Abstract

Expression of the human (hu) IFN-gamma-R has been studied in Raji and IM9 cells (two B lymphoblastoid cell lines) and in THP-1 cells (a monocytic cell line) with respect to IFN-gamma binding sites, receptor protein and mRNA levels. Although, in these three cell lines, the hu-IFN-gamma-R mRNA was expressed to the same extent, the high affinity receptor was expressed differently both in cell surface receptor binding and amount of receptor protein. Various ligands are able to modulate the expression of their own receptor. We investigated the modulation of the hu-IFN-gamma-R by its ligand. Hu-IFN-gamma induced a rapid and dose-dependent decrease of its cell surface receptor number without alteration of receptor affinity, amounts of receptor protein or hu-IFN-gamma-R mRNA accumulation and stability. Thus, in Raji, IM9, and THP-1 cells, the hu-IFN-gamma had no effect on its receptor gene expression and the cell surface decrease was simply due to ligand blocking and receptor internalization rather than true down-regulation. The second messenger in the hu-IFN-gamma signal transduction pathway is not well characterized, but activation of protein kinase C has been reported in some cases. Therefore, the modulation of the hu-IFN-gamma-R expression by PMA, a potent activator of protein kinase C and a modulator of other receptor expression, has been investigated. In Raji and IM9 cells, PMA had no or few effects on the cell surface receptor number and no detectable effect on the receptor protein or on mRNA levels. In contrast, in THP-1 cells, PMA treatment induced a time and dose-dependent five- to sixfold increase of the cell surface receptors due to a rapid and persistent increase of the hu-IFN-gamma-R gene expression in THP-1 cells was specifically inhibited or reversed by hu-IFN-gamma treatment. The modulation of the hu-IFN-gamma-R expression by PMA in THP-1 cells and by hu-IFN-gamma in PMA-treated THP-1 cells seems associated with their effect on monocyte-macrophage differentiation and/or macrophage activation.

Details

Actions