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Semiclassical evaluation of quantum fidelity
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We present a numerically feasible semiclassical~SC! method to evaluate quantum fidelity decay~Loschmidt
echo! in a classically chaotic system. It was thought that such evaluation would be intractable, but instead we
show that a uniform SC expression not only is tractable but it also gives remarkably accurate numerical results
for the standard map in both the Fermi-golden-rule and Lyapunov regimes. Because it allows Monte Carlo
evaluation, the uniform expression is accurate at times when there are 1070 semiclassical contributions. Re-
markably, it also explicitly contains the ‘‘building blocks’’ of analytical theories of recent literature, and thus
permits a direct test of the approximations made by other authors in these regimes, rather than ana posteriori
comparison with numerical results. We explain in more detail the extended validity of the classical perturbation
approximation and show that within this approximation, the so-called ‘‘diagonal approximation’’ is automatic
and does not require ensemble averaging.
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The question of stability of quantum motion, original
formulated by Peres@1#, has recently attracted much intere
due to its relevance to quantum computation and deco
ence in complex systems. Peres defined stability in term
quantum fidelityM (t), the overlap at timet of two states,
which were identical at timet50, but afterwards propagate
in slightly different dynamical systems, described by Ham
toniansH0 andHV5H01V,

M ~ t !5 z^cuexp~ iH Vt/\!exp~2 iH 0t/\!uc& z2. ~1!

This quantity is also called Loschmidt echo, because it
be interpreted as an overlap of a state propagated forwar
time t with H0 and then backward for timet with HV, with
the initial state. We considerH0 to be strongly chaotic, al-
though our method is not limited to this case. Even with t
restriction, the decay of fidelity has a surprisingly rich b
havior: Most surprising recently was the derivation in R
@2# that for a certain range of perturbations the decay rat
independent of the perturbation strength.

The Loschmidt echo is physically realizable, for examp
in NMR spin echo experiments, where back propagation
der a slightly different Hamiltonian is feasible@3–5#. There
are other examples, which often go unnoticed. An exampl
neutron scattering, where the scattering kernel can be wr
as in Eq.~1!, with HV a momentum boosted version ofH0.
Many numerical investigations of fidelity decay~FD! have
been undertaken in various systems@6–32#. Depending on
the strength of perturbation, there exist at least four qua
tively different regimes of the decay in chaotic systems@6#:
As the perturbation increases, these regimes are perturb
~PT!, Fermi-golden-rule ~FGR!, Lyapunov ~L!, and the
strong semiclassical~SC! regimes.

In the PT regime, in which the characteristic matrix e
ment of the perturbation is smaller than the mean level sp
ing D, the decay can be described by a combination of p
turbation theory and random-matrix theory~RMT!, and is
Gaussian@6,7#,
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M PT~ t !'exp~2V2t2/\2!. ~2!

For intermediate perturbation strengths, the decay follo
the Fermi golden rule@8# and is exponential,

MFGR~ t !'exp~2Gt/\!, ~3!

whereG52pV2/D. In Ref. @6# it was shown that this FGR
decay is equivalent to the exponential decay derived se
classically in Refs.@2,7#. In other words,G52K/\ whereK
is the classical action diffusion constant,

K5E
0

`

dt^V„r ~ t !…V„r ~0!…&.

In the Lyapunov regime, derived in Ref.@2#, FD actually
does not depend on the strength of perturbation, but only
the Lyapunov exponentl of the chaotic system,

ML~ t !;exp~2lt !. ~4!

We are able to find a numerically feasibleuniform @9,33–
35# SC method to evaluate FD in the FGR and Lyapun
regimes. As a result, we can directly test all approximatio
made in the derivation of results~3! and~4! from Refs.@2,7#.
The method starts with a SC approach based on the clas
perturbation approximation~CPA! @2,7#, and ends with a
form of initial value representation~IVR! @36,37# which
makes the numerical calculation manageable and the SC
proximation itself more accurate.

Following notation of Ref.@2#, we want to find FD for an
initial Gaussian wave packet

c~r ;0!5~ps2!2d/4 expF i

\
p0•~r2r0!2

~r2r0!2

2s2 G .
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It is centered atr0 with dispersions and has an averag
momentump0. We propagate this state with a SC Va
Vleck–Gutzwiller propagator@38#

Ksc~r 9,r 8;t !5(
j

~2p i\!2d/2Cj
1/2expS i

\
Sj2 i

p

2
n j D .

Here Cj5udet(]2Sj /]r 9]r 8)u is the absolute value of th
Van Vleck determinant,Sj (r 9,r 8;t) is the action along the
j th trajectory connectingr 8 with r 9,

Sj~r 9,r 8;t !5E
0

t

dt8L„r ~ t8!, ṙ ~ t8!,t8…

andn j is the Maslov index.
Expanding each contribution about a central traject

@39#, the overlap amplitude of the semiclassically propaga
states becomes@2#

O~ t !5^csc,V~ t !ucsc~ t !&

5~s2/p\2!d/2E ddr(
j , j 8

~Cj
VCj 8!

1/2

3expF i

\
~Sj

V2Sj 8!2
ip

2
~n j

V2n j 8!G
3exp$2@~pj82p0!21~pj 8

8 2p0!2#s2/2\2%, ~5!

whereSj5Sj (r ,r0 ;t) and the superscriptV denotes quanti-
ties in the perturbed system. At this point, two crucial a
proximations are made in Refs.@2,7#: First, only the diagonal
terms j 5 j 8 are considered. Reference@2# claims that these
are the only terms surviving the average over impurities
disordered systems. Below we show that this is not a se
rate approximation, but that it follows from the CPA an
does not require any ensemble averaging. CPA, the se
approximation used in Refs.@2,7#, is based on an apparent
hopeless assumption that the perturbation does not affec
jectories~i.e., Cj

V'Cj and n j
V'n j ) but only affects the ac-

tions, through

DSj5Sj
V2Sj52E

0

t

dt8V„r j~ t8!…. ~6!

Of course this assumption is wrong for individual traje
tories which deviate exponentially with time. The reas
why the approximation works in quantum mechanics
subtle: The first step to understanding why it yields accur
wave functions lies in the structural stability of the man
folds, as pointed out in Ref.@7#. Assuming that perturbation
does not cause a bifurcation and does not significa
change the stable manifold, the evolved manifolds alm
exactly overlap whereas the same initial points deviate ex
nentially by sliding along the manifold@7#.

The second step goes as follows: consider trajecto
A(t), AV(t) under the flowH0, HV, respectively. LetA(0)
5AV(0) be a point on the Lagrangian manifold supporti
the wave function att50. While AV(t) exponentially di-
verges fromA(t), if the evolved manifolds~almost! exactly
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overlap, we can find a pointB(0) on the manifold att50
such thatBV(t) ~almost! coincides withA(t). Because of the
exponential sensitivity to the initial conditions, pointB(0)
will be exponentially close toA(0). TrajectoriesA(t) and
B(t) remain exponentially close for all times, so if we u
these particular trajectories to findc(t) and cV(t), respec-
tively, the CPA will be justified.

The diagonal approximation and CPA enormously si
plify expression~5! for the overlap amplitude:

O~ t !5~s2/p\2!d/2E ddr(
j

Cj

3exp@ iDSj /\2~pj82p0!2s2/\2#. ~7!

At this point, both Refs.@2,7# resort to statistical argument
to obtain an analytical result. Expression~7! for the overlap
would be very difficult to implement numerically for thre
reasons. First, in chaotic systems there is an exponent
growing number of contributing trajectories. Second, the
curacy would be compromised by proliferating caustic s
gularities in the Van Vleck determinantCj whenever
]r /]pj850. Finally, for each trajectory we would have t
perform a computationally expensive root search to find
tial pj8 that satisfiesr (r0 ,pj8 ,t)5r . However, there exists a
beautiful and simple way to eliminate the exponential nu
ber of contributions, caustic singularities, and the ro
search, all at the same time. All three problems can be so
if we evaluate overlap~5! in the initial momentum instead o
the final position representation. Exactly one point on
evolved manifold corresponds to each initial momentum,
no summation is necessary. The new ‘‘Van Vleck determ
nant’’ is exactly 1, so there will be no Maslov indices eithe
With all these simplifications, the SC evaluation becom
tractable; in principle, it yields the same result that an ar
ous evaluation of Eq.~7! would:

O~ t !5~s2/p\2!d/2E ddp8exp@ iDS„r ~r0 ,p8,t !,r0 ,t…/\

2~p82p0!2s2/\2#. ~8!

The only assumption required to derive Eq.~8! is the validity
of CPA, in the extended sense described above. Ensem
averaging used in Ref.@2# is unnecessary: result~8! works
for pure states. Expression~8! is a special form of IVR
@36,37#. In general, IVR avoids the singularities and the ro
search, but at a cost of replacing a sum over classically
lowed paths by an integral over all initial momenta. In o
case, it is even better, since we also eliminated the inte
over final positionr . We remark that Eq.~8! can also be
obtained by changing the integration variable in Eq.~7! from
final r to initial p8, but our derivation avoids the intermed
ate step~7! that requires making diagonal approximation
Eq. ~5!. We note the unique property of IVR: in this repre
sentation, FD is only due to dephasing. In other represe
tions, the decay can also have a component due to the d
of classical overlaps.
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We chose to test our method on the standard map use
Ref. @7#,

qj 115qj1pj ~mod 1!,

pj 115pj2
k

2p
sin~2pqj 11! ~mod 1!.

Perturbation is effected by replacing the parameterk by k
1e. Choice of ann-dimensional Hilbert space for the qua
tized map fixes the effective Planck constant to be\
5(2pn)21. We note that results of exact quantum and
computations, which we present below, are for initial po
tion eigenstate withq050.5 rather than a wave packet.

In previous numerical experiments analytical predictio
of Gaussian or exponential decay have been compared t
exact quantum calculation: see, e.g., Refs.@6–8,10,11#.
While we also have an exact quantum benchmark~fast Fou-
rier transform! with which to compare the expressions f
various regimes, we reiterate that it would be hard from
mere comparison of final results forM (t) to determine the
source of errors. We proceed by discussing how the unifo
method helps to analyze various regimes of decay. In the
regime ~see Fig. 1!, we do not expect any SC approach
work very well except for short times~much shorter than the
Heisenberg timetH5h/D). The RMT analytical resultM PT
from Ref. @7# gives an excellent agreement in this case. T
inset shows, however, that before the Gaussian decayM PT
sets in at the Heisenberg time, the uniform expression
lows Mexact much better.

As the perturbatione increases, we enter the regimes w
exponential decay of fidelity. If the perturbation is stro
quantum mechanically, but does not significantly change
stable manifold, CPA may be used. Even within the CP
there are two types of decay, discussed already in Ref.@2#.
First, there is decay related to dephasing of trajectories w
uncorrelated actions. Second, there is decay related
dephasing of very near trajectories with correlated actio
For smaller perturbations, the first type of decay is slow
and dominates the behavior of fidelity: this happens in
FGR regime. For larger perturbations, dephasing of unco
lated trajectories is so fast that the quantum overlap is de
mined by the fraction of near trajectories that have remai
in phase. This is the case in the Lyapunov regime. Transi
from the PT to the FGR regime occurs fore2'32p2n23@1

0 1000 2000 3000 4000

1

0.05

0.2

0.1

0.5
FGR

exact
PT

uniform

0 25 50

0.999

1

M

t

M

t

FIG. 1. Fidelity in the perturbative regime (k518, l'2.21, e
51024, tH'n5350). Inset: detail for short times.
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12J2(k)#21 @7# when most of the overlap has decayed b
fore Heisenberg time. Transition from the FGR to t
Lyapunov regime occurs fore2'8p2ln22@112J2(k)#21

when the FGR decay rate is larger thanl.
Using Eq.~8!, fidelity can be written as a weighted ave

age of terms exp@i(DS8ÀDS9)/\#,

Muni f~ t !5S s2

p\2D dE ddp8E ddp9 expF i

\
~DS8ÀDS9!G

3exp$2@~p82p0!21~p92p0!2#s2/\2%, ~9!

whereDS9 corresponds to a trajectory with initial momen
tum p9. Assuming the averaging window~i.e., the momen-
tum width of the wave packet! is large enough, we can mak
the replacement

exp@ i ~DS82DS9!/\#'^exp@ i ~DS8ÀDS9!/\#& ~10!

in Eq. ~9! where averaging is over all initial momentap8,
p9. In the FGR regime where dephasing is determined
uncorrelated trajectories, a further simplification

^exp@ i ~DS82DS9!/\#&'^eiDS8/\&^e2 iDS9/\& ~11!

is possible. Due to the central limit theorem, in chaotic s
tems distribution ofDS approaches a Gaussian and

^exp~ iDS/\!&5exp@ i ^DS&/\2sDS
2 /2\2#, ~12!

wheresDS
2 52Kt is the action variance at timet. Applying

approximations~10!–~12! in Eq. ~9! confirms Eq.~3! for the
FGR decay@2,7#. Figure 2 shows FD in the FGR regime. I
the inset, the histogram of action differences is compa
with a Gaussian fit, confirming assumption~12!. It is appar-
ent thatMuni f matchesMexact better than theMFGR since
Muni f takes into account the precise initial conditions wit
out the averaging assumption~10! and sinceMFGR uses an
analytic result forK, which is only approximate@7#. Careful
inspection of the short time regime~not shown! reveals that
Muni f agrees withMexact, since unlikeMFGR , Muni f does
not depend on the central limit theorem which guarantees
Gaussian assumption~12! at later times. Finally, we would

P
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FGR
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0

0.1

FIG. 2. Fidelity in the FGR regime (k518, l'2.21, e
5531024, n53500). Horizontal dashed line~‘‘ergodic’’ ! is the
limit of FD due to the finite size of Hilbert space. Inset: Histogra
of action differences compared to a Gaussian fit.
8-3



at
-

in

th

it

ss

he

e

x-

n-

s

v
A
a-

e

rd
n-
l
s-

,
d

t:

nt
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like to point out that the uniform expression is very accur
at timet'120 when there are'1070 semiclassical contribu
tions in sum~7!.

In the Lyapunov regime, FD is determined by dephas
of near trajectories with correlated actions@2#, invalidating
simplification~11!. Now the action differenceDS82DS9 de-
pends on the initial momentap8, p9. Using reasoning simi-
lar to Ref.@2# or statistical arguments for a random walk wi
an exponentially increasing time step@40#, it can be shown
that the action difference is also Gaussian distributed, w
zero average and variance

^@DS~p8!2DS~p9!#2&'~D/2l!e2lt~p82p9!2,

D52E
0

`

dtK ]

]q
V„q~0!…

]

]q
V„q~ t !…L . ~13!

We can therefore make the replacement

K expF i

\
~DS82DS9!G L 'expF2

D

4l\2
e2lt~p82p9!2G

in Eqs.~9! and ~10! to find

ML~ t !'~11e2ltD/2ls2!21/2'~2ls2/D !1/2e2lt,

confirming Eq.~4!. For the precise definition ofl, see Ref.
@10# ~one has to be careful about the averaging proce!.
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FIG. 3. Fidelity in the Lyapunov regime (k57, l'1.28, e
5531024, n5105). Meaning of lines same as in Fig. 2. Inse
Variance ofDS(p9)2DS(p8) as a function ofp92p8 at time t
57. Dots are numerically calculated; dashed line is the horizo
asymptote 2sDS

2 ; solid line is a linear fit for smallp92p9, in
agreement with Eq.~13!.
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Figure 3 displaysM (t) in the Lyapunov regime. It shows
that while ML gives an accurate average decay only forlt
@1, Muni f correctly follows the behavior ofMexact even for
short times t;l21. The inset shows the variance of
DS(p8)2DS(p9) as a function ofp82p9 at a fixed time and
justifies the assumption made in Ref.@2# in derivation of
perturbation independent decay. For near trajectories, t
variance grows quadratically withp82p9 ~fitted line gives
an exponent 2.003!, in accordance with Eq.~13!, while for
distant trajectories, in accordance with the derivation of th
FGR regime, the variance is independent ofp82p9,

^@DS~p8!2DS~p9!#2&52sDS
2 54Kt. ~14!

The time dependence of^@DS(p8)2DS(p9)#2& for fixed
p82p9 is shown in Fig. 4. Part~a! shows that for short times
when trajectories are still correlated, this dependence is e
ponential, in agreement with Eq.~13!. Part~b! shows that for
longer times, when correlation is lost, the dependence is li
ear, as expected from Eq.~14!.

To conclude, we have explicitly evaluated SC expression
which were thought to be intractable numerically, yielding
remarkably accurate results for FD in the FGR and Lyapuno
regimes. We provided a more detailed explanation why CP
works, and employed our method to test other approxim
tions used in Refs.@2,7#.
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FIG. 4. Variance ofDS(p9)2DS(p8) as a function oft for p9
2p8510211: ~a! exponential dependence for short times,~b! linear
dependence for long times.
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