionalDomain informs on the domains where a calendar can be

applied. If information in the user profile (e.g. the profession element) shows that the user is a high school

student, and the user query calls for choosing a specific calendar (e.g. the query involves concepts such
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as ”beginning of the year”, ”summer semester”, ”vacation period”, concepts that the LBS ontology shows

as having a calendar-dependent interpretation) the LBS, knowing from the context that different calendars

depend on professional domain, can determine with its ontology that high school students belong to the high

school professional domain and consequently choose HighSchoolCalendar as the calendar that corresponds

to this domain and applies to the running query.

5.5 Context Classes

5.5.1 Spatial Context

This context category is meant to provide information about spatial features that help in understanding and

reformulating the references to space (spatial predicates) that may appear in a user query and in service

profiles. It includes subcategories that define the spatial extent covered by the LBS and its possible semantic

interpretations.

GeoContext. The GeoContext class holds the basic definitions about the geographical features characteriz-

ing the current LBS. First and most obvious it holds the definition of the spatial extent covered by the local

data available to users. This materializes what ”local” means. For example, it may hold the spatial extent of

the city of Lausanne, or of the Canton de Vaud. Assuming that the LBS uses a background GIS database to

recover data about the area it services, the definition of the ”local” extent will be added to retrieval queries

to the GIS as an additional topological inclusion predicate ensuring that only elements within this area are

returned by the GIS. Alternatively, if the local region is an object known by the background GIS, the value

of its local extent can be left within the GIS and the queries reformulated by adding a predicate referring

to the geometry of the local region object. Other properties in GeoContext may hold coordinates locating

important singular points, such as the nearest/main airport, the capital/chef lieu of the region, the main

railway stations, etc. This information allows reformulating queries asking e.g. for a hotel near the airport,

where it may safely be assumed that the user implicitly refers to the nearest/main airport. Generalizing

the concept of singular point leads to the concept of geo-reference we introduced in chapter 3. The concept

includes the concept of landmark, which denotes places, buildings, monuments, etc. whose name is frequently

used by people as a spatial reference (e.g. in proximity expressions like ”beyond the Eiffel Tower when coming

from the Invalides”). GeoContext may include the local landmarks to enable the LBS to process queries and

service descriptions referring to them. Data on landmarks can be directly acquired from a domain expert

(e.g. the local tourism office), automatically extracted from web pages [TLKT01], or incrementally derived

from service descriptions and user queries.

Administrative Spatial Context. It is known that the spatial extent of interest, defined in GeoContext,

can be decomposed using a variety of criteria leading to different decompositions. One frequently used

criterion relates to the administrative organization of geographical space. In general, this administrative view

is expressed as a containment hierarchy. For example, in federal states such as USA or Germany the country

consists of states, each state consists of counties and so on. Other administrative partitions exist due to
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different local history or cultural context. For example, in Switzerland, the country is composed of cantons

and half-cantons, each full/half canton is composed of districts, and a district is composed of communes

as shown in Figure 5.3. The containment hierarchy stored in AdministrativeSpatialContext holds the

definition of the extents of each piece of administrative space and allows reformulating in geographical terms

specifications given in administrative terms. For example, the specification that a pizza delivery service

limits its deliveries to the district of Morges will be reformulated as limited to points within the spatial

extent of this district. The reformulation allows computing whether the user requesting a pizza delivery can

be addressed to this specific service. Other types of administrative spatial partition can exist in parallel

to the previous one. For instance, Switzerland’s split into three linguistic regions, according to their local

official languages (German, French, Italian), may also be relevant. Here we just have a one-level split, no

containment hierarchy. The two parallel taxonomies in Figure 5.3 can be easily defined by the OWL axioms

rdfs:unionOf and owl:subclassOf. The axiom owl:oneOf can help to define the class LinguisticRegion by

enumerating the component district individuals. Administrative classification data can be extracted from

web sources, e.g Wikipedia, or provided by a domain expert.

Country

Canton
{German region , French  

region , Italien region , 
Romansh region }

Linguistic Region

District

City Commune

Figure 5.3: A hierarchy of Administrative Spatial Context classes in LBS.

Once again, instead of explicitly holding the values of the spatial extents of the different spatial regions,

the context repository may just hold the identification of these regions and use their geometry stored in a

GIS to express relevant spatial predicates.

Functional Spatial Context. Another frequent view of space is to single out spatial extents based on

some property of the corresponding object. For example, based on the property ”function” of venues such

as buildings, shops, etc. (where function is understood as expressing the main activity supported by services

located in the venue), an area can be characterized as a ”shopping area”, possibly including a ”food court”,

while other areas are characterized as ”entertainment area”, ”cultural area”, ”natural area”, ”business area”,
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”campus”, ”technology park”, ”historical zone”, etc. These concepts are frequently used by people on the

move as well as by tourism offices, hence it seems adequate to have them materialized to form a dedicated

decomposition of space. Differently from the administrative decompositions above, this ”functional” decom-

position does not cover the region of interest. It points instead at some specific areas within the region. The

purpose of the context data in this respect may be to specify which kinds of functional space exist locally and

where they are located. Such data is likely to be required from a domain expert. Its automatic computation

is difficult to achieve due to the relative fuzziness of the concepts. For example, the class ShoppingDistrict

can be defined as a subclass of FunctionalSpace.

5.5.2 Temporal Context

As for spatial aspects, temporal aspects have already been addressed in chapter 3. We provided the definition

of the temporal data types and discussed the concept of temporal reference. Temporal references exist for

various temporal granularities. At the hourly level, references of type Instant include noon, midnight

whose meaning can be regarded as context-independent, as is the case for day granularity references such

as yesterday, tomorrow. References of type TimeInterval designate concepts such as morning, evening,

lunch-time. For day granularity, temporal references of type Instant are the time equivalent of spatial

landmarks. They include singular days that people are used to refer to, e.g. Christmas, Easter, New Year,

Independence Day. Temporal references of type TimeInterval include spring, summer, autumn, winter,

Christmas vacations, high-season, low-season, mid-season.

Most of these temporal references are context-dependent. For example, which time interval is exactly

meant by morning/afternoon/lunch-time depends on the cultural context, e.g. local habits or user habits.

Some people would assume morning starts at 7am, others would make it start at 9am. Christmas and

Easter are strongly related to Christian frameworks, they do not exist in a Muslim framework. New Year is

celebrated at different times in different countries, and so is Independence Day because the various countries

have their own independence day. It is therefore important that context classes provide the values that are

appropriate for a given LBS, its service description and the queries it may get.

Other contextual temporal constructs include constructs such as Calendar. In the western world the

Gregorian Calendar is the implicit temporal framework to talk about dates, but for other countries, cultures

and religions different calendars may apply. Local calendars may still be kept as a traditional way of referring

to time. For instance, the Chinese Lunar Calendar can provide local indications on seasonal changes. Other

calendars, in some way different from the generic calendars above, may be widely used for specific and local

needs. For example, calendars may hold for a specific region, such as a calendar for a Canton or a Linguistic

region which may show official local holydays that only exist within the region or have a timing that is specific

for the region. For example, Mothers’ day is on a different date in France and in Switzerland. Calendars may

also be specific to a professional framework. For example, events relevant for students and teachers may be

related to an academic calendar that has its own definitions for the two temporally disjoint classes university

vacation and university semester. Calendar subclasses can be further given, e.g. university vacation can be

defined as Easter-holiday vacation, Summer vacation, New-Year vacation and Winter vacation. The definition
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of these academic periods may be relevant beyond the academic world. For example, the public transports

in Lausanne have different timetables for university semester and university vacation. Finally, it is worth

noting that the temporal class Summer vacation may correspond to different values for different perceptions,

e.g. summer vacations seen by university users is different from summer vacations seen by high-school

users. Instead of defining two academic sub-contexts to differentiate between university and high-school, it

is possible to keep summer vacations as a single item with two representations (i.e. as a perception-varying

attribute in MADS terms). This is one of the cases for multi-representation. In our context definition, the

OWL property hasPerception is defined as necessary & sufficient conditions to declare its value of mandatory

property hasInterval depending on the perception. Regarding how to apply it in service matching and in

articulating user profiles will be discussed in Chapter 8.

5.5.3 Spatial and Temporal Variability

Much of context data is strongly dependent on space and time. For example, which landmarks exist depend

on what is the covered region. In MADS terms, this is a space-varying information and can be described as a

space-varying attribute, which means that its value is a function whose domain is a spatial extent and whose

range is the value domain for the attribute (e.g. string, integer). Similarly, much information is time-varying,

i.e. it changes as time passes. Its evolution can be kept in a time-varying attribute, i.e. a function from time

to a data value domain. Combining the two, information can be both time and space varying (e.g. the set of

landmarks), we call it spatio-temporal information.

As we mentioned for multi-representation, associating space and time variability to context data is also

a way to limit the complexity of the description of context data. For example, let us assume that the

SpecialEvent context class has an entry for fireworks used to celebrate a national festival, and there are many

different fireworks in different places within the city at different times. Instead of defining many contexts

specific to a place and a time interval, one can simply define a single set-valued attribute fireworks equipped

with a standard tabular structure that adds ”where, when” data to each firework. As we have seen in Chapter

3, in our OWL-based context structure, the normal (i.e. static) spatial and temporal characteristics of context

are encoded as properties whose range is one of the spatial and temporal data types discussed in Chapter 3.

Spatio-temporal characteristics are defined using set-valued properties with ”where, when” components, such

that the values of where and when are constrained to ensure that where is within the region of interest and

when is a time-interval with hour granularity included in the interval [16:00, 24:00] (assuming local habits

plan for fireworks only in this time period).

5.5.4 Environment context

The term environment is used in the sense given by the Oxford dictionary: ”physical surroundings and

conditions, especially as affecting people’s lives”. Most frequently quoted examples of such environmental

conditions for LBS include atmospheric conditions (weather may have an influence on people’s choice of

activities) and traffic conditions (as people may adjust travel plans to avoid potential traffic delays). In

more localized context-aware applications, e.g. ambient intelligence, environment context focuses on the
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interactions between the user and her/his immediate surroundings, e.g. using sensor data for automatically

adjusting the room light and TV sound to user’s activity.

Environment data may be spatio-temporal, i.e. both space and time varying. Atmospheric and traffic

data are typical example. Querying such data implies the specification of a location in space and an instant in

time in order to get the right answer (e.g. asking for traffic conditions the coming weekend on the highway to

a ski resort). The location in space is easily derivable as being either the current user location or the targeted

user location, i.e. the location where the user plans to move to do something or to get the service that (s)he

is requesting. The relevant instant in time usually is either the current time or some specified time in the

future. This points to the fact that, contrarily to what is provided in most approaches to temporal databases

(i.e. the functionality to handle past and present data), temporal management of context data calls for

functionality primarily to handle future data in addition to current data. Past data is of little concern except

for any machine learning mechanism that would be embedded within the LBS. Future data management can

be enhanced by adding quality information to predictions, e.g. accuracy, uncertainty and timeliness based on

some quality metrics. A fixed format for predicted information can be specified by the LBS (e.g. ”when the

prediction is formulated, for when and where the prediction holds, what the prediction says, the likeliness of

the prediction”) and implemented as e.g. a prediction data type. A prediction for a precipitation item could

be: ”predictionDate= ”2007-03-01, 18:00”, targetedDate=”2007-03-02”, targetedPlace=”Lausanne”,

precipitation=”Snow”, likeliness=0.9”

Intelligent use of environment data requires knowledge about which data is useful for which purpose.

For example, assume a user is willing to reach a ski resort from the city (s)he is in at the moment. The

LBS should know that, given a query on traveling between locations A and B, answers depend on means of

transportation. In particular, environment context data on traffic density between A and B is relevant only

if the travel is by car, not if the travel is by train. The knowledge on which context data to use and how

comes from the association between services and context on the one hand, and on the other hand from the

association between context and query (for facts that depend on specificities of the current query) or between

context and user profiles (for facts that are user-dependent but not query-dependent). This will be shown in

the chapter on query processing.

5.5.5 Socio-cultural Context

The environment context depicts the physical status of the local region. The socio-cultural context depicts

in some sense the mental status of the local region. Mental status refers to the specific local understanding

of concepts, facts and rules that may be involved in servicing users of LBS. Some of these specificities have

already being identified and included in the spatial context (e.g. what are local landmarks) and in the

temporal context (e.g. what are local holydays), because of their primarily spatial or temporal nature. All

other non-physical local characteristics are candidate for inclusion in the socio-cultural context. For example,

whatever is a ”typical” feature could be recorded here if of interest to users or to service description. ”Typical”

features include typical local souvenirs (e.g. tourists to Geneva tend to buy watches, clocks, chocolate), typical

local food (e.g. fondue and white wine for the Swiss Romande, minced veal and rösti for Zürich), special local
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attractions (e.g. the Olympic museum, the Collection de l’Art Brut and the Ballet Bejart for Lausanne).

Local socio-cultural specificities include habits and social norms, such as meeting time is to be understood as

a sharp specification (i.e. for a meeting at 2pm people arrive 5-10 minutes before 2pm) in Switzerland and

as a loose specification elsewhere (i.e. a meeting at 2pm will actually not start before 2:15pm in France and

start any time after 2:30 in Italy). This information will be used whenever the LBS user asks when (s)he has

to leave the hotel to attend a meeting.

One socio-cultural aspect that frequently influences user’s search for services is user’s activity. Knowing

what the user is doing (e.g. is the user on a business trip or on a leisure trip) may be important for example

to suggest a hotel (e.g. close to the meeting place or close to tourist attractions) or a restaurant (more formal

or more casual). Knowing that the user is shopping may prompt services for buying assistance (providing

suggestions and comparisons). Knowing what the user plans to do may be used to elaborate schedules on

request. The number of activities that one can think of, at different levels of detail, is practically unbounded.

Examples include being at work, studying, relaxing at home, being on the move, attending a conference,

and watching a movie. The LBS has to determine which activities are relevant in choosing a service for a

given user query, and store the list of selected activities as part of context information. We propose to have

an ActivityContext class as a component of the EnvironmentContext class. Properties attached to the

activity context class may include the name of the activity, its category (e.g. professional, leisure, sport),

whether the activity is an individual or a group activity, for group activities the different roles in the group

(e.g. leader, participant, assistant), if any, and the constraints, if any, on the number of participants, whether

it requires specific conditions such as daylight or a given season or given atmospheric conditions, whether

it is indoor or outdoor or both, what is its minimal, average and maximal duration if relevant, whether it

implies moving from one place to another, etc.

A major concern for activity management in LBS is how to acquire the knowledge about the activities of

the querying user. Without this knowledge all activity-related data becomes useless. Obviously, the easiest

way to activity acquisition is to ask for explicit input from the user, i.e. kind of asking what are you doing or

planning to do. The alternative is to try inferring the activity from user interactions or user movement. The

former (i.e. understanding what the user is doing from the questions (s)he asks) is difficult even for humans;

hence it seems unlikely that such inference can be fruitfully implemented in a LBS. The latter can provide

some insight and allow switching from spatial knowledge to social knowledge. First, human movement can

be captured, for example using RFID tags or thanks to a GPS device, most likely as a discrete sequence of

”when, where” data pairs. This raw data can be aggregated and interpolated to form a path. Analyzing the

characteristics of the path, in particular the stops it includes (i.e. a point in the path such that the user

remains in its close vicinity for a while), the LBS can turn the path into a set of trajectories taking the user

from location A to location B. The LBS may also guess (from e.g. velocity) additional information such as

the transport means, i.e. whether the user is walking, in a bus, in a car, etc. Matching user trajectories

with background knowledge about the region the LBS may be able to infer the user activity. For example, if

the user moves from the location of her/his hotel to the location of an office building (and stops there for a

while) it is possible to infer that the user has gone to work or joined a meeting. If the targeted location is a
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conference facility, a reasonable guess is that the user is attending a conference. If, instead, the user stops in

a department store, or walks slowly along a street in a shopping district, it is likely that the user is shopping.

Further inferences are possible. For example, if the user stops for some time in an office building, it would be

possible for the LBS to look for the companies located in the building to see if, given the professional profile

of the user, is it likely that (s)he joined one of these companies. With more data the LBS could determine

whether the user is visiting one of her/his customers or, conversely, visiting a supplier or service provider.

Hopefully, this kind of inference will be sought only for special applications involved in security issues. Less

sensitive inferences may try for example to determine which kinds of products a shopping user is interested

in, possibly to suggest other shops to visit. Movement analysis may just be used for deriving a direction, to

be used for example to constrain search for services for a user moving on a highway to preferably services that

are ahead of the user’s position. This short discussion shows that there is room for a MovementContext class

as another component of the EnvironmentContext class. Movement context data would include the inference

rule to extract information from analysis of physical movement, in particular to extract activity information.

This rules would then by applied to a specific user and the resulting inferences stored in the user-specific

context data that bridges between the user layer and the context layer. A model for trajectory description

can be used to support knowledge about movement. Such a trajectory model is currently developed within

the activities of our laboratory [SPD+08]. We discussed movement based on a physical path determined

by RFID, GPS and similar devices. Movement can also be directly captured at a semantic level, e.g. as

a trajectory from hotel to office, then to restaurant, etc., using input from the user’s agenda, if available.

Again, there are many possible inferences for semantic-based trajectories. We leave to the reader to imagine

potentially useful scenarios. As a final remark, it is worth noting that not every activity can be inferred from

movement. Assume a given user moving from a meeting place to a restaurant. It is not possible to infer

from the spatial path, nor from previous and following activities, whether the walk for lunch is nothing but

a utilitarian move, is used to continue the discussions from the meeting, or is used to socialize.

Other potential components of the socio-cultural context class are classes providing knowledge about

local events and festivals (the kind of information found in What’s On booklets). This kind of information is

normally available from data providers such as local tourist officers and local newspapers and can therefore

be directly extracted from the corresponding services. However, the LBS may be designed to keep some of

this information in its context data and use its potential relationships to other data. For example, knowing

that today there is the annual Marathon race in Lausanne, the LBS will be able to avoid suggesting a

transportation or an activity that would be blocked because of traffic limitations implied by the Marathon.

Notice that traffic restrictions could also be available from a provider of traffic forecast or monitoring (e.g.

local radios have this kind of information).

5.5.6 Communication Context

In contrast with the previous one, this is a relatively low-level context component. It holds data relevant to

the wireless communication between users and the LBS, including the network, mobile device, channel and

the communication between the network and the device.
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Contextual data about the network may describe its type (e.g. Bluetooth, GPRS etc.), signal coverage

(e.g. spatial coverage of the network), the quality of the communication, the accessibility of the network (e.g.

public/private or free/paid), the provider of the network, etc. This is useful in case there are services whose

accessibility is network-dependent.

The mobile device and channel contexts hold the basic information about the user’s mobile device. This

may include the producer, mark, and type of the device, its identifiable network-type, its capability to support

audio/video transmission, the capability of its software support, the signal quality in different geographical

regions, etc. These data allow personalizing the physical communication between the LBS and the user.

Regarding the communication service, its context data may hold specific conditions or perceptions related

to the communication, such as the network connection, upload/download speed, representation format, or

user’s identification and validation, etc. The communication context may be specialized for a specific user, for

example to keep the preferred network or channel according to different social contexts. Users can configure

their devices in different social context, for example switching off during a meeting, allowing/disallowing

pushed information while in a shopping-center, or choosing a specific format for information presentation.

5.6 Context Relationships

The previous section has exemplified some context classes that we consider as typical in an LBS framework.

More classes can be added depending on local characteristics. The key criterion for determining the classes to

be used is their relevance in terms of capability to lead to more focused and more personalized service selection.

This relevance is made explicit using dedicated inter-module links within the LBS core ontology. The role of

these links is to connect context elements to the services whose availability or behavior is influenced by these

elements, and to the user profile elements that can be identified as being context-dependent. Before we discuss

inter-module links, we devote this section to a short discussion of relationships within the context module,

namely a more detailed discussion of the composition (part of) relationship. The composition relationship

has been presented in chapter 3 as part of the relationships that are generically used to structure the content

of an ontology. In chapter 3 we focused on the is-a relationships. As stated in the beginning of this chapter,

for the context module composition relationships, rather than is-a relationships, play the preeminent role.

It is therefore worth defining finer modeling features for composition in the context module (yet this finer

features can obviously be used within any module).

5.6.1 From Composition to Synchronous Composition

The composition relationship defined in chapter 3 simply relates a composed object to one of its component

objects. At such a generic level we abstained from discussing how the assembling of the components into the

composed can be ruled. Ruling composition means associating some constraints to the composition construct.

To do that smoothly we first propose a definition for the composition construct, adding the potential for

constraints to the definition of composition relationship in chapter 3. This results in the following definition.
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DEFINITION 5.1. Composition Construct. A Composition Construct, denoted as �(CW , C, C), is
a set of composition relationships between a composite class CW and each of the classes in its composition
cluster, i.e. a set of component classes, C = (c1, . . ., cn),(n≥1); and C is the constraint associated with C
and CW .

If constraint C is empty, the construct simply gathers the component object, its composition cluster

and the composition relationships in between, without adding anything to the composition relationships.

This corresponds to the case where the cardinality constraints attached to the composition relationships

suffice to express the desired constraints on the composition construct. We introduce two cases where C is

not empty and holds a constraint on the spatio-temporal features of the involved objects. The first case

defines C as a spatio-temporal constraint calling for spatio-temporal synchronization. The second case calls

instead for handling the composition construct as a sequence of assembly. We denote the two cases as

synchronous composition and sequential composition, respectively. The former corresponds in our opinion to

the most intuitive and most frequent rule about composition, i.e. that the composed object results from a

simultaneous assembly of the component objects. In other words, selected instances of the component objects

are put together in some place at some given time and this produces an instance of the composed object.

DEFINITION 5.2. Synchronous Composition Construct. A Synchronous Composition Construct,
denoted as �SY N (CW , C, CSY N ), is a composition construct �(CW , C, C) such that

• Let pT and pS be separately temporal and spatial properties of CW . Let cri denote an instance of the
construct, i.e. the set of instances of the composition relationships involving cwi, the ith instance of
CW . ∀ cri ∈ �(CW , C, CSY N ), pT (cwi) = dT and pS(cwi) = dS;

• ∀i ≤ n, pT
i and pS

i are respectively temporal and spatial properties of class ci, with values dT
i and dS

i ;

• CSY N is described as an axiom: ∀ cri ∈ �SY N , cwi ∈ cri, dT
i = dT and dS

i = dS.

This case applies to spatial and temporal objects. It requires that the linked objects share a common

spatial location and temporal framework for the specified properties. Only the spatial or only the temporal

property may be specified,

In the example Figure 5.4, the context class Weather is composed of a set of component context classes

such as Temperature, AirPressure, Wind, Humidity, Cloudiness, and Precipitation. Each of the component

context classes represents one aspect of the composite context class Weather. All classes represent space and

time varying phenomena. One instantiation of Weather makes sense only if all component instantiations of

Temperature, etc. correspond to the same location and temporal snapshot. The synchronization requirement

holds.

Example 5.1. Weather vs. Temperature, Precipitation, and Wind.

The axiom below illustrates how a synchronous composition construct may be defined between the

Weather composite class and three component context classes, Temperature, Precipitation, and Wind. It

shows the explicit declaration of the equivalency constraint on spatio-temporal characteristics, which char-

acterizes the synchronous composition construct.
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Weather

Temperature Humidity Air Pressure Wind Percipitation Cloudiness

Figure 5.4: A synchronous composition construct.

(�Syn(Weather, (Temperature, Precipitation, Wind)) ⇒
exists ( isUnionOf (Weather, Temperature, Precipitation, Wind)

and hasSpatial(Weather, ?sWeather) and hasTemporal(Weather, ?tweather)

and hasSpatial(Temperature, ?stemp) and hasTemporal(Temperature, ?ttemp)

and hasSpatial(Precipitation, ?sprecip) and hasTemporal(Precipitation, ?tprecip)

and hasSpatial(Wind, ?swind) and hasTemporal(Wind, ?twind)

and EQUAL(?sweather, ?stemp, ?sprecip, ?swind)

and EQUAL(?tweather , ?ttemp, ?tprecip, ?twind) )

5.6.2 Sequential Composition Construct

More complex constraints in composition constructs are possible, including any sort of inequalities between

spatial and temporal properties. In this section we point at another specific case, where the assembly of

the composed object consists in a temporal sequence of acquisitions of single components. For example, an

activity context class may describe sight-seeing tour activities, composed of several sub-activities, with a

temporal constraint that organizes the sub-activities into a temporal sequence such that each sub-activity

but the first one starts when the previous activity ends. In other words, the temporal interval associated to

the composed activity is partitioned into a sequence of intervals associated to the sub-activities. We call this

case a Sequential Composition Construct.

DEFINITION 5.3. Sequential Composition Construct. A Sequential Composition Construct, denoted
�SEQ(CW , C, CSEQ) is a composition construct �(CW , C, CSEQ) such that

• pT is a temporal property of CW . ∀ ri ∈ �(CW , C, CSEQ), ci ∈ ri, pT (ci) = dT and the data-type of
dT is Interval;

• pT
j is a temporal property of class Cj in C. ∀ component individual cm ∈ C, pT (cm) = dT

m;

• ∀ cm−1, cm ∈ C, Meets(dT
m−1, dT

m);

• ∀ cm ∈ C, Within(dT
m, dT ).

The Definition 5.3 relies on the two synchronization operators Within and Meets defined in the temporal

module. They concur in specifying the constraint between the component contexts and the constraint between

each component and the composite. Informally, temporal Within(t1, t2) means the instant/interval t1 is
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during interval t2 according to [All83]; temporal Meets(t1, t2) means the end of t1 meets with the beginning

of t2 if both t1 and t2 are intervals. In some circumstances, the temporal operator Meets can be replaced by

Before which has less strict constraints on t1 and t2. More details on how to encode them into the temporal

domains in description logics can be found in [Sot06] page 26-29.

The above definition does not consider possible spatial constraints. Thus, sequential in Definition 5.3 just

refers to chronological sequence. However, in reality, both spatial and temporal constraints are involved in

certain sequential compositions. Frequently, the spatial constraints are dependent on temporal constraints

making up for a spatio-temporal constraint. In the Example 5.2, we show how both the spatial and temporal

constraints have effects on the sequential composition construct.

Example 5.2. Sightseeing tour vs. Sequential activities.

Sight-Seeing

Sight-Seeing 1 Sight-Seeing 2 Sight-Seeing 4Sight-Seeing 3 Sight-Seeing 4

Figure 5.5: A sequential composition construct.

Figure 5.5 illustrates a sequential composition construct involving the sight-seeing activity as composite

class, composed of five sequential sub-activities. The sight-seeing tour is regarded as a whole activity and

spatially regarded as a trajectory, and it is composed of a set of attraction sites along the trajectory. For each

site, the tour spends a certain time interval, and all of them are organized in a specific sequence. To illustrate

the constraints, we give an example as follows: the whole activity is s = ’Afternoon tour near Ouchy’, and

component activities are s1 = ’visit Ouchy Port’, s2 = ’Visit Olympic Museum’ and s3 = ’Coffee-break near

Ouchy’.

⇒ (�SEQ(CSightseeing , ( Cvisit , Cbreak)),

exists ( isUnionOf(CSightseeing , (Cvisit, Cbreak))

and hasIndividual(CSightseeing , ?cs) and hasIndividual(CV isit, ?c1)

and hasIndividual(CV isit, ?c2) and hasIndividual(CBreak, ?c3)

and hasSequence(?ci, ?i)

and hasSpatial(?cs,?ss) and hasTemporal(?cs, ?ts)

and hasSpatial(?c1, ?sc1) and hasTemporal(?c1, ?tc1)

and hasSpatial(?c2, ?sc2) and hasTemporal(?c2, ?tc2)

and hasSpatial(?c3, ?sc3) and hasTemporal(?c3, ?tc3)
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and Meets(?sc1, ?sc2) and Meets(?sc2, ?sc3)

and Meets(?tc1, ?tc2) and Meets(?tc2, ?tc3)

and Within(?sc1, ?ss) and Within(?sc2, ?ss) and Within(?sc3, ?ss)

and Within(?tc1, ?ts) and Within(?tc2, ?ts) and Within(?tc3, ?ts)

)

In the above axiom, we introduce two spatial operators Within and Meets. The former one Within(s1,

s2) stands for the trajectory/region s1 is a non-tangential proper part (NTPP) of trajectory/region s2, i.e.

NTPP(s1, s2) according to topological RCC-8 relationships [RCC92]; the latter Meets(s1, s2) stands for

trajectory/region s1 is externally connected to trajectory/region s2.

5.7 Multiple Representations in the Context Module

Multiple-representation is an essential character of real world phenomena, so it is for context data. Similar

to [PSZ06], concern for multiple representation of context data mainly applies on the following issues:

• How context information is organized (in terms of data structure). For instance, the connectionSpeed

can be a property, with value range {good, normal, bad}. Alternatively, it can be described by a set of

sub-properties, such as hasUploadSpeed, hasDownloadSpeed, etc.

• How context information is encoded (e.g. in terms of dimension and unit). For instance, the hasAn-

tiVirus property can correspond to value ”yes/no”, or more precisely hold the anti-virus software name.

Spatial contexts can be represented in diverse resolutions and scales.

• How the context information in diverse representations is associated with diverse services. For instance,

when the user is visiting a museum, her precise position, i.e. coordinates, is needed for providing the

appropriate audio description of the art piece she is looking at. But, when the user finishes the visit

and inquires for the bus-stops near the museum, a coarser location of the user(e.g. in the museum)

may be sufficient for answering the query.

In general, a possible implementation of multi-representation is using a class Representation and a property

hasRepresentation to denote the multiple representations feature of context data. Furthermore, the latter

can have sub-properties, such as hasScale for location class, hasUnit (e.g. day or hour) for temporal class. To

describe that a property of context is multi-represented, the representation information needs to be encoded

in the property by declaring it as a representation-dependent property. The definition way is similar to the

definition of space-dependent property.

When expressing the relationships between contexts or between the context and a service, it is necessary

to add the representation information to the context class or context property, in order to make clear what

representation of context information will be involved in the relationships.
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5.8 Chapter Summary

Context-awareness enables LBS to adapt contextual changes in selecting services to better suit the user’s

needs. In literature, many efforts have been made in promoting the context-awareness of mobile services,

ranging from designing architectures to collect and disseminate context services, to modeling context data

with different approaches. In this chapter, we did not discuss in detail about the deployment of context-

awareness in LBS, and assume that a set of context profiles can offer up-to-date context data to LBS through

the dispatcher and client APIs and these context profiles can well communicate with context module in the

core ontology. Rather, we concentrate on defining most important contexts to improve LBS’s personalization

and context-awareness rather than the contextual universe of world. Five main types of contexts are identified

in LBS, i.e. space, time, environment, communication and socio-cultural contexts. For each type of context,

we discuss their characters and functionalities. Considering the wide use of common sense knowledge in

LBS, we introduce temporal landmarks and spatial landmarks to annotate locally used temporal/spatial

terms in order to facilitate the user’s query formulation. Due to the specific spatio-temporal constraints

on composition relation, we provide two constructs Sequential/Synchronized Composition Construct in the

context module. By employing the similar approach in MADS to model the multi-representation of context,

a class Representation and a property hasRepresentation can denote the multi-representation character of a

context class/property. In the next chapter, we will continue to discuss how to express relations between

context and user, and between context and service.
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Chapter 6
User Information Management

6.1 Introduction and Motivation

Personalization is a rapidly developing discipline. Its applications range from conventional information search,

information sharing, and content representation, to customizing the interactions between users and mobile

services. In the mobile computing environment, personalization technologies have to adapt to the essential

mobile and dynamic needs of services and users. In our LBS setting, speaking about personalized services we

stress that not only we want the LBS to be able to elaborate different answers to the same query depending

on which user is querying the LBS. We also expect the LBS to adjust to the current ”role”, so to speak,

that the querying user is playing while issuing this specific query. By role we mean the user may currently

behave as an employee on the move for professional reasons, as a tourist doing sightseeing, as a sports person

willing to exercise, as a hobby fan, etc. In other words, we want to associate not just one profile to the user,

but as many profiles as the roles a user may play. Thus, different subset of user preferences can involve in

diverse situation/role-based profiles, e.g. conference membership can be included in professional profile other

than tourist profile. Moreover, it is quite common for a user to hold diverse preferences in different contexts

[YAJS05]. For instance, in sunny summer the favorite sports are hiking and surfing, but if it rains the favorite

one is indoor-swimming instead. Obviously, there is a dependency between the favorite sports (user profiling

information) and the weather (context information). The context Weather acts as discriminating criteria

potentially determining user’s preferences. Therefore, on one hand, LBS must hold the knowledge on context

concepts that are used in user profiles, e.g. what does CollegeCalendar mean in a user profile; on the other

hand, LBS should be able to communicate with certain context repository to obtain the corresponding value

of the context, such as if (s)he is currently during the summer holidays according to this calendar, and then

encode the context-dependent profiles in query processing.

In this chapter, we firstly review the approaches of preference modeling and representation in literature,

and then present the basic infrastructure of user-relevant information’s interactions between LBS and user

profiles. Secondly, we explain how LBS deal with the user-relevant information, i.e. to encode it in terms

of concepts understandable by core ontology and further to employ them in query processing. Finally, we
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present our approach of defining and organizing the user profiles, i.e. defining some basic constructs to

describe the classes, relations, properties, and dependencies/constraints and rules in user profile(s).

6.2 Related Work on Preference Modeling

As addressed in Chapter 2, user profiles functioned as an effective means in personalizing web-based appli-

cations, in terms of information filtering, content representation, information sharing, and privacy control.

Definitely, these functions are the major concern when we manipulate user profiles and build up the knowledge

relevant to users in LBS. In literature, user profile’s content and representation vary from one application

to another one, be they employed in static or dynamic computing environments. In this section, we review

the prevailing approaches of preference modeling and representation and point out the major challenges in

modeling and manipulating user profiles in LBS framework.

Most web-users have experienced how to define and apply their own user profiles in earlier web-information

systems, where user profiles were simply represented as a set of categories in terms of keywords. This solution

is popular in information subscription services, and usually associated with the temporal constraint, e.g. daily

news subscription, monthly product catalogue newsletter. It mainly adopts the keywords-matching strategy

in filtering information to the given user. It can assist users to customize the information delivery, but its

poor expressive power and reusability result in failure to support the basic functionality in LBS, e.g. being

context-sensitive and multi-domains. The other simple but popular approach is to formulate user profiles

in a form format, i.e. composed of a set of conditions specified within a form. Richer than the category-

based user profiles, it allows users to further customize the information selection by inputting some values

and keywords for certain properties, i.e. expressed in terms of attribute-value pairs, e.g. Monster for job

seeking. However, in this approach, user profiles are closely coupled with a given application, so that it is also

lacking portability and unable to support evolution. Additionally, each user only has a single user profile,

i.e. context-insensitive.

It is doubtless that a database approach can provide a solid logic basis and better expressiveness from the

data management and modeling perspective. Its well-defined query languages can ease the query formulation

by combining user preferences into conditions. In literature, [Kie02] and [Cho03] consequently proposed very

similar frameworks to employ the database to model the user preferences. They both extended the relational

model with formal first-order logics to express the preferences, such as � is a preference relation over a schema

relation R and t1 � t2 means tuple t1 dominates tuple t2 in �. For instance, assuming a schema relation R =

(ISBN, Vendor, Price), a preference relation � may be defined to state a preference for books available for a

cheaper price, as follows: (i, v, p) � (i′, v′, p′) ≡ i = i′ ∧ p < p′. Consequently, if there are two tuples in R,

such as t1 = (’3-540-30153-4’, ’Amazon’, $76.46) and t1 = (’3-540-30153-4’, ’Allbooksweb’, $126.99), t1 � t2

holds. Based on the database modeling approach, their proposals can seamless integrate with data formed in

traditional database model, but hard to adapt to the preferences’ change as context changes. In addition, the

relational database-based models are often constrained in reasoning and inferring new knowledge on the user

preferences, or rules definition. Particularly in mobile service setting, some researchers [HK04] proposed to
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store and manipulate user profiles in database. For each application, each user can configure their preferences

called as situation. Each situation will be uniquely associated with the user-id. This approach takes into

account the effect of context on user’s preferences, i.e. each context property can be defined as an attribute

in the situation. However, for each user, it is necessary to set up a new situation for each new application.

Thus, it is still poor in dynamically employing user profiles for service personalization.

In the artificial intelligence community, user preferences are generally defined as preference relations

using numeric utility functions and the results are ranked by the values of the utility function [AW00]

[HP04]. Recommender systems and decision systems widely employ this quantitative modeling approach and

benefit from computing the utility values, particularly with the multidimensional composition of preferences.

More complicated utility functions can be elaborated by referring to users’ behavior history and other users’

collaborative choices. However, the utility functions are obviously sensitive to any change of the applications

so that it makes it hard to transform this approach into a dynamic services setting.

Another potential proposal is logic-based modeling approach motivated by its strong expressiveness and

reasoning/inference capability. It mainly embodies efforts from two different logics communities, i.e. Dat-

alog/Prolog and Description Logic. As it is well-known, Datalog and Prolog support strong reasoning and

data management functionalities, in particular they can easily combine with logical programming to make

deduction and expressing rules [GJM01]. In [CCC+04], Cal̀ı et al. proposed a DL-based framework to allow

the profile description to be partially incomplete and addressed an algorithm to illustrate how to match

the query considering the user profile. However, existing logic-based approaches, either Datalog-based or

DL-based ones, fail to provide a sufficient solution to express the preferences in context-sensitive dynamic

environments.

Doubtless, the description-logic based preferences can be easily transformed into ontology. In the CRUM-

PET project, the user preferences are described in an ontology. Each preference is defined as an attribute

and closely associated with the properties of a given service. It shows the functionality of user preferences in

matching certain services, e.g. tourism, but did not explain how the user preference ontology can be reused

in new applications.

6.3 A Framework of User Profiles Interactions in LBS

Similar to the way that data profiles interact with core ontology, the user profiles need to communicate

and further interact with the core ontology. At the syntactical level, the concepts and values, rules in user

profiles need to be valid and consistent with the definition of LBS. At the semantic level, LBS will identify

their semantics and apply the knowledge of LBS to set up the links between the context and services in core

ontology and given user profiles. As stated before, issues concerning system architecture are not the foci of

this dissertation. Therefore, we only show the part of the LBS infrastructure that conveys the communications

between inter-related modular data in the core ontology (i.e. service, context, spatial, temporal, and user)

and user profiles at the user side as follows:

121



6. USER INFORMATION MANAGEMENT
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Figure 6.1: The Infrastructure of Communications Between User Profiles and LBS.

The left of the figure shows the different modules of the LBS core ontology and their associations. They

provide the semantic support of concepts and values’ data-types in user profiles. For instance, the user

module may include frequent concepts in user profiles, such as age and profession and interest, and context

module can include the information about local CollegeCalendar which is used in user profiles. The right of

the figure displays a set of user profiles in LBS. We assume that each user has a single complete profile, which

can be decomposed into several contextual profiles. As an intermediary between LBS and users, the User

Profiles Matcher transforms user profiles into the knowledge understandable by the core ontology and then

applies the knowledge in the core ontology to build up the links between the services and a given user. In

particular, while a certain query is delivered to the LBS, it can assist the LBS to quickly identify what user

profiles information is relevant to the given query and then look up what special user information is helpful

to access to a certain service.

6.4 User-relevant Concepts in Core Ontology

In the core ontology, we have a set of built-in concepts to describe the characteristics of the LBS users. These

concepts and their relationships form the user module. Each user class is characterized by a set of properties

and constraints. Usually, users in one class share common characteristics or hold similar preferences on certain

services. Each service class can be associated with one or multiple user class(es), which means services in class

Service can suit for a user class in the User Module. User classification may become particularly useful when

the user profile lacks specific preference information on a certain service. Preferences in this case can be taken

from the specific user class the user belongs to. For instance, assume a user profile only contains his/her

basic information, such as the age with the value ”66-years-old”, the profession with the value ”retired”,

and the health-status with the value ”common, with heart-sickness history”. When the user is looking for

a restaurant for dinner, LBS will identify the user’s profile and generally categorize him/her into the senior

user class in the user module. Using the association between restaurants and senior users, the LBS can

potentially recommend the user some restaurants in a quiet environment, other than some brasseries or noisy

music-bars. In this section, we explain how to define the user classes in the user module and then illustrate

how to associate the user classes with the services in the core ontology.
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In addition, some relations defined in chapter 3 can be properly applied to relations between user concepts.

For instance, IsA (�) can be used to express the relation between GraduateStudent and Student; disjoint can

be used to relate Junior to Senior. Regarding the relations between inter-module concepts, e.g. the relation

between user class and a service class, we will discuss them at the end of this chapter.

Each user class in core ontology is a subclass of class User, characterized by a set of properties and

constraints, and defined in terms of axioms. The user classes are initially defined by the LBS experts, and

are subject to change to adapt to the interactions between local services and users. It is worth noting that it

is necessary to consider the local context when defining the user classes and their restrictions. For instance,

in Switzerland, the term senior denotes people older than 65-years-old, but in France, the term senior denotes

people older than 60-years-old. Let us assume that the user class Senior is a class in the user module, and it

represents a group of people who are older than ”65-years-old”, and whose profession is ”retired”. In terms

of axioms, the class ”Senior” can be defined as follows:

Senior � User 
 ∃Age.≥65 
 ∃Profession.{Retired}.

The properties in the above axiom, such as age and profession, and similar static properties such as gender

describe general information about the user. They are often regarded as a kind of factual data, and will not

frequently change as time and space change. According to the profiles specified by a given user, each user

can be associated with one or multiple user classes.

6.5 The User Profiles in Our Approach

The user profile is the key to customize services and to obtain tailored information. Two users asking the

same request at the same location and at the same time should have different answers according to their

profiles. This is the main functionality of user profiles in the majority of personalized information services.

Furthermore, to adapt to the dynamic context, for the same user, depending on where, when, how, with

whom, and why users are navigating in a physical space, his/her profiles and needs will vary (e.g. at home, at

work). Therefore, profiles in LBS are characterized by their dynamicity and context-sensitiveness, contrasting

with the fixed or application-coupled profiles mainly used in web services.

6.5.1 Contextual User Profile vs. Complete User Profile

In our work, each user has a complete user profile, which contains three aspects of the information, i.e. the

user’s characteristics, preferences and distastes, and user-defined rules. The first part stores the information

that is inherently related to the user, therefore often static and context-insensitive, i.e. their values usually

do not change as context changes, e.g. gender or nationality. The second part, preferences and distastes,

clearly suggests what the user may like or dislike, and may include a ranking among the preferences and

distastes. The last part allows the user to define specific rules for information delivery and selection and

privacy protection, e.g. Do not recommend any service provider which has a customer rating less than 90%.
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Several elements in the user’s profile can be context-dependent, i.e. their specification and value may

change from one context to another. The most elementary context-dependence is the one that makes the

value of a property vary according to the value of some context item. For example, the value of ”my favorite

sports” in the user profile may be different for the various seasons (spring, summer, autumn, winter). To

use the favorite sport information, the LBS will need to know which is the current season. This knowledge

comes from the context module.

A given context element may influence several choices in the user profile. The kind of activity pursued

by the user is a typical example, as it may influence several specifications such as profession, interest do-

mains, spoken languages, and relevant club memberships. Extracting sub-profiles from the complete profile

according to these influential context elements generates a set of contextual profiles. Examples are illustrated

in Figure 6.2, where the ”role” currently played by the user determines different contextual profiles, one for

when the user in on a tourist trip, one for when the user is on a professional trip, and on for daily life use. The

figure shows that, for example, the interest attribute is valued as (art, culture, hiking, cinema) in the tourist

profile, while it is valued as (database, ontology, semantic web) in the professional profile. It also shows that

different contextual profiles do not include the same attributes, e.g. the income attribute is included in the

tourist profile but not in the professional profile. A contextual profile restricts the search for personalization

to the elements it contains. For example, the professional profile in Figure 6.2 specifies that, should the user

be in a professional context, the only elements that are to be considered for query personalization are user’s

profession, age, interests, languages and memberships. Our working hypothesis is that contextual profiles

are defined by the user, both in terms of which ones to create and which content they should have. The

definition of the required contextual profiles specifies for each one the predicate that the LBS has to evaluate

to determine if the current context of a user query corresponds to a specific contextual profile. For instance,

assume the user wants to define one contextual profile for when she is on vacation and one for when she is

out for a meeting. If we further assume that users are characterized by a role hasActivity to an Activity class,

the first context is selected if the role currently leads to the Vacation subclass of the Activity class, while the

second context is selected if the role currently leads to the Meeting subclass of the Activity class:

Context1 = hasActivity.Vacation, Context2 = hasActivity.Meeting

The predicate to select a contextual profile can be fully based on information that is specific to the user

(i.e. the current user situation), but may also involve generic knowledge in the user module and knowledge

in the other modules (context, space, time), in particular knowledge about the current context (as in the

prior example on sports preferences). Links between user profiles/user module and context module may

therefore be established by the LBS to enable contextualized personalization. Such links will be discussed in

Section 6.6.2 later in this chapter.

Complete and contextual profiles may be organized into a variety of data structures. For instance,

contextual profiles may be linked by subtype relationships, as in:

hasActivity.EuropeanVacation � hasActivity.Vacation

hasActivity.SummerVacation � hasActivity.Vacation
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Which data organization to adopt for best management of user profiles is a relatively marginal issue, as

long as the functionality to support contextualized personalization is available. User-defined rules are part

of the specifications that may be contextualized. For instance, they may be associated with certain contexts,

e.g. to reject any incoming message irrelevant to the activity at meeting, or to always ask for user’s permission

at online-shopping.

Complete Profile

Role : - Tourist

- Professional

          - Daily Life

Profession: -{professor, employee, academic}

 - {computer scientist, professor}

Age: senior

Gender: male

Nationality: French

Languages: { French, English, Italian }

Income: good

Cuisine: {Japanese, Thai, Arabic, Argentinean }

Credit card: VISA, Master Card

Interest: - {art, culture, hiking, cinema }

              - { databases, o ntology , semantic web }

Food: Good or  very good

Memberships: {ACM, IEEE, IFIP, SI }

...

Role : Professional

Profession: {computer scientist, professor}

Age: senior

Interest: {databases, o ntology , semantic web }

Languages: {French, English, Italian }

Memberships: {ACM, IEEE, IFIP, SI }

Role : Daily life
…

User

Role : Tourist

Profession: {professor , employee, academic }

Age: senior

Gender: male

Nationality: French

Income: Good

Languages: { French, English, Italian }

Credit card: {Visa, Master Card}

Cusine: {Japanese, Thai, Arabic, Argentinean}

Interest: {art, culture, hiking, cinema}

Food: Good or  very good

Hospital

Park
Condos

Figure 6.2: An Example of user profiles for a given LBS user.

Though the contents of two contextual profiles for a given user may be different or overlap, each content

always is a subset of the corresponding complete profile. Each complete user profile is identified by a unique

user-id, and all its contextual profiles inherit this user-id. Once the user profile is created, this user-id is

taken as the unique identification to store and manipulate the user’s information (e.g. personal information,

preferences and/or queries’ log), as well to access certain services (in particular, some services may have

certain constraints on the accessibility privilege to end-users).

The content of user profiles can be explicitly provided from user’s input, implicitly learned from the user’s

behavior and information navigation history, or alternatively derived from the profiles of other users in the

same interest group. The issues on acquisition of user profiles, in particular intelligent techniques for learning

user preferences, are out of the scope of this dissertation. Instead, we concentrate on modeling and applying

the user profiles in information delivery process of the LBS. We assume that initially the information in the

complete profile is supplied by users. It can evolve as the user profiles are applied in LBS searching and/or
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shared with other users’ profiles. As stated, the contextual profiles are also defined by LBS users, for instance,

to give a professional profile and a tourist profile. Alternatively, they can be extracted from the complete

profile of the same user by the LBS, by analyzing the properties in the user profiles and corresponding

services, or referring to other users’ profiles with the same contexts.

The complete user profile and the contextual user profiles may be formally defined as follows.

DEFINITION 6.1. Contextual User Profile. A Contextual User Profile is a tuple cUP describing the
user from the viewpoint of a certain context: cUP = (uID, c♥, {(P, I)}, R), where uID is the unique identifier
of the user, c♥ is a context characterization, (P, I) is a set of pairs <property, instance> and R is a set of
rules defined by the user.

DEFINITION 6.2. Complete User Profile. A Complete User Profile is a tuple UP = (uID, CUP)
where uID is the unique identifier of the user, CUP = {cUP(uID, c♥1), . . ., cUP(uID, c♥i)}. For the given
user uID, ∀ cUP(uID) ∈ CUP.

The definition shows that for each user the complete profile is actually the union of the contextual profiles.

Each contextual profile is characterized by a defining predicate c♥i, whose evaluation determines if the profile

applies or not, and is composed of a number of properties with corresponding instances and a number of

user-defined rules. Property sharing among the contextual profiles is via the name of the property.

In the previous chapter we have seen that a data profile is composed of a set of service profiles. Here

we have seen that a complete user profile is composed of a set of contextual profiles. Despite this similarity,

there are three evident differences between data profile and complete user profile, and between service profile

and contextual user profile:

• A user profile describes an individual user; a data profile describes a data source and conveys the

information concerning one or many independent services. Any data profile can be clearly divided into

a set of independent service profiles; not all user profiles can be easily divided into disjoint contextual

user profiles.

• Each service profile is explicitly defined within the data profile; a contextual user profile can be gen-

erated by the LBS learning from the user’s query log and other users’ profiles. Thus, the difference of

information’s origins may result in the uncertainty of the information, and some values in user profile

are subject to change as the user has more interactions with LBS.

• The user profile allows the user to specify a set of rules, in order to personalize information delivery,

to express privacy concern (e.g. if the service provider’s rating is less than 90%, don’t show them),

or to represent more complex preferences/distastes (e.g. if no vegetarian restaurant is available, only

recommend a Sushi Shop). Rules in service profiles are of a different nature. They come as hasCondition

properties expressing the preconditions to access to the service.

• Both contextual user profiles and service profiles are context-sensitive. However, more often, the same

type of services are sensitive to the same context, e.g. most rental prices for holiday apartments

are similarly sensitive to the season; the users may have different concerns on same type of services
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(preference) in same context, e.g. in summer, user A prefers outdoor-sports but user B may prefer

indoor-sports even if both A and B have interests in sports.

By comparing the data profiles and user profiles, we find out user profiles demand some new modeling

constructs wrt the data profiles. Concretely, the new challenges concentrate on defining new types of prop-

erties, enhancing the dependencies between profile properties, and keeping the user-defined rules consistent

with each other.

6.5.2 Classes

The user module in the core ontology gathers all classes related to the description and categorization of

potential users, aiming at providing sufficient semantic support for generic personalization processing. For

instance, the user module holds a seniorUser class defined as a restriction on the User class, the restriction

consisting in the condition that only users whose age is greater or equal a given age (e.g. 65 years in

Switzerland) are members of the subclass. Similarly, a Colleague class may be defined to express that a

person X is a colleague or person Y iff X and Y work for the same employer. The user module can also be

augmented with inference rules, such as

(SeniorUser � User 
 ∃Age.≥65, User 
 ∃Age.≥65 � RetiredUser)

⇒ SeniorUser � RetiredUser

While the user module deals with abstract users and user categories, user profiles are meant to provide

concrete information (i.e. instances) about specific users. To be operational, information in the user profiles

must somehow correspond (be mappable) to the classes in the user module (in the same way as information

in the service profiles must be mappable to clases in the service module). For example, in the user module,

the semantics of class Family can be well-defined, e.g. a primary social group including parents and children.

However, in a concrete user profile, family may be enumerated as a set of people and their respective rela-

tionship with the user. This Family information in user profiles can be applied in identifying who has the

rights to share and exchange information with this user. For instance, the user can specify ”always expose my

location to my family”. Similarly, the user can define other classes if necessary, e.g. who are my colleagues,

which companies (or service providers) are confidential enough to share the personal information etc.

Family = {(Peter, father), (Mary, mother), (Shirley, sister)}
Colleague = {Fabio, Nadine, Lucy}
ConfidentialServiceProvider = {Amazon, eBay}
User(?x) ∧ ServiceProvider(?y) ∧ Trust(?x, ?y) ⇒ (?y = Amazon ∨ ?y = eBay)

As we discussed, user profiles are often relevant to or dependent on certain contexts and/or services, e.g.

to specify some context-dependent preferences on sports. Consequently, to better communicate with LBS,

user profiles either are equipped with these concepts, or ensure that they exist in the core ontology or external

ontologies. For instance, the preference/rule ”At rush-hour and when I am driving, inform me of the traffic

ahead.” contain several context concepts, such as rush-hour, driving, and traffic. In this case, we assume the
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core ontology embodies the definitions of these context concepts and is able to obtain the relevant context

data from certain context repository.

6.5.3 Properties

Properties provide crucial information about a user, her/his physical characteristics, e.g. age, profession,

or health, and her/his preferences or distastes for specific things or services. Physical characteristics help

the LBS identifying the basic features of a given user, leading to a possible classification into some user

category, and then recommend some services by referring to other users who have similar physical characters

and therefore are in the same category. For instance, any of a priori knowledge, similarity techniques and

learning mechanisms may lead to associate the Senior class (category) to a preference for less intensive

sports. Preferences and distastes help the LBS to personalize service matching according to the user’s explicit

specifications. Hence, we specify three categories of properties in user profiles: hasPreference, hasDistaste and

hasCharacteristic respectively. They help defining other sub-properties as follows:

hasPreference ⊆ ¬ hasCharacteristic

hasPreference ⊆ ¬ hasDistaste

hasCharacter ⊆ ¬ hasDistaste

hasAge ⊆ hasCharacteristic

hasSportPref ⊆ hasPreference

In Chapter 3 we have discussed some typical properties for the service module, i.e. Composite property,

Range Property, Dependent Property and Multi-resolution Property. These types of properties can also be

properly applied in representing some properties in user profiles. For instance, property languageCapability

can be expressed as a composite property, i.e. composed of sub-properties language and level. The definition

on dependent properties can be extended to define the context-sensitive user preferences. The multi-resolution

property can be tailored to constrain different abstractions of information to be exposed to information sources

with diverse confidentialities etc.

Considering the specific concerns from users’ viewpoint, e.g. personalization and privacy control, we

propose some new constructs in expressing these features. Hereinafter we define these constructs to support

representation of various kinds of user properties , namely context-sensitive properties and privacy-sensitive

properties. First, however, we add some semantics to multivaluation of properties.

6.5.3.1 Order-valued Properties

According to the classification in [PSZ06], a property can be either monovalued or multivalued. A monovalued

property corresponds to a single value, e.g. age. In contrast, a multivalued property associates with a

collection data, which can be a set, a bag or a list. For a property that holds more than one values it may be

the case that these values are mutually equivalent with respect to any service that may call for the property.

For instance, a user profile may have a CreditCard property whose value is Visa and MasterCard. It may be

that for this user it is indifferent to choose either credit card. In this case, we call the CreditCard property is

defined as a mutual-value property, which can be easily represented in OWL using the owl:unionOf axiom.
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An alternative to mutual-value properties are ordered-value properties. These are used whenever there is

a preference order among the values of the property, e.g. the user prefers value a to value b for the property.

For instance, a user can express his/her preference on different cuisines, such as CuisinePref = {Chinese,

Japanese, Thai}. In this example, ”Chinese” is the first element in the set, meaning that Chinese cuisine

is the favorite cuisine for this user; the Japanese cuisine is regarded as the second favorite, and so forth.

Similarly, we can assume the same user profile has another property CuisineDistastes which corresponds to a

list of values {canned-food, fast-food}. This means that the user has major distaste for canned-food, followed

by a somehow lighter distaste for fast-foods. Consequently, both canned-food and fast-food will be excluded

from the result of food service selection, but if this makes the selection empty a fast-food service may be

returned. The definition of ordered-value property can be stated as follows:

DEFINITION 6.3. Ordered-value Property. An Ordered-value Property is a property p(d, τ), with
domain d and range the set of values τ = (t1, t2, . . . , ti) and i≥2, such that t1 � t2 � . . . � ti, where � is a
preference relation, and t1 � t2 means prefer t1 to t2.

Example 6.1. The aforementioned user’s preferred cuisine can be expressed as p(uID, τ):
CuisinePref ⊆ p,
τ= (Chinese, Japanese, Thai),
Chinese � Japanese � Thai.

In this example, the domain d is the set of identifiers of a user profile, it suggests that the user with uID

has such an ordered-value property. For instance, when the user is looking for a restaurant, it is useful to

filter out restaurants the user does not like or has less interest in.

6.5.3.2 Context-sensitive Properties

In reality, it is common for users to change their preferences as the context changes for different reasons.

Hence, if a property has different values in diverse contexts, we call it a context-sensitive property. For

instance, one can like sushi but dislike to take it for breakfast. In contrast, if a property always has a unique

value whatever the context is, we call it a context-insensitive property. To better express context-sensitive

property, we give its definition as follows:

DEFINITION 6.4. Context-Sensitive Property. A Context-Sensitive Property, denoted p≺c(d, τ), with
domain d and range τ , is a property such as τ=(c, b), where c is a context component and b is a set of values
for the property p≺c, and c → b holds (i.e. b depends on c).

Example 6.2. The user’s sports’ preference changes as the context changes, e.g. the user likes
mountain-sports and hiking in summer, but she likes ski and yoga in winter:

hasSports ⊆ p≺c,
hasSports(uID, (”summer”, {hiking, mountain-sports}))
hasSports(uID, (”winter”, {ski, yoga})).

The example shows that the property hasSports is a subtype of context-sensitive property and has two

known context values, summer and winter. Since the two contexts belong to temporal contexts, the property

hasSports can be regarded as a time-sensitive property. Similarly, should the context be in GeoContext, the
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property can be seen as a space-sensitive property. For instance, users having different credit cards associated

to different account in different currencies may wish to define that different types of credit cards have to be

used in different locations, e.g. use American Express in the USA, but use VISA in Europe.

In Definition 6.4, the context component in τ is not constrained to be a single context. Instead, it can

be a combination of several contexts, which together determine the property value. A typical example is

spatio-temporal dependency as discussed in chapter 4. It is similar to the multi-valued dependency in the

database. Hence, in this case, the functional dependency can be written as ∀p≺c(a1, ((c1, . . ., cj), b1)),

p≺c(a1, (c1, . . ., cj , b2)) ⇒ b1=b2, we say (C1, . . ., Cj) ⇒ b. Let us see an example where multiple types of

contexts together determine the property Interest.

Example 6.3. The user’s sports’ preference changes as multiple contexts change, e.g. the user
prefers hiking or outdoor-swimming in summer with family, but chooses more risky sports like rock climbing
or wind surfing in summer vacation with friends:

hasSports ⊆ p≺c,
hasSports(uID, ((”summer vacation”,”with family”), {hiking, outdoor-swimming}))
hasSports(uID, ((”summer vacation”,”with friends”), {rock climbing, wind surfing})).

Example 6.4. A temporal context sensitiveness: The user’s interests in professional work and
vacation are different:

hasInterest ⊆ p≺c,
hasInterest(uID, (”profession”, {database, ontology})),
hasInterest(uID, (”vacation”, {art, museum, cuisine})).

For instance, if the user registers to a new book reminder service, the professional interests can direct the

LBS to choose database/ontology relevant books for the user. In contrast, when the user is on vacation, the

nearby art museum or exhibition will be chosen as most attractive for this user.

6.5.3.3 Privacy-sensitive Properties

Privacy is a crucial concern in most e-services. In social life, people incline to protect their personal informa-

tion, e.g. the birthday, the family information and other contact, from disclosure to unknown people. With

the growing popularity of e-services, more and more users are customized with some online-payment services.

Consequently, privacy protection and trust-related issues have become the main challenge. How to effectively

protect and manage privacy and personal data is a common focus for most service providers and users, and

has to be taken into account in LBS. In the LBS setting, we assume the user stores information in the mobile

device and uses it to communicate with the LBS. LBS need to provide effective means to manage and protect

the user’s privacy. The user shall be given the ability to configure what information can be shared with which

service-providers, and in what context. For instance, the users may intend to share her personal data only

with certain types of services she is strongly interested in. We define the property isPublicTo to suggest to

whom the user is willing to expose her profile data.
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DEFINITION 6.5. Privacy-sensitive Property. A Privacy-sensitive Property is a property p!(I, CU ),
in the user profile, with domain individual and range a class CU , such that I is a property value in the user
profile, and CU refers to information receiver such that CU � Cuser � Cservice−provider .

The definition allows information receivers to be either service providers or other users. The latter assumes

that some mechanism for transferring data from one user to another is supported by the LBS. This could

be for instance a personal archiving space as usually provided by communication services on the web (e.g.

Google, MSN, Yahoo). We do not elaborate any further on this mechanism, which is not essential to LBS.

Example 6.5. The user can configure the privacy protection using privacy-sensitive properties. For instance,
the user can specify that credit card information can only be exposed to Amazon and PayPal service providers.

Credit Card ≡ {Visa, Master}, Trusted- Provider ≡ {Amazon, Paypal},
{eBay} ∈ ¬Trusted-Provider,
p!(VISA,Trusted-Provider) ⇒ p!(VISA, Amazon), NOT p!(VISA, eBay).

When a property value is specified as privacy-sensitive, the LBS knows the user only wants to share

the information with the specified users/providers. Hence the LBS needs to request user’s permission when

some new/unknown users or providers somehow request access to this information. Privacy-sensitiveness can

also be associated to a user profile as a whole. In this case, all information inside the profile will only be

available to the specified users/services. Conversely, it can be tailored to finer levels of detail: For instance,

the birthdate property can be completely disclosed to friends and family, but to other users only disclosing

the year of birthdate is allowed. Notice that privacy protection is under full control by the users, there is no

initiative to be taken by the LBS in this domain.

6.5.4 Dependencies and Rules

In chapter 3, we have defined the generic dependencies, which can be appropriately applied in any module, as

well as in user profiles. For instance, the property nationality and languageSpoken are linked by a dependency

if it is the case that users are assumed to be fluent in (one of) the official language(s) of the country she is a

citizen of. If the two properties are explicitly specified in the user profile, the dependency over their values

needs to be satisfied.

As also discussed in chapter 3, a specific kind of dependency is derived attributes. As an example in

the user profile, the age property depends on user’s birthdate and the current date. It is a kind of static

temporal dependency: Every year the user’s age will increase regularly by ”one”. In this case, the property

is dependent on the time-stamp of the input.

Rules in user profiles are categorized into two types: user-defined rules and derived rules. User defined-

rules only apply to the user who defines them. They can be changed anytime by the user. Derived rules can

either be defined a priori by LBS designers (e.g. the rule inferring spoken languages from nationality) and

apply to multiple user categories and even all users, or be derived by LBS on the basis of the observation

and analysis of a single user’s history of queries and behaviors and then applied to the user or to her user

categories. For instance, in the field of web information retrieval, many efforts have been devoted to implicit
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user profiling by analyzing user’s bookmarks, web-pages navigation, and references to collaborative peers.

Through analyzing the user’s queries, inference of user preferences can be tailored to certain service types in

certain locations, times and contexts.

6.6 Connections and Mappings between Modules

In chapter 3, we have proposed to structure the LBS’s knowledge base in terms of modular ontologies.

Rather than maintaining a single ontology, the modular ontologies strategy enables LBS data management

to benefit in the following aspects: to ease the maintenance and reasoning of the evolving ontologies, to

enable ontology reuse and sharing, to guarantee consistent semantics between modules thanks to the modular

ontology languages. Up to now we have described each module independently, and how they can be created

and maintained. However, making intelligent use of the modules to support query personalization and

contextualization calls for carefully established interconnections between the modules. This section discusses

such interconnections.

In literature, ontology languages for module interconnection can be categorized into two main types:

Distributed Description Logics (DDL) and ε-Connections approaches. Both approaches aim at linking existing

ontologies seen as modules of a larger modular ontology that is available to users. The two approaches differ

in the semantics and the purpose of the links. The DDL framework enables to couple multiple ontologies

using a set of bridge rules. A bridge rule is an axiom involving elements from two ontologies. The axiom has

one of the following formats: Ci � Cj , Ci � Cj , and ai → aj , where Ci and Cj are classes respectively from

ontology i and ontology j, ai and aj are two individuals from ontology i and ontology j separately. Bridge

rules are intended as a mechanism to import data from one module into another module. This approach

seems interesting for the semantic web paradigm, since it allows to develop ontologies in an autonomous

yet interoperable fashion, in particular through reuse of existing ontological elements. Although C-OWL

has been criticized [GPS06] for lack of sufficient reasoning support, e.g. the undecidability issue for certain

subsumption relations, its reasoning capabilities have recently been extended so that Tbox reasoning is fully

supported. Rather than reuse through import, the ε-Connections approach aims at connecting existing

distributed ontologies that represent different yet complementary domains. In the ε-Connections approach

the concepts from different modules are expected to show little or no overlapping. Instead, they can be

correlated so that knowledge in one module can be enhanced with related knowledge in another module.

In our work, the core ontology is modularized into three modules, i.e. Context Module, Service Module

and User Module. The three modules describe different aspects of the information necessary in LBS. They

can autonomously evolve, but need to hold consistent semantics so as to be inter-operated and reasoned by

the LBS at the logical/semantic level rather than via the syntactic modularity provided by the construct

owl:imports in OWL. The concepts in the different modules of our core ontology are connected by inter-

module roles, which we call linkTo property as they are similar to the link property of the ε-Connections

approach. For instance, a linkTo property may connect some SkiResort service to the Summer element

in the context module to state that this service is available in summer. While using an interconnection
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approach close to ε-Connections, we do not want to tie this to excluding concept overlapping between the

modules. We believe it is preferable, for greater flexibility in the design of the modules, to allow that the

various modules share some common concepts, i.e. concepts having same definitions and relationships. For

instance, the service module may include a subclass of exhibition services for exhibitions on ’Science and

Nature’; in parallel, the user module may include a subclass of users interested in ’Science and Nature’. In

this case ’Science and Nature’ is the common (i.e. overlapping) individual between the two modules. Slightly

changing the example, we can illustrate broader commonality between the modules: For instance, in the

Service module, a hasTopic role links the class Exhibition to the class Topic, and in the User module, a

role hasInterest links the User class to the same Topic class.

Besides the three modules of the core ontology, the service profiles and user profiles can be regarded

as external ontologies. The service profiles matcher and the user profiles matcher guarantee the semantic

consistency of the profiles with the concepts and roles defined in the core ontology modules, yet these external

ontologies hold their own individuals. The Figure 6.3 visualizes the overlapping of the core ontology modules

and their relationships with external ontologies.

Core Ontology

Service Module User Module

Context Module

2 3

1

4
Service Profiles User Profiles

Context Profiles

Figure 6.3: The Modularization of Concepts and Relations in LBS.

The above figure shows the disjoint and overlapping regions among the diverse modules of LBS. Region 1

represents the elements common to the service module and the user module, e.g. the concept Topic and the

individual ’Science and Nature’ in the example. The concepts SkiResort and Season are disjoint, respectively

residing in Service Module and Context Module. Regions 2 and 3 separately stand for the common elements

between service module and context module, and between user module and context module. Region 4

represents common elements of the three modules. For instance, the concept Interface may be common to

the three modules. A User may use the concept to specify the preferred format of query results in terms of

”text” or ”image”. The context class Device can be characterized by a property hasInterface representing
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the device’s display capability such as Text or Image in black-white/color. The Restaurant service may be

able to show its information in terms of text descriptions with/without images.

In the following we first introduce the link properties and ε-Connections Modularity Ontology according

to [GPS06]. Next, we present the C-OWL approach to represent subsumption between concepts in different

modular ontologies. Then we introduce the linkTo property that we use within our LBS to connect concepts

in the diverse modules of the core ontology. In addition, we present how to define the relevancy between

properties of different modules, in order to achieve the interrelation and orchestration of the three modules.

Finally, we discuss how to define and discover the relevancy between classes/properties of different modules.

6.6.1 ε-Connection and C-OWL

ε-Connection and Link Properties. An ε-Connection is a kind of distributed ontology that is composed of

a set of ontologies, where the component ontologies describe disjoint parts of the real world, and each one is an

OWL-DL ontology extended with link properties that link the ontology to some other component ontologies.

The component ontologies are called ε-Connected ontologies. ”An ε-Connected ontology K contains a sequence

of annotations, axioms and facts. Annotations, as in OWL, can be used to record authorship and other

information associated with the ontology, including imports” [GPS06]. Besides the information about the

same kind of constructs as in an OWL ontology (i.e. classes, object properties, axioms, etc.), an ε-Connected

ontology contains the information about link properties which allow crossing between different ontologies.

These link properties are roles that link one class of an ε-Connected ontology to a class of another ε-Connected

ontology. Using the syntax and definition in [GPS06], link properties are defined by the following axiom:

axiom ::= ‘Link(’ linkID[‘Deprecated’] { annotation }
‘foreignOntology(’ OntologyID ‘)’

{‘super(’linkID‘)’}
{‘domain(’description‘)’}
{‘range(’foreignDescription‘)’}
[ ‘inverseOf(’linkID‘)’]

[ ‘Functional’ | ‘InverseFunctional’ ]

axiom ::= ‘EquivalentProperties(’linkID linkID { linkID } ‘)’

| ‘SubPropertyOf(’ linkID linkID ‘)’

Different from the object properties in OWL ontology, in an ε-Connection, all link properties must be explicitly

declared. Each link property is declared in the ε-Connected ontology that contains its domain (i.e. its source

ontology). Its target ontology (called the foreign ontology in the axiom above) must be specified. A link

property cannot be transitive or symmetric, but it can be equivalent to or sub-property of another link

property. Maximum cardinality constraints (equal to one) may be defined like for an OWL object property.

As with OWL object properties, link properties can be used in axioms that define restriction classes. In an ε-

Connected ontology O, axioms may use all the link properties whose source ontology is O. Restrictions may use
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the universal (allValuesFrom), existential (someValuesFrom), value (hasValue), and cardinality constructs.

The definitions of restrictions are given as follows:

restriction ::= ‘Restriction(’ linkID linkRestrictionComponent { linkRestrictionComponent } ‘)’

linkRestrictionComponent ::= ‘allValuesFrom(’ foreignDescription ‘)’

| ‘someValuesFrom(’ foreignDescription ‘)’

| ‘value( ForeignIndividual(’ individualID ‘))’

| cardinality

An ε-Connection is composed of a set of ε-Connected ontologies. Thus, an ε-Connection can be regarded

as the union of distributed and linked ontologies, each of which may describe a single domain. Notice that the

link property itself, like ordinary ontology roles, does not convey any semantics other then linking elements

from two ontologies.

C-OWL and Bridge Rules. A C-OWL ontology is another kind of distributed ontology. It is also composed

of a set of OWL-DL ontologies, but the component ontologies describe possibly overlapping parts of the real

world. The component ontologies, called local ontologies, are linked together by inter-ontology is-a links,

called bridge rules. A bridge rule asserts that a class (or role or individual) of a local ontology describes the

same set (or a sub-set) of real world phenomena as a class (or role or individual) of another local ontology.

The interpretation domains of the local ontologies are related together, by a set of binary relations, one

binary relation per couple of local ontologies. These binary relations link together the individuals from the

various ontologies that describe the same real world entity. A bridge rule from a class (or role) of a local

ontology O1 to a class (or role) of a local ontology O2, is an is-a link modulo the binary relation that links the

interpretation domain of O1 to the one of O2. Referring to [BGvH+03], bridge rules and mappings between

ontologies in C-OWL are defined as follows:

”A bridge rule from i to j is a statement of one of the four following forms,

i:x −→� j:y, i:x −→� j:y, i:x −→ ⊥ j:y, i:x−→ ∗ j:y,

where x and y are either concepts or individuals, or roles of the languages Li and Lj respectively.”

”Furthermore, given a OWL-space < i, Oi >i∈I , a Mapping Mij from Oi to Oj is a set of bridge

rules from Oi to Oj, for some i, j ∈ I ”.

As local ontologies describe overlapping parts of the real world, they may be conflicting, but also knowledge

may be propagated from one local ontology to another one. Depending on how two local ontologies are related

by bridge rules, the subsumption (is-a links) may be inferred from one ontology to the other one.

Conclusion: These two proposals, E-Connections and C-OWL, present two basic ways for linking distributed

ontologies: 1) by is-a links between classes describing (at least partly) the same real world phenomena, 2) by

inter-ontology roles linking classes that describe different real world phenomena.
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In our work, the ontology modularization strategy is not merely motivated by easing the ontology main-

tenance and sharing. More importantly, it helps to discover and specify the relevancy of concepts (and

properties) between various modules. In the sequel, as a query is delivered to the LBS, the LBS modular

ontologies can understand how to employ the knowledge in the User and Context modules to answer the

query, so as to make the LBS personalized and context-aware.

6.6.2 LinkTo Relationships in LBS Modular Core Ontology

Building on the definition of link property of ε-Connections, we refine it to suit our LBS settings. Recall the

definition in chapter 3, we define that a modular class is a tuple C = (c, module, axiom), holding the class

name, the module name, and its defining axiom. For the discussions in chapter 3, it was not necessary to

specify if the relationships it introduced were inter-module or intra-module relationships. In this thesis, if we

do not explicitly define a relationship as an inter-module relationship, it is an intra-module relationship, i.e.

the two classes involved in the relationship belong to the same module. Given a link property, its classes must

belong to different modules, hence it is an inter-module relationship. The Condition property in Chapter 4

is an example of inter-module relationship, as it links service data to user data to describe which category

of users may access a service. For instance, a student movie service can be only available to students, i.e.

the user should hold a valid student card. To distinguish link property in ε-Connections from our refined

definition, we call the latter a LinkTo Relationship, described as follows:

DEFINITION 6.6. LinkTo Relationship. A LinkTo relationshipis a DL-role −→l (Ca, Cb), where −→l is the
name of the role, Ca and Cb are two module classes, Ca = (ca, modulea, axioma) and Cb = (cb, moduleb, axiomb),
that respectively are the domain and range of the role, and the following holds:

• modulea, moduleb ∈ {ModuleService, ModuleContext, ModuleUser} and modulea �= moduleb;

• Ca � ¬Cb, Ca, Cb ∈ CO (Core Ontology);

• −→l (Cb, Ca) /∈ −→L , where −→L denotes the set of LinkTo relationships.

In this definition, we explicitly constrain the modules of the classes within Service, Context, User modules.

The LinkTo relationship can not be transitive or symmetric (i.e. if −→l (Ca, Cb) ∈ −→L , −→l (Cb, Ca) /∈ −→L ). In

particular, the two classes involved in LinkTo relationship are disjoint and both are included in the core

ontology, which ensures the decidability and exactness of reasoning. In addition, to differentiate intra-module

relationship and inter-module relationship, classes Ca and Cb must belong to different modules.

6.6.3 Determine Relationships

In LBS, it is common that a module class Ca is determined by another module class Cb, rather than the

simple semantics ”Link Ca To Cb”. Determining links are particularly useful in filtering out unavailable

services. For instance, in Switzerland, only few ski resorts are open in summer. When a user asks for a ski

service, the context Season is deemed as the determinant factor. To enforce the determinant semantics, we

introduce the Determine relationship as follows:
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DEFINITION 6.7. Determine Relation. A Determine relationship is a DL-role −→d (Ca, Cb), where −→d is
the name of the role, Ca and Cb are two module classes, Ca = (ca, modulea, axioma) and Cb = (cb, moduleb,
axiomb), that respectively are the domain and range of the role, and the following holds:

• modulea, moduleb ∈ {ModuleService, ModuleContext, ModuleUser} and modulea �= moduleb;

• Ca � ¬Cb, Ca, Cb ∈ CO (Core Ontology);

• −→d (Cb, Ca) /∈ −→D , where −→D denotes the set of Determine relationships, and −→D � −→L ;

• For each individual bi ∈ Cb, there must exist an (or a set of) individual(s) {a1, . . . , ai} � Ca. iff ∃x, x
∈ {a1, . . . , ai}, bi becomes valid.

Example 6.6. A Determine Relationship between Ski Service and Season Context.
SkiResort ∈ CService, Season ∈ CContext, −→d (Season, SkiResort):

Service Module

SkiResort :class

Context Module

Season :class

Diablerets 
SkiResort

Spring

OnlyAvailable

JuraSki Resort

OnlyAvailable

Autumn

Winter

Summer

OnlyAvailable

OnlyAvailable

OnlyAvailable

We have −→d (”Winter”, ”JuraSkiResort”), −→d ({”Spring”, ”Autumn”, ”Winter”}, ”DiableretsSkiResort”).

For individuals in Service Module Class SkiResort, ”JuraSkiResort” and ”DiableretsSkiResort”, and indi-

viduals in Context Module Class Season= {Spring, Summer, Autumn, Winter}, the determine relationship
−→
d expresses the context Season is one of the necessary conditions to access the service SkiResort. More

precisely, JuraSkiResort service individual is only available if current Season is winter. The service individual

DiableretsSkiResort is available in all three seasons, Spring, Autumn, and Winter.

Similarly, the determine relationship can link classes respectively from service module and user module.

Service Module

StudentCinema :class

User Module

Student :class

SummerVacation
Cinema :class UNIL 

Student
EPFL 

Student College 
Student

OnlyOpen

Campus
Cinema :class

EPFL-
Cinema :individual OnlyOpen

University 
Student

Figure 6.4: An Example of Determine relationship between service module and user module.
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Student � User 
 ∃RegisteredAt.(College � University),

CollegeStudent � Student, EPFL-Student � Student, UNIL-Student � Student.

StudentCinema � Cinema � Service,

CampusCinema � StudentCinema, {EPFL-Cinema} ∈ CampusCinema.

−→
d (Student, StudentCinema),
−→
d (EPFL-Student � UNIL-Student, ”EPFL-Cinema”);
−→
d (CollegeStudent, SummerVacationCinema).

The above example states that the class EPFL-Cinema in the service module is linked by a determine

relationship instance to the class EPFL-Student in the user module. It means the user must be a student

registered in EPFL to access the EPFL-Cinema service.

6.6.4 Influence Relationships

In the two previous examples, the target class defines a strong pre-condition to accessing the services. If the

pre-condition is not satisfied, the service will not respond to service requesters. In reality, there also exist

some less strong dependency relations between classes from different modules. This weak dependency means

the source can not determine the availability or exactness of the target, but its value can have an effect on the

quality or metric of the target. For instance, the network connection usually has an influence on download

services. This type of influence represents a dependency between download service and network context, but

it is not a determinant factor as described in the determine relations. To represent weak dependencies we

propose an Influence relationship as follows:

DEFINITION 6.8. Influence Relationship. An Influence Relationship is a tuple involving two classes Ca

and Cb, denoted as −→i (Ca, Cb, axiom), where Ca and Cb are two module classes, Ca = (ca, modulea, axioma)
and Cb = (cb, moduleb, axiomb), and axiom stands for the influence/effect of Ca on Cb, such that the following
holds:

• modulea, moduleb ∈ {ModuleService, ModuleContext, ModuleUser} and modulea �= moduleb;

• Ca � ¬Cb, Ca, Cb ∈ CO (Core Ontology);

• −→i (Cb, Ca) is a role in CO, −→i (Cb, Ca) ∈ −→I , where −→I is the set of Influence roles,

• −→i (Cb, Ca) /∈ −→I .

Example 6.7. An Influence relationship between context NetworkConnection and service Online-

Film:
−→
i (NetworkConnection, OnlineFilm, axiom)

axiom:: OnlineFilm 
 ∃hasQuality.={Good}
⇒ (NetworkConnection 
 ∃hasSpeed.≥{100Kbps})

The example above states an Influence relationship between the online film service and the network

connection context. The axiom suggests that the service can provide good quality when the connection speed

is faster than 100Kbps. When the connection speed is below this value, the quality of the online film service
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may become unsatisfactory. To explicit the influence relation, more information can be added to the axiom

in the Influence relation, e.g. what connection speed is required to provide same good quality online film

service with high resolution of the video. In reality, the axioms may be more complex, and can be defined

and improved by some experts, but these axioms are not the main focus of our work.

A given service may be influenced by a set of contextual concepts, e.g. an outdoor sport, such as bicycling,

may be influenced by the weather and the traffic. In such a circumstance, the LBS will look for all concepts

associated with this service by Determine and Influence relationships. Then the LBS will match them against

the relevant information either in the context module or in the user profiles. We further discuss this as part

of the query matching and processing issues in chapter 8.

Similarly, Influence relationships can be employed to link the service module and the user module, e.g.

a given service may attract a set of groups of users. For instance, a science exhibition can be recommended

to students and to families with children. This type of recommendations are based on the experiences or

observations of some domain experts. For instance, some recommendations on local cultural events can be

defined by some local tourist professionals. The application of the Influence relationships in the LBS is

motivated by transferring the context/user knowledge to the service processing, so as to make LBS more

knowledgeable.

6.6.5 Property Relevance Associations in LBS Modular Ontologies

The Determine and Influence relationships denote a strong or weaker dependency between two module classes.

Consider, for instance, the impact of network throughput on download operations. This can be described as a

dependency relationship from the NetworkConnectionclass the Download service class, and its subclasses such

as MovieDownload and MusicDownload. However, the dependency can be more precisely described referring

to the properties of the involved classes, namely the properties that rule the dependency. In the example, the

property hasSpeed of the context class NetworkConnection is the one that influences the values of property

hasQuality of all Download service classes. We therefore introduce the concept of a dependency between

properties from different modules. Such a dependency is illustrated in Figure 6.5:

Service Module

ScienceExhibition
:class

User Module

ScienceFans :class

SciencehasTheme hasInterest

Property Relevancy

Figure 6.5: An illustration of properties relevancy between different modules in LBS.
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In this example, we see that both the user class ScienceFans and the service class ScienceExhibition are

associated with the concept Science through respectively the hasTheme and the hasInterest properties. We can

infer that the ScienceExhibition can be interesting to ScienceFans. However, without an explicit relationship,

it is not evident to discover the interaction between the two classes and between the two properties hasTheme

and hasInterest. We propose the following construct to specify the interactions between properties that in

different modules correspond to the same or overlapping concept or data-value.

DEFINITION 6.9. Property Relevance Association. A Property Relevance Association is a tuple
r̂(pa, pb, axiomr), where pa and pb are two properties, pa = (Ca1, CV Da2) and pb = (Cb1, CV Db2), Ca1

and Cb1 are classes, CV Da2 and CV Db2 are either classes or value domains axiomr defines the dependency
between pa on pb, and the following holds:

• Ca1, CV Da2 ∈ modulea, Cb1, CV Db2 ∈ moduleb,

• modulea, moduleb ∈ {ModuleService, ModuleContext, ModuleUser} and modulea �= moduleb;

• pa, pb ∈ CO (Core Ontology);

• CV Da2 
 CV Db2 �= ⊥.

The semantics of the association is that whenever the intersection between CV Da2 and CV Db2 is non

empty for a specific individual α1 ∈ Ca1 and a specific individual β1 ∈ Cb1, the two individual are considered

as a matching pair in the query processing strategy.

Example 6.8. A Relevance Association between hasTheme and hasInterest properties:
pa:= hasTheme, Ca1:= Exhibition, CV Da2:= Theme,
individuala:= SwissCulture,
pb:= hasInterest, Cb1:= User, CV Db2:= Interest,
individualb:= EuropeanCulture,
AND axiomr: CV Da2 � CV Db2

⇒ r̂(pa, pb, axiomr), r̂ � R̂, where R̂ is the set of Property Relevance Associations.

In this example, the class Ca (’SwissCulture’ exhibition) belongs to Service module; the user class Cb

defines a group of users who have interest in EuropeanCulture. In the core ontology, both SwissCulture and

EuropeanCulture are subclasses of Culture, and there exists SwissCulture � EuropeanCulture. According to our

Definition 6.9, we can conclude there is a relevance association between the two properties pa and pb. This

construct is specially aimed at discovering the intrinsic relevancy of information in diverse modules for query

processing and personalization. In other words, given a user’s profile(s) and a set of services, it facilitates

LBS task to filter out the services irrelevant to a given user and respond to the request in a personalized

fashion. When the value of property pb or pb changes, the relevancy can not hold. For instance, if the

exhibition is still concerning SwissCulture, but the user is interested in AsianCulture, the relevancy between

two individuals (i.e. ’SwissCulture Exhibition’ and ’AsianCulture Fans’) does not hold since SwissCulture is

disjoint with AsianCulture. In general, the relevancy construct can be illustrated as follows:

Discussion: In this section, we have given our definitions on inter-module connections. Both the Determine

relationships and the Influence relationships are specified at the meta-level by the LBS and its experts. For
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Service Module

ServiceClass

User Module

UserClass

ServiceProperty UserProperty

hasServiceProperty hasUserProperty

PropertyRelevant 
Mapping

PropertyValue
Mapping , e .g. =

Figure 6.6: An illustration of properties relevancy between different modules in LBS.

instance, from the service to context, they can provide information if a service is restricted or favored by one

context or a set of contexts. From the service to the user, they suggest if a service is only accessible to users

with a specific profile, alternatively, if a service is potentially favored by a group of users. Definitely, the de-

termine and influence relationships can be instantiated. For instance, a service profile is determined/influenced

by the constraint in a given user profile (e.g. Shirley does not like all action movies). In contrast, the user

may specify specific interest/dislikes for a given category of services, e.g. Shirley likes Kentucky but not

MacDonald in the fast-food service category.

In contrast, the Property Relevance Association is defined in a bottom-up manner. In other words, the

LBS will look at the similarity/relevancy between target concepts (or target data values) of two properties, as

shown in Example 6.8. If two properties are associated with equivalent/non-disjoint classes (or data values),

the LBS will create the association between the two corresponding properties. Notice that in our definition

we specify the source class of the property, instead of a global property. This suggests that a property of a

given class Ca is associated to another property of a specific class Cb. It assists the LBS in discovering the

potential relevancy between property instances separately in two modules.

6.7 Chapter Summary

This chapter is twofold. The first part analyzes user profiling. We first discussed some related work from

an over-abundant literature that is mainly characterized by solutions tailored to the needs of some specific

application. We then presented our LBS framework in which user profiling materializes on the one hand at the

data level, as a set of specific user profiles, and on the other hand at the meta-level, as an abstract and generic

description of user categories. The latter forms the user module in our LBS modular ontology. The main

contribution in this respect has been to make very explicit that for each user a number of different profiles

may hold, each one with a specific content and globally characterized by a qualifying predicate that allows

selecting for each query the user profile that is suitable for the query. We called these the contextual user

profiles, as their selection stems from considering the current context, a combination of user-related context

and generic context. We also introduced some further characterization of properties that are particularly

useful in defining user profiles.
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The second part of the chapter capitalizes on the fact that description of the Service, Context, and User

modules has been achieved, to discuss inter-connections between the modules of the modular ontology. These

interconnections are essential to LBS. They allow the LBS to perform contextualized personalization. This

is supported by the inter-module relationships between services and context elements that are relevant to

them, between users and context elements that determine their context-sensitive properties, and between

services and users to support user preferences as well as to express access limitations to services dedicated

to specific user categories. These inter-module connections transform a set of dedicated ontological modules

into an integrated and consistent knowledge infrastructure leading to the intelligent LBS that we aim to

characterize.
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Chapter 7
Query Reformulation

7.1 Introduction

The curiosity for and pursuit of information and knowledge is the driving force that makes humans more and

more capable and intelligent to make use of surrounding resources and solve complex problems. In addition,

to express their needs is an innate capability of humans. For instance, children can intuitively ask questions

and know the world from their parents. At school, students can learn and accumulate their knowledge by

communicating and discussing with teachers and classmates. In a library, users can inquire the librarian or

check the index to find a book. By asking questions and exchanging information, humans can gradually learn

new things, and obtain the specific information they need.

Whatever means one may rely on, queries need to be precisely expressed in order to produce the right

answer. Although in human-to-human conversation acquiring information by incremental interactions can be

very successful, when we attempt to convert this idea to the communication between the computer and hu-

mans, it can become unexpectedly frustrating. One of the important factors is whether the computer-human

interface is practical and efficient enough to help users to express the right query (i.e. query formulation).

Another important factor is that the computer is unable to fully understand and interpret the query ex-

pressed in natural language, and it can hardly grasp the implicit context of the user’s query, thus being

unable to properly react to the requests (i.e. to perform query rewriting and answering in a contextualized

and personalized way).

7.1.1 Query Formulation Techniques - An Overview

In a primer book ’Designing The User Interface’ [SP05], authors identified five primary styles of effective

human-computer interaction: direct manipulation, form filling, menu selection, command language, and

natural language:

• In direct manipulation systems, the designers must fully capture all the tasks and user’s actions at the

system design phase and employ pointing devices to direct users to carry out tasks rapidly and observe

the results immediately. This paradigm provides high subjective satisfaction for novice and intermittent
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users due to its easy learning, easy retention, and error prevention, but may pose great challenges for

programming, in particular for complex tasks. For instance, data entry interfaces in many banking

ATMs are based on direct-manipulation, providing users with a convenient way to quickly master the

interface and smoothly finish a certain number of predefined tasks.

• In menu selection systems, the user is always provided one or more functional list(s). Having acquired

some familiarity with the meaning of the terms in the lists, the user can have a complete and clear

overview on all functions and then choose the appropriate item. Advanced features, i.e. allow users to

choose and edit frequently/rarely used functions, can be offered to increase the freedom of the control

on the interface; they are especially favored by frequent users.

• In form filling systems, the user is supposed to fill in the blanks of a form in order to get answers.

This requires the user to understand what each blank means and how to fill it correctly. Form filling is

suitable for both unsophisticated and frequent users. Although it may increase the possibility of errors

occurrence and needs a tentative training, it is efficient and widely used for querying structured data,

e.g. library information systems.

• In command language systems, the user must be familiar with the commands, becoming an expert

user of the interface. Such expert users overwhelmingly prefer command interaction over other styles

of interactions, mainly because it allows very fast specifications (i.e. typing a command code is faster

than scrolling through menus) and support user’s initiatives (e.g. creating ad-hoc macro-commands)

and flexibility (no need for a taxonomy of commands). Conversely, because it usually takes long time

to learn and master the commands, its high complexity undoubtedly discourages the novice users and

non-professional users. The operations in UNIX systems are a typical example of a command language

system and perfectly illustrate the split between expert and non-expert users.

• Natural language systems set minimal knowledge requirements on users, since the interactions are

mainly based on arbitrary natural language sentences or phrases. Through dialogue and incremental

interactions, the user’s task may be identified and responded. However, the lack of context informa-

tion easily leads to too many interactions, which may largely frustrate the user and produce rather

unpredictable results .

This classification offers valuable principles to the system designers for choosing the right styles of in-

teraction between the system and the users. However, it is a generic classification for whatever systems

or domains. For a specific domain or task, for instance information seeking and representation, there exist

more sophisticated alternatives. In [Hea99], Hearst investigated the features and effects of different query

formulation techniques in each style. Besides the styles discussed in [SP05], Hearst explored other types of

techniques used in query formulation interfaces, e.g. Boolean queries, faceted queries, and graphical inter-

faces. A Boolean query is specified by Boolean connectors and descriptive metadata. Although it is the

current mainstream way in modern information access systems, it is exposed to the confusions of the Boolean

operators for users, results’ low-relevancy and poor-ranking capability. A faceted query is built up with a
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set of categories, each of which contains a different facet (topic or feature type). For instance, to look for

a cook book, its faceted query may be the conjunctives of (vegetable OR sea-food), (main OR salad OR

soup), (Chinese-cuisine OR Thai-cuisine), which implies the user is looking for a ’cook book’ meeting all

three facets. Faceted querying is gradually getting more interest given the following advantages: only most

relevant facets for users are introduced in the query specification; it can improve the results’ relevancy due to

the usage of semantic disjunctives terms in the same facet; and its categorization is favored rather than that

in clustering-based search, since the categories and concepts for faceted query are based on the good domain

knowledge, instead of the similarity measurement of terms (words and phrases) in documents.

Regarding the styles of query formulation interfaces, we can observe two parallel taxonomies, i.e. form-

based and purpose-based. The former taxonomy is characteristics of user inputting or choosing certain

information pre-defined by the system, which can be regarded as data-oriented, e.g. query interface for

databases. The latter taxonomy is largely motivated by the user herself/himself, which can be regarded as

purpose-oriented popular in next-generation web search engines.

Actually, the form-based taxonomy has been widely discussed in the literature. It can be traced back to

the earlier natural language (NL) interface initiated by the HCI community. In NL dialogue systems [JWS81],

the natural language interface was employed in query-answering by either modelling human’s conversation

or using the human discourse as the system’s backend. Consider, for instance, a question such as ’who is the

original inventor of the printing press?’. According to its syntax, the question can be successfully parsed and

formulated into: who + is + the original inventor of the printing press. But such a knowledge-base is often

limited by its capability to answer complex questions beyond its predefined discourse.

Although NL query interfaces, be they textual or audio ones, strongly appealed to researchers and prac-

titioners and have been widely covered in literature, whether it can eventually be widely and regularly used

in real systems is still an open question. To lower the complexity of NL dialogue processing, restricted forms

of NL were developed. They defined their own language syntax and semantics, and users must utilize these

predefined terms to make querying, e.g. the assertional database language SQL (e.g. Select · · · From · · ·
Where · · ·) and the navigational one CODASYL (e.g. Find, Find Next, etc.).

The restricted format of NL interfaces offers much convenience and functional flexibility for frequent

users, with its well-defined syntax. In addition, the query processing turns to be much more efficient than for

queries in classical NL interface. However, it also brings heavy workload to users, as we have mentioned in

the discussion of command language interfaces [SP05]. To explore the benefit from database languages and

pursue the interface’s universality and simplicity, other plausible query interfaces attracted more attention,

i.e. from the keywords-based and concepts-based to menu-based styles.

The keywords-based style becomes more and more influential with the increasing popularity of Internet,

and it has been widely used in Web search engines. Instead of sentences as in NL interfaces, users just

input few keywords which are immediately matched against existing web documents retrieved by the web

engine. The concepts-based style is more intelligent than the keywords-based one, because it applies concept-

based matching instead of merely keyword matching techniques. The idea is to replace the keywords in a

query with the concepts they actually represent in user’s mind. Concept replacement may depend on the
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relevant knowledge repository, e.g. the supporting ontology. Distinguished from the query specification in

database, in both above means, without the professional querying skills or schema information, the user can

find the relevant information by incremental query refinement and navigation. The keywords-based styles

have become full-fledged in the commercial market, such as Google, and Yahoo, while concepts-based style is

still at the explorative phase. Aiming at completely overcoming the low-recall and poor-precision of answers

in keyword-based search, the concept-based approach holds the potential to become the next-generation web

search strategy.

Slightly different from both approaches above, the menu-based (list-based) means provide more complete

structures and functionalities as supported by the system, i.e. each item in the menu corresponds to a possible

query pattern, which are pre-established and organized in hierarchies. This style can largely release the user

from lengthy input and possible errors, so that it is especially applicable for a simple/modest task or a limited

domain.

All above styles of query specification unavoidably resort to single textual input. However, we cannot

neglect the fact that there also exist other query specification styles based on visual means, for instance, the

form-filling and direct manipulation styles. The form-filling style has been widely used in database systems,

since its interface can be easily understood and mastered with shallow query-relevant domain-knowledge. In

library and digital disciplines, to look for a book, the user just needs to fill out one or several properties about

the book through the query interface, such as ’name’, ’ISDN’, ’author(s)’, ’year of publication’, or formulate

more advanced queries with Boolean operators such as AND, OR, >, <, etc. Then, the user’s query can

be translated and formulated into a database query language (e.g. SQL, OQL, Datalog etc.) that could be

fully understood and manipulated by the database system. However, more complex queries cannot easily be

expressed by common end-users with the form-filling style, so that they need to be directly written in certain

database definition languages. In addition, the majority of web services interface still choose the form-filling

interface for users to specify their queries. To further simplify the query formulation and user intervention,

the visual means can be directly employed, e.g. metaphor-based approach. The more advanced graphical

means can be more semantic-powerful, such as degree-based and fisheye-based, which can limit the search

space so as to improve efficiency of the query specification process.

Let us now investigate the second taxonomy, on purpose-based query specification. As studied by many

researchers, general web search techniques often encounter the low-recall and low relevance problems. One

of main reasons is that the goal of the user is not precisely or completely expressed in keyword-based web

search so that the system cannot understand the need behind user’s query, i.e. why the user makes the

search [RL04]. For instance, assume the user’s intentional goal is ’where can I find a Swiss chalet?’. If the

input to the search is just ’Swiss chalet’, the result can contain links on restaurants and hotels entitled with

’Swiss Chalet’, even a huge amount of chalet history information. Some researchers proposed to improve the

relevancy by rewriting the query with additional context information [Law00]. For instance, the user can first

choose a category and then input the keywords so that the search space is limited within a specific category,

e.g. Yahoo or CYC. In addition, users can directly ask a domain-specific website for special information
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needs, e.g. Amazon.com for a book, Monster.com for a job. To some extent, this can help to disambiguate

the syntax of input terms within a certain domain.

Research reported in [Bro02] builds on analyzing the query log and surveying users to classify web search

behavior into three categories: navigational, informational and transactional. More recently, an interesting

finding from [RL04] shows that the majority of informational search attempt to locate a merchandise or a

service rather than to learn about it. In particular, the mobile interface design must take careful attention

on the importance of instant access to service information and on providing an easily operable process

that considers all ’7C’ factors: context, content, community, customization, communication, connection and

commerce. [LB03].

In LBS, query formulation is a prominent factor for user satisfaction in getting on-the-spot information

needs fulfilled, since the mobile users may easily get frustrated if confronted with uneasy interactions with

the system just for eliciting their queries. Unfortunately, the study on query formulation for mobile services,

especially for LBS, has been largely ignored and substantially lagged behind the needs. In the following part,

we investigate if existing styles satisfy the requirements in mobile services, as well the existing design made

by previous LBS.

7.1.2 Query languages

From the beginning of relational databases and object-oriented databases in 90’s, to deductive databases,

database systems have provided well-developed tools to manage data. Each type of database must be built

upon certain mathematical and logical theory and have an appropriate query language. For instance, SQL

(’Structured Query Language’) is deemed as the most popular and widely used data-manipulation and data-

definition language for relational databases. OQL is designed to operate data in object-oriented databases,

while the integration of relational databases and logic programming specially results in deductive database

systems [Liu99]. As web sources become more and more available, people are getting used to seeking in-

formation from Internet and search engines. However, the metadata of web-pages and websites are still too

limited to answer complex queries, and its essentially text-frequency based matching strategy is far away

from the query processing capabilities in database. Thus, the W3C Consortium proposed RDF/XML as new

standardization goals.

It is significant to choose a suitable query language to fully support query answering and certain reasoning

capabilities in LBS. A viable query language for LBS should meet the following desiderata:

• It is generally acknowledged that it is a cost-expensive and time-consuming task to integrate and

maintain all data instances in a single repository. In addition, the characteristics of data sources in

LBS, i.e. heterogeneity, dynamicity and authentication protection make this task impossible. Hence,

as the data core of the LBS, a LBS ontology possesses the knowledge about the basic organization and

functionalities of all local data services, in terms of a set of data profiles, but the service instantiations

in these data profiles are still autonomously stored and maintained at data services’ sides. Hence,

the query language should be flexible but intelligent to query this LBS ontology and find which data

services can meet the current service request.
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Table 7.1: A comparison of different query formulation strategies.

Styles Advantages Disadvantages Feasibility and Adaptivity Existing Practices
1. Tex-
tual NL-
interface
based
(sentence-
based)

Simple and univer-
sal for different-
levels of users.

Hard to implement and main-
tain, error-prone, hard to formu-
late right query for end-users.

Almost impossible to widely ap-
ply in services with different do-
mains.

no

2. Au-
dio NL-
interface
based
(voice-
based)

a most native and
favorite way of
query expression
for humans, espe-
cially favored more
than the input on
small keyboard.

1) the low-precision of recogniz-
ing in a mobile and possibly noisy
environment, 2) the lack of a
robust language model enabling
quick recognition with a huge vo-
cabulary [FM02], 3) the needs
of special attention on location-
specific speech recognition.

It is just at a tentative step
rather than the commercial mar-
ket. Its technical challenges (e.g.
voice recognition in dynamic en-
vironments) constrain its popu-
larity.

Google Lab has already explored to build
up a prototype voice search system by
creating and analyzing different language
models from a huge set of trained queries.

3. Re-
stricted
(or Refor-
matted)
languages
based

well-defined lan-
guage syntax
provides the effi-
ciency for query
processing and the
possibility to make
complex queries

hard to learn, it becomes impos-
sible without the schema-like in-
formation about the services, and
the long statements are unsuit-
able for limited handheld display.

it fits for well-organized service
structures, but users must be
very familiar with the language
syntax, the service structure and
vocabulary. So it can not be uni-
versal or practical for different
levels of LBS users.

no

4. Form-
filling
based

easy to learn, very
specific for each
type of service.

hard to implement the service-
dependent forms, and have spe-
cific requirements on mobile de-
vice (e.g. running java or JSP
etc.).

It is applicable for a certain do-
main, rather than the multiple-
domains LBS.

it is popular in web services research com-
munity, but in real market it is only appli-
cable in a unique domain, e.g. news sub-
scription service on mobile device.

5.
Keyword-
based

simple and univer-
sal for different-
levels of users, 2-3
terms input are ac-
ceptable for hand-
held device.

error-prone, possibly low-
relevance, poor filtering and
ranking with huge amount of
answers.

It has been widely used in web
search engines. But the low-
relevance is a critical challenge
for the limited mobile screen and
capability. And it needs to be im-
proved to represent and retrieve
the spatio-temporal information
from web-pages.

most search engines.

6.
Concept-
based

more intelligent
keyword-based
approach, high-
relevance, help to
understand the
purpose of the
query.

the maintenance of concept
knowledge base, e.g. ontology
repository.

It is a possible tacit in next-
generation web search, as well,
it can be applied in LBS if they
can provide sufficient spatio-
temporal and contextual concept
support.

The project SEWASIE applied an ontology-
enabled interface to query the data from a
specific perception in the ontology reposi-
tory. In particular, the project CRUMPET
simply presented an tentative ontology-
based approach in LBS setting. How to
design the ontology-based querying inter-
face on small mobile devices is still an open
question.

7. Menu-
based
(List-
based)

simple and univer-
sal for different-
levels of users, less
user’s input and
intervention, error-
prevention.

hierarchy-structure limits the
amount of terms in menu, and
repetitive navigations between
hierarchies may frustrate users.

It is specialized for certain ser-
vices and interactions, rather
than a large spectrum of services.
Its ease to learn can appeal to
the novice and modest users, for
the experts it seems too rigid
to quickly locate or to tailor for
their frequent use.

i-area service at DoCoMo in Japan has
been able to supply the information of
nearby facilities to mobile users, which are
organized in a multi-layered menu format.
And the requested service is represented
with functions and location.

8. Direct
manip-
ulation
(Metaphor-
based)

simple for
different-levels
of users, error
prevention, and
visual intuitive
particularly for
handheld devices.

sometimes, what information will
be represented after the actions
and navigations is vague for end-
users. It is also hard to navigate
between different categories. And
it can require pointing devices to
control the manipulation.

This approach is also very com-
mon in tour-guide or route navi-
gation services. Users can benefit
from its visual intuitiveness and
ease to follow.

In GUIDE system, mobile visitors can nav-
igate with a map in Lancaster City, and
ask the attraction information by touching
the info button when approaching to an ob-
ject. The requests are presented as thumb-
nail type pictures with textual descriptions
[CDM+00]. Similarly, TIP project em-
ployed the map- and text- based metaphor
to guide and recommend the users with in-
teresting sights [HV03].

9. Map-
and-
Hyperlink
based

to combine the
GIS support with
the hyperlink
of the service
gives users more
intuitive and com-
prehensive spatial
information.

specific means is needed to iden-
tify the association between the
location in GIS and spatial infor-
mation on web-pages. And the
query specification in spatial di-
mension is still limited.

It is practical to widely use but
can have new challenges on spa-
tial web-pages processing.

Yahoo! Local allows users to search a
service name with free text, locating ’in’
a place in terms of ’address, city or zip
code ’, and results are represented with a
map and a list of relevant web-pages. The
Froogle advanced search enables customers
to specify the name, price, system-defined
category and vicinity of the target product
using free text, and answers with product’s
picture, price, ratings and hyperlinks.
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• Built-in reasoning capabilities are desirable in the LBS query language. It is because data profiles in LBS

are generally organized in hierarchies, but relational database query languages are poor to efficiently

deal with hierarchical data, object-oriented languages can not handle the reasoning as relational query

language, and logic query languages must be extended to provide sufficient support to complex data-

types and property-types.

• The query manipulation on context-sensitive data is important in LBS. Besides the most typical con-

text data, i.e. spatial and temporal constraints, other types of context-dependent knowledge can be

potentially useful. For instance, ’near’ in Beijing may mean ’within 5km’, but in Lausanne it may mean

’within 1km’. In this example, the city scale turns out to be a piece of contextual knowledge useful for

semantic query evaluation. In addition, we need to carefully investigate the generic and specific needs

of query specification in the context dimensions. Rather than the terms/relationships in conceptual

modelling, in LBS, the human-familiar ones (e.g. near, in the south of, expensive, calm) are preferred

than some theoretical denotations.

• The accessibility of data sources to certain users can be partially or fully restricted due to privacy issues

or commercial reasons, so that the data accessibility management on diverse data sources is needed,

i.e. within the same category of services, identify which ones are accessible and to what level of detail

or which part of services. In return, the user can configure which service can access to her/his profile

information or even decide what information (e.g. in profile or search history) can be obtained and

utilized by the LBS or data services etc. Hence, the query language should be aware of the accessibility

constraints from both users and services sides.

7.1.3 Chapter Outline

The reminder of this chapter is structured as follows. Section 2 discusses the main challenges in query

formulation for Location-based services, and then points out our contribution. Section 3 details our query

formulation approach, in terms of <what, where, when, what-else>, that aims to provide a context-aware and

concise query interface tailored for LBS requirements. Section 4 describes the formalization of translating

the query from natural language format to RDF/OWL-based language that can be manipulated by the LBS,

and also addresses the relevant constraint issues in query formulation. Section 5 concludes and points to the

future work.

7.2 The Challenges and Our Contribution

The success and prevalence of search engines, such as Google and Yahoo, indicate that users have already

adapted and learned to formulate their information needs in a free-text way and finally find out the informa-

tion they ask for. But, the search fashion in conventional web can not be easily transferred to the handheld

web, where human’s reading means and the presentation of the content have to be largely changed to comply

with limited display-capability [JMMN+99]. For instance, in the conventional web the user can easily browse
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a long web page by scrolling up/down, or open several web pages in parallel. But in handheld web, it is not

practical to do the aforementioned operations. Instead, the original content needs to be concisely presented,

possibly divided into consecutive pages and browsed by navigations. Thus, although handheld devices do

provide unprecedented convenience for mobile users to access information anytime and anywhere, they pose

new challenges in many technical fields, such as limited computation capability, wireless networking con-

nection, privacy management, interface design, query specification and user’s interaction mode with mobile

devices etc.

Our work focuses on the query formulation and query processing in LBS. As discussed in the previous sec-

tion, existing paradigms are either too simple or too rigid (e.g. list-based or metaphor-based), or unintuitive

to provide little hints in understanding why redundant and overabundant answers return and how to refine

the query (e.g. conventional web search), or posing too high requirements onto mobile device capability (e.g.

to display the ontology concepts and relations in ontology-based style). We will address four of the major

difficulties as our foci, in interface and query formulation issues:

• User interface design: universal, concise and effective (FORM).

In the HCI community, to pursue a design-for-all fashion, a unified interface must satisfy two require-

ments: user-awareness and usage-context awareness [SS04a]. The user-awareness means interactions

are tailored for each given user according to his/her abilities, preferences and requirements etc. The

usage-context awareness refers to the fact that the interface can change to adapt to changes in the

context. The adaptation can cover from the channel shift and modal change to sources selection, etc.

However, while the unified interface design comes to the realization phase, it must overcome two tech-

nical obstacles, the diversity of the device capabilities and the efficiency of interface adaptation. Hence,

is a free-text based interface a solution to fully satisfy the needs in LBS in terms of unification and

conciseness and effectiveness? From the analysis of web search behaviors, it was observed that web

users have customized and learned how to formulate the query in certain terms to avoid result sets with

too many or too few results. This fact implies that users are customized to utilizing free-text based

query formulation to locate and sort services and products. Starting from this experience, our design

integrates another significant part in LBS, i.e. context, as the complement to the core of service in the

query.

• The contextual expressions (CONTENT).

In most approaches of query representation in service search, little attention was focused on the expres-

sion on contextual dimensions, e.g. location and time. For instance, the user cannot clearly express

their goal of service search in a specific geographical range and within a certain time. In conventional

web search, with input ’hotel near railway-station’, most results present web-pages including keywords

’hotel’ + ’near’ + ’railway-station’, departing from the semantic meaning of the original query. The

situation occurs because in current search engines, on one hand, a unified textbox-like interface can

not clearly disambiguate ’near railway station’ as a spatial condition, on the other hand, current web

information retrieval techniques are not efficient enough to do the location-based service search. To the
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best of our knowledge, the only efforts on spatial conditioning of query expression are made in Yahoo!

Local and Froogle advanced search at Google. But they just provide relatively simple spatial operands,

such as ’in’ a city, address etc. In addition, the query expression in the temporal dimension was never

addressed.

• Multi-level of Constraint controls - Hard, Soft or No constraints (WHERE).

When users seek a service or a product, they often hold some conditions or preferences on certain

properties. The difference between the conditions and preferences is the constraint level, i.e. hard

condition (the target service or product must satisfy the condition) or soft condition (the target service

or product should preferably satisfy the condition). Although the modeling issues on multi-level of

constraints have been intensively discussed in fuzzy and preference modeling in database e.g. [Kie02],

how to represent such constraints in query expressions in LBS is still an open question. Our work is

motivated by enabling users to simply expressing the constraints on different dimensions, in order to

avoid no answers or redundant answers. The dimensions are referred as subject, spatial, temporal, and

other features. When the user has no constraint on certain dimension, the constraint level drops down

to zero. Accordingly, the hard constraint is scored as 1, and soft one is scored between 0 and 1.

• Different abstraction levels of semantic on each dimension (SELECT).

In mobile search, content presentation of results is mostly predefined by the systems, they often ignore

the fact that the user can only be concerned with certain properties of the service rather than the

expectation from the system. For instance, in a mobile search for a hotel, the result is often associated

with a link, a map and a price, but the user can have more concerns on the facilities and ratings from

others. Hence, to allow users to specify what they want to see in the result can be an advantage for

different needs of mobile users.

7.3 Query Formulation in our LBS

7.3.1 Our approach

In this section, we present a tuple-like query formulation approach to help users to express their queries in

our LBS. It involves four dimensions, and it is simply formulated as a tuple as:

<what, where, when, what-else>

It can be understood in such a way as ’look for service of type what, that are temporally available in

the when timeframe, that are geographically available in where, and mandatorily or preferably meet the

conditions in what-else’.

In this tuple, the term what is used to specify the subject of the query, which could be a facility, a service,

a product, or a general term. It can be expressed with a simple word or a small set of terms, e.g. ’tourist

office’ (a facility), ’car rental’ (a service), ’mp3 player’ (a product), or ’top 3 attractions’ (a term). During
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query processing, what is eventually translated as Qwhat which can be identified and well understood by the

LBS as a Service, a Product or just a Term.

The term where explicitly delimits the spatial location or area of the requested service. If where is not

specified, the default spatial specification is (near, current location). Where can be further described by the

sub-formula (spatial-relationship, spatial-argument(s)). Spatial relationships can be the traditional binary

topological relationships, such as within(distance-argument)of(reference-argument), the sub-formula being

written as (spatial-relationship, argument1, argument2) and so on. As discussed in chapter 2, since the

manipulation and computation on geographical data will be mainly supported by an embedded or external

GIS assistant, its real computation capability on spatial data and relationships largely depends on the GIS

used by the LBS. We just focus on three types of spatial relationships frequently used in spatial query

formulation, i.e. metric, topological, directional (See Table 3.2).

The term when emphasizes the user’s temporal conditions on availability of the requested service. The

default specification for when is (after, current time). Similarly to where, when can be described by the

sub-formula (temporal-relationship, time parameter(s)). Binary temporal relationships, e.g. between, can

be denoted as (temporal-relationship, time1, time2). We assume the LBS has a pre-defined ontology able

to identify the basic temporal terms and operators, such as before, after, between etc. which have been

elaborated in Table 3.1.

The term what-else explicitly specifies what other conditions the service must (may) satisfy for user’s

current request. The conditions can be simple predicates on properties of the targeted service, such as price

< 400 CHF for services selling digital cameras, or predicates on the existence of some specific qualifications of

interest to the current request, e.g. services ’offering a student-discount or membership discount’. What-else

is an optional component of the query, composed of zero, one or more predicates. The predicates can be

unary ones, such as haveDiscountFor(student), and binary predicates such as operator(attribute, value), e.g.

<(price, 400 CHF). The basic operators include <, >, =, ≤, ≥, �=.

Naturally, we assume the user input for what-else is consistent at both the syntactic and semantic level.

For instance, assuming Qwhat is ’hotel’, examples of incorrect predicate specifications in Qwhat−else include the

following: 1) the predicate (price, =, ’blue’) is syntactically incorrect as the value domain for ’price’ is either

numeric or a qualitative value in a predefined list such as ”high”, ”moderate”, ”cheap”; 2) the combination

of predicates (price, <, 50CHF) AND (price, >, 60CHF) is obviously incorrect as the two predicates are

contradictory; and 3) the combination of predicates (price, =, ’cheap’) AND (category, >, ’four star’) is

syntactically correct but semantically incorrect (incompatible) as the LBS knows that five star hotels cannot

be cheap. In such cases, the LBS will prompt the user to correct the erroneous specification; in return, if the

user fails to correct the contradictory parts, the LBS will just ignore the contradictory predicates in further

query formulation and processing steps.

7.3.2 Subject dimension - what

The subject dimension is the core of the query, directing the LBS to look for such a service ’what’. Recall

query formulation in relational database, where queries are expressed as SQL statements, i.e. in the format
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Select . . . From . . . Where . . . , before the query is parsed by the query compiler and optimized. Similarly,

regardless of conditions in other dimensions, the subject dimension must be firstly parsed and looked up with

the LBS ontology. In our work, the subject ’what’ is composed of one or few input words by users, let us call

it Q(what). Then it needs to be identified, parsed and rewritten into the format understandable by LBS, let

us call the reformulated what as Qwhat. We assume a subject recognizer has the aforementioned functionality.

Figure 7.1 illustrates how the subject recognizer works and how the different components interact:

Subject Recognizer

Pattern 
matching

Query Terms 
Processing

User Query Input
Query 

Formulation

Formulated 
Query Output

Shared terminology
patterns

Terms 
cleaning & 

parsing

Figure 7.1: The basic infrastructure of the Subject Recognizer.

• Query terms processing: this process cleans and identifies the terms in Q(what), possibly using

assistance from some external dictionary (e.g. WordNet).

• Pattern matching: using a set of predefined query patterns, this step identifies the grammatical

query pattern of Q(what), e.g. ”cheap hotel” is identified as the pattern adjective + noun, from which

the central term in Q(what), e.g. hotel in this example, can be inferred.

• Qwhat formulation: thanks to the Shared Terminology in the LBS, each term in Q(what) is identified

and output to the reformulated query, e.g. Qwhat = hotel, and price=”cheap” is added to Qwhat−else.

Informally, the subject recognizer acts to parse and understand what services the user wants to be retrieved

by the LBS. By matching Q(what) against the query patterns [AR02], the LBS will understand the subject

of user’s goal. In other words, the central term and other terms in Q(what) will be identified by looking up

the shared terminology. For each pattern, different query rewriting strategies will be applied. Afterwards, by

taking into account conditions in other dimensions, as well the user profiles, the LBS can better understand

the user’s goal and further refine the query. Some basic query patterns using free-text have been elaborated

in natural language processing discipline, e.g. [AR02]. According to the actual needs of LBS users, query

patterns can be added or modified by LBS experts. Let us now give our strategy in recognizing Q(what) and

formulate it to Qwhat as follows:
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Algorithm 1: Reformulation of the what dimension in the Query
Input: Q(what) the input as stated by the user; ST is the LBS shared terminology; QP is a set of

known query patterns.
Output: q′, q′other (q′ is the reformulated query in the what dimension, Qwhat, and q′other is the

reformulated query in the other dimensions, if any.
begin1

q′ ←− ∅; q′other ←− ∅;2

c ←− ∅; //initialize a variable in contextualized term data-type;3

q = {q1, . . . , qi} ←− ∅; //initialize a variable in string list data-type;4

q ←− Q(what);5

c = PerfectMatch(q, ST);6

if c then7

q′ ←− c;8

else9

(q′, q′other) ←− TransformQuery(q, ST, QP);10

end11

Algorithm 1 briefly shows how the what dimension in Q(what) is identified and reformulated with the

assistance of the service ontology, the shared terminology and the query patterns. The algorithm basically

calls two functions: PerfectMatch(q, ST) and TransformQuery(q, ST, QP). The former checks if there

is a perfect match between Q(what) and the name of a service in the service module, either directly or via

synonyms from the shared terminology. This obviously is the most favorable case. It is likely to happen

when users are looking for the most traditional services, such as hotel, restaurant, bus, museum in a tourism

application, or with frequent users, i.e. when users are familiar enough with using the LBS to be aware of

the terms used by the LBS. When a perfect match is found, the user input is taken forward to the next

processing step, without the need to generate additional specifications at this step. The goal of the second

function, TransformQuery, is to find out the potential subject of Q(what) whenever PerfectMatch has

failed to find the exact match. Once found what type of service the user is looking for, the function further

transforms the query into the format (q′, q′other). Assume, for instance, Q(what)=’experienced baby-sitter’

and a perfect match is not found. Lexical analysis of Q(what) shows that it can be matched with the pattern

”adj. + noun”. At this point the LBS takes ’baby-sitter’ as the specification of the targeted service. Let us

now assume that there exists a service class called baby-sitting in the service ontology. By looking into the

shared terminology, the term baby-sitter is identified as closely related with baby-sitting: e.g. ”baby sitter

is a person who can do the work of baby-sitting”. Thus, the initial query ”baby-sitter” can be rewritten

into baby-sitting, which becomes the output q’ (i.e. the subject of Q(what)). The remaining adjective part

’experienced’ is then identified as q′other. To better formulate q′other = ’experienced’ in terms of LBS semantics,

it is necessary to look up the metadata of service class ’baby-sitting’ in the service ontology. For instance,

if there is an attribute skillLevel with value domain {”beginner”, ”experienced”}, q′other can be formulated

as q′other: skillLevel=”experienced”. The algorithm below details our strategy in reformulating queries when

the perfect match can not be achieved, namely the function TransformQuery(q, ST, QP), as follows:
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Algorithm 2: Transform the Initial Query q into format (q′, q′other)
Input: q is the query Q(what) in string data-type; ST is the shared terminology in LBS; QP is a set

of query patterns.
Output: q′, q′other (The query is transformed into elements understood by the LBS core ontology).
begin1

q′ ←− ∅ q′other ←− ∅;2

c ←− ∅; //initialize a variable in contextualized term data-type;3

qs, qo ←− IdentifyPattern(q, QP); //identifies the pattern that corresponds to Q(what) and4

extracts from the pattern the subject of the query returned as qs and other query specifications
returned as qo;
c = getSimilarService(qs, ST); //identifies the service in the service ontology that best matches5

similarity with qs;
switch c do6

case hasSubtype(c, c1) and isSimilar(Discriminator(c, c1), qo)7

q′ ←− c1;8

//if the identified service c has a more specific service c1 whose similarity with qs also9

encompasses the elements in qo, than replace the service c with its more specific subtype c1;
case hasProperty(c, p) and hasValue(p, qo)10

q′ ←−c, q′other ←−(p = qo);11

//if qo is the valueof a property of c, qo is interpreted as a predicate on this property and the12

predicate is added to q′other while c is confirmed as the subject of the query and is returned as
q′;
case hasSubtype(c, c1) and hasFunctionality(c1, f) and isSubtype(qo, f)13

q′ ←− c1, q′other ←− (f = qo);14

//if qo is a supertype of the functionality of a subtype c1 of c, qo is interpreted as a predicate15

on the functionality of c1 and the predicate is added to q′other while more specific c1 is stated as
the subject of the query and is returned as q′;
case . . .16

. . . ;17

otherwise18

RETURN;19

end20

Users are often unable to specify their query appropriately, i.e. in a way that naturally matches the meta-

data in the core ontology. This poses a great challenge to the LBS to correctly understand and reformulate

the user’s query according to user’s implicit input. In [AR02], Allan et. al. proposed to apply query patterns

to identify user’s query. On the basis of observation and analysis on user’s queries, they identified a set of

frequently used query patterns that can be useful to disambiguate the user’s query. Following this idea, we

assume there are a set of query patterns known to the LBS, so that for instance a Q(what) formulated as

’experienced baby-sitter’ can be found to be consistent with the pattern ’adjective + service’. Accordingly,

for each pattern, certain query transformation strategies will be applied. For instance, for the pattern ’adjec-

tive+ service’, service in the pattern will be identified as the query’s subject and adjective will be regarded as

other conditions as shown in line 10 of Algorithm 2. In addition, with the assistance of the shared terminology

(or external ontology), the query may be identified as a specialization/synonym of existing services in core

ontology. For instance, let us assume that Q(what)=’ski rental’, and in the CO service module there is a

service hierarchy showing SportEquipRenting as a subtype of a more generic Renting service: Renting � SportE-

quipRenting. Applying the functions IdentifyPattern() and getSimilarService(), ’rental’ is identified as
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the subject of the query, ’ski’ is set as additional specification, and Renting is identified in the service module

as the service most similar ’rental’. Rather than stopping here, the algorithm now checks if it can make use of

the additional specification ’ski’. It finds ’ski’ in the ontology is a sport equipment, Ski⊂SportEquip, and sport

equipment is used to create a specialized subtype of Renting, called SportEquipRenting: SportEquipRenting ≡
Renting
∀hasProduct.SportEquip. Consequently, rather than generating a generic query for service Renting

with additional specification ’ski’, a more focused query for service SportEquipRenting can be directly gener-

ated. According to the rule in line 11 of the allgorithm, the query is transformed into (q’=SportEquipRenting,

q′other ←− (∃hasProduct.Ski).

Algorithm 2 as shown here only lists transformation rules for some typical query patterns (lines 7, 10,

and 13). The real algorithm would obviously cover all the known patterns and have a case for each one.

Once the LBS is in use, new query pattern and transformation strategies can be added and existing ones

updated. Moreover, to simplify the algorithm, we did not take into account multiple conditions in Q(what).

For instance, the specification cheap calm hotel can be regarded as hotel with two restrictions, separately

”cheap” and ”calm”. In this case, by using a loop, all conditions in qo can be similarly transformed into the

format in Algorithm 2, and the final q′other be expressed as a conjunction of concept restrictions. Finally, if

the LBS can not identify the service and its subject, its failure means that the current LBS has no service

information concerning the service requested by the user. A possibility is then to forward the query to

neighboring LBSs.

7.3.3 Spatial dimension - where

The spatial dimension specification is intended to constrain the geographical location or range of the services

targeted by LBS queries. As discussed in Chapter 2, relying on loosely-coupling with GIS or spatially-extended

DBMS (SDBMS), the LBS can separate spatial data management from thematic data management (i.e. LBS

ontology). For each service in the LBS, its geometry data is stored and manipulated via the GIS/SDBMS, but

its non-spatial data is organized and handled by the LBS and its data sources (see Definition 4.10 in Chapter

4). In this section, we firstly discuss what spatial operators and functions are mandatory or user-preferred

in LBS interactions, then we investigate how to identify semantics of the arguments in Q(where), and finally

explain how to translate Q(where) into Qwhere understood by the LBS.

Spatial Operators in LBS query. Languages for querying geographical databases exist and often call

for sophisticated spatial analysis functions that need to be elaborated by experts in geodata manipulation.

Non-expert and occasional users are supported via simpler, yet not obvious interfaces in extended SQL (e.g.

TSQL2) or alike. These also support map-based queries that refer to a point designated by the user on a

map displayed on the screen, LBS cannot offer the same functionality as these interfaces. They can only rely

on simple means to specify how to use spatial features in the selection of services. In daily life, most people

are accustomed to describe their position (or the position of an object) by referring to a certain landmark

(e.g. a hotel, a park, a main street) and using some locational natural language qualifiers such as near, at

the right-side, behind, between, etc. These qualifiers informally express a spatial constraint, which can be

more formally reformulated as (spatial relationship, spatial argument(s)).
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Relationships on spatial objects are generally classified into five types: set-oriented, metric, directional,

topological and Euclidean [SC03]. The most intuitive and hence most frequently used in LBS querying are the

metric, directional and topological relationships. A recent document from the OGC Consortium (release No.

OGC 05-128) identifies eight types of topological relationships: Equals, Disjoint, Intersects, Touches, Crosses,

Within, Contains and Overlaps. The metric relationships mainly include Within Of and the fuzzy relationship

Near. Directional relationships encompass three categories [LSC03]: 1) absolute directional relationship that

refer to a global reference system, e.g. to the south of, 2) object-based directional relationship, where the

direction is based on the orientation of a reference object, e.g. in front of the Opera House, and 3) view-

based directional relationship, where the reference is relative to the individual looking at the scene. As our

is LBS querying, we focus on providing spatial constraints for service matching rather than navigation or

routing functionality. Hence, we mainly investigate the application of metric relationships, some topological

relationships, and simple directional relationships for the specification of spatial criteria in LBS queries.

Table 3.2 gives a classification of these spatial relationships that are potentially useful in LBS interactions.

Referring to Oracle spatial 10g, we illustrate how to represent these spatial relationships in a high-level

querying language. Oracle spatial 10g has extended its expressiveness and efficiency to topological and metric

relationships, but is still limited as far as support of directional relationships is concerned. In existing GIS or

spatially-enabled applications, advanced functions such as directional queries can be realized by programming

with e.g. Java or C++ [LSC03].

Spatial Arguments in LBS query. As discussed at the beginning of this section, the spatial argument

in the LBS query is expressed in natural language and mainly refers to the spatial reference identifiable

or known by common users, which encompasses landmarks, administrative references (e.g. district names),

and terms in transportation networks. Benefits of this approach include: 1) ease to recognize, remember

and apply by common users in an unfamiliar environment; 2) ease for LBS designers to map between GIS

and spatial concepts in the LBS geographical ontology; and 3) ease to extend into other functions, e.g. a

map-viewer. Let us firstly investigate the characteristics of the spatial arguments in LBS and then discuss

how to disambiguate their spatial semantics.

Locally Constrained. By definition of LBS, the spatial arguments only target services within the local

region. Hence, the set of frequently-used references can be narrowed down within the spatial coverage of the

LBS, which makes it possible to contain and organize all references in the LBS ontology according to their

spatial relationships and geometric features (see Chapter 3).

Imprecision. The imprecision of spatial arguments can result from various reasons, such as the imprecision

of positioning, spelling mistakes, the use of indirect references (e.g. Lausanne’s oldest church), and multiple

names in the geographical ontology referring to a single place in the GIS. Our work mainly focuses on the

last two types of imprecision: indirect references and multiple occurrences.

Incompleteness. In database systems, each argument is well defined and is associated with a certain data

type and class (or attribute) so that it has no or little ambiguity in the argument. But for location-based

services, due for example to the frequent use of abbreviations, the argument in the query can be uncertain

and incomplete. For instance, the argument ’St. François’ is vague for the LBS since it can correspond to
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multiple occurrences, e.g. a square, a church, a caf, or a museum. Such ambiguity is a big challenge in spatial

web information retrieval. For instance, given a keywords-based query ’Chalet near Lausanne’, plenty of

results are irrelevant as the search engine cannot identify whether the query looks for places near Lausanne

or place names including keywords Lausanne and Chalet.

Context-dependency. The semantics of a spatial argument is often concerned with a certain context, e.g.

spatio-temporal one. In particular, the semantics of fuzzy concepts may be dependent on the query’s context.

For instance, how many kilometers does ’far’ mean? In Beijing and in Lausanne, ’far’ may respectively stand

for 50km and 10km, considering the difference of city areas. The available transport means also have an effect

on the argument disambiguation: for instance, ’far’ may mean 5km for a pedestrian but ten times longer for

a user driving a car.

By default, Q(where) is assumed to use the spatial relationship near, and its a single argument is assumed

to represent Me (i.e. user’s current location). For more expressive spatial constraints, the spatial arguments

are not necessarily limited to ’current location’. They can also use other types of references, e.g. street name,

district name, or a distance etc. In the former case, the LBS needs to geo-code the user’s current position

obtained from a GPS into its spatial corresponding position in the GIS, e.g. address; but in other cases, the

LBS may need to carry on more complicated tasks to match the arguments against the spatial references in

the geographical ontology. In the geographical ontology, any spatial reference has two intrinsic properties:

geometry type and reference type. Geometry type corresponds to the geometry type of the spatial reference

in GIS, e.g. point/polyline/polygon. Reference type refers to the function type of the spatial reference, e.g.

shop, park, highway, town hall etc.
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Algorithm 3: Identify the spatial argument(s) in Q(where)
Input: Geo onto: spatial concepts in core ontology; arg: the spatial argument in Q(where); uID :

user’s identifier to position the user.
Output: s arg[ ]: a set of possible spatial arguments identified by LBS.
begin1

s arg[ ]←− ∅; //initialize a variable list in spatial data-type of LBS;2

switch Type(arg) do3

case NULL4

RETURN;5

case ”Me”6

s arg[ ]←−(”loc”, getLocation(uID)); RETURN ;7

//the spatial argument is just the location of the user. This is denoted by using keyword ”loc”8

as the type of the argument and using as argument value the value returned by the
getLocation() function. The function returns the geographical position of this user;
case address, street, zipCode, districtNo, ...9

s arg[ ]←− (Type, arg); RETURN ;10

//the spatial constraint is explicitly specified in the query. The spatial argument is set to the11

value given in the query, with type denoting the corresponding property (either address or
street or ...).;
otherwise12

. . .13

for x ∈ Geo onto do14

if MatchLandmarkName(x, arg) then15

Append(x, s arg[ ]) //this loop is to convert all landmarks mentioned in the query into16

references to the corresponding ontology element;

end17

Algorithm 3 shows how the arguments are identified in Q(where). When the argument is ”Me” (i.e. the

user’s current location), the LBS gets the position of the user (by whatever positioning system it uses) and

provides this position to the GIS as the identified argument (line 7). Similarly, if the type of argument is

explicitly identified as a valid administrative spatial reference, such as address, street, zipcode or district

number, the argument is accordingly rewritten, e.g. arg ←− (address = ”Av. du Leman 23, Lausanne”)

(line 9). As we explained before, the references are locally constrained, thus, the city ”Lausanne” is added

to the new rewritten argument considering user’s current location. The function MatchLandmarkName()

compares the argument with the landmark references in the core ontology. The comparison is based on the

words in arg. For instance, if arg = ”St. François”, the LBS will find three relevant entries in the core

ontology, namely Church St. François, Palace ’St. François’ and Street ’Av. St. François’. In this case,

the LBS will consider the three landmarks as candidates for addition to the argument set. The candidate

landmarks are checked for consistency with the spatial relationship in Q(where) (see Algorithm 4 hereinafter).

For instance, relationships such as behind or in front of refer to a point or polygon object, not to a linear

object. Thus, if Q(where) is ”behind St. François”, the interpretation of ”St. François” as a street can be

discarded. Conversely, relationships such as along imply a reference to a polyline or polygon object (e.g. a

street or the Leman lake), leading to discard point objects (e.g. shops). Disambiguation between remaining

candidate arguments can be performed using additional information, for instance context factors. The most

suitable argument will be chosen as the final argument.
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Algorithm 4: Transform Q(where) into qwhere

Input: Geo onto: spatial concepts in the core ontology; arg[ ] : the spatial argument(s) in Q(where);
rel : spatial relationship in Q(where); uID: user’s identifier to position the user.

Output: qwhere: the reformulated query in the spatial dimension.
begin1

n= getArgNumber(arg[ ]);2

if n=0 then3

RETURN4

if n=1 then5

foreach x ∈ arg[ ] do6

if CheckConsistency(rel, x) then7

qwhere ←− Append(rel, x)8

//rel represents the spatial operator specified in the original query Q(where); x is the9

unique spatial argument in Q(what). This function checks the syntax consistency between
rel and x, e.g. to check if the spatial data-type of x is consistent with rel. It will return a
boolean value, if it is ”True”, append (rel, x) to reformulated query qwhere; otherwise,
continue to check the next argument in the list arg[].

if n=2 then10

Arg1[ ] ←− GetArgs(1, arg[ ]);11

//set all possible first arguments to the array Arg1[ ].12

Arg2[ ] ←− GetArgs(2, arg[ ]);13

//set all possible second arguments to the array Arg2[ ].14

foreach x ∈ Arg1[ ] do15

for y ∈ Arg2[ ] do16

if CheckConsistency(rel, x1, x2) then17

qwhere ←− Append(rel, x1, x2)18

//For any pair of (rel, x1, x2), check its syntax consistency. The consistency check includes19

the consistency of data-types of two arguments, the consistency between arguments and the
operator rel.

qwhere ←− ContexualizeQwhere(qwhere, getLocation(uID), context factors)20

//This function refines qwhere by considering contextual factors and outputs the most suitable21

spatial predicate qwhere. The refinement mainly refers to specifying relevant parameters, e.g.
Near(x) can be transformed to Inside(x+θ), the value of θ can be different according to the user’s
transport means.

end22

The misconception or ambiguity is a common problem in query formulation, in particular when we allow

spatial landmarks as arguments. Therefore, Algorithm 4 attempts to check the integrity consistency between

spatial arguments and the spatial operator, to eventually better transform Q(where) to qwhere. The function

CheckConsistency() checks if the spatial argument is valid for a certain spatial relationship. For instance,

the relationship along must have an argument in the Line/PolyLine data-type. Thus, if the argument is a

spatial reference in point data-type, it is inconsistent with the relationship specification and has to be removed

from the list.

The function ContexualizeQwhere() refines qwhere by considering the effect of relevant contextual

factors on spatial constraints. For instance, when the user is driving a car, θ ’s value of the constraint

In(x+θ) is different from when the user is walking. In addition, it may help to eliminate some irrational

arguments from qwhere, e.g. when the user is driving on the highway, for constraint along(highway A2), LBS

will only consider the services ahead rather than services behind. In addition, the LBS may need to evaluate
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and rank the formulated Q(where) by considering other dimensions, for instance, the time dimension. When

a user is looking for a service for tomorrow (or in some future time), the current highway constraint is not

any more to be considered as a constraint for reformulating Q(where). The inter-dimensional constraints will

be checked when processing the query, which will be discussed in the upcoming chapter.

7.3.4 Temporal dimension - when

In daily communication, when a user looks for a service, her query is likely not to mention a temporal

constraint. This is because the temporal constraint is inferable from local conventions ruling the requested

service (e.g. given a query about shops, shops’ opening-hours are the same for most shops and can be found

in the context data), or because the service is offered anytime (e.g. download of music). However, some

types of services may have temporal availability different from the conventional ones, e.g. cinema services.

Moreover, some may regularly provide prolonged or reduced services for certain periods in each calendar

year, e.g. bus services during summer vacation. Hence, expressing a temporal constraint in Q(when) enables

LBS users to specify when they want to have access to a service, without a priori knowledge of the temporal

characteristics of the targeted services. Notice that the temporal input Q(when) may determine the spatial

characteristics of a service, i.e. the spatial characteristics may be temporal-dependent, e.g. reduced coverage

of bus-service on Saturday evening. Therefore, evaluating the Q(when) specification may also be important

for evaluating the Q(where) specification.

Temporal relationships in LBS. In last two decades, the temporal database community produced many

proposals for temporal data models, which aimed at improving the current status of temporal data manage-

ment [PSZ06] [JS99] [TCG+93]. Logic-oriented research mainly focuses on the description of the underlying

inference system of temporal expressions. Regarding temporal relationships, although the temporal opera-

tions and data types in each data model can be slightly different, the commonly-used temporal predicates are

generally based on the specification of Allen’s algebra of temporal interval relationships [All83]. However, in

daily communication, people use slightly different temporal prepositions and subordinating conjunctions to

specify temporal relationships. However, temporal database systems only provide little support for represent-

ing these user-preferred temporal descriptions. Table 7.3.4 lists the preposition-alike temporal relationships

that we propose to support within the LBS, aiming at simplifying the use and identification of temporal

relationships by casual users.

Defining the semantics of these user-preferred temporal prepositions is not straightforward. Specific

problems arise. For instance, the same preposition may be used with more than one semantics, e.g. IN

five minutes, IN winter. Often, more than one preposition may be used to give the same or very similar

meanings, e.g. IN winter and DURING winter. These ambiguities and overlapping meanings make it difficult

for computer systems to deal with. In our LBS temporal interactions we cope with the problem by specifying

a limited number of NL-based prepositions, with a specific semantics, to describe the temporal relationships

between the availability of services and a given timeframe (the timeframe of interest to the user).
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Table 7.2: Examples of temporal queries in LBS.
Temporal re-
lationships in
the LBS inter-
face

Semantics of the temporal re-
lationships

ServiceTime x in temporal
query

Temporal matching be-
tween query and service

Corresponding argument(s)

At(t) Return services available ex-
actly at an instant t Cs

t ⊆ x Equal(ServiceTime, x) or
Covers(ServiceTime, x)

t: current or future instant, e.g.
3pm, noon

On(t) Return services available at
day of week t

x = t Covers(ServiceTime, x) t: upcoming day of week, e.g.
Friday.

Around(t) Return services available at
approximately instant t

x ∩ duration(t-�, t+�)�=
∅

Overlaps(ServiceTime, x) t: current or future instant, � is
a small variant defined by LBS

Before(t) Return services available be-
fore instant or interval t

x ∩ duration(Now, t) �= ∅ Overlaps(ServiceTime, x) t : current or future instant (e.g.
5:00pm) or interval (e.g. lunch)

After(t) Return services available after
instant or interval t

x ∩ duration(t, t+�) �= ∅ Overlaps(ServiceTime, x) t : current or future instant (e.g.
5:00pm) or interval (e.g. lunch),
� is variant defined by LBS

During(t), In(t) Return services overlapping
interval t

x ∩ t �= ∅ Overlaps(ServiceTime, x) t: future interval, e.g. this after-
noon

From(t1) to(t2) Return services covering the
interval from instant t1 to in-
stant t2

x = duration(t1,t2) During(x, ServiceTime) t1: a current or future instant,
t2: a future instant, and t1<t2

Every(t) Return services always
available at a certain in-
stant/interval

x[i] =InstantBag
getInstants(t) or x[i]
=Intervalbag getInter-
vals(t)

During(x[i], ServiceTime),
for all i.

t : a fixed instant or interval, e.g.
Monday afternoon

In temporal databases, temporal methods and operations are directly performed on two explicit time

instants or intervals, e.g. to assess if a date is before another date. In the LBS interface, the user specifies the

desired timeframe by choosing the temporal relationship and specifying the corresponding argument(s). From

this input, the LBS first validates the relationship and its argument(s), and then translates it into a simple or

complex time explicit specification in a format suitable for further processing by the LBS. The reformulated

temporal constraint is eventually matched against the temporal availability property, ServiceTime, of the

candidate services the in LBS ontology.

Temporal arguments in LBS. The LBS ontology provides concepts for the description of the temporal

characteristics of services, as discussed in chapter 3. These descriptions include the temporal data types and

values normally using the Gregorian calendar. However, considering the contextual framework, e.g. local

culture and tradition, the LBS ontology may also include a local calendar, e.g. a Chinese Lunar calendar. In

addition, the LBS ontology may include some commonly-used temporal terms: 1) explicit instants or intervals

such as Now, Noon, Today, Tomorrow, Weekend, 2) fuzzy temporal intervals such as afternoon, morning,

evening, soon, 3) context-dependent intervals, e.g. lunch time, Chinese new year, and 4) Sequential terms

such as this, next.

Regarding temporal granularity, i.e. which unit is chosen as granule (the smallest temporal value), an

LBS will usually support an enumerated set of possible granules, year, month, day, hour, minute, compatible

with a Gregorian calendar. Although finer granularity (second, millisecond) are theoretically available, from

the practical viewpoint there is no need for LBS to get to that level of accuracy as it is irrelevant to human

interaction.

Characteristics of Temporal Query Formulation.

1. Services in current or future time. Different from the temporal queries in databases, the service

requests to LBS only apply for querying in current or future time. Hence, the temporal relationship before
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implicitly refers to an interval that starts at instant Now and ends at the instant variable t in the argument

of before.

2. Have an implicit lifecycle. Temporal constraints specified in the LBS interface often refer to an implicit

short period, e.g. today, this week. For instance, if the user specifies after(5:00pm), it implicitly denotes the

closed interval ’from today 5:00pm until today 12:00pm’.

3. Fuzzy temporal operators. In Table 7.3.4, we have only one fuzzy relationship, around (temporally

near an instant), which is common in daily communication where great accuracy is usually not mandatory,

or the exact temporal property of a service may be unknown, e.g. when the next bus is coming. The

associated variable � can have different temporal semantics, i.e. granularity and value, it mainly depends

on the temporal semantic of the temporal argument t. For instance, around(lunch time), the granularity and

the value of � may be respectively ’hour’, and 1 or 0.5, since the lunch-time is about one hour. A similar

example, frequent in current web services, is the booking of a flight around a certain day, where� has options

such as 1day, 3days.

4. Regular temporal relationships. Sometimes the user may look for a service offered regularly at a fixed

instant/interval in a longer period (e.g. a month or a semester), for instance, ’a Latin-dance course every

Tuesday evening’. Hence, this type of complex temporal relationship often associates with a period which

need to be explicitly expressed, e.g. in this semester, from January to March. It can be implemented by

combining more than one relationship: firstly getting all instants/intervals within the lifecycle according to

the query, and then testing whether the services’ temporal availability covers all of them.

5. Context influence. In the discussion above, we ignore the fact that it takes some time for users to get

access to the service if the user asks for a service in near future, e.g. in two hours. In reality, many contextual

factors, such as traffic and spatial constraints, should be taken into account in order to access to services on

time.

6. Complex temporal relationships. Sometimes, single temporal relationships cannot sufficiently express

the desired temporal constraint. The use of Boolean operators between two time instances, such as OR (e.g.

in the weekday afternoon or Saturday morning), AND (every Saturday AND from January to March) helps

addressing these cases. Complex relationships may lead to more validation work to check consistency between

the two time instances.

Similar to the strategy for query reformulation in the spatial dimension, query reformulation in the

temporal dimension focuses on three aspects: 1) identify the temporal argument(s), 2) validate the consistency

between the temporal arguments and relationships in Q(when), and 3) reformulate Q(when) into qwhen that

can be understood by LBS. Algorithm 5 describes how to reformulate the query in the temporal dimension.

When reformulating the query in the temporal dimension, we assume we have an embedded calendar/clock

that can accurately identify the local time of the current user. In the function MatchTemporalArg(), the

argument will be matched with the concepts in Time onto (i.e. temporal concepts in the core ontology)

considering the current time. For instance, when the argument is afternoon, the LBS can encode the time
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interval of afternoon in terms of temporal expressions understood by LBS. Today/tomorrow can be trans-

formed into the date format which can be computed by the LBS. Another function CheckConsistency()

validates the inputs in Q(when), e.g. it can not refer to past time, and checks the consistency between them,

i.e. consistency between the relationship and the arguments, as well as consistency between arguments. For

instance, if the relationship is From t1 to t2, t1<t2 must hold. In addition, complex temporal relationships

can be expressed by combining two simple temporal relationships. For instance, every Saturday afternoon

from January to June can be enumerated as a set of time intervals by referring to the calendar.

Algorithm 5: Transform Q(when) to qwhen

Input: Time onto: temporal concepts in the core ontology; arg[ ] : the temporal argument(s) in
Q(when); rel : temporal relationship in Q(when).

Output: qwhen: the reformulated query in the temporal dimension.
begin1

n= getArgNumber(arg[ ]);2

//get the number of temporal arguments in the query.3

if n=0 then4

qwhen ←− ∅;5

RETURN.6

if n=1 then7

x1 = MatchTemporalArg(arg[1], Time onto);8

if CheckConsistency(rel, x1, Now) then9

qwhen ←− Append(rel, x1);10

//The function MatchTemporalArg() firstly validates the input argument x1 by comparing11

current time NOW with x1, then checks the temporal consistency between rel and x1. If it
returns True, (rel, x1) will be output as the reformulated qwhen.

if n=2 then12

x1 = MatchTemporalArg(arg[1], Time onto);13

x2 = MatchTemporalArg(arg[2], Time onto);14

if CheckConsistency(rel, x1, x2, Now) then15

qwhen ←− Append(rel, x1, x2);16

//Beyond the argument validity (with NOW ) described above, this function needs to check the17

consistency between two arguments, e.g. From(x1)To(x2), x1, it must hold that x1 is earlier
than x2.

qwhen ←− ContexualizeQwhen(qwhen, NOW, context factors)18

//This function refines qwhen by considering contextual factors and outputs the most suitable19

temporal predicate qwhen. The refinement mainly refers to specifying relevant parameters, e.g.
Around(x) can be transformed to Between(x-θ)AND(x+θ), the value of θ may be different
according to the local convention or user’s current activity.

end20

7.3.5 Other functional conditions - What-else

Besides the subject constraint, spatial and temporal constraints, the user can specify other general conditions

which span over any properties of the service, e.g. their offered functionality, their title, their quality of

service, etc. In the interface, we allow user to specify conditions using keywords or predicates in the format

of (property, operator, variable), separated by commas. If more than one item is input in ’what-else’, the order

of items is possibly interpreted as an order of priorities. The keywords are matched with the descriptions (or

annotations) or properties of the corresponding classes in the ontology or the data sources. The algorithm
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for reformulating the query in the What-else dimension is described in Algorithm 6. It firstly identifies each

condition in Q(what-else). We assume each tuple can be transformed to the format (property, operator,

variable) by considering the service description in the core ontology. For instance, price < 30CHF can be

easily transformed to (price, <, 30), keywords ”historical” for a movie service can be transformed to a tuple

like (type, include, ”historical”) or (description, contain, ”historical”) where type and description can be

descriptive properties of the service movie. In addition, the contextual factors may play an important role

in refining qelse, e.g. cheap can be transformed into a tuple such as (≤, price, ”low”). The concrete value

of ”low” in this example can be determined by multiple factors, e.g. the local market. Finally, the function

CheckConsistency checks the consistency between the conditions in Q(what-else), e.g. (>, price, 100)

conflicts with (<, price, 90).

Algorithm 6: Transform Q(what-else) to qelse

Input: CO : core ontology; qwhat: reformulated query in what dimension; arg[ ] : a set of condition
tuples in Q(what-else).

Output: qelse: the reformulated query in what-else dimension.
begin1

qelse ←− ∅;2

// initialize qelse as empty.3

foreach t(x, op, v) ∈ arg[ ] do4

//parse each tuple t in Q(what-else), x: property, op: operator, v: variable. e.g. (price, <, 30).5

p = ∅ ;6

p = TransformTuple(t, qwhat, CO);7

//Refering to the corresponding service’s metadata in CO, this function firstly identifies x with8

the property of service class qwhat, then transform t it to p which can be further processed by
LBS. This identification process is similar to mapping a property of the service profile to a
property of service class in CO.
if CheckConsistency(p, qwhat, qelse) then9

qelse ←− Append(p)10

end11

7.3.6 Query Formulation: a Complete View

In this last section we illustrate on an example how a query is understood and reformulated in all dimensions.

However, conditions in the diverse dimensions may interact and have an influence onto each other. When we

combine these conditions in a single one, we need to check the dependencies and conflicts, and further decide

how to modify and reformulate them.

Example 7.1. Given the original query Q(what, where, when, what-else) := (Salsa dance course, near Malley,
on Thursday evening, ’beginner’), we show how to transform it into a conjunctive query.

Algorithm 7: Transform the whole query Q to qall

Input: CO : the core ontology; qwhat, qother, qwhere, qwhen, qelse.
Output: qall: the complete reformulated query.
begin1

ConflictCheck(qwhat, qother, qwhere, qwhen, qelse);2

qall ←− (qwhat, qother, qwhere, qwhen, qelse);3

end4
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Step 1: Q(what) Reformulation. We assume the LBS ontology contains a service concept ’DanceCourse’

and its super-concept is ’Course’, but does not contain the concept ’SalsaDanceCourse’ or another similar

concept. With Algorithm 1 and Algorithm 2, the original query Q can be rewritten as:

qwhat= ”DanceCourse” and qother= (style = ’Salsa’)

⇒ (x) ←− DanceCourse(x) ∧ Style(x, Salsa)

Step 2: Q(where) Reformulation. In Q(where), the user specifies the near relationship and its argument

as ”Malley”. In the core ontology, Malley is identified as an administrative district in Lausanne. Hence, the

Q(where) is reformulated into:

qwhere = near(district, Malley)

⇒ qwhere = Distance(Malley.location, service.location) = n;

(informatively formulated as above, where n is the distance between two locations.)

⇒ qwhere = SDO NN (Malley.location, service.location, ’SDO NUM RES=1km’) = ’True’;

(formulated in Oracle with context-dependent value n = 1km)

Step 3: Q(when) Reformulation. The temporal constraint is interpreted as implicitly meaning the

upcoming Thursday evening. By referring to the current date, the upcoming Thursday can be calculated.

Let us assume current date is ”2007-07-17, Tuesday”, in this context, Thursday here means ”2007-07-29,

Thursday”.

qwhen = on (”Thursday evening”)

⇒ qwhen = BETWEEN[”2007-07-19,19:00”,”2007-07-19,24:00”]

⇒ (x)←− DanceCourse(x) ∧ OpenTime(x,y) ∧ BeginDate(y, 2007-July-19) ∧ BeginHour(y, 19)∧ EndDate(y,

2007-July-19) ∧ EndHour(y, 24)

Step 4: Q(what-else) Reformulation. The initial conditions in Q(what-else) is only one keyword ’Be-

ginner’. By identifying its value, it is found it matches with the value domain of attribute level, hence it is

reformulated as follows:

qelse = (level = ’beginner’)

⇒ (x) ←− DanceCourse(x) ∧ Level(x, Beginner)

Step 5: qall Formulation. After conflict checking, there is no condition conflict between different dimen-

sions. The final query q can be written in the following way:

(x)←− DanceCourse(x) ∧ Style(x, Salsa)∧ Level(x, Beginning) ∧ OpenTime(x,y) ∧ BeginDate(y, 2007-July-

19) ∧ BeginHour(y, 19) ∧ EndDate(y, 2007-July-19) ∧ EndHour(y, 24)

7.4 Chapter Summary

This chapter is devoted to explaining how the LBS performs the very first task in query processing, which

we call query reformulation. After an introductory overview of various query formulation approaches, not

limited to LBS interfaces, we somehow emphasize the rationale behind our assumptions in terms of query
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formulation. We recall that the concern about supporting a simplest as possible interaction with the user leads

us to just ask the user to specify the essential components of her/his request: what service is being requested,

where and when it has to be available, and what other conditions shall be satisfied for this particular query.

Such a skeletal query, expressed by a user who may be perfectly unfamiliar with the vocabulary used by

the LBS to talk about services and the surrounding world, obviously calls for some processing by the LBS

oriented towards understanding user’s specifications. We sketch a number of algorithms that show the kind

of processing performed by the LBS. This includes lexical analysis of the expressions formulated by users

(our queries are not restricted to a set of keywords), term matching with the ontological and terminological

knowledge stored in the LBS, and checking the consistency of the specifications. This set of techniques

eventually leads, whenever possible, to an unambiguous understanding of the user’s intention. On this basis

the query is reformulated in terms that are acceptable by the next steps in query processing, which are

discussed in the next chapter. Given that the focus of this work is on semantic analysis of the issues, not

on the implementation of a solution, the algorithms are functionally described but have not been coded and

implemented. They have to be understood as a specification of what needs to be done, which is what this

thesis aims to achieve.
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Chapter 8
Query Processing

8.1 Introduction and Motivation

Query processing is a challenging topic. In relational database systems, query processing generally involves

two tasks: answering the query and transaction processing. The former one means that the database com-

ponents (e.g. query compiler) do parse, optimize and execute the query. The latter one refers to the fact

that multiple queries may be grouped into transactions, and transactions have to be properly handled so

that data’s ACID properties (where A stands for atomicity, I stands for isolation, C stands for consis-

tency and D stands for durability) are enforced. SQL (i.e. the standard language for dealing with relational

databases) includes both data definition languages and data manipulation languages. They allow definition

of the database schema, and manipulation on the schema and on the data in the database.

More modern frameworks such as the semantic web rely on RDF, a basic model for describing web data

resources and facilitate their encoding, exchange and reuse. A resource is any object which is identifiable by

a unique URI (Uniform Resource Identifier). Each resource has a set of properties. Each property associates

the resource and a value (or another resource). RDF’s data pattern, a triple subject-predicate-object, is

rather simple, which facilitates the exchange of diverse application data. A variety of RDF-based query

languages have been proposed to support querying information structured as RDF descriptions. SPARQL1

(W3C candidate recommendation) is based on matching graph patterns and is able to express queries across

diverse data sources. In addition, SPARQL introduced binary relations (called E-entailment regime) between

subsets of RDF graphs to extend the basic graph matching technique. This was also adopted in OWL2.

In DL-based KnowledgeBases [BLR03], the query can be viewed as a concept description, so that query

processing can be regarded as evaluating necessary and sufficient conditions over DL-KnowledgeBase’s TBox

and ABox. Due to the intrinsic concepts’ subsumption hierarchy in DL-KnowledgeBase, queries in DL can be

classified, refined and explored within a sub-part of the DL-KnowledgeBase, i.e. the subsumption relationship

can be properly applied in query optimization. To overcome the limitations of DL’s expressiveness, some

researchers proposed to combine DL and Datalog rules to keep the query answering and reasoning decidable,

1Refer to the latest specification of SPARQL, http://www.w3.org/TR/rdf-sparql-query/
2Refer to RDF Semantics in the W3C community.
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see for example the LOGIN and CARIN languages. In addition, to augment the reasoning scalability over

large OWL ontologies, some attempts on storing and reasoning ontologies in databases have been made, as

shown in LUBM benchmark [GPH05] and OntoMinD [AJPS07].

In LBS setting, the data in each module is provided and maintained by heterogenous information sources.

With the assistance of the shared terminology and mapping libraries, the core ontology holds an integrated

view on the metadata of all modules. When a query is issued by a given user, the query is initially formulated

in the conjunctive predicate format as described in chapter 7. Next, it is processed by the LBS query

processor. There may exist a variety of query languages to retrieve the information from the core ontology.

Comprehensive overviews of capabilities and performances of these query languages have been presented in

[HBEV04] and W3C website. Current query languages (QLs) for semantic web ontologies can be generally

classified into two categories: RDF-based QLs (such as RDQL, SeRQL, and SPARQL etc.) and DL-based

QLs (such as DIG ask queries, nRQL), as suggested in [SP07]. The former category is based on matching

triple patterns on RDF graphs, but it is difficult to map these triples to well-formed OWL-DL constructs.

The latter category has well-grounded semantics based on DL, but it is yet unable to provide sufficient

querying functionalities, i.e. make disjunctive and conjunctive queries over the ABox and TBox. Therefore,

to define a simple but powerful query language to retrieve and manipulate data in OWL is also a significant

open issue to further promote semantic web, as investigated in the recent workshop OWLED’2007 (OWL:

Experiences and Directions). Due to the characterization ”mobility, locality and dynamics” of LBS, the

current DL-based querying approach, i.e. to predefine query patterns, is a time-consuming task and hard to

implement and maintain in LBS. To simplify the issue, we adopt SPARQL as the query language to briefly

explain the (meta)data retrieval process in our work. Query relaxation may be more common in LBS, due to

the misconception, incomplete knowledge of local contexts, even the user’s desire for additional information.

For instance, it may happen when the user can not obtain satisfying results or the LBS fails to find perfect-

matching results. Therefore, in our work, query processing is mainly concerned about query answering and

query relaxation.

This chapter starts with the basic flow of query processing in LBS. Next, we discuss relevant algorithms

in query answering, e.g. query refinement with determine and influence relationships. Then we introduce

the basic syntax and semantic extensions of query language SPARQL, and explain how to transform our

query in terms of conjunctive predicates into SPARQL-compatible format. By defining the query relaxation

profile, we show how to define the relaxation rules, and apply them to produce relaxed queries and achieve

alternative answers for users. Finally, we discuss future work on how to control relaxations and investigate

strategies on multiple relaxations.

8.2 Query Answering

8.2.1 The Basic Workflow of Query Processing in LBS

Figure 8.1 illustrates the basic workflow of LBS query processing. Firstly, with the assistance of shared

terminology and core ontology, the user’s original query is reformulated into Q in terms of conjunctive
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Figure 8.1: The basic work-flow of query processing in LBS.
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predicates: Q = p1 ∧ p2 . . . ∧ pi described in Chapter 7. In the query reformulation phase, LBS also check

the completeness of the query input. For instance, all input properties of a service need to be provided and

be able to be identified by LBS. In addition, to ensure the semantic satisfiability of the original query Q, the

LBS will validate Q according to certain consistency constraints. We only provide a fundamental guideline

about what semantic satisfiability should be taken into account in LBS setting (see details in Algorithm 8),

definitely, they can be modified or refined by LBS experts. If the semantics of the query Q is satisfiable, LBS

will refine the query Q with the knowledge in the core ontology. On the one hand, the LBS checks if access to

the requested service S is subject to pre-conditions (either stated as precondition property or as condition and

determine relationships). Any pre-condition has to be analyzed and its satisfiability must be verified with

user’s information. On the other hand, the user’s rules and determine relationships relevant to the service

S need to be considered as well. We can consequently refine the original query by adding the conjunction

of the set of conditional predicates CP = cp1 ∧ cp2 ∧ . . . cpj (e.g. cpi: User 
 ∃hasMembership.={EuropCar}
for a service that requires the user to have a membership into EuropCar), leading to Qconditional = Q ∧
CP . Similarly, the characteristics of target customers of service S, as well as the requesting user’s relevant

preferences and information for service S (e.g. using Property Relevance Association), can be described as

disjunctive/conjunctive predicates PP, PP = (rp1∧wr1)∨(rp2∧wr2)∨ . . . (rpk∧wrk) where rpx is a relevant

predicate for service S for a given user U, and wrx specifies its importance degree for the service S and the

user U (e.g. ∃hasDrivingLicense.={Swiss B01} to state that the user has to have a Swiss driving license of

type B01), leading to Qrelevant = Qconditional ∧PP . Qconditional contains the necessary conditions to service

S and user’s constraints on service S (i.e. hard query), and Qrelevant includes the relevant information to help

to filter and rank query results (i.e. soft query). Afterwards, the semantic satisfiability of Qconditional and

Qrelevant needs to be validated before the query is syntactically reformulated in SPARQL format, so that it

can be forwarded to the query processing engine in charge of executing the service matching and ranking.

When a query fails to get answers, the query can be either reformulated by the user, or relaxed by the LBS

according to the relaxation profile of service S. The relaxed query will be validated and processed iterating

the above steps. We will further discuss query relaxation in Section 8.3.

Algorithm 8 presents how to discover the conditions separately from both services and the user’s concerns.

The lines 4-7 identify relevant conditions by looking up the user-defined rules in uID ’s current profile: if any

rule involves the service S or its super-classes, then append it to CQ. For instance, assume a rule in a given

user profile is ”filter out all McDonald’s if I am looking for a fast-food shop or restaurant”. In this case, when

the user asks for a restaurant, the predicate x ∈ Restaurant 
 ¬hasName.={MacDonald’s} is generated. Lines

8-11 take into account the case in which the concept/property-value in the user profile has determining effect

on the service S. For instance, the user’s driving license directly determines the car types (see Figure 8.2)

that the user can rent from Car-Rental services, i.e. r̂(DrivingLicense, Car-rental
Car-type), which can be

briefly translated in SPARQL triples as follows:
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Prefix CO

Prefix UP

SELECT ?x

WHERE { ?x rdf:class CO:Car_Rental .

?x CO:CarType ?cartype .

?u UP:drivingLicense ?dlicense .

?dlicense UP:determineCarType ?cartype .

}

Car_Rental User

hasCondition :

hasPrice
Eurocar_Member : (discounted price)

Normal_Price  : ...

Deposit (200CHF) hasMembership 
- hasSportMembership 

- hasDrivingMembership:

- hasShopMembership

hasCarType:

hasLicense
- hasDrivingLicense:

- hasTeachingLicense

(manual motor control, auto motor control)

(Swiss B01, 2002)

(Eurocar, AAC, ...)

...

(Coop, Migros, Manor...)...
...

Relevancy

Condition

Figure 8.2: The conditions and relevancy between service Car Rental and a user profile.
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Algorithm 8: DiscoverConditions(S, uID): to discover conditions to access service S for a given user
uID.
Input: S : the metadata of service class S ; UP(uID): the profile of the user uID.
Output: CQ(S, uID): user uID’s constraints for service S ; CS(S, uID): the service S’s conditions for

the user uID.
begin1

CQ(S, uID)←− ∅;2

CS(S, uID)←− ∅;3

for each rule r ∈ UP(uID) do4

//The rule r is composed of the head and the body (both consisting of a conjunction of5

RDF-triples, i.e. (a1, p1, b1) ∧ (a2, p2, b2) ∧ . . ..), denoted as (h1, . . ., hi) ←− (b1,. . ., bj),
where each b and h are expressed in the conjunction of triple (x, p, y).
if (h1, . . ., hi) is TRUE then6

for each triple b ∈ (b1,. . ., bj) where (b = (Sb, p, x)∧(x, op, var)) do7

if Sb ∈ S OR Sb � S OR S � Sb then8

CQ(S, uID) ←− Transform(b, S)9

//The loop above identifies all rules specified in UP(uID) relevant to service S. If relevancy, it is10

transformed into the predicate understood by LBS then appended to CQ. Rule Relevant to S
means S’ in rule(S’) overlaps with S: 1) S’ can be an instance of S (S’∈ S), 2) S’ can be a supertype
of S (S�S’), 3) S can be a supertype of S’ (S’�S), e.g. the McDonald’s example above.

for each property tuple t = (uID, p, x) ∈ UP(uID) do11

if ∃ property tuple t’ = (s, ps, xs) ∈ S AND r̂(p, ps) then12

CQ(S, uID) ←−Transform(t, S)13

//This loop identifies all property relevancy associations r̂ between properties of S and properties14

in uID’s user profile. If they are relevant, transform the tuple t in UP(uID) to the predicate
processable by LBS. Please note here relevancy r̂ means determine. For instance, the type of the
user’s driving licence determines the car-type which can be driven by the current user.

for each condition relation ≺(C, S) on services S do15

if uID ∈ C then16

CS(S, uID) ←−Transform((uID, type, C), S)17

//This function checks the condition relation of service S. If the user is in the corresponding User18

Class, then add the predicate (uID, type, C) to the CS. For instance, some services can be
accessible only if another service has been taken, e.g. the basic ski course is the precondition of the
advanced ski course.

for each precondition property hasPrecondition(S, C) of service class S, where C is a concept which19

can be transformed to a conjunction of triple(s) t=(u, p, x) do
if ∃ property tuple t’ = (uID, p’, x’) ∈ UP(uID) AND C � t’ then20

CS(S, uID) ←−Transform(t’, S)21

//t = (u, p, x): the property condition t specifies that the user must have the property p with22

value x. It helps to find the corresponding condition properties of service S in uID’s user profile.

CQ(S, uID) ←− ConsistencyCheck(CQ[ ]);23

// to validate the consistency of all conditional predicates from the user uID’s concern. The24

consistency checks mainly include: 1) if the necessary information is provided in Q, e.g. the Qwhat

can not be empty, 2) if the data-type of the variable is consistent with the specification, e.g. the
location can not be filled with numeric variables, 3) the consistency between predicates holds, e.g.
the predicate specified in the query can replace the predicate in the user profile.

CS(S, uID) ←− ConsistencyCheck(CS[ ]);25

// to validate the consistency of all conditional predicates from the service S ’s concern, and they26

are similar to the descriptions above.
end27
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Similar to a join of two relations in SQL, the determinant connection between concepts/properties in

different modules needs to be built up using certain constructs or rules. In the above example, both service

individual ?x and user’s license ?dlicense correspond to the same car type value ?cartype. In other words, the

original query Q is reformulated to CQ with the user’s conditions specified in the given user profile. Please

notice this query reformulation is not same as query relaxation. The lines 12-19 in Algorithm 8 process

all conditions to access service S. They can help to construct conditional mappings for service S, i.e. what

information of the given user profile is relevant to hard conditions of service S. Finally, it respectively checks

the consistency between all conditional predicates in CS and in CQ to ensure the validity of the reformulated

conjunctive queries. Moreover, the condition and relevancy between a given service and a given user can be

pre-processed as long as the service class and user profile are defined, and they are subject to change while

the user modifies the user profile or the service class S evolves, similar to the view in databases.

Similarly, the relevance discovery of service S for the given user uID is defined in Algorithm 9. Rather

than hard constraints discovery in Algorithm 8, the algorithm below aims at exploring the relevancy between

the service S and a given user profile. It allows LBS taking advantage of user profile to personalize query

results and to navigate over information in diverse modules. Issues on result ranking and calculation are not

our main focus, the discussion on this topic can be found in the work [VHPA06].

Algorithm 9: DiscoverRelevancy(S, uID): to discover relevant information to access service S for a
given user uID.
Input: S : the metadata related to service class S ; UP(uID): the profile of the user uID.
Output: PP (S, uID): the relevant information to select and rank services S for the user uID.
begin1

PP (S, uID)←− ∅;2

for each ordered-value property p�(d, τ) ∈ UP(uID) do3

if τ 
 S �= ∅ then4

PP (S, uID) ←−Transform(p�(d, τ), S)5

for each property relevance association r̂(p1, p2) where p1 is a property of service S and p2 is a6

property of UP(uID) do
PP (S, uID) ←−Transform(p2, S)7

//For a given user profile, the function above discovers all relevant properties in class S from the8

user’s viewpoint.

for each influence relation −→i (C, S) for service class S do9

if uID ∈ C then10

PP (S, uID) ←−Transform((uID, type, C), S)11

for each preference property p♥(t, S) of service class S, where t = (u, p, x) do12

if ∃ property tuple t’ = (uID, p’, x’) ∈ UP(uID) AND r̂(p, p′) then13

PP (S, uID) ←−Transform(t’, S)14

//It recommends services to certain users who are in the target customer group of the service S.15

PP(S, uID) ←− ConsistencyCheck(PP[ ])16

// check the consistency of all personal predicates and output the result.17

end18
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8.2.2 Query Translation and Answering in SPARQL

One of the significant issues in current semantic web implementations is the lack of a well-acknowledged

and efficient query language, analogous to SQL for databases. Meanwhile, as pioneering efforts to query

semi-structured web data, RDF-based query languages attracted much attention from both researchers and

practitioners. Consequently, a series of proposals have been made and implemented, e.g. RDQL, SeRQL, and

SPARQL. Amongst, SPARQL is a well-developed one and potentially will become the standard RDF-based

query language for the semantic web. In this subsection, we will firstly introduce the abstract syntax of

SPARQL and an OWL-DL extension SPARQL-DL, then explain how to translate our conjunctive query to

the SPARQL-compatible format.

SPARQL is defined on the basis of previous RDF query languages such as rdfDB, RDQL, and SeRQL,

and has several valuable new features of its own. SPARQL can make simple data retrieval on RDF graphs by

restricting string or numeric values on subject, predicate and object. Further, SPARQL provides construct

rdf:type to constrain the class of the predicate’s subject or object. Let us look at a simple query, Q =

Car Rental 
 City.={Lausanne}
 hasDeposit.<200. In English, it means ”find all car rental services in

Lausanne city, which have deposit less than 200CHF”.

SELECT ?x ?address

WHERE { ?x rdf:Type CO:Car_Rental .

?x CO:city "Lausanne" .

?x CO:deposit ?deposit .

Filter (?deposit < 200 ) .

?x CO:address ?address .

}

SPARQL supports a set of data-types and operators used to construct constraints. They not only cover

data-types, functions/operators specified in XQuery 1.0 and XPath 2.0 but also include some new features,

e.g. some extensible value testing (i.e. to test the geographical distance between two points). Besides the

basic constraints on values and classes, SPARQL specifies solution modifiers which enable to transform a list

of solutions in multiple ways. Here is the SPARQL syntax on applications of these solution modifiers:

SelectQuery ::= ’SELECT’ ( ’DISTINCT’ | ’REDUCED’ )? ( Var+ | ’*’ )

DatasetClause* WhereClause SolutionModifier

SolutionModifier ::= OrderClause? LimitOffsetClauses?

LimitOffsetClauses ::= ( LimitClause OffsetClause? | OffsetClause LimitClause? )

OrderClause ::= ’ORDER’ ’BY’ OrderCondition+

OrderCondition ::= ( ( ’ASC’ | ’DESC’ ) BrackettedExpression ) | ( Constraint | Var )

LimitClause ::= ’LIMIT’ INTEGER

OffsetClause ::= ’OFFSET’ INTEGER

DISTINCT and REDUCED The DISTINCT solution sequence modifier D ensures solutions in the

sequence are unique, i.e. D(S) = {S′
1, . . ., S′

n}, for any S′
i, S

′
j ∈ D(S), S′

i �= S′
j , similar to DISTINCT keyword
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in SQL. In contrast, REDUCED solution modifier simply permits the duplicates to be eliminated, i.e. the

solutions can have one or n duplicate sequences which are no more than the cardinality of the solution set.

REDUCED solution modifier is not commonly-used since it can not be used with aggregation functions on

the results set.

ORDER BY The ORDER BY clause establishes the order of a solution sequence. It is composed of

an expression (i.e. a variable or a function) and an optional order modifier either ASC() or DESC(). Given

an order condition O(S, C) = {S′
1, . . ., S′

n}, where S′
i  c S′

j or S′
i ∼c S′

j , 1 ≤ i < j ≤ n. The semantics

of operator  c is similar to the Ordered-property (see Definition ??) defined in chapter 6. The semantics

of multiple order conditions (Order By C1, C2, . . . , Cm) are regarded as prioritized composition described in

[Kie02]:

S′
i �C1,C2 S′

j ≡ S′
i �C1 S′

j ∨ (S′
i ∼C1 S′

j ∧ S′
i �C2 S′

j)

In addition, using Order By clause in a Select form can only order the sequence of results. When it is

combined with LIMIT and OFFSET, it will return a different slice of the solution sequence.

LIMIT It puts an upper bound on the number of solutions returned, i.e. LIMIT(S, n) = {S′
1, . . ., S′

n}.
When n is greater than the limit number of solutions, at most the limit number of solutions will be returned.

OFFSET It causes the solutions generated to start after the specified number of solutions. It functions

similarly to the cursor in SQL. When LIMIT, OFFSET and ORDER BY are combined together with a

SELECT form, it returns a subset of solution sequences in a certain order.

Query Forms. SPARQL offers four query forms, i.e. SELECT, CONSTRUCT, ASK, and DESCRIBE.

The SELECT form returns all or a subset of variables bound in a query pattern match. Different solution

modifiers can be combined and applied to modify the results. The CONSTRUCT form returns an RDF graph

constructed by substituting variables in a set of triple templates. The result is an RDF graph formed by taking

each query solution in the solution sequence, substituting variables in the graph template, and combining

triples into a single RDF graph using set UNION. It is particularly useful to rename the properties with the

same semantics, for instance, open time and work hours from two RDF graphs (e.g. from two data profiles).

The ASK form returns a Boolean indicating if a query pattern has a solution, e.g. ASK{?x, CO:firstName,

’Shijun’} and its answer is Yes. The DESCRIBE form returns a RDF graph that describes the resource found,

e.g. return the explicit IRIs of a resource, identify a resource with a property and its variable. SPARQL also

provides other functions, which are out of the scope of this introduction and whose description can be found

on the W3C website.

The conjunctive query can be easily transformed into SPARQL format. In the example above, we directly

transform the begin-time/end-time constraints (i.e. Thursday 19:00, Saturday 19:00) to the xsd:datetime

data-type, by referring to the local calendar. The spatial comparison can be done by SPARQL or a GIS

database. The final results will be returned in the ascending order of rental price. However, basic SPARQL

cannot express the logic semantics of some axioms, as well as existential(∃) and universal(∀) restrictions on

properties. Some efforts have been made on integrating SPARQL querying capabilities and reasoning func-

tionalities on top of OWL-DL, e.g. SPARQL-DL in [SP07]. We employ their abstract syntax in translating
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Table 8.1: The basic translation from abstract OWL-DL syntax to SPARQL-DL syntax.
Query Atom pi in Q Translation to SPARQL graph form
Type(a, C) <a, rdf:type, C>

PropertyValue(a, p, v) <a, p, v>

SameAs(a, b) <a, owl:sameAs, b>

DifferentFrom(a, b) <a, owl:differentFrom, b>

SubClassOf(C1, C2) < C1, rdfs:subClassOf, C2 >

EquivalentClass(C1, C2) < C1, owl:equivalentClass, C2 >

DisjointWith(C1, C2) < C1, owl:disjointWith, C2 >

ComplementOf(C1, C2) < C1, owl:complementOf, C2 >

SubPropertyOf(p1, p2) < p1, rdfs:subPropertyOf, p2 >

EquivalentProperty(p1, p2) < p1, owl:equivalentProperty, p2 >

ObjectProperty(p) <p, rdf:type, owl:objectProperty>

DataProperty(p) <p, rdf:type, owl:dataProperty>

our conjunctive query to the SPARQL graph as shown in Table 8.1. Most of the commonly used operators in

our queries, such as =, <, > and temporal operators can be transformed in SPARQL format. For instance,

as shown in Example 8.1, FILTER can express constraints on date-time, numeric and string values. However,

we do not discuss issues on translating predicate p with concrete domains in SPARQL. Discussion of problems

relevant to DL with concrete domains and proposed solution can be found in the literature, e.g. [BKW03].

Example 8.1. The Original query Q := Car Rental 
 Near.={Ouchy} 
 From.= {Thursday 19:00} 
 To.=
{Saturday 19:00} 
 CarType.={Automatic}, and order the results by ascending price. This query is expressed
in SPARQL as follows.

SELECT ?x ?address ?p

WHERE { ?x rdf:class CO:Car_Rental .

?x CO:near "Ouchy" .

?x CO:from ?begin .

?x CO:end ?end .

?x CO:price ?p .

?x CO:cartype "Automatic" .

Filter (?begin = "2007-10-18 19:00"^^xsd:datetime) .

Filter (?end = "2007-10-20 19:00"^^xsd:datetime) .

?x CO:address ?address .

} ORDER BY ?p

8.3 Query Relaxation

Query relaxation is not a new topic. In [CC94], Chu et. al. proposed to use a type abstraction hierarchy to

relax the variables or concepts in the original query to get cooperative answers. In [GGM92], Gaasterland

et. al. proposed the notion of query relaxation and applied it for expanding deductive database and logical

programming queries. Based on their categorization of types of query relaxations, we extend them with LBS’s

specific needs and present our extensions in RDF triples as follows:
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1. To find the synonym/acronym/functionally similar concept or broaden the variable with certain con-

straint:

(?park, along, ’Leman Lake’) =⇒ (?park, along, ’Geneva Lake’),

(?bus, at, ’Ecublens’) =⇒ (?metro, at, ’Ecublens’),

(?price, ≤, 200) =⇒ (?price, ≤, 300).

2. To broaden the domain of a variable:

(?car repair, specializeIn, ’BMW’) =⇒ (?car repair, specializeIn, ?x) ∧ (?x, type, CarMark),

3. To relax the role:

(?car repair, specializeIn, ?y) =⇒ (?car repair, canRepair, ?z)

4. To relax the concept (subject or object):

(?car repair, specializeIn, RaceCar) =⇒ (?car repair, specializeIn, Car).

(?x, type, Souvenir shop) ∧ (Souvenir shop, subclass, Shop) =⇒(?x, type, Shop)

According to the classification of types of the query tuple relaxation, we can find that to broaden the

variables with certain constraint (in type 1) is a specialization of to broaden the domain of the variable(in

type 2). Limiting the constraint over query relaxation is universal in human discourse, it can avoid redundant

or overabundant answers. A typical example is to book air-tickets online. When a user can not find ticket

with given departure/arrival dates, (s)he will be prompted to relax the bounds of arrival/departure with

certain constraints (e.g. ±3 days) rather than to the whole domain. In this section, we will start with the

definition of query triple relaxation and show how it can be applied in our work. Further, we discuss the

issues concerning restricting and ranking triple relaxation. Then we present the query relaxation profile which

specifies the strategy to control the query relaxation, and illustrate our approach with examples.

8.3.1 The Query Triple Relaxation vs. Relaxed Query

In conjunctive query Q = (t1, . . ., tn), for each triple ti in Q, it can be relaxed to t′i, please notice that there

may exist ti = t′i, i.e. ti can not be relaxed. Let us give the definition of triple relaxation as follows:

DEFINITION 8.1. Triple Relaxation. A triple relaxation is a mapping from a RDF-triple t to another
RDF-triple t′, denoted as t !t t′, where t = (a, p, b), t′ = (a′, p′, b′), and !t is in one or a combination of
of the following formats:

• a = a′, p = p′, p ∈ DataProperty, it holds {x|(x, p, b)} � {x|(x, p, b′)};

• a = a′, p ∈ DataProperty, and (p, subPropertyOf, p′);

• a = a′, p = p′, p ∈ ObjectProperty, b ∈ Class, and (b, subClassOf, b′);

• b = b′, p = p′, p ∈ ObjectProperty, b ∈ Class, and (b, subClassOf, b′);

• t � t′.
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The query triple relaxation above is specified according to the classification of types of triple relaxation.

The first format refers to the variable substitution, e.g. a synonym/hypernym for a string variable, a region

with larger range for a spatial landmark, a relaxed number/date for bound numeric/data variable etc. It is

very common in cooperative query answering. The second relaxation stands for the property substitution, i.e.

substitute the property in the triple with its super-property. An problem may arise in property substitution,

i.e. domains of b and b′ can be different. The third and fourth formats describe the concept subsumption,

i.e. either the subject or the object is replaced with its super-class. Please note that we allow t and t′ to

be a pair of equivalent (or similar) triples, i.e. ”!” can be reflexive. We use ”≺” to distinguish it from the

irreflexive triple relaxation.

DEFINITION 8.2. Relaxed Query. A relaxed query is a query QRELAX with 1 to n triple relaxations
over Q, where Q = (t1, . . . , tn), QRELAX = (t′1, . . . , t

′
n), for all triple relaxations ti ! t′i (1≤ i ≤n), at least

∃tj ≺ t′j (1≤ j ≤n).

More often, there may exist multiple directions for relaxation on a single query and even on a single triple.

Consequently, for a query, its relaxed queries can become huge, in particular when the original query has

multiple constraints. It is important to restrict, validate and rank the possible relaxations so as to make the

size of answers set reasonable. For instance, assume a service class Car Repair in the core ontology and a

triple relaxation as follows:

(?car repair, specializeIn, RaceCar) =⇒ (?car repair, specializeIn, Car). (1)

(?car repair, specializeIn, RaceCar) =⇒ (?car repair, Repair, RaceCar). (2)

With some domain knowledge, we can tell from the relaxation (2) is more meaningful in the above two

relaxed queries. With each triple relaxation, we can obtain from zero to multiple relaxed queries. The

potential relaxed queries can be presented to end-users so as enable them to choose the desirable one(s).

Alternatively, LBS can validate and rank them, based on certain integrity constraints, heuristics and user

constraints in user profiles.

Restrictions on Relaxed Queries. In Algorithm 8, we have presented how to discover the set of hard

constraints on a given service from a user’s profile, denoted as CQ(S, uID). CS(S, uID) refers to all explicit

constraints on a given service S, and these constraints are expressed on properties over S. Let us assume the

original query is Q (and the user uID asks the query Q), all relaxed queries over Q is QRELAX = {Q1, . . . , Qm},
∀Qi ∈ QRELAX , if Qi is incompatible with CQ(S, uID), remove Qi from QRELAX . For instance, a user speci-

fies ”dislike MacDonald’s” in her/his profile, if a relaxed query Qi = (t′1, . . ., <?x, hasName, ’MacDonald’s’>,

. . .), Qi will be removed from the relaxed queries. In addition, at the query formulation phase, we may permit

users to explicitly specify what property/value/triple can not be relaxed. This approach can effectively en-

force the restrictions on query relaxation from the user’s view point. Approaches of applying query relaxation

profiles to restrict query relaxations will be discussed in next subsection.

Validations on Relaxed Queries. For any relaxed query, there exists at least one irreflexive triple relax-

ation as defined in Definition 8.2. In other words, the relaxed query is different from the original one, it is
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necessary to check integrity constraints on the relaxed one. There exist a set of integrity constraints for a

given service class. The integrity constraints are categorized into two types: integrity constraints on a single

triple, e.g. the data-value range of a dataProperty; integrity constraints between triples, e.g. to book an

air-ticket, the departure time must be later than the arrival time, for a flight from Geneva to Beijing, the

departure date and arrival date can not be same. Integrity constraints ensure that relaxed queries are valid

with the specification of service class and are consistent with the original query.

Heuristics on Query Relaxation. In cooperative answering systems [CC94][Gaa97], to correct miscon-

ception was deemed as the most important reason for relaxation over a query. Authors also pointed out that

the misconception often happens due to the user’s incomplete knowledge on the database schema. It may

result in the sure failure of a query, redundant search space, and a huge number of answer substitutions.

They also presented the basic strategies on query relaxation for a misconception:

1. Relaxation of misconception receives priority over other relaxations.

2. When multiple misconception are available for relaxation, diverse precedence levels applies on them.

3. When multiple misconception have same relaxation priority, the misconception can be chosen according

to the depth of relaxation’s derivation.

8.3.2 The Definition of Query Relaxation Profile

The query relaxation profile (RP) is regarded as a working repository to handle query relaxation whenever

query relaxation is needed. Each RP corresponds to a specific service class in the core ontology. It has

two-folded functionalities. On the one hand, a RP contains a set of relaxation rules, i.e. what property of

the service class can be relaxed and how to control relaxations. On the other hand, each RP is uniquely

associated with a query profile (QP), and both of them have the common service class S. A query profile

refers to a set of queries on the service class S which have been processed by LBS, i.e. who and in which

context asks what service, possibly with services chosen by the user. Simply, QP is uniquely identified with

the service class S and denoted as a data tuple such as QP = (S, QS) where QS = {<q, cq, uID, A>}, q

is the original query delivered by the user uID, cq refers to the context relevant to q and uID, and A is the

answer (or answer set) chosen by the user uID. A query profile can be extracted from the query log files

and organized by the service class S. Query profiles can assist LBS to know what questions were asked by

the given user within a certain time-frame, and to further understand the real needs of the user and make

suitable recommendation and ranking. In return, the analysis of query profiles can help to modify the query

relaxation profiles to adapt the relaxation rules to the real needs of users. Moreover, query profiles can help

to find out the collaborative answers for a certain user with data mining techniques. However, it is not our

main concern to cluster query records of different users for collaborative query answering, but relevant efforts

can be found in [GGM92] [SB06].

Now let us have a closer look at the query relaxation profile. In earlier this chapter, we have presented

there may exist a large number of relaxed queries for a query Q. Hence, the relaxation profile mainly provides
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a set of heuristic rules for query relaxation on a given service class S. For instance, the triple relaxation

(?car repair, specializeIn, RaceCar) =⇒ (?car repair, specializeIn, Car) has little/no sense to constrain the

answer, since all car repair services specialize in repairing cars. In addition, a ranking algorithm is needed to

evaluate the potential relaxed queries Qrelax.

DEFINITION 8.3. Query Relaxation Profile. A query relaxation profile RP is a data tuple for a given
service class S in CO, such that RP = (S, R(t), F), where R(t) is a set of relaxation rules on triple t, ∀t over
S; F is a ranking function to order the priority over R(t).

Example 8.2. The original query Q = (?x, type, Car Rental)∧ (?x, PickupTime, ?t1)∧(?t1, at, ’2007-10-12
19:00’)∧(?x, ReturnTime, ?t2)∧(?t, at, ’2007-10-16 21:00’)∧ (?x, PickupPlace, ?l)∧(?i, near, ”Ouchy”)∧(?x,
hasCarType, ’Automatic’)∧(?x, hasCarMark, BMW).

RP := (Car Rental, R(t), F)
R(t):= {(?x, PickupTime, ?t) =⇒ (?x, PickupTime, ?t±ty)∧(ty , ≤, 2hours), (1)

(?x, ReturnTime, ?t) =⇒ (?x, ReturnTime, ?t±tz)∧(tz , ≤, 2hours), (2)
(?x, PickupPlace, ?l) =⇒ (?x, PickupPlace, District), (3)
(?x, PickupPlace, ?l) =⇒ (?x, PickupPlace, ?l’)∧(?l’, covers, ?l), (4)
(?x, hasCarMark, BMW) =⇒ (?x, hasCarMark, CarMark), (5)
(?x, type, Car Rental) =⇒ (?x, type, Minibus Rental). (6) }.

F:= ((relax(4) relax(3)) relax(5) relax(2)� relax(1) relax(6))

In the above example, we show the definition of a relaxed profile, we assume the query Q make constraints

on all properties of the service class Car Rental. In the example, we observe only property hasCarType

has not been specified within relaxation rules, because it is regarded as a non-relaxable property. In the

ranking function, we rank triple relaxations according to the respective relaxed triple ti, where  means have

precedence to make relaxation over other triple relaxations, � means have equivalent relaxation priority.

Further, the ranking function can be more complex, e.g. metrics-based function. But it is out of the scope

of this thesis.

Discussion. When the user profile is incomplete, the query history and collaborative user profiles will play

an important role in query reformulation and relaxation. On the basis of mining results of user queries, for a

given user, some preferences (or relaxation constraints) on a certain service can be discovered, for instance, a

user often chooses menu in certain price range and certain cuisine style. The inferred user information is also

stored in user profile as its complement. In addition, for a given user, the more recent queries are regarded

as type of context information to help LBS to deliver appropriate services to the user. For instance, if the

user visited a book shop one hour ago, the information from the same shop will not be delivered again. The

collaborative user profiles refer to user profiles of those users who have common interests or share common

characteristics with the current user. Consequently, LBS assume their user profiles can be taken into account

as the useful complement of current user’s profile in particular for a new LBS user.
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8.4 Chapter Summary

Query processing in LBS opens a plethora of new research directions in terms of query handling and optimiza-

tion. Different from the well-structured data in database systems, the data in LBS origins from heterogeneous

sources so that they are naturally presented in the format of RDF-graphs. Consequently, emerging RDF-

based query languages have been able to provide certain data querying functionalities, such as sort, group

results etc. However, it still calls upon new strategies, e.g. consistency checking and spatio-temporal support.

In this chapter, we concentrated on issues of query answering and relaxation in LBS. With the SPARQL,

we described a vision of query answering in LBS, and explained how to transform the conjunctive predicate

to SPARQL syntax. Then we discussed the critical issues of query relaxation and proposed to use query

relaxation profiles to specify the relaxation rules for each service class. In addition, by analyzing the query

data, query relaxation profiles may evolve to apt to the real needs of LBS users, similar to the core ontology’s

evolution for LBS. However, we did not deploy the query processing algorithms, we anticipate that LBS

applications will benefit from our strategy of query processing and open new research issues in LBS.
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Chapter 9
Conclusion

9.1 Contributions of the Thesis

Location-based Services (LBS) can be expected to become extremely popular in the very near future. Many

factors converge in substantiating this belief. On the hardware side, the emergence of sophisticated mobile

devices enables users on the move to easily dialog with an information service. Moreover, the development

of sensors makes data readily available about the current status of the world in user’s surroundings. On

the software side, the promises of the semantic web, in terms of handling and exchanging heterogeneous

information formats and contents, enable LBS to provide mobile users with easy access to an over-abundant

amount of information they may need to organize their out-of-office activities. Given this trend and potential,

it makes sense to investigate how the capabilities of current LBS can be improved to turn them into knowl-

edgeable information providers, able to assist users on the move with better services such as contextualized

and personalized local information. The mobility framework is inherently characterized by high dynamicity:

focus on information evolves according to user movement, and local context has to be continuously updated

to always represent the current status of the world. This makes current static and ad hoc solutions poorly

suited for a long term effort and temporal scalability (i.e. long lasting services). Instead, fully flexible in-

formation frameworks have to be designed to be able to adjust LBS to changing mobile users with changing

requirements in a changing world.

The essence and objective of this thesis is to explore the semantic issues in designing an LBS data

infrastructure tailored for supporting contextualized and personalized services. Such an analysis of semantic

aspects in LBS, following a generic, application independent approach, remained to be done. The outcome

of our analysis, and the major contribution of this work, is a proposal for a specific organization of the

knowledge an LBS has to handle. The proposal includes a methodology to build the different components

of the LBS knowledge infrastructure, a characterization of the salient features of each component, and a

specific approach to organize the interrelationships among the components so that the contextualization and

personalization goals can be effectively achieved.

In this document, we firstly review the evolution of the LBS concept from positioning services to re-

cent mobile information services. We then present our overall vision of future LBS, identifying the target
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functionalities that we believe are important and can be achieved by focusing on issues such as the ones we

address in this thesis, i.e. the design of a semantic framework, knowledge representation, personalization,

context-awareness, a simple and efficient query reformulation approach, and query answering and relaxation

strategies. Finally, we introduce our LBS architecture and make a systematic and comprehensive survey on

related work of each component in the framework.

In Chapter 3 we propose a modular core ontology as the main body of knowledge representation, and the

modular profiles as distributed data repositories interacting with the LBS core. Within the core ontology,

besides adopting the basic definitions from databases and ontologies, we focus on proposing a set of new

constructs that enhance the semantics of classes, properties and relations specifically involved in supporting

LBS. According to their functionality and characteristics, all dedicated concepts are classified as belonging to

the Service, Context, and User modules. Thanks to LBS-driven mappings between the concepts in the core

ontology and the ones in each data source, we allow heterogeneous data sources to maintain and evolve their

content in an autonomous and consistent manner. Two additional modules, the spatial and the temporal

modules, provide basic but essential support of data types and variables (i.e. landmarks) to express the

spatio-temporal features and constraints for the concepts in the core ontology. Lastly we briefly investigate

the evolution issues for the core and mapping ontologies, illustrating the common update operations and

their potential effects on the LBS ontologies.

We aim at handling the three main components of an LBS, the service, context, and user data, in a similar

fashion. The concept’s semantic definition and metadata are centrally maintained in the core ontology, while

all data instances are stored separately in their respective profiles. However, we also address specific features

of each module from the data’s semantics viewpoint. In the service module, for example, we define a set

of relationships to facilitate query processing. For instance, functional similarity relationships assist in

discovering alternative services when perfect service matching cannot be achieved. In addition, we detail the

service mapping process in a top-down manner, and illustrate the definition of mapping with examples.

Context is universal and many concepts in an LBS are context-sensitive. Our approach suggests a generic

classification of context concepts into five categories representing different knowledge domains. Although we

advocate specific arguments in support of this classification, the classification itself is proposed as a possible

but not mandatory general view of context data in LBS. What is important is that the classification is built

and maintained using a sound methodology that guarantees that the chosen context data is indeed both

useful and needed.

In the user module, we use the composition relationship to separate user’s complete profile from her/his

potentially many contextual profiles, and specify ways to represent the specificities of user properties in user

profiles.

Finally, to express what context data is meant for, and to support contextualizing information on services

as well as on users, two inter-module links are introduced that explicit the determine and influence semantics

that interrelates concepts from different modules. To complete this part of our proposal, inter-concepts

relationships between modules are complemented with a property relevancy association that improves the

LBS knowledge about relevance of concepts between different modules.
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Query reformulation and processing are challenging topics for any information system. In the mobile

environment, due to device and network limitations, query formulation becomes more cumbersome than in

the fixed computing environment. We therefore propose a simple and intuitive way for users to formulate

a query, i.e. as <what, where, when, what-else> tuples, and show how to better understand the terms in a

query thanks to terminological support, before transforming the query tuples into conjunctive queries. Using

the SPARQL query language, we show that the conjunctive queries can be smoothly translated to SPARQL-

compatible format. Last, we discuss the query relaxation issues using a rule-based approach and show its

feasibility with some scenarios.

9.2 Future Work

Our proposal for an LBS semantic data infrastructure and its analysis in terms of set up methodology

and design considerations should enable a systematic implementation-oriented development of the various

components in support of knowledgeable LBS. This is obviously the next task on the agenda towards the new

generation of LBS, the one that would really provide users the information services they look for. Detailed

technical specifications remain to be elaborated once the underlying technical infrastructure would be defined:

which representation formalism, which query language, which data management system, which data exchange

protocols would best suit the implementation of the objectives. Most likely, choices will here be different from

one team to another. In any case, the technical specifications task, not to mention the implementation task,

encompasses so many diverse aspects that it is indeed the work for a team and not for a single researcher.

Beyond what we aimed to cover with our analysis of semantic requirements, a wide variety of challenges

remain to be addressed for Location-based services to emerge as powerful information services. Examples

include standardization of annotations for web-based information, acknowledged protocols for privacy pro-

tection, and intelligent aggregation of sensor network data, just to name a few.

Implementation-Oriented Issues. The very first effort is to set up a trial prototype to examine the

algorithms designed in our work. The prototype shall have the capability to handle a large population of

service data, context data and user data. It brings up a big challenge to collect the relevant data is a

challenge in itself as it has to be a dynamic process in a dynamic computing environment. A variety of

knowledge extraction techniques are needed to get data from many sources that are heterogeneous both in

format and in content. While many of these techniques are available or being investigated, very rare results

have been achieved in terms of extracting spatial and temporal data. This is an area where much more

research is needed. Validation of the prototype calls for the realization of many case studies to evaluate

users’ experiences and satisfaction on using such a system. In particular, in query processing and relaxation

we only introduced a simple way to compute and rank the metrics of the result set. We believe more complex

metrics-based algorithms can be employed in ranking results and in computing concepts similarity.

Logical Formalism Issues. In our work, we defined our core ontologies and mapping ontologies based

on OWL-DL. However, in the world of real systems, more closed world assumptions are advocated to control

the scalability of ontological reasoning and searching in order to respond user queries in a rapid and effective

manner. The OWL community is actively making efforts to enhance the pragmatics of OWL in semantic web
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applications and to explore a better query language to enable to quickly find out the data among a large scale

of ontology repositories. However, functionality needed for management of spatial and spatio-temporal data

represent a serious challenge that may simply inhibit the design of fully OWL-based LBS. Therefore, hybrid

solutions are likely to be needed to combine the reasoning benefits of logical languages with the effective

services provided by DBMS and GIS. This is another promising area for future research.

Trust and Privacy Issues. Security and trust are very fundamental and even radical issues in ac-

complishing LBS from both the user and service providers’ viewpoints. Many endeavors have been made in

fostering the security and privacy protection in location-based services setting. While we have tentatively

explored the privacy issues in chapter 6 in terms of privacy properties and user’s rules definition, further work

is needed on integrating trust and security management within the whole infrastructure so as to encourage

the popularity and proliferation of LBS in reality.
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[OTV05] M. Öztürké, A. Tsoukiàs, and P. Vincke. Multiple Criteria Decision Analysis: State of the Art

Surveys, chapter Preference Modelling., pages 27–72. Springer Verlag, 2005. 27

[PB97] M. Pazzani and D. Billsus. Learning and revising user profiles: The identification of interesting

web sites. Machine Learning, 27:313–331, 1997. 26

[PPPS03] D. Pierrakos, G. Paliouras, C. Papatheodorou, and C.D. Spyropoulos. Web usage mining as a

tool for personalization: A survey. User Modeling and User-Adapted Interaction, 13:311–372,

2003. 26

[PPT02] D. Pfoser, E. Pitoura, and N. Tryfona. Metadata modeling in a global computing environ-

ment. In proceedings of the 10th ACM international symposium on Advances in Geographic

Information Systems, pages 68–73, 2002. 25

196



BIBLIOGRAPHY

[PSS08] C. Parent, S. Spaccapietra, and H. Stuckenschmidt. Modular Ontologies (Eds.). Springer

Publisher, 2008. 35
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