Infoscience

Journal article

Antiviral Defense in Mice Lacking Both Alpha/Beta and Gamma-Interferon Receptors

Alpha/beta interferon (IFN) and gamma IFN exert widely overlapping biological effects. Still, mice with individually inactivated alpha/beta or gamma receptors exhibit variably severely reduced resistance to infection and altered immune responses. To investigate to what extent the two IFN systems are functionally redundant, we generated mice with a combined receptor defect (AG129 mice), Like mice with individual mutations, AG129 mice had no apparent anomalies, confirming that in the mouse the IFN system is not essential for normal development. These mice showed an additive phenotype with respect to antiviral defense and exhibited an increased susceptibility to lymphocytic choriomeningitis virus (LCMV) and notably vaccinia virus infection, Because of unlimited replication and subsequent rapid exhaustion of cytotoxic T lymphocyte (CTL) precursors, these mice were unable to mount a CTL response to LCMV. CDSC-mediated immunopathology was absent in LCMV-infected mice, and virus persisted, Vaccinia virus replicated much faster in AG129 mice, and a 10(4)-fold lower dose of vaccinia virus was sufficient to prime these mice, With the normal priming dose of 10(6) PFU, cytopathic effects and overwhelming infection possibly causing partial exhaustion of CTL interfered with the anti-vaccinia virus response. Even though global antiviral immunoglobulin G (IgG) titers were within normal ranges, the IgG subclass distribution was heavily biased toward IgG1.

    Note:

    Vandenbroek, M. F. Univ Zurich,Inst Exptl Immunol,Schmelzbergstr 12,Ch-8091 Zurich,Switzerland Univ Zurich,Inst Molec Biol 1,Ch-8091 Zurich,Switzerland Genentech Inc,S San Francisco,Ca 94080

    Reference

    • UPAGU-ARTICLE-1995-023

    Record created on 2007-12-12, modified on 2016-08-08

Fulltext

  • There is no available fulltext. Please contact the lab or the authors.

Related material

Contacts

EPFL authors