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Semiclassical evaluation of quantum fidelity

Jin Vanicek2 and Eric J. Heller®
IDepartment of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Mathematical Sciences Research Institute, Berkeley, California 94720, USA
3Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 26 February 2003; published 21 November 003

We present a numerically feasible semiclassi&al) method to evaluate quantum fidelity dedhpschmidt
echg in a classically chaotic system. It was thought that such evaluation would be intractable, but instead we
show that a uniform SC expression not only is tractable but it also gives remarkably accurate numerical results
for the standard map in both the Fermi-golden-rule and Lyapunov regimes. Because it allows Monte Carlo
evaluation, the uniform expression is accurate at times when there Yrseificlassical contributions. Re-
markably, it also explicitly contains the “building blocks” of analytical theories of recent literature, and thus
permits a direct test of the approximations made by other authors in these regimes, ratherahpostmiori
comparison with numerical results. We explain in more detail the extended validity of the classical perturbation
approximation and show that within this approximation, the so-called “diagonal approximation” is automatic
and does not require ensemble averaging.
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The question of stability of quantum motion, originally MPT(t)wexp(—Wtzlﬁz). @)
formulated by Perefl], has recently attracted much interest,

due fo its relevance to quantum computation and demheifor intermediate perturbation strengths, the decay follows

ence in complex systems. Peres defined stability in terms . : )
quantum fidelityM (t), the overlap at time of two states, %e Fermi golden rul¢s] and is exponential,

which were identical at timé=0, but afterwards propagated

in slightly different dynamical systems, described by Hamil- Megr(t) ~exp(—T't/%), ()]

toniansH® andHY=H°+V, o
whereI'=27V?/A. In Ref.[6] it was shown that this FGR

M(t)=|(ylexp(iHVt/h)exp(—iHt/A)|¢)>. (1)  decay is equivalent to the exponential decay derived semi-

classically in Refs[2,7]. In other words]"=2K/A whereK

This quantity is also called Loschmidt echo, because it cais the classical action diffusion constant,

be interpreted as an overlap of a state propagated forward for

time t with H® and then backward for timewith HY, with o

the initial state. We considdd® to be strongly chaotic, al- K= JO dt(V(r(t))V(r(0))).

though our method is not limited to this case. Even with this

restriction, the decay of fidelity has a surprisingly rich be- ) ) ,

havior: Most surprising recently was the derivation in Ref. !N the Lyapunov regime, derived in R¢2], FD actually

[2] that for a certain range of perturbations the decay rate i§0€S not depend on the strength of perturbation, but only on

independent of the perturbation strength. the Lyapunov exponerit of the chaotic system,
The Loschmidt echo is physically realizable, for example,
in NMR spin echo experiments, where back propagation un- M (t)~exp(—At). (4)

der a slightly different Hamiltonian is feasib|&8—5]. There
are other examples, which often go unnoticed. An example is \We are able to find a numerically feasihlaiform[9,33—
neutron scattering, where the scattering kernel can be writtegs] SC method to evaluate FD in the FGR and Lyapunov
as in Eq.(1), with HY a momentum boosted version .  regimes. As a result, we can directly test all approximations
Many numerical investigations of fidelity decalfD) have  made in the derivation of resul(8) and(4) from Refs.[2,7].
been undertaken in various systefi8s-32. Depending on  The method starts with a SC approach based on the classical
the strength of perturbation, there exist at least four qualitaperturbation approximatiofiCPA) [2,7], and ends with a
tively different regimes of the decay in chaotic systgis  form of initial value representatiorilVR) [36,37] which
As the perturbation increases, these regimes are perturbativigakes the numerical calculation manageable and the SC ap-
(PT), Fermi-golden-rule(FGR), Lyapunov (L), and the proximation itself more accurate.
strong semiclassicdB5C) regimes. Following notation of Ref[2], we want to find FD for an

In the PT regime, in which the characteristic matrix ele-initial Gaussian wave packet
ment of the perturbation is smaller than the mean level spac-
ing A, the decay can be described by a combination of per- . 2
turbation theory and random-matrix theof®MT), and is ,/,(r;o)z(m,Z)d/4eXr{'_po.(r_ro)_u ]
Gaussiar|6,7], h 20°
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It is centered at, with dispersionos and has an average overlap, we can find a poirB(0) on the manifold at=0
momentump,. We propagate this state with a SC Van such thaBY(t) (almos} coincides withA(t). Because of the

Vleck—Gutzwiller propagatof38] exponential sensitivity to the initial conditions, poiB{0)
i will be exponentially close tA(0). TrajectoriesA(t) and
, - : . . )
SC/ el 1ty — 2\ —di2R12 e B(t) remain exponentially close for all times, so if we use
K0 ; (2mif) 5] exr{hsj '2 V’) these particular trajectories to fint) and V(t), respec-

_ tively, the CPA will be justified.
Here C;=|det(3°S;/dr"r")| is the absolute value of the  The diagonal approximation and CPA enormously sim-

Van Vleck determinantS;(r”,r’;t) is the action along the plify expression(5) for the overlap amplitude:
jth trajectory connecting’ with r”,

Sj(f",F';t)=J;dt’L(r(t’),f(t’),t’) O(t):(‘fzfﬂﬁz)dlzf ddf}j: C;

andv; is the Maslov index. X exiAS; /h = (p] —po)?o?Ihi?]. )

Expanding each contribution about a central trajectory _ _ o
[39], the overlap amplitude of the semiclassically propagatedit this point, both Refs[2,7] resort to statistical arguments

states becomd®] to obtain an analytical result. Expressitf) for the overlap
would be very difficult to implement numerically for three
O(t)=(y*V(t)|y°(1)) reasons. First, in chaotic systems there is an exponentially
growing number of contributing trajectories. Second, the ac-
=(02/7rﬁ2)d’2f dor > (C}/Cj,)lﬂ curacy would be compromised by proliferating caustic sin-
i’ gularities in the Van Vleck determinanC; whenever

i - ar/apj’=0. Finally, for each trajectory we would haye 'Fo_
xex;{—(s}’—sj,)— _(,,JV_ V1) perform a computationally expensive root search to find ini-
h 2 tial p; that satisfies (rq,p; ,t)=r. However, there exists a
/ 2 ' 27 27932 beautiful and simple way to eliminate the exponential num-
*exp=[(pj ~Po) +(pj'_p°) lo%/28%, 5 ber of contributigns, c)z/austic singularities,pand the root
where S, =S;(r,ro;t) and the superscrip denotes quanti- _search, all at the same ti_me. AI.I t_hree problems can be solved
ties in the perturbed system. At this point, two crucial ap_lf We.evaluat(.e _overlapS) in the_|n|t|al momentum mgtead of
proximations are made in Refg,7]: First, only the diagonal the final position representation. Exac?ly one point on the
termsj=j’ are considered. Referen2] claims that these evolved ma_nlfol_d corresponds to each initial momentum, so
are the only terms surviving the average over impurities jf’® Summation is necessary. The new “Van Vieck determi-
disordered systems. Below we show that this is not a sepdl@nt” is exactly 1, so there will be no Maslov indices either.
rate approximation, but that it follows from the CPA and With all these simplifications, the SC evaluation becomes
does not require any ensemble averaging. CPA, the seconfpctable; in principle, it yields the same result that an ardu-
approximation used in Reff2,7], is based on an apparently ©US evaluation of Eq(7) would:
hopeless assumption that the perturbation does not affect tra-

jectories(i.e., C/~C; and v/~ ;) but only affects the ac- 2 aod2 [ der ot )
tions, through O(t)=(omh*)" | dp’exgiAS(r(ro,p",t),ro,)/%

t —(p' —po)2a?h?]. 8
As,:sjv—sjz—fodt'V(r,-(t')). ©®) (P Po) el ©®
The only assumption required to derive E8).is the validity

Of course this assumption is wrong for individual trajec- of CPA, in the extended sense described above. Ensemble
tories which deviate exponentially with time. The reasonaveraging used in Ref2] is unnecessary: resul8 works
why the approximation works in quantum mechanics isfor pure states. Expressiof8) is a special form of IVR
subtle: The first step to understanding why it yields accurat¢36,37]. In general, IVR avoids the singularities and the root
wave functions lies in the structural stability of the mani- search, but at a cost of replacing a sum over classically al-
folds, as pointed out in Ref7]. Assuming that perturbation lowed paths by an integral over all initial momenta. In our
does not cause a bifurcation and does not significantlgase, it is even better, since we also eliminated the integral
change the stable manifold, the evolved manifolds almosbtver final positionr. We remark that Eq(8) can also be
exactly overlap whereas the same initial points deviate exposbtained by changing the integration variable in Efj.from
nentially by sliding along the manifolf7]. final r to initial p’, but our derivation avoids the intermedi-

The second step goes as follows: consider trajectorieate step(7) that requires making diagonal approximation in
A(t), AV(t) under the flowH®, HY, respectively. LetA(0) Eqg. (5). We note the unique property of IVR: in this repre-
=AY(0) be a point on the Lagrangian manifold supportingsentation, FD is only due to dephasing. In other representa-
the wave function at=0. While AV(t) exponentially di- tions, the decay can also have a component due to the decay
verges fromA(t), if the evolved manifoldgalmos}) exactly  of classical overlaps.
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FIG. 1. Fidelity in the perturbative regimé&+ 18, N\~2.21, € FIG. 2. Fidelity in the FGR regime k&18, A~2.21, €
=10"* ty~n=350). Inset: detail for short times. =5x10"% n=3500). Horizontal dashed lin&ergodic”) is the
limit of FD due to the finite size of Hilbert space. Inset: Histogram
We chose to test our method on the standard map used bf action differences compared to a Gaussian fit.
Ref.[7],
+2J3,(k)]~* [7] when most of the overlap has decayed be-
Qj+1=0q;tp; (modl), fore Heisenberg time. Transition from the FGR to the
. Lyapunov regime occurs foe?~8mAn~2[1+2J,(k)]?
i when the FGR decay rate is larger than
Pi+1=Pj~ 5 SIN270j4y) - (mod D). Using Eq.(8), fidelity can be written as a weighted aver-
age of terms eXp(AS' —AS")/#A],
Perturbation is effected by replacing the paramétdry k
+ €. Choice of am-dimensional Hilbert space for the quan- o2 d i
tized map fixes the effective Planck constant to be M unif(t) = —2) f ddp’f ddp” ex;{%(AS’—AS”)}
=(27n) 1. We note that results of exact quantum and SC wh
computations, which we present below, are for initial posi- xexp{—[(p' = Po)2+ (p"— po)2]o2/h2,  (9)
tion eigenstate witlyy=0.5 rather than a wave packet.
In previous numerical experiments analytical predictionsyhere AS” corresponds to a trajectory with initial momen-
of Gaussian or exponential decay have been compared to gfim p”. Assuming the averaging windovi.e., the momen-

exact quantum calculation: see, e.g., Re8-8,10,11  tym width of the wave packgts large enough, we can make
While we also have an exact quantum benchnigakt Fou-  the replacement

rier transform with which to compare the expressions for
various regimes, we reiterate that it would be hard from a exdi(AS' —AS")/h]~(exdi(AS'—AS")/A]) (10)
mere comparison of final results fdd (t) to determine the
source of errors. We proceed by discussing how the unifornmn Eq. (9) where averaging is over all initial momengd,
method helps to analyze various regimes of decay. In the Pp”. In the FGR regime where dephasing is determined by
regime (see Fig. 1, we do not expect any SC approach to uncorrelated trajectories, a further simplification
work very well except for short timegnuch shorter than the
Heisenberg time,,=h/A). The RMT analytical resulM pt (exfi(AS' —AS")/A]y~(eS (e 188"ty (11)
from Ref.[7] gives an excellent agreement in this case. The
inset shows, however, that before the Gaussian détay is possible. Due to the central limit theorem, in chaotic sys-
sets in at the Heisenberg time, the uniform expression foltems distribution ofAS approaches a Gaussian and
lows Mgy act much better.

As the perturbatior increases, we enter the regimes with (expiAS/h))=exdi(AS)/fi—aig/2h7], (12
exponential decay of fidelity. If the perturbation is strong
quantum mechanically, but does not significantly change the&vhere 03s=2Kt is the action variance at time Applying
stable manifold, CPA may be used. Even within the CPA approximationg10)—(12) in Eq. (9) confirms Eq.(3) for the
there are two types of decay, discussed already in [Réf. FGR decay[2,7]. Figure 2 shows FD in the FGR regime. In
First, there is decay related to dephasing of trajectories witlthe inset, the histogram of action differences is compared
uncorrelated actions. Second, there is decay related twith a Gaussian fit, confirming assumpti@t®). It is appar-
dephasing of very near trajectories with correlated actionsent thatM ;s matchesM g, better than theMgr Since
For smaller perturbations, the first type of decay is sloweiM ,,;; takes into account the precise initial conditions with-
and dominates the behavior of fidelity: this happens in theout the averaging assumptidh0) and sinceM g Uses an
FGR regime. For larger perturbations, dephasing of uncorreanalytic result forK, which is only approximatg7]. Careful
lated trajectories is so fast that the quantum overlap is deternspection of the short time regin{aot shown reveals that
mined by the fraction of near trajectories that have remained/ ,,;; agrees withMyacr, Since unlikeMggr, Mynis does
in phase. This is the case in the Lyapunov regime. Transitiomot depend on the central limit theorem which guarantees the
from the PT to the FGR regime occurs fet~327%n 31  Gaussian assumptiofi2) at later times. Finally, we would
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Figure 3 displaysM(t) in the Lyapunov regime. It shows
that while M gives an accurate average decay only Xor

=5Xx104 n=10). i i in Fig. 2. : ;
5X 107, n=1(%). Meaning of lines same as in Fig. 2. Inset >1, My,is correctly follows the behavior d¥1,,..even for

Variance of AS(p”")—AS(p’) as a function ofp”—p’ at timet . N1 . .
=7. Dots are numerically calculated; dashed line is the horizonta?hort times t~A "~ The inset shows the variance of

) A ) ) y o AS(p')—AS(p") as a function op’ —p” at a fixed time and
asymptote 2r§s, solid line is a linear fit for smallp”—p”, in ST . X . S
agreement with Eq(13). justifies the assumption made in Ré2] in derivation of

perturbation independent decay. For near trajectories, the

like to point out that the uniform expression is very accurate’arance grows quadratically with’ —p” (fitted line gives

at timet~120 when there are- 107" semiclassical contribu- 2" expongnt Z.QQSip accordance Wi.th Eq13), yvhi!e for
tions in sum(7). distant trajectories, in accordance with the derivation of the

In the Lyapunov regime, FD is determined by dephasing”CR regime, the variance is independenipof-p”,

FIG. 3. Fidelity in the Lyapunov regimek&7, A=~1.28, €

of near trajectories with correlated actiof, invalidating AS(D) = AS(D") 12 =202 = 4Kt 14
simplification(11). Now the action differencAS' —AS" de- ([AS(p")~AS(PMT) As 4
pends on the initial momenta’, p”. Using reasoning simi- The time dependence ¢FAS(p’)—AS(p”)]?) for fixed

lar to Ref.[2] or statistical arguments for a random walk with p’ —p” is shown in Fig. 4. Paita) shows that for short times
an exponentially increasing time stf0], it can be shown when trajectories are still correlated, this dependence is ex-
that the action difference is also Gaussian distributed, witlponential, in agreement with E¢L3). Part(b) shows that for

zero average and variance longer times, when correlation is lost, the dependence is lin-
) o oty ear, as expected from E(L4).
([AS(p")—AS(p")]9)~(DI2n )™M (p' = p")%, To conclude, we have explicitly evaluated SC expressions
P 5 which were thought to be intractable numerically, yielding
D=2 2y Y _ 1 rerqarkably accurate results for FD in the FGR apd Lyapunov
fo dt< aq (q(O))aq (q(t))> (13 regimes. We provided a more detailed explanation why CPA

works, and employed our method to test other approxima-
We can therefore make the replacement tions used in Refd.2,7].
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