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Abstract

Solving consensus in wireless ad hoc networks has
started to be addressed in several papers. Most of these
papers adopt system models developed for wired networks.
These models are focused towards node failures while ig-
noring link failures, and thus are poorly suited for wireless
ad hoc networks. The HO model, which was proposed re-
cently, does not have this drawback. The paper shows that
an existing algorithm and the HO model can be used for
multi-hop wireless ad hoc networks, if extended with an ad-
equate “implementation”. The meaning of “implementa-
tion” will become clear from the paper. The description of
the “implementation” is augmented with simulation results
that validate the feasibility of our approach and provide bet-
ter understanding of the behavior of realistic wireless envi-
ronments.

1. Introduction

Ad hoc networks are self-organizing wireless networks
that do not rely on a preexisting infrastructure to commu-
nicate. Nodes of such networks have limited transmission
range, and packets may need to traverse multiple nodes be-
fore reaching their destination. Even if the sender and re-
ceiver of a packet do not crash, the packet within a wire-
less network can be lost due to collisions and channel inter-
ference. The problems that were already solved for wired
communications many years ago, become new challenges
in wireless ad hoc environments. Consensus is one of these
problems. The importance of consensus is due to the fact
that it is a basic building block for solving several other
fault-tolerant distributed problems.

∗Research funded by the Swiss National Science Foundation under
grant number 200021-111701.

Consensus has been extensively studied in traditional
networks with various system models. It is now well known
that solving consensus deterministically requires some syn-
chrony assumptions [10]. One option is to assume that the
(asynchronous) system eventually becomes synchronous,
which is called partial synchrony [9]; another option is
to augment the (asynchronous) system with failure detec-
tors [5]. Starting from this background, some papers have
considered the consensus problem in ad hoc networks. We
comment on these papers in Section 2: basically we believe
that the approaches suggested are not adequate. The reason
is that these papers essentially adopt system models devel-
oped for wired and static networks (sometimes with exten-
sions), and these models are not adequate for ad hoc net-
works. Indeed, the models for wired networks are strongly
biased towards node failures to the detriment of link fail-
ures. This bias has its root in the FLP paper [10], which as-
sumes process crashes and reliable links. The bias was later
strengthened by the failure detector model [5], which also
assumes process crashes and reliable links. The bias is so
commonly accepted that it is easily overlooked. However,
overlooking the bias results in attempts to use solutions for
environments where the bias is acceptable, to environments
where the bias is unacceptable. This is the case with ad hoc
networks, where assuming that links are reliable is clearly
inadequate. One may argue that if reliable links are required
to solve a problem then there is no work-around, and reli-
able links need to be implemented on top of lossy links,
even if this is expensive in ad hoc networks. But this is
not the case for consensus. We know that consensus can be
solved in a model in which the distinction between faulty
processes and faulty links completely disappears, namely
the HO model [7, 12, 6]. This model has no bias, and is,
therefore, well suited to handle transient process and link
faults. Not only transient link faults (message losses) are
frequent in ad hoc networks, but transient process faults can
also occur: consider a wireless device that becomes unavail-



able for a while due to a temporary obstacle.
Having said this, we want to stress that the paper does

not propose a new consensus algorithm nor a new model
for solving consensus. The goal of the paper is to show
that an existing consensus algorithm can be used for ad
hoc networks, if extended with an adequate “implementa-
tion”. The meaning of “implementation” will become clear
in the next sections. As suggested above, we believe that
the right model for consensus in ad hoc networks is the HO
model. Several consensus algorithms have been expressed
in this model, see [7]. However, out of these algorithms,
only two of them genuinely tolerate message loss:1 the
One-Third-Rule (OTR) algorithm, and the Paxos/LastVoting
algorithm (LastVoting is basically Paxos [13] with minor
changes). OTR seems not adequate, because of its n-n
communication pattern (all processes send messages to all).
Paxos/LastVoting is based on an 1-n communication pat-
tern (communication only between the leader and the other
processes). The paper shows that this 1-n communication
pattern can nicely be handled in multi-hop networks with-
out any additional overhead for the routing of messages or
for election of the leader process. This “implementation” of
Paxos/LastVoting is completed with simulation results that
validate the feasibility of our approach and provide better
understanding of the behavior of realistic wireless environ-
ments.

The paper is organized as follows. Section 2 presents an
overview of the related work. Section 3 presents the con-
sensus algorithm and HO model. Section 4 describes the
implementation details. Simulation results are presented in
Section 5. Section 6 concludes the paper.

2. Related work

Several papers have addressed the consensus problem
in wireless networks. One of the earliest solution to the
consensus problem for a cellular network was proposed by
Badache et al. [2]. The solution relies on a traditional
fixed infrastructure of Mobile Support Station(MSS), and
consensus is basically solved among the MSS using the
Chandra-Toueg consensus protocol with the failure detec-
tor ♦S [5]. The MSS then propagate the decision to the
mobile hosts. The solution does not address mobility.

Chockler et al. [8] developed a grid-based consensus al-
gorithm with locally unknown participants in wireless ad
hoc networks. The network is divided into a series of non-
overlapping grid squares, where each grid square is as-
sumed to be populated. Every node knows a priori its lo-
cation in the grid. Single-hop consensus is first run for each
grid square and, then, all nodes gossip the local decisions.

1A problem in the HO model is solved by an algorithm together with a
communication predicate. The communication predicate may hide reliable
link requirements.

Once a node has received a value for every grid square, it
can decide by applying a deterministic function to the set of
values received (which requires that every grid square pro-
vides a value). Contrary to this solution, we do not require
any clustering algorithm, we do not require nodes to know
their position, and we do not modify the medium access
control (MAC) layer implementation. Moreover the paper
makes strong synchrony assumptions (inter-node commu-
nication delay are bounded by known constants), nodes are
assumed not to crash in the middle of executing a broadcast
instruction, and the model does not assume node recovery
after a crash. In other words a rather complex system model
is considered, in contrast to our very simple model.

Vollset and Ezhilchelvan [14] propose a family of broad-
cast protocols to be used for solving consensus using ran-
domization. The communication pattern is n-n. Ran-
domization does not lead to efficient consensus algorithms.
Moreover, as pointed out in Section 1, the n-n commu-
nication pattern does not seem a good choice for multi-
hop ad hoc networks. We believe that our 1-n broadcast-
convergecast implementation is much more efficient than
the general broadcast protocols proposed here.

Finally, Wu et al. [15], propose a consensus protocol
for mobile ad hoc networks based on the failure detector
♦P . Wu et al. recognize the problem related to the reliable
link assumption, but state that complicated design changes
would be needed to enable their solution to work with lossy
channels. In addition to the issue of using failure detec-
tors in ad hoc networks, the solution has another weakness.
It imposes a two-layer hierarchy on the network, where k
“predefined” nodes act as clusterheads. Each mobile node
is associated with a clusterhead (k < n). The solution tol-
erates up to f faulty nodes, where f < minimum(k, n/2)
(f < k because the solution requires one correct cluster-
head). Clusterheads are used to reduce the traffic generated
for solving consensus. Note that the assumption of prede-
fined clusterheads seems to be in contradiction with the mo-
bility assumption. However, if clusterheads change during
the execution, then agreeing on the clusterheads involves
solving consensus, which leads to circularity.

To summarize, we believe that the solutions proposed
until now have not taken the best approach for ad hoc net-
works. We believe that the best approach is to “implement”
adequately Paxos/LastVoting in a model that handles pro-
cess faults and link faults in a uniform way.

3. Consensus and HO model

3.1. Consensus specification

We consider a set Π of processes. The consensus prob-
lem over a set Π = {p1, p2, ..., pn} of processes is defined
by the following properties:
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• Validity: Any decision value is the initial value of some
process.
• Uniform Agreement: No two processes decide differently.
• Termination: All processes eventually decide.2

3.2. The HO model

For solving consensus, we consider the HO (Heard-Of )
model defined in [7]. The model is based on (asynchronous)
rounds. In a round every process first sends messages, then
receives messages, and finally changes its state based on the
set of messages received. We use the notation HO(p, r)
to denote the set of processes from which a message of
round r is received by process p (Heard-Of set). Rounds
are communication-closed, meaning that a message sent in
round r can only be received in round r. An algorithm ex-
pressed in the HO model is completed by a predicate over
the collection of heard-of sets (HO(p, r))p∈Π,r>0. For ex-
ample, predicate ∀r > 0,∀p ∈ Π : |HO(p, r)| > bn/2c
asserts that every heard-of set is a majority set. Consen-
sus is solved in the HO model by a round-based algorithm
together with an HO predicate.

In the HO model, there is no distinction between the non
reception of some message m by p due to the crash of the
sender q, or due a failure of the link between p and q. The
model has no bias: it does not need to distinguish process
faults from link faults. This makes the model well suited to
handle transient process and link faults [12].

3.3. The Paxos/LastVoting algorithm

Several consensus algorithms have been expressed in
the HO model, see [7]. Out of these algorithms, the
Paxos/LastVoting algorithm is the most appropriate one:3

its message complexity is O(n), and it tolerates rounds r
in which HO(p, r) is empty for all p, or there are multiple
coordinators. The code is given in Algorithm 1. From here
on we call the algorithm simply LastVoting.

The algorithm consists a sequence of phases φ, where
each phase has 4 rounds (4φ− 3 to 4φ). Each round r con-
sists of a sending step denoted by Sr

p (sending step of p
for round r), and of a state transition step denoted by T r

p .
Coord(p, φ), which denotes the coordinator of p in phase
φ, is provided by the “implementation” of Algorithm 1, see
Section 4. The “implementation” also provides the mes-
sages received from the set HO(p, r).

The proof of Algorithm 1 can be found in [7]. The al-
gorithm is always safe even if there are several coordinators

2Usually termination requires only “correct” processes to eventually
decide. However, since we assume a model with transient faults (see be-
low), we consider a different termination property.

3LastVoting is basically Paxos [13] expressed in the HO model with
minor changes.

per phase. The liveness of algorithm is ensured by a predi-
cate. The predicate given there is sufficient, but not neces-
sary. Termination can occur with a weaker predicate. For
example, some process px decides at the end of phase φ0 in
which the following properties hold:
• All processes consider the same coordinator c0 in φ0:
∀p ∈ Π : Coord(p, φ0) = c0, and
• For a majority of processes p, including px, we have
c0 ∈ HO(p, 4φ0 − 2) and c0 ∈ HO(p, 4φ0), and
• The coordinator hears from a majority of processes in
rounds 4φ0 − 3 and 4φ0 − 1: |HO(co, 4φ0 − 3)| > bn/2c
and |HO(co, 4φ0 − 1)| > bn/2c.

This predicate is enough for the purpose of this paper,
whose goal is to show experimentally that a clever “imple-
mentation” allows Algorithm 1 to solve consensus. What
“implementation” means is discussed in the next section.

Algorithm 1 The LastVoting algorithm (code of process p).
1: Initialization:
2: xp ∈ V , initially vp /* vp is the initial value of p */
3: tsp ∈ IN, initially 0
4: votep ∈ V ∪ {?}, initially ?
5: commitp a Boolean, initially false
6: readyp a Boolean, initially false

7: Round r = 4φ− 3:
8: Sr

p :
9: if Coord(p, φ) 6= ⊥ then
10: send 〈xp, tsp〉 to Coord(p, φ)
11: T r

p :
12: if p = Coord(p, φ) and number of 〈ν, θ〉 received > bn/2c then
13: let θ be the largest θ from 〈−, θ〉 received
14: votep := one x such that 〈x, θ〉 is received
15: commitp := true

16: Round r = 4φ− 2:
17: Sr

p :
18: if p = Coord(p, φ) and commitp then
19: send 〈votep〉 to all processes
20: T r

p :
21: if received 〈v〉 from Coord(p, φ) then
22: xp := v
23: tsp := φ

24: Round r = 4φ− 1:
25: Sr

p :
26: if tsp = φ then
27: send 〈ack〉 to Coord(p, φ)
28: T r

p :
29: if p = Coord(p, φ) and number of 〈ack〉 received > bn/2c then
30: readyp := true

31: Round r = 4φ:
32: Sr

p :
33: if p = Coord(p, φ) and readyp then
34: send 〈votep〉 to all processes
35: T r

p :
36: if received 〈v〉 from Coord(p, φ) then
37: DECIDE(v)
38: commitp := false
39: readyp := false
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4. Implementation of LastVoting

4.1. System model

Wireless network: We consider an asynchronous multi-
hop wireless network consisting of set of n nodes.4 We use
the terms node and process interchangeably. Each node in
the network has a single wireless transceiver through which
it can communicate with other nodes. Due to a variety of
reasons (including background noise, terrain, vegetation,
etc.), the maximum distance at which a node’s transmis-
sion can be successfully received may be less than the upper
bound on the communication range. Moreover, this distance
may change from one transmission to the next. This is dif-
ferent from the unit-disk graph model, and a more realistic
representation of wireless propagation characteristics.

Unreliable links and unpredictable delays: When em-
ploying MAC layer broadcast, the transmitter does not nec-
essarily know the identities of all nodes within its com-
munication range. Nor does the transmitter know the
subset of nodes that successfully received the message.
Broadcast communication satisfies the basic integrity and
no-duplication properties guaranteeing that every received
message was previously broadcast, and each message is
received at most once. However, it is inherently unreli-
able: the receivers do not send any acknowledgment, and
the sender does not make any retry attempts to increase the
likelihood of message delivery to neighbors. Though MAC
layer unicast is described as being reliable (uses acknowl-
edgments), there is no guarantee that a data frame will be
forwarded to the intended neighbor. This is due to two rea-
sons. First, the MAC layer buffer may be full when the mes-
sage arrives, resulting in a buffer overflow. Second, if an
acknowledgment is not received following a transmission,
the sender makes only a finite number of retry attempts. If
all these retries fail, the frame is silently discarded.

So, we assume that the wireless links are unreliable and
the message communication delay is unpredictable.

Good period: LastVoting is always safe. To ensure live-
ness we assume that, from time to time, the system expe-
riences good periods, during which messages are reliably
transmitted with the end-to-end (multi-hop) transmission
delay bounded by a known constant δ.5 Note that this con-
dition is sufficient, but not necessary: the property needs
to hold only for a “sufficient” number of messages, see for
example the predicate in Section 3.3. However, identifying
exactly what “sufficient” means here is extraordinary com-
plex, due to the nature of multi-hop networks. Our prag-
matic goal is to show experimentally that termination holds

4Actually n needs only to be an upper bound of the number of nodes.
5It would be easy to adapt the algorithm to an unknown δ value.

in the runs that are generated, and also to evaluate the effi-
ciency of our algorithm.

4.2. Implementation model

Figure 1 shows the overall view of our protocol stack.
The uppermost layer corresponds to Algorithm 1. However,
the heart of our system is Algorithm 2, which contains the
main thread that calls Algorithm 1: in our implementation
the sending step Sr

p and the state transition step T r
p of Al-

gorithm 1 are functions:
• The sending step Sr

p of Algorithm 1 is a function
Sr

p(sp, coordp) that takes as input the round number r, the
state sp, the coordinator coordp, and returns the set of mes-
sage(s) msg to be sent, together with their destination(s)
dst (see Algorithm 2, line 14).
• The state transition step T r

p of Algorithm 1 is a function
T r

p (msgs, sp, coordp) that takes as input the round number
r, the set of messages received (msgs), the state sp, the
coordinator coordp, and returns the new state nsp (see Al-
gorithm 2, line 32).

Physical

MAC (802.11)

HO Impl. 
(Algorithm 2)

Net+Routing
(Algorithm 3)

send
deliver

receive
broadcast
/unicast

Physical

MAC (802.11)

Net+Routing
(Algorithm 3)

send
deliver

receive
broadcast
/unicast

broadcast
/unicast receive

HO Algo. 
(Algorithm 1)

HO Impl. 
(Algorithm 2)

HO Algo. 
(Algorithm 1)

Sp
rp(sp,coordp)

Tp
rp(msgs,sp,coordp)

Sq
rq(sq,coordq)

Tq
rq(msgs,sq,coordq)

process p process q

Figure 1. Implementation protocol stack.

Algorithm 2 uses Algorithm 3 as a simple and best-effort
broadcast and convergecast algorithm on top of the MAC
sub-layer, which typically uses a CSMA/CA-based protocol
like IEEE 802.11. Both MAC layer broadcasts and unicasts
are used by Algorithm 3: when a message has to be locally
broadcast, the MAC layer broadcast primitive is used.

4.3. Algorithm 2: the heart of the system

For every process p, Algorithm 2 has two main roles:
• Elect the coordinator (to be used as a parameter of the Sr

p

function)
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• For every round r, construct the set of messages received
by p (to be used as a parameter of the T r

p function).
Before discussing these two issues, some general expla-

nations are needed. First, note that Algorithm 2 handles the
process state sp (line 3), the round number rp (line 7) and
the phase number φp (line 6). Second, Algorithm 2 relies
on Algorithm 3 for sending (and receiving) messages (e.g.,
line 16): the routing implemented by Algorithm 3 is opti-
mized to drop unnecessary messages. Third, Algorithm 2 is
designed to ensure fast phase synchronization once a good
period has started. Phase synchronization is needed, since
when a good period starts, processes can be in different
phases (and different rounds). Fast phase synchronization
means that processes quickly join the same phase, in order
to allow processes to decide. This is done as follows. Each
process attaches its current phase φp and round number rp

to the messages it sends (e.g., line 16). Whenever a process
receives a message from some phase φ > φp, it jumps to
the first round of that phase (line 31, 12).

Coordinator election: Each process has a priority (e.g.
the process identity, line 5), and the process that believes
to have the highest priority for some phase φ becomes the
coordinator for that phase. To be more efficient, the coor-
dinator is restricted to a subset Contender ⊂ Π.6 Initially,
every process p ∈ Contender considers itself as a coordi-
nator (line 4).

At the beginning of each phase φ every process p that
considers itself to be coordinator sends its identity and pri-
ority to all (line 11). This is the only message that Algo-
rithm 2 sends in addition to the message of Algorithm 1.
This message is identified by the special round number null
(line 11). Each process p ∈ Π that receives a message from
phase φ ≥ φp from some process q with higher priority,
updates its coordinator and priority (line 22, 28).

After the beginning of a good period, let τ be the time at
which the first process starts some phase φ0 (other processes
are in earlier phases: with smaller phase numbers). Then at
time τ + 2δ there is a unique coordinator c for all phases
≥ φ0.7 However, a unique coordinator c at time τ + 2δ
is not enough to ensure termination in phase φ0: multiple
coordinators between τ and τ + 2δ can prevent a decision
in phase φ0. So phase φ0 + 1 is started after 2δ in case c is
still in round 4φ0 − 3 (line 40); c is the unique coordinator
for the remainder of the good period.

Round message construction: For every round r, Algo-
rithm 2 constructs the set of messages received by process p
(to be used as a parameter of the T r

p function). This is done
differently whether p ∈ Contender or p /∈ Contender.

6The set must be large enough to ensure that it always contains one
alive node.

7All proofs are in the appendix.

Algorithm 2 Coordinator election and round message con-
struction (code of process p).
1: Initialization:
2: msgsp ← ∅ /* set of messages received */
3: sp ← initp /* state of the consensus algorithm */
4: coordp ← p for p ∈ Contender otherwise⊥
5: priorityp ← p’s identity for p ∈ Contender otherwise 0
6: φp ← 1 /* phase number */
7: rp ← 1 /* round number */

8: upon φp is updated do
9: if p ∈ Contender then timerp ← 0
10: if p = coordp then
11: send (〈φp, null, p, priorityp,−〉, Π) /* calls Algorithm 3; Π is the

destination set; message used to elect coordinator */
12: rp ← 4φp − 3

13: upon rp is updated do
14: 〈msg, dst〉 ← S

rp
p (sp, coordp) /* calls Algorithm 1 */

15: if msg 6= null then
16: send (〈φp, rp, p, priorityp, msg〉, dst) /* calls Algorithm 3 */

17: upon deliver message 〈φ, r, q, priorityq, m〉 do /* delivered by
Algorithm 3 */

18: if φ < φp then
19: ignore message
20: else
21: msgsp ← msgsp ∪ {〈φ, r, q, priorityq, m〉}
22: if φ = φp and priorityq > priorityp then
23: coordp ← q
24: priorityp ← priorityq
25: if φ > φp then
26: coordp ← p for p ∈ Contender;⊥ otherwise
27: priorityp ← p’s identity for p ∈ Contender; 0 otherwise
28: if priorityq > priorityp then
29: coordp ← q
30: priorityp ← priorityq
31: φp ← φ

32: nsp ← T
rp
p ({〈m, q〉|〈φp, rp, q,−, m〉 ∈ msgsp}, sp, coordp)

/* Algorithm 1 is called */
33: if nsp 6= sp then /* new state of p is different from its current state */
34: rp ← rp + 1
35: sp ← nsp

36: upon timerp > 5δ do /* timer expires */
37: coordp ← p
38: priorityp ← p’s identity
39: φp ← φp + 1

40: upon timerp > 2δ do /* start new phase if no progress as coordinator */
41: if p = coordp and rp < 4φp − 2 then
42: φp ← φp + 1

43: upon decide for phase φp do
44: if p = coordp then
45: φp ← φp + 1

If p /∈ Contender, then p does not uses a timer; if p ∈
Contender then p uses a timer.

Case 1: p /∈ Contender. In this case p remains in the
current round rp of phase φp until (1) it receives a message
from a larger phase (line 25) or (2) p has received “enough”
messages in round r (lines 32 to 35). Note that Algorithm 2
does not know what “enough” means. “Enough” is defined
by Algorithm 1: in rounds 4φ − 3 and 4φ − 1 “enough” is
more than n/2; in rounds 4φ−2 and 4φ “enough” is 1. The
solution is for Algorithm 2 to call the T r

p function whenever
a new message is received (line 32): if not enough messages
have been received, the T r

p function does not modify the
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state (line 33) and p remains in the same round (in order to
wait for more messages).

Case 2: p ∈ Contender. In addition to behaving like
an ordinary process (Case 1), p uses a timer, which is re-
set at the beginning of each phase φp (line 9). In a good
period a round does not take more than δ. So, in addition
to the behavior explained under Case 1, p remains in phase
φp until (1) 2δ time units have elapsed (duration of leader
election round and round 4φ − 3) and p is still in round
4φp − 3 (line 40), or (2) 5δ time units have elapsed (dura-
tion of leader election round and rounds 4φ − 3 to 4φ) and
p is still in phase φp (line 36).

Optimizations: Algorithm 2 includes two optimizations.
The first one is useful when several instances of consen-
sus are running one after the other (e.g. atomic broadcast).
When a decision occurs in phase φ, the coordinator starts
immediately phase φ+1 (line 43) without waiting the time-
out for phase φ. The second optimization avoids unnec-
essary coordinator changes. Once some process p is con-
sidered to be the coordinator by a majority, it remains the
coordinator as long as its messages reach a majority of pro-
cesses: process q ∈ Contender that considers p as its co-
ordinator (priorityq < priorityp) does not change its co-
ordinator unless its timer expires (line 36).

4.4. The broadcast and convergecast

Algorithm 2 invokes Algorithm 3 when it sends a mes-
sage in lines 11 and 16. Depending on dst, Algorithm 3
uses diffusion or convergecast in lines 9 and 11: diffusion is
used for a message sent by a coordinator (1 to all), while
convergecast is used for a message sent to the coordina-
tor (all to 1). Diffusion messages are identified by the tag
MESSAGE (e.g., line 9), while convergecast messages are
identified by the tag RESPONSE (e.g., line 11). During dif-
fusion, Algorithm 3 delivers the message that is received for
the first time (line 13) to Algorithm 2. During convergecast,
the message is delivered only if it reaches its destination
(line 21). Algorithm 3 also contributes to an efficient elec-
tion of the coordinator by discarding messages from con-
tenders that can no more become coordinator.

Diffusion: As all participating nodes are not within com-
munication range of each other, it is not possible for a node
to directly communicate with others. Hence, a network-
wide message broadcast can be implemented through dif-
fusion. The message source (a coordinator) will broad-
cast the message locally at the MAC layer (line 9). When
node p receives a message from some node q for the first
time (line 12), it becomes a child of q (line 15) only if
priorityq > priorityp (q wins against p in the election).
Then it broadcasts the message at the MAC layer (line 18)
except when priorityq < priorityp (q loses against p in the

election). When a node receives copies of the same message
later, it ignores them. As a result, an efficient tree rooted at
a coordinator is formed.

Convergecast: The tree constructed during diffusion is
used by convergecast, to transport responses to the coor-
dinator, the root of the tree. As a node does not know the
identities of all its children it is not possible for the node to
determine when it has received responses from all of them.
So, a node sends its response to its parent as soon as the
node joins the tree. Subsequently, whenever the node re-
ceives a response from any child it forwards the received
response to its parent.

Algorithm 3 The broadcast and convergecast algorithm
(code of process p).
1: Initialization:
2: parentp ∈ Π ∪ {NULL}, initially NULL
3: levelp ∈ IN, initially 0
4: priorityp refers below to the variable priorityp of Algorithm 2

5: function send (m, dst) /* called by Algorithm 2 */
6: if dst = Π then
7: parentp := p
8: levelp := 1
9: locally broadcast 〈MESSAGE, p, levelp, m〉
10: else
11: unicast 〈RESPONSE, q, levelp, m〉 to parentp

12: upon receive 〈MESSAGE, root, l, m〉 from node q with priority
priorityq for the first time do

13: deliver 〈m〉 /* m delivered to Algorithm 2; after executing lines 17-35 of
Algorithm 2 execute following lines */

14: if priorityq > priorityp then
15: parentp := q
16: levelp := l + 1
17: if priorityq ≥ priorityp then
18: locally broadcast 〈MESSAGE, root, levelp, m〉

19: upon receive 〈RESPONSE, root, l, m〉 for the first time do
20: if p = root then
21: deliver 〈m〉 /* m delivered to Algorithm 2 */
22: else
23: unicast 〈RESPONSE, root, levelp, m〉 to parentp

Figure 2 shows an example of broadcast and coverge-
cast protocol in a multi-hop network. During diffusion (tag
MESSAGE), since p2’s priority is higher than p1’s, if p5 re-
ceives the message form p2 before p1, it ignores p1’s mes-
sage. Otherwise, it diffuses both, but p4 becomes its par-
ent and p2 its grand parent. During convergecast (tag RE-
SPONSE), only path from p7 to p2 is followed.

MESSAGE

RESPONSE

p1

p2

p3

p4

p5 p6 p7p1 < p2

Figure 2. Broadcast vs. convergecast.

Gradient-based convergecast: If any node on the path
from node p to the root of the tree (i.e., to the coordiantor) is
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down, or any link on this path is lossy, p’s message may not
reach the root. Gradient-based convergecast can increase
the probability of responses reaching the root. During dif-
fusion, as a node joins the tree, it sets its level to be one
greater than its parent’s level (line 16). The root is always
at level one (line 8). During convergecast nodes listen to
transmissions in the promiscuous mode. If they receive a
message from a neighboring node at a higher level they re-
transmit the message (using MAC layer broadcast). Thus,
messages travel from higher level to lower level, with no
cyclic forwarding, ultimately reaching the root. Even if the
path from the root to a node breaks down after the node has
joined the tree, it may be possible for the node’s response
to reach the root along other gradient-based paths, if such
paths exist. This can be done as follows:
1. In line 11, instead of sending the RESPONSE to the par-
ent, locally broadcast the RESPONSE.
2. In line 23, first determine if l > levelp. If so, locally
broadcast the RESPONSE.

Remark: Note that the underlying network is unreliable.
So, whenever a coordinator broadcasts a message there is
no guarantee that all the nodes will join the tree and receive
the message. Furthermore, messages from all the tree nodes
may not reach the root: they may disappear on the way.
Yet, the safety property of the LastVoting algorithm is never
compromised. If the coordinator is able to receive responses
from a majority of nodes in round 4φ−3 and, subsequently,
acknowledgments from a majority of nodes in round 4φ −
1 (not necessarily the same set as in round 4φ − 3), it is
possible for the coordinator to decide on a value.

5. Simulation

We used JiST/SWANS v1.0.6 [1, 3] wireless network
simulator to simulate our algorithm. We consider a m×m
square grid with nodes placed at each intersection as illus-
trated in Figure 3.

p21 p22 p23 p24 p25

p16 p17 p18 p19 p20

p11 p12 p13 p14 p15

p6 p7 p8 p9 p10

p1 p2 p3 p4 p5

100 m

100 m

0

0

pi Node pi

pj Contender pj

Transmission range
for p13

Figure 3. Square grid of size 5× 5 in network area
100× 100 m2.

We used grid-based placement instead of the random
uniform placement only for manageability reasons. For in-
stance, using this placement we can select exactly which
nodes belong to the Contender set. Communication be-
tween two nodes p1 and p2 occurs in an ad hoc manner us-
ing unicast/broadcast as defined in the IEEE 802.11b stan-
dard [11]. The data rate of the wireless channel is 1 Mbps.
All nodes have the same transmission range (150 m). We
modify the network area to vary network density and net-
work diameter. Nodes are stationary, except for one case
in which we measure the impact of mobility (see Sec-
tion 5.2.4). We measure the impact of contenders in Sec-
tion 5.2.3. Each contender starts the algorithm randomly be-
tween 0 and 10 milliseconds after simulation start time. The
simulation lasts for 100 seconds. Every consensus packet is
around 32 bytes. Unless otherwise mentioned, we use the
default values defined in the JiST/SWANS simulator.

Note that the IEEE 802.11b MAC layer specifica-
tion uses CSMA/CA and enforces RTS/CTS/ACK control
frames for unicast communication only. Collision control
for broadcast is limited to basic collision avoidance carrier
sensing, and broadcast is therefore prone to packet colli-
sions. A straightforward approach to reduce collisions is to
have nodes wait for a small random amount of time (jitter)
before rebroadcasting. Given the consensus algorithm in
Section 3.3 and based on broadcast and convergecast pro-
tocol (Section 4.4), we are interested in analyzing whether
the required liveness condition is provided by Algorithm 2
in wireless ad hoc networks.

5.1. Metrics

In order to evaluate the performance of LastVoting con-
sensus algorithm, several instances of consensus are run one
after the other. Each process starts a new instance of con-
sensus with new proposition. A new consensus is started as
soon as the decision for current consensus is reached or a
message from a later invocation of consensus algorithm is
received. In the latter case, the previous decisions can be
communicated through piggy-backing.

We have defined two important (and independent) met-
rics: consensus latency and consensus throughput. Con-
sensus latency is expressed in terms of average number of
phases per consensus from initialization to first decision.
Consensus throughput represents how many instances of
consensus can be run successfully in simulation time (100
seconds). Note that the time required for one consensus can
be calculated from consensus throughput and latency.

5.2. Results

In this section we present the results of our simulations.
We evaluate the performance of our consensus algorithm in
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both single and multi-hop networks. There is no process
crash or additional packet loss in our simulations.8 How-
ever, to observe the performance of our algorithm in realis-
tic situations, we added a background traffic to the system:
every second, each node sends a packet (with the same size
as consensus packet) to a random destination. All results
of simulations are averaged over 30 independent runs. Due
to the many sources of randomness, for instance jitter, the
simulation results for ad hoc networks differ from one run
to the other. The vertical bars in the graph represent 95%
confidence interval for the mean.
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Figure 4. Impact of density and jitter in channel
occupancy and success rate.

Before running the simulations, we ran a calibration test
to examine the behavior of the simulator and our routing al-
gorithm to tune the amount of the jitter. Figure 4(a) shows
once a single message is broadcasted, the duration for which
the wireless channel remains busy (henceforth, referred to
as channel occupancy duration). Note that the same mes-
sage forwarding algorithm is employed by each node: on
receiving a message for the first time, a node rebroadcasts
the message after a random wait between 0 and jitter. So,
the wireless channel becomes idle either when the message

8The only packet loss is due to collisions and node interferences.

is received by everyone or is completely lost. For instance,
for 100 nodes within range of each other, with jitter = 10
ms, channel occupancy is 40 ms. This gives us 80 ms for
round-trip time, or 200 ms for one phase of our consensus
implementation. Figure 4(b) shows the percentage of nodes
that receive the broadcast message. It seems that the value
of the jitter is optimal around 10 ms. With 10 ms, at least a
majority of processes have received the message and there
is almost the same channel occupancy as 5 ms. For the rest
of simulations we fix jitter to 10 ms.

5.2.1. Single-hop scenarios
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Figure 5. Impact of timeout in consensus latency
and throughput in single-hop wireless networks
(with single contender).

First, we consider a single-hop network in which all
nodes are in communication range of each other. The net-
work area is 100×100 m2. We gradually increased the net-
work density. Only a single node, for example p1, belongs
to the Contender set. We measured the average number of
phases per consensus in networks with different node den-
sities (from 4 nodes to 100 nodes) by varying the timeout.
The value of timeout refers to 5δ used in Algorithm 2. The
ideal value in our scenario is 1 phase per consensus. How-
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ever, this value can increase in the presence of packet loss.
Figure 5(a) shows how the number of required phases varies
with timeout. Logarithmic scales are used in x-axis to better
visualize a large range of timeout and emphasize the small
timeouts. Beyond a certain value of timeout, the number of
phases to terminate consensus remains almost constant (1
phase) as density of the deployment increases. Figure 5(b)
shows how consensus throughput varies with timeout for
several network densities. Note that the results we have ob-
tained in this simulation based on the timeouts match ex-
actly with our previous results on channel occupancy.
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Figure 6. Impact of density in consensus through-
put in single-hop wireless networks (with single
contender).

Figure 6(a) shows the impact of density on consensus
throughput with different timeouts. In general, by increas-
ing density (number of nodes), the throughput of our algo-
rithm decreases, independent of phase timeout value. This
is due to message losses due to increased collisions. The
graph shows that there is an optimal value for density. After
around 25 nodes, the throughput always goes down. So the
algorithm performs less efficiently in the presence of more
than 25 nodes per 10000 m2 (single-hop). Although with
small number of nodes the throughput is high, the number
of timeouts that occur is also high (see Figure 6(b)). For

instance, for n = 4 the algorithm allows only one mes-
sage loss while for n = 100, 49 losses are allowed in a
round (majority set). This explains why for small number of
nodes, increasing the timeout reduces performance in Fig-
ure 6(a).

5.2.2. Multi-hop scenarios

We now consider multi-hop scenarios where all nodes
are not in communication range of each other. To do that
we consider 100 nodes distributed in a 10× 10 square grid.
The transmission range for each node is fixed to 150 m.
To obtain multi-hop scenarios, we varied the network area
from 100× 100 m2 (single-hop) to 900× 900 m2 (9-hops),
and we chose p1 as the contender (p1 is located at the lower
left corner of the grid).
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Figure 7. Impact of number of hops in consensus
latency and throughput in multi-hop wireless net-
works (with single contender).

Figure 7(a) shows the scalability of our algorithm in
multi-hop networks. By increasing the network area for 100
nodes, on the one hand we increase the number of hops and
on the other hand we decrease the density and, therefore,
the probability of message collisions. Figure 7(b) shows
the trade-off between number of hops and network density.
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From one-hop to four-hops, we decrease the density, so the
performance is improved. From six-hops on, since the mes-
sage must traverse more hops the performance is slightly
decreased. So, 100 nodes perform better in five-hops. This
gives approximately 20 nodes per hop. This is almost the
same conclusion that we had from single-hop scenarios.

5.2.3. Impact of contenders

To see the impact of the contender’s position on consen-
sus throughput, we varied the position of the contender from
bottom-left corner to the center.9 We run a Kruskal-Wallis
non-paired data test [4] (generalized Wilcoxon Rank Sum
test) to determine if the position of the contender influences
consensus throughput (null hypothesis: position of the con-
tender does not influence consensus thorughput). The test
accepts the null hypothesis with p-value 0.9699. The con-
clusion is that the throughput of our consensus algorithm is
independent of the contender’s position. This seems reason-
able in single-hop networks. In multi-hop networks, when
the contender moves from bottom-left corner to the center
of square grid, the number of hops from the contender to
the farthest node is reduced while the number of collision is
augmented (in center there is 4 times more collision than in
corner). So in multi-hop networks, reduced number of hops
is compensated by increased number of collisions.
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Figure 8. Impact of contenders in consensus
throughput in single-hop wireless networks.

In Figure 8, we increased the number of contenders in
network of 100 nodes from 1% to 50%. We have fixed
timeout to 1 second to eliminate the impact of timeout. It
turns out that even the number of contenders has almost not
a significant impact on the consensus throughput (p-value
= 0.0569 using Kruskal-Wallis test). The explanation is as
following: since no process crashes during the simulation,
once the process with highest priority is elected as the co-
ordinator, it remains the same as long as the majority of its

9This is enough to explore other possibilities because of the symmetry
of square grid.

messages are not lost.

5.2.4. Impact of mobility

We now measure the impact of node mobility on consen-
sus throughput. We use the random waypoint model with a
fixed speed and zero pause time. In this model, nodes select
an arbitrary location in the field and move on direct line at
constant speed. When they reach the destination, they pick
a new destination and so on. Figure 9 shows the robustness
of our algorithm against node speed.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

-5  0  5  10  15  20  25
co

ns
en

su
s 

th
ru

gh
pu

t

speed (m/s)

n = 25, transmission range = 150 (m), timeout = 100 (ms)

1-hop
2-hops
3-hops
4-hops

Figure 9. Impact of mobility in consensus through-
put.

6. Conclusions

The Paxos/LastVoting algorithm expressed in the HO
model can potentially solve the consensus problem in wire-
less mobile networks. Paxos/LastVoting is safe by design,
but a communication predicate is required to ensure the ter-
mination of consensus. We have proposed an appropriate
implementation that satisfies the required communication
predicate in good periods. We have validated our imple-
mentation by running simulations in multi-hop wireless net-
works. The results of simulations validate the existence of
the good periods and confirm that our approach is applica-
ble for realistic wireless networks.

To the best of our knowledge, we are the first to provide
the rigorous performance results for consensus in wireless
networks. We could not compare our results with Chock-
ler’s paper [8] since they do not provide the time unit in their
figures. The results in Vollset’s paper [14] are far from be-
ing efficient (they require around 100 seconds in average for
one instance of consensus). Finally, the performance eval-
uation in Wu’s paper [15] is of limited utility since they do
not use a realistic MAC layer in their simulations. Although
the results of this paper are limited to the simulations, we
believe that this approach is applicable in real systems. Our
future work is to explore deployment of the system using a
network of actual nodes.
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APPENDIX

Theorem 1. Algorithm 2 implements the LastVoting predi-
cate in a good period of minimal length 13δ. 10

Proof. The proof is based on the following Lemmas.

Lemma 1. Let phase φ0 be the largest phase when good
period starts at time τG. Then, there is some process that
starts phase φ0 + 1 at latest by time τG + 5δ.

Proof. According to the code of Algorithm 2, all contenders
start a timer per phase (line 9). According to the definition
of contender set, there is at least one correct process in con-
tender set. This process times out for phase φ0 at latest by
time τG + 5δ (line 36), and starts phase φ0 + 1 (line 39) at
latest by time τG + 5δ.

Lemma 2. Let p be the first (not necessarily unique) pro-
cess that starts phase φ0 at time τ > τG. Then, process p
belongs to the Contender set.

Proof. From Lemma 1 process p exists. According to the
Algorithm 2, a process starts phase φ0 for following rea-
sons, either: (i) it receives a message from another process
for phase φ0 (line 31), or (ii) it ends phase φ0 − 1 by de-
ciding (line 45), or (iii) its timer for phase φ0 − 1 expires
(line 39), or (iv) after 2δ, the coordinator does not receive
from a majority set (line 42). The first case is not possible,
since p is the first process that starts phase φ0. In the second
case, we have p = coordp which implies p ∈ Contender
by definition. For the two last cases, since p has a timer
(line 9) it is already a contender.

Lemma 3. Let p be the first (not necessarily unique) pro-
cess that starts phase φ0 at time τ > τG. All processes start
phase φ0 at latest by time τ + δ.

Proof. From Lemma 2 we have p ∈ Contender. Accord-
ing to the Algorithm 2, process p starts phase φ0 by sending
a message to all (line 11). Since we are in good period,
this message will be received by all processes at latest by
τ + δ. All processes that receive this message start phase
φ0. If some process at phase φ0 − 1 times out, just before
receiving this message, it starts phase φ0 on its own before
τ + δ. Thus, all processes start phase φ0 at latest by time
τ + δ.

Lemma 4. Let p be the first (not necessarily unique) pro-
cess that starts phase φ0 at time τ > τG. All processes have
the same coordinator by time τ + 2δ.

10δ is end-to-end multi-hop transmission delay.

Proof. According to the Lemma 3, all processes start phase
φ0 at latest by time τ + δ. Assume there is some other
process q ∈ Contender such that priorityq > priorityp.
Process q starts phase φ0 at time t, τ < t < τ +δ, considers
itself as coordinator (line 26), and sends its first message
for phase φ0 to all (line 11). This message will also be
received by all processes at latest by time t + δ < τ + 2δ.
All processes change their coordinator to q (line 23) before
τ + 2δ.

Lemma 5. Let p be the unique coordinator with highest
priority that starts phase φ0 at time τ > τG. Algorithm 2
provides the LastVoting predicate by time τ + 5δ.

Proof. Process p starts phase φ0 by sending its message to
all (line 11). All processes receive this message by time
τ + δ (Lemma 3) and start round 4φ0 − 3 (line 12). Since
p is the unique coordinator of phase φ0, no other process
executes line 11. Since p is the process with highest priority,
all processes accept p as coordinator in phase φ0 (line 29).
Since we are in good period, a round do not take more than
δ. Algorithm 1 requires four rounds (4δ). In total at latest
by time τ + 5δ the LastVoting predicate is satisfied.

Lemma 6. Let p be the first (not necessarily unique) pro-
cess that starts phase φ0 at time τ > τG. Let c 6= p with
highest priority be the coordinator of phase φ0 that doesn’t
receive from a majority of processes. Process c starts phase
φ0 + 1 at latest by time τ + 3δ.

Proof. From Lemma 3, process c starts phase φ0 at latest by
time τ + δ. From Lemma 4, process c becomes the unique
coordinator of phase φ0 at latest by time τ + 2δ. From the
code of Algorithm 2, process c, 2δ after starting phase φ0,
finds out that it has not received from a majority of pro-
cesses (line 40). So, it starts phase φ0 + 1 at latest by time
τ + 3δ (line 42).

Lemma 7. Let p be the first (not necessarily unique) pro-
cess that starts phase φ0 at time τ > τG. The LastVoting
predicate is satisfied by time τ + 8δ.

Proof. Two cases are possible: either p is the process with
highest priority or not. In the first case, from Lemma 5, the
predicate is satisfied by time τ + 5δ. In the second case,
from Lemma 4, there is a unique coordinator, c, by time
τ +2δ. Process c starts phase φ0 +1 at latest by time τ +3δ
according to Lemma 6. In phase φ0 + 1, process c is the
unique coordinator and again according to the Lemma 5 the
predicate is satisfied by time τ + 8δ.

Analysis: From Lemma 1, we have seen that at most 5δ
after τG a new phase is started properly. From Lemma 7,
we require 8δ to satisfy the LastVoting predicate. In total,
we need a good period of minimal length 13δ to provide
LastVoting predicate.
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