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Abstract. Query-response based protocols between a client and a server such as SSL, TLS, SSH
are asymmetric in the sense that the querying client and the responding server play different
roles, and for which there is a need for two-way linkability between queries and responses within
the protocol. We are motivated by the observation that though results exist in other related
contexts, no provably secure scheme has been applied to the setting of client-server protocols,
which differ from conventional communications on the above points. We show how to secure
the communication of queries and responses in these client-server protocols in a provably secure
setting. In doing so, we propose a new primitive: a query-response encapsulation scheme; we give
an instantiation, and we demonstrate how this primitive can be used for our purpose. In our
proof of secure encapsulation, we show how to preserve the notion of “local-security”.

1 Introduction

In this paper, we show how to secure the communication of generic client-server type pro-
tocols. These are protocols which involve query and response messages for arbitrary number
of rounds, and are asymmetric in the sense that parties on either side of the protocol have
differing roles.

Asymmetric protocols. Client-server type protocols exist in many settings [8, 9, 17–19, 22,
25], e.g. in networks where clients are connected to application servers, database servers, file
servers, or mail servers etc. A typical example of such a protocol is a client browser running
on a personal computer interacting with a web server sitting on a remote machine. In this
setting, it is desired that at the worst case, having the client access the server is at least as
secure as just having the client run in isolation. This in fact shows that access to the server
does not compromise the security of the client. We denote this notion as security preservation.

Security preservation. By local security, we mean the security of the client when it is
in isolation. In the generic sense, this can be formally modelled as a game following some
rules, played between an adversary and a judge challenger who determines if the adversary
succeeded in winning the game.

We want to show that when the client is additionally allowed access to a server, then this
can be done such that the local security of the client is preserved, i.e. additional server access
does not have adverse affects on the client’s security.

In the ideal case, interaction with the server is not observable by the adversary. In prac-
tice, we show how this can be done via a form of asymmetric protocol encapsulation that
preserves local security. This result applies to any asymmetric protocol of arbitrary rounds.

Examples. One example of an asymmetric client-server protocol is database systems where
the client system S represents the application querying the database server O. So far, existing



security models for databases [12, 14] are different from our context because they only consider
security on the database server O side. Our focus is on the local security on the client system S
side and how this is affected by the S ↔ O interaction. For instance, let us assume a company
A making queries to a low-cost airline company’s online database. A competitor B to A who
suspects that A is interested in some type of event can forge a flyer for a fake event at some
given location and date, check on the air ticket cost, send the fake event advertisement to
A. When B sees that some request to the airline company was made by A, it can look at
the prices again and see if the price increased because A has just taken the low cost seat. If
the link between A and the airline company is perfectly secure, B does not even see when
the request is made. But when the link is implemented in practice e.g. using SSL through an
insecure channel such as the Internet, B gets this private information. Here, we can see that
the encapsulated system is insecure even though the implementations of the client and the
server are secure.

Another example is an EMV protocol [11] where the credit-card payment terminal S
makes queries to a bank O to verify a message authentication code (MAC) issued by a credit
card. Here, the response of the bank is a YES/NO reply. Clearly, this system can reach
pretty good security if the client-server communication is made through a perfectly secure
link. When instantiated in practice with an insecure channel, things could still easily go
wrong even though some encapsulation of the channel is applied that achieves some strong
cryptographic notion of confidentiality and authentication. For instance, an adversary could
try to replay a positive response from the bank without breaking the underlying cryptographic
primitives. Indeed, if the primitives do not provide strong linkability between the query and
its response, a fake credit card can easily be used for payment. This example shows that some
extra cryptographic property must be assumed on the encapsulation scheme used to secure
the client-server interaction.

In this paper, our goal is to make explicit this property, to show how to achieve it, and to
show that local security can be preserved while moving from a secure (ideal) channel to an
insecure but encapsulated one.

Related work. The seminal introduction of public-key encryption by Diffie and Hellman [10]
initiated serious work in the public domain into solving the problem of securely encapsulating
insecure channels. In fact, the Diffie-Hellman key exchange of [10] was the first to allow the
establishment of secure channels without pre-sharing any common secrets between parties,
thus solving the key distribution problem inherent in conventional symmetric encryption.
With a key exchange protocol, parties can securely establish common shared keys that are
then used to encrypt subsequent communications. In a sense, major research has focused on
initializing the secure channel hence the study of key exchange protocols, in contrast to the
subsequent step after initialization: the encapsulation of the communication channel.

In fact, the study of how to encapsulate an insecure channel is an interesting problem in
itself because it is often that a channel needs not only be encapsulated in terms of secrecy,
authentication and integrity, but also resistant against other forms of malicious manipulation
e.g. reordering or replaying of messages, exploitation of one legitimate party to answer chal-
lenges from the other party etc. Indeed, carefully analyzing attacks applied to key exchange
protocols reveals some of these problems too, because essentially, it can be seen by looking at
the internals of a key exchange protocol that it is a sequence of message transmissions over
an insecure channel.
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Work initiated by Canetti and Krawczyk [5, 6, 18, 20, 21] showed how secure encapsulated
channels can be obtained as a by-product of secure key establishment, for the particular
setting where each transmitted message is independent of other messages in the encapsulated
channel.

Their line of work differs on several points from the context of client-server communication
considered in this paper. Client-server communication is asymmetric i.e. each party on either
side has a different role, so it matters which side the party is on. More importantly, this leads
to adversely different security requirements e.g. there is a need for two-way linkability between
the transmitted query and the received response, a requirement not needed for conventional
secure independent-message channels in [5, 6, 18, 20, 21]. Furthermore, we need only semi-
authenticated communication, i.e. we consider both ends separately and where it is only
required to authenticate the server side (see [17]). Or alternatively see [19, 22] for a kind of
asymmetric authentication where variable levels of authentication apply depending on which
side the party is on.

In essence, the motivation behind our considering semi-authentication is that our local
security consideration essentially reduces the security of the client-server interaction to the
security on the client side. This also models the client-server systems in practice where a
single server provides equal access of its resources to any client.

A different line of work related to client-server systems is the study of provably secure
schemes within the server e.g. provable security of the database server in the case of database
systems [12, 14].

Our contributions. Our main result is a generic notion for provably secure encapsulation
of asymmetric client-server protocols. To the best of our knowledge, our paper is the first
work to treat this problem in a provably secure setting. Our results generalize to asymmetric
protocols with arbitrary number of rounds. To this end, we give a generic construction for a
new primitive, so called the query-response encapsulation mechanism (Q/REM), that provides
confidentiality and semi-authentication of query and response messages. We also give an
example instantiation and prove its security.

This Q/REM primitive allows to design client-server protocol communications in a mod-
ular fashion. On the one hand, specific details of a client-server protocol are abstracted away
during the security proof of encapsulation. On the other, once it is established that a secure
encapsulated channel is in place between client and server, the intrinsic details of the pro-
tocol can be designed in this ideal encapsulated setting without any further need to treat
requirements for confidentiality, integrity and authentication.

In some sense, this modular abstraction bears resemblance to the approach in [5], where
key establishment protocols are constructed assuming the existence of encapsulated (only
in the sense of authentication) channels, while at a different design level it is studied how
protocols designed in the encapsulated model relate to the practical model by the use of
authenticating encapsulators.

In our proof of secure asymmetric protocol encapsulation, we show that the local security
on the client side is preserved provided that the communication protocol is locally secure
when the adversary knows when the communication happens and its length, and that the
server is protected against replay attacks or is a stateless oracle.

3



2 A Generic Construction for Query-Response Encapsulation

We give here a generic construction for a query/response encapsulation mechanism (Q/REM)
primitive and define its corresponding security notions of indistinguishability and authenti-
cation. This result in itself is of independent interest; for instance we know of no related
primitive that achieves the notion of authentication. The QEM is a regular message trans-
mission primitive yielding a symmetric key which can be re-used to encapsulate a response.
The REM re-uses this key. It is then shown how this Q/REM primitive can be used to build
an asymmetric encapsulation protocol.

2.1 Query/Response Encapsulation Mechanism (Q/REM)

To be precise, the Q/REM primitive is given in Definition 1.

Definition 1 (Q/REM).

A query/response encapsulation mechanism (Q/REM) is a 5-tuple of algorithms.

〈pk, sk〉 ← QEM.Key(1λ): a probabilistic polynomial time (PPT) algorithm taking as input
a security parameter λ, and returns a pair 〈pk, sk〉 of matching
public and private keys.

〈K,A〉 ← QEM.Enc(pk, q): a PPT algorithm taking as input a public key pk and query q;
outputs an ephemeral key/encapsulation pair 〈K,A〉.

〈K, q〉 ← QEM.Dec(sk,A): a deterministic polynomial time (DPT) algorithm taking as
input a private key sk and an encapsulation A; outputs an
ephemeral key K and a decapsulated query q, or a special sym-
bol ⊥ implying A was invalid.

B ← REM.Enc(K, i, r): a PPT algorithm taking as input an ephemeral key K, counter
i and a response r, and outputs an encapsulation B.

r ← REM.Dec(K, i,B): a DPT algorithm taking as input an ephemeral key K, counter
i and an encapsulation B, and outputs a decapsulated response
r or a special symbol ⊥ implying B was invalid.

For completeness, it is required that for any 〈pk, sk〉 output by QEM.Key(·) and for any
〈K,A〉 output by QEM.Enc(pk, q), then QEM.Dec(sk,A) = 〈K, q〉; and furthermore, for
any output B by REM.Enc(K, i, r), then REM.Dec(K, i,B) = r.

Security notions. The security of Q/REM is captured by two notions: indistinguishability
in a IND-CCA vein (Definition 2), and authentication (Definition 3).
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Definition 2 (Indistinguishability of Q/REM). Let IND-CCA-QREM denote the secu-
rity notion of indistinguishability for Q/REM against CCA adversaries [23]. This notion is
described by considering the following attack scenario, modeled as a game between an adver-
sary and a challenger with access to Q/REM algorithms as oracles:

1. QEM.Key(1λ) is run to generate the public pk and private key sk for the protocol, and
pk is given to the adversary.

2. The adversary may perform some OQEM.Dec(A) queries, where OQEM.Dec(·) is a
QEM decapsulation oracle, that is, it returns the output by QEM.Dec(sk,A).

3. The adversary selects a query q∗ and submits it to the challenger. The challenger chooses
b ∈ {0, 1}, lets q0 = q∗, and q1 set to a random query of same length. He runs QEM.Enc(pk, qb)
to obtain 〈K,A∗〉. The output A∗ is returned to the adversary.

4. The adversary does as in Step 2 except that the query OQEM.Dec(A∗) is not allowed.
It can further make OIREM.Enc(i, r) queries, where OIREM.Enc(·) is an oracle which
either outputs B ← REM.Enc(K, i, r) if b = 0, or outputs B ← REM.Enc(K, i, r∗) for
some random r∗ of same length otherwise. (Note that b is the same as in the previous
step.)

5. The adversary outputs a guess b̃ ∈ {0, 1}.

Let πQ/REM be a Q/REM protocol and let A be the adversary. The advantage of πQ/REM for
adversary A, is defined as:

AdvIND−CCA
A,πQ/REM

(λ) = |Pr[b̃ = b]− 1/2|.

πQ/REM is (ε(λ), c(λ))-secure in the sense of IND-CCA-QREM if AdvIND−CCA
A,πQ/REM

(λ) is less than ε(λ)

for any adversary A of complexity bounded by c(λ). It is simply IND-CCA-QREM-secure if for
any polynomially bounded c(λ) there exists a negligible ε(λ) such that it is (ε(λ), c(λ))-secure
in the sense of IND-CCA-QREM.

Definition 3 (Authentication of Q/REM). Let AUTH-CCA-QREM denote the security
notion of authentication for Q/REM against CCA adversaries. This notion is as follows:

1. QEM.Key(1λ) is run to generate the public pk and private key sk for the protocol, and
pk is given to the adversary.

2. The adversary may perform some OQEM.Dec(·) queries.

3. The challenger gets one query q chosen by the adversary, runs QEM.Enc(pk, q) to obtain
〈K,A∗〉, and returns A∗ to the adversary.

4. The adversary does as in Step 2 except that the call OQEM.Dec(A∗) is not allowed. She
can further do many OREM.Enc(·) queries. Namely, querying OREM.Enc(i, r) makes
the challenger run REM.Enc(K, i, r) to obtain B∗ which is returned to the adversary.

5. The adversary outputs 〈i, B〉. She succeeds if REM.Dec(K, i,B) is valid but B is not equal
to any output from a OREM.Enc(·) query from the previous step.

Let πQ/REM be a Q/REM protocol and let A be the adversary. The advantage of πQ/REM for
adversary A, is defined as:

AdvAUTH−CCA
A,πQ/REM

(λ) = Pr[A succeeds].
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πQ/REM is (ε(λ), c(λ))-secure in the sense of AUTH-CCA-QREM if AdvAUTH−CCA
A,πQ/REM

(λ) is less

than ε(λ) for any adversary A of complexity bounded by c(λ). It is simply AUTH-CCA-
QREM-secure if for any polynomially bounded c(λ) there exists a negligible ε(λ) such that it
is (ε(λ), c(λ))-secure in the sense of AUTH-CCA-QREM.

Definition 4. A (εsem, εauth, c)-secure Q/REM is a Q/REM which is (εsem, c)-secure in the
sense of IND-CCA-QREM and (εauth, c)-secure in the sense of AUTH-CCA-QREM. A secure
Q/REM is an IND-CCA-QREM-secure and AUTH-CCA-QREM-secure Q/REM.

2.2 Asymmetric Protocol Encapsulation with Q/REM

We can secure any 2-party asymmetric protocol between a Client and a Server for arbitrary
number of rounds, by using a Q/REM. For this protocol, given input q the Client system
should obtain the output r = O(q) from the Server oracle O. We construct an asymmetric
(query-response) encapsulation protocol πQR. A trusted communication channel (e.g. using a
trusted third party) is required at the initialization stage to authenticate the public key pk
of the Server to the Client.

Initialization: Server runs QEM.Key(1λ), obtains 〈pk, sk〉, and stores 〈pk, sk〉. Client ob-
tains pk in a trusted way.

Query Generation: Upon input query q, Client runs QEM.Enc(pk, q), obtaining 〈K,A〉,
where K is an ephemeral (secret) key and A is the encapsulated query. Client sends A to
the Server.

Response Generation: Server runs QEM.Dec(sk,A) and obtains 〈K, q〉, where K is the
ephemeral key, or obtains ⊥ if A is invalid and therefore aborts. Server inputs the query q
to its internal oracle O and obtains the response r = O(q). Server runs REM.Enc(K, 1, r)
and obtains B the encryption of response r under secret key K. Server sends B to the
Client.

Response Verification: Client runs REM.Dec(K, 1, B) and obtains decapsulated response
r or ⊥ if B is invalid and therefore aborts. Otherwise output r.

Values of i > 1 in REM will be used in protocols with several rounds.

2.3 Instantiating Q/REMs

The generic Q/REM primitive in Definition 1 can in fact be instantiated in several ways using
public-key encryption or signcryption with one-pass authenticated encryption, or symmetric
encryption with message authentication etc.

For completeness, we give a concrete instantiation example based on a secure KEM [7]
and secure Authenticated Encryption (AE) [2, 24], and prove its security. Here, we use AE
instead of conventional DEM [7] because we need the authentication property and the ability
to include a header to re-use a key. Basically, our QEM instantiation is a KEM together with
an AE with header 0; subsequent REMs use AE with header set to the counter i.

To the best of our knowledge, this is the first time that a KEM+AE composition is applied
for the authenticity context whereas previous work used KEM+DEM [7, 1] or KEM+AE [16]
for achieving indistinguishability, and that for symmetric independent-message communica-
tion.
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Q/REM Instantiation based on KEM and AE.

1. 〈pk, sk〉 ← QEM.Key(1λ): This is exactly KEM.Key(1λ).
2. 〈K,A〉 ← QEM.Enc(pk, q): First, 〈K,C0〉 ← KEM.Enc(pk). This generates the encap-

sulation in C0 of an AE key K. Then, C ← AE.Enc(K, 0, q). The output of QEM.Enc(·)
is A where A = C0||C is the encapsulation output of QEM .

3. 〈K, q〉 ← QEM.Dec(sk,A): Parse A = C0||C. Then, K ← KEM.Dec(sk,C0): Given as
input a private key sk and a key encapsulation C0, it outputs the decapsulated secret key
K, or ⊥ if the encapsulation C0 is invalid. Finally, q ← AE.Dec(K, 0, C): Given as input
a secret key K and a message ciphertext C, it outputs the decrypted query q, or outputs
⊥ if the ciphertext C is not authenticated. The output of QEM.Dec(·) is q or ⊥.

4. B ← REM.Enc(K, i, r): Do B ← AE.Enc(K, i, r): Given a secret key K, a counter i and
a response r, it outputs the authenticated ciphertext B. The output of REM.Enc(·) is B.

5. r ← REM.Dec(K, i,B): Do r ← AE.Dec(K, i,B) or ⊥ if B is not authenticated. The
output of REM.Dec(·) is r or ⊥.

The following result shows that this Q/REM instantiation is secure; a detailed proof is in
Appendix A.

Theorem 1. If KEM is IND-CCA-secure, and AE is AE-secure, then the Q/REM construc-
tion described above is secure.

3 Provably Secure Encapsulation

We prove here how to secure asymmetric protocols with arbitrary rounds, involving two
parties: a client system S issuing an initial query q (resp. subsequent query denoted rt) to
a server oracle O who replies with response r (resp. rt+1). Both parties interact with an (a
priori untrusted) environment E . We term as “system” the S ↔ O combination which lives
with environment E .

Ideally, the environment does not see the S ↔ O interaction, nor even see when it oc-
curs. In reality, this interaction is necessarily insecure, for which we will show here how to
securely model this ideal interaction by encapsulation. An adversary against S is a malicious
environment who interacts with the system, for which we can tell if he succeeds in following
the rules of a local game Γ . The notion of “rule of a local game” Γ should be understood as
a given judge algorithm Γ who determines from the interactions between E and S only (and
not other interactions e.g. between E and O) if the attack succeeded, i.e if the adversary won
the game against S. (See Fig. 1.) Not every security notions for a system can be expressed
locally. When it is possible to express security this way, it is quite a strong security property
because we are saying that having the extra interaction with O does not give the adversary
any additional advantage over just having interaction with S alone. Our goal is to show how
to preserve this local security when the ideal S ↔ O interaction is in reality instantiated with
a secure protocol encapsulation.

Definition 5 (Local security). An oracle-system S ↔ O in a hostile environment E is
locally secure w.r.t. a game Γ i.e. (ε, c)-Γ -secure, if no adversary E with complexity less than
c succeeds in winning game Γ with probability larger than ε.

We assume the complexity of the adversary includes that of the environment E and system
S.
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Fig. 1. An oracle-system S interacting with an oracle O and an environment E

Local security applies in the examples given in Section 1. For database queries, Γ checks
if E guessed a bit f(e) telling whether Company A is interested in some chosen event e. For
EMV, Γ checks if the payment system accepted a fake credit card.

Here, our notion of local security ideally assumes that the S ↔ O interaction is done
through a perfectly secure channel. In reality, this channel is an insecure one going through E ,
for which we would like to secure by means of encapsulation while preserving local security.
See Fig. 2 for the resultant encapsulate-system.

Definition 6 (Encapsulate-system). Given an oracle-system S ↔ O and a Q/REM en-
capsulation scheme, we define an encapsulate-system Senc ↔ O as follows:

– Initially, Senc runs QEM.Key, stores sk and outputs pk to the environment.
– When the environment inputs something to Senc, this is forwarded to a simulated S, and

when S outputs something for the environment, this is output by Senc to the environment.
– When S outputs a query q for the oracle O, this executes QEM.Enc(pk, q)→ 〈K,A〉 and

a message “QUERY A” is returned to the environment by a special IS port. The IS port
stores 〈K, 0〉.

– When a message “QUERY A′” is input by the environment to Senc by a special IO port,
this executes QEM.Dec(sk,A′)→ 〈K ′, q′〉, queries O with q′ and gets r′ in return, executes
REM.Enc(K ′, 1, r′) → B′ and returns the message “RESPOND B′” to the environment
by the same port. The IO port stores 〈K ′, 1〉. If QEM.Dec does not work, Senc aborts.

– When “RESPOND B” is input by environment to Senc by a special IS port storing 〈K, t〉,
this increments t and runs REM.Dec(K, t,B) → r and returns r to S. If REM.Dec does
not work, Senc aborts.

– Subsequently, when S outputs a response rt for the oracle and the IS port stores 〈K, t〉,
this post-increments t, runs REM.Enc(K, t, r) → B and a message “RESPOND Bt” is
returned to the environment by the same port.

– When “RESPOND Bt” is input by environment to Senc by a special IO port storing
〈K ′, t〉, this post-increments t and runs REM.Dec(K ′, t, B)→ r′, sends r′ to O to get r′′;
increments t again; runs REM.Enc(K ′, t, r′′)→ B′ and returns the message “RESPOND
B′

t+1” to the environment by the same port.

Any notion of Γ -security on S ↔ O naturally extends to Senc ↔ O by making Γ ignore all
communication through the IS and IO ports.

Definition 7 (Encapsulate-security). An oracle-system S ↔ O is (ε, c)-Γ -encapsulate-
secure relative to a Q/REM encapsulation scheme if its encapsulate-system Senc ↔ O is
(ε, c)-Γ -secure.
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Fig. 2. An encapsulate-system including oracle-system S , interfaces I and generator Gen

The notion of encapsulate-security captures the fact that local security (with respect to a
local game Γ ) is preserved when the oracle-system in the ideal case as per Fig. 1 is instantiated
in reality with an encapsulate-system as per Fig. 2.

In reality, encapsulation necessary leaks side information:

• [Timing] the point in time at which S makes its queries and gets its responses, and
• [Length] the length of those query/response messages.

In fact, strong notions of encryption secrecy e.g. IND-CCA also assume that length informa-
tion is necessarily leaked.

Thus, to prove that encapsulation preserves local security in the practical setting, we
must assume that this kind of leakage is harmless. To this end, we define the notion of “toll-
security”, which captures the oracle-system in the setting similar to Fig. 1 but for which the
above side information are inevitably leaked. This is the system that our encapsulate-system
needs to emulate.

Definition 8 (Toll-system). Given an oracle-system S ↔ O, we define a toll-system Stoll ↔
O (see Fig. 3) as follows.

– When the environment inputs something to Stoll, this is forwarded to a simulated S, and
when S outputs something for the environment, this is output by Stoll to the environment.

– When S outputs a query q (resp. a subsequent response rt) to the oracle, a message “S :
|q|” (resp. “S : |rt|”) with the length |q| of q (resp. |rt| of rt) is output by Stoll to the
environment by a special I port and the delivery of q (resp. rt) to O through the secure
channel is stalled.

– When the delivery of q (resp. rt) is released, O is queried with q (resp. rt) to get the
response r (resp. rt+1). An “O : |r|” (resp. “O : |rt+1|”) message with the length |r| of
r (resp. |rt+1| of rt+1) is output by Stoll for the environment by a special I port and the
delivery of r (resp. rt+1) is stalled.

– When the environment inputs a “GO S” (resp. “GO O”) signal to Stoll by a special I
port, the delivery of the message to O (resp. S) is released.

Definition 9 (Toll-security). An oracle-system S ↔ O is (ε, c)-Γ -toll-secure if its toll-
system Stoll ↔ O is (ε, c)-Γ -secure.

Note that many secure oracle-systems are trivially toll-insecure, i.e. they become insecure
when side information are leaked. For instance, given a secure signature scheme in the random
oracle model, we define a new signature scheme for which the signature algorithm on message
m first computes some Boolean bit(m, sk) function depending on the private key sk and, if the
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bit is 0, does a query to the random oracle with an empty input, otherwise does nothing, then
simulates the original signature scheme. Obviously, this is equivalent to the original scheme in
the random oracle model, but leaks bit(m, sk) to the environment in the toll-system variant.
This helps the adversary to reconstruct sk after a few queries when bit is well chosen.
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Fig. 3. A toll-system including the oracle-system S and the interface I

To prove that encapsulation preserves local security with stateful oracles, extra treatment
is needed: the oracle must be immune to replay attacks.

Definition 10 (Immunity to replay attacks). An oracle O is immune to replay attacks,
if duplicate queries do not modify the state of O and produce responses with either an error
message, or the same distribution and same length as the previous query.

This requirement is necessary otherwise a toll-secure system may not be encapsulate-
secure if the oracle is stateful and allows repeated queries. To motivate this assumption, we
consider that we have a stateful oracle who simulates a perfect random oracle except when
a query is repeated, in which case the oracle answers with a constant value (e.g. 0) to the
repeated query. An adversary can actually repeat any query from the system and make the
system accept answers to the second query, which provokes responses (in this case a constant
value) to be perfectly predictable. In a case where queries by the Enquirer are unknown to E ,
we can have loss of local security when encapsulating the protocol. This can be avoided with
an oracle O that is immune to replay attacks as per Definition 10. For instance, a stateless
oracle or an oracle who repeats the same response to repeating queries without modifying its
state would satisfy this condition.

Finally, S must not make concurrent queries toO. Concretely, S never sends a new message
to O if he is still waiting for a response. Otherwise, E could get advantage in modifying the
order in which they are sent to a stateful oracle.

We now state our main result about secure asymmetric protocol encapsulation. The proof
of Theorem 2 is in Appendix B, and shows that if for any Q/REM secure in the sense defined
in section 2, then the encapsulate-system is computationally indistinguishable from the ideal
toll-system.

Theorem 2. For any oracle-system S ↔ O in which O is immune to replay attacks and S
initiates at most Q (non-concurrent) protocol sessions with O, for any notion of local security
Γ , there exists some µ such that if S ↔ O is (ε, c)-Γ -toll-secure and if the Q/REM scheme
is (εsem, εauth, c)-secure, then S ↔ O is (Q(εsem + εauth) + ε, c− µ)-Γ -encapsulate-secure.
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4 Conclusion

We have put forth a generic notion of security for asymmetric (query-response) protocols,
that is set up to permit leakages of timing and message length to closely model types of
information leakages in practice. In doing so, we proposed a generic construction of a provably
secure query-response encapsulation scheme that can be used to this respect, and our results
apply to any arbitrary-round asymmetric protocol.

In our proof of encapsulation, we have also modeled the time when a query is made because
otherwise it may not properly capture the leakage of side information that would break the
system. We prove the security of encapsulation with the assumption
1. that our underlying primitives are secure,
2. that the query-response protocol remains secure when the existence and time of the query

and response, and their length leak,
3. that the server is a stateless machine or a stateful one that is immune to replay attacks.

We further demonstrate that the last two conditions are necessary.
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A Proof of Theorem 1

To obtain the proof for Theorem 1, we need to recall the definitions of KEM, AE and their
corresponding security notions.

KEM. A key encapsulation mechanism (KEM) [7] is given by the triple of algorithms
KEM.Key(1λ),KEM.Enc(pk) and KEM.Dec(sk,C0), where:

1. 〈pk, sk〉 ← KEM.Key(1λ): this is a PPT algorithm that takes a security parameter 1λ

and returns a pair 〈pk, sk〉 of matching public and private keys.

2. 〈K,C0〉 ← KEM.Enc(pk): this is a PPT algorithm that takes as input a public key pk
and outputs a key/ciphertext pair 〈K,C0〉.

3. K ← KEM.Dec(sk,C0): this is a deterministic polynomial time algorithm that takes as
input the private key sk and ciphertext C0, and outputs key K or a special symbol ⊥
implying the ciphertext was invalid.

It is required that completeness be fulfilled, i.e. for all (pk, sk) output by KEM.Key(·), and
for all C0 output by KEM.Enc(pk), then KEM.Dec(sk,C0) = K.

The security notion of IND-CCA-KEM is as follows:

1. KEM.Key(·) is run to generate the public pk and private key sk for the protocol, and pk
is given to the adversary A.

2. A generates some ciphertext queries and sends them to the challenger. He calls the de-
cryption oracle KEM.Dec(·) who decrypts them and the results are returned to A.

3. The challenger runs KEM.Enc(·) to generate 〈K∗, C∗
0 〉. He generates a random string

K̃ where |K̃| = |K∗|. He chooses b ∈ {0, 1}. If b = 0, he outputs 〈K∗, C∗
0 〉, otherwise he

outputs 〈K̃, C∗
0 〉.

4. A generates further ciphertext queries, but cannot query the challenge ciphertext C∗
0 .
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5. A outputs a guess b̃ ∈ {0, 1}.

Let ΠKEM be a KEM. The advantage of ΠKEM for adversary A, is defined as:

AdvIND−CCA
A,ΠKEM

(λ) = |Pr[b̃ = b]− 1/2|.

ΠKEM is secure if AdvIND−CCA
A,ΠKEM

(λ) is negligible for any PPT adversary A.

AE. A non-deterministic Authenticated-Encryption (AE) scheme is composed of a key gen-
erator and symmetric encryption which use an extra input called the “header” h. [24] follows
a series of papers on authenticated-encryption, notably [2] and proposes an all-in-one defi-
nition which is adapted below. The decryption algorithm may return ⊥ if the ciphertext is
not consistent with the header. An AE is ε-secure if for any distinguisher with access to two
oracles: the left and the right oracle, the advantage for distinguishing the two sets of oracles
below is at most ε.

– The left oracle is an encryption oracle. The right oracle is a decryption oracle. Both oracles
are first set up with a random key prior to any query.

– The left oracle is a random generator. The right oracle returns ⊥ except for (y, h) queries
such that y was previously output by the left oracle with a (x, h) query: in this case, the
right oracle returns x.

Proof of Theorem 1.

Proof. Indistinguishability. We first reduce the IND-CCA-QREM game, i.e. we construct an
adversary AKEM against IND-CCA-KEM using an adversary A that breaks IND-CCA-QREM.
When AKEM receives pk, this is forwarded to A. Queries A = C0||C for OQEM.Dec(A) from
A to AKEM are answered by forwarding C0 to KEM.Dec(·) oracle. The returned K is used by
AKEM to perform AE.Dec(K, 0, C) and result q is returned to A as 〈K, q〉.

During the challenge stage, A chooses q∗ and sends to AKEM. Meanwhile, KEM.Enc(pk)
is run by the KEM challenger in challenge phase of the IND-CCA-KEM game to generate
the key-encapsulation pair 〈K†, C∗

0 〉. Then depending on a flipped bit b, either the computed
K† or a random one K̃ is returned as K∗ with C∗

0 to AKEM as the challenge K∗||C∗
0 . AKEM

sets q0 = q∗ and selects a random q1 of same length. Then AKEM flips a bit b′ and performs
C∗ = AE.Enc(K∗, 0, qb′). A∗ = C∗

0 ||C
∗ is returned to A as a challenge.

After this, queries for OQEM.Dec(A) by A are answered similar to before, except for
A = C0||C with C0 = C∗

0 (and C 6= C∗). In such a case, AKEM runs AE.Dec(K∗, 0, C) directly
since it knows the decapsulated K∗. Queries for OIREM.Enc(i, r) can be easily answered
by AKEM since it knows K∗ and b′, i.e. it sets r0 = r and selects a random r1. Then it returns
B = AE.Enc(K∗, i, rb′) to A. Finally, when A outputs a bit b̃, AKEM outputs b̃⊕ b′.

Let IND-CCA-QREM∗ be the modified game which behaves just like the original IND-
CCA-QEM game except that instead of the secret K∗ used in AE.Enc(·) and AE.Dec(·), a
completely independent and random key K̃ is used. Note that for b = 0, A plays the IND-
CCA-QREM game with AKEM. When b = 1, A is essentially playing the IND-CCQ-QREM∗

game with AKEM. Let X and X∗ be events that A wins the IND-CCA-QREM and IND-CCA-
QREM∗ games respectively. We obtain

Pr[AKEM wins]−
1

2
= Pr[b̃⊕ b′ = b]−

1

2
=

1

2
(Pr[b̃ = b′|b = 1]− Pr[b̃ = b′|b = 0])

=
1

2
(Pr[X∗]− Pr[X]).
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Since |Pr[AKEM wins]−
1

2
| ≤ AdvIND−CCA

πKEM
(λ), thus |Pr[X∗]− Pr[X]| ≤ 2AdvIND−CCA

πKEM
(λ).

We now reduce the IND-CCA-QREM∗ game to the AE game, i.e we use an adversary
A against IND-CCA-QREM∗ to construct an adversary AAE against AE security. Note that
KEM is no longer relevant in the IND-CCA-QREM∗ game because the key K̃ used to key
AE is random instead of being generated by KEM.
AAE runs KEM.Key(·) obtaining 〈pk, sk〉. pk is given to A. Queries A = C0||C for

OQEM.Dec(A) fromA toAAE are trivially answered byAAE since it has sk to run QEM.Dec(sk,C0)
obtaining K which is then used in AE.Dec(K, 0, C). The result q is returned to A as 〈K, q〉
for q 6=⊥.

During the challenge stage, A chooses q∗ and sends to AAE. AAE sets q0 = q∗ and selects a
random q1. Then flipping a bit b′, it sends 〈0, qb′〉 to the AE challenger. The challenger selects
a random key K̃ and flips a bit b. If b = 0, it runs AE.Enc(K̃, 0, qb′) and returns the result
as C∗. Else, a random C∗ is returned. AAE runs KEM.Enc(pk) to obtain 〈K∗, C∗

0 〉, discards
K∗ and returns A∗ = C∗

0 ||C
∗ to A as the challenge.

Further queries for OQEM.Dec(A = C0||C) by A are answered similarly as before, except
for C0 = C∗

0 , where 〈0, C〉 is sent to AE.Dec(·). (Note that C must differ from C∗). Queries
for OIREM.Enc(i, r) are answered by AAE who sets r0 = r and selects a random r1 and
gives 〈i, rb′〉 to the AE challenger, where b′ is that chosen by AAE during the challenge phase.
AE challenger returns B = AE.Enc(K̃, i, rb′) if b chosen by it during the previous challenge
phase is 0, else it returns a random string. When A outputs a bit b̃, AAE outputs b̃⊕ b′.

For b = 0, A plays the IND-CCA-QREM∗ game with AAE. Further, let X∗∗ be the event
that A wins conditioned to b = 1. We obtain

Pr[AAE wins]−
1

2
= Pr[b̃⊕ b′ = b]−

1

2
=

1

2
(Pr[b̃ = b′|b = 1]− Pr[b̃ = b′|b = 0])

=
1

2
(Pr[X∗∗]− Pr[X∗]).

Since |Pr[AAE wins] − 1

2
| ≤ AdvAEπAE

(λ), thus |Pr[X∗∗] − Pr[X∗]| ≤ 2AdvAEπAE
(λ). Also note that

for b = 1 no information on b′ leaks, so Pr[X∗∗] = 1

2
. Rearranging, we have

Pr[X]−
1

2
≤ 2AdvIND−CCA

πKEM
(λ) + 2AdvAEπAE

(λ)

AdvIND−CCA−QREM
πQREM

(λ) ≤ 2AdvIND−CCA
πKEM

(λ) + 2AdvAEπAE
(λ).

Authentication. We consider reducing the AUTH-CCA-QREM game. This is similar to the
previous reduction for IND-CCA-QREM, so we will only highlight the differences. The simula-
tion proceeds similarly, except during the challenge phase. In more detail, the IND-CCA-KEM
challenger runs KEM.Enc(pk) to obtain 〈K†, C∗

0 〉. It then flips a bit b and if b = 0 it returns
〈K∗ = K†, C∗

0 〉 to AKEM. Else it returns a random key K̃ as K∗. When AKEM receives q∗ from
A it computes C∗ = AE.Enc(K∗, 0, q∗) and returns A∗ = C∗

0 ||C
∗ as the challenge.

Queries for OREM.Enc(i, r∗) can be easily answered by AKEM since it knows K∗, i.e. it
returns B∗ = AE.Enc(K∗, i, r∗); additionally each of these B∗ are recorded.

Finally, when A outputs a 〈i, B〉, AKEM runs AE.Dec(K∗, i, B) and checks the resulting r.
If no ⊥ is obtained (meaning B is valid) and if B does not match with a previously recorded
B∗, then it is clear that A wins, and thus AKEM outputs a guess b̃ = 0. Else it outputs b̃ = 1.

When b = 0, A plays the AUTH-CCA-QREM game with AKEM. Let AUTH-CCA-QREM∗

be the modified game corresponding to b = 1, and X and X∗ be the corresponding events
that A wins in these AUTH-CCA-QREM and AUTH-CCA-QREM∗ games respectively:
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Pr[AKEM wins]−
1

2
= Pr[b̃ = b]−

1

2
=

1

2
(Pr[b̃ = 0|b = 1]− Pr[b̃ = 0|b = 0])

=
1

2
(Pr[A wins|b = 1]− Pr[A wins|b = 0]) =

1

2
(Pr[X∗]− Pr[X]).

Since |Pr[AKEM wins]−
1

2
| ≤ AdvIND−CCA

πKEM
(λ), thus |Pr[X∗]− Pr[X]| ≤ 2AdvIND−CCA

πKEM
(λ).

Consider now reducing AUTH-CCA-QREM∗ to the AE game. The steps are similar to
the case for IND-CCA-QREM∗ so we only mention the differences.

During the challenge stage, when AAE receives q∗ from A it forwards 〈0, q∗〉 to the AE
challenger, who selects a random key K̃ and flips a bit b. If b = 0, it runs AE.Enc(K̃, 0, q∗)
and returns the result as C∗. Else, a random C∗ is returned. AAE runs KEM.Enc(pk) to
obtain 〈K∗, C∗

0 〉, discards K∗ and returns A∗ = C∗
0 ||C

∗ to A as the challenge.
Finally, when A outputs a B, AAE checks that B does not equal the output of any previous

OREM.Enc(i, r) query, and passes r to the AE challenger who depending on the bit b selected
during the challenge phase either returns the result r = AE.Dec(K̃, i, B) or ⊥. If no ⊥ is
obtained meaning A wins, then AAE outputs a guess b̃ = 0. Else it outputs b̃ = 1.

Let X∗∗ be the event that A wins the game conditioned to b = 1. We obtain

Pr[AAE wins]−
1

2
= Pr[b̃ = b]−

1

2
=

1

2
(Pr[b̃ = 0|b = 1]− Pr[b̃ = 0|b = 0])

=
1

2
(Pr[A wins|b = 1]− Pr[A wins|b = 0]) =

1

2
(Pr[X∗∗]− Pr[X∗]).

Since |Pr[AAE wins]−
1

2
| ≤ AdvAEπAE

(λ), and Pr[X∗∗] = 0; thus |Pr[X∗∗]−Pr[X∗]| ≤ 2AdvAEπAE
(λ).

Rearranging, we have
Pr[X] ≤ 2AdvIND−CCA

πKEM
(λ) + 2AdvAEπAE

(λ)

AdvAUTH−CCA−QREM
πQREM

(λ) ≤ 2AdvIND−CCA
πKEM

(λ) + 2AdvAEπAE
(λ).

⊓⊔

B Proof of Theorem 2

Proof. Let Q be the number of protocol sessions initiated by S in the encapsulate-system;
and l + 1 be the number of messages within each protocol session. We take an adversary
E against the encapsulate-system Senc ↔ O of complexity c − µ where µ = max(µ1, µ2, µ3)
with µ1, µ2, µ3 to be later defined. We construct a sequence of hybrid systems Si and S ′i for
i = 1, . . . , Q with S0 = Senc, and S ′0 = SQ interacting with the adversary E and oracle O .
S ′Q will almost be the toll-system Stoll.
Si and S ′i keep record of all 〈A′, B′

1, B
′
2, B

′
3, . . . , B

′
l , q

′, r′1, r
′
2, r

′
3, . . . , r

′
l〉. System S ′i further

keeps additional record of some 〈K,A, q〉 triplets.
We define the oracle-system Si ↔ O which slightly differs from Si−1 ↔ O. Let A be the ith

encapsulated query from S, i.e. the value of the ith “QUERY A” message. It encapsulates the
ith query q. Let Bt (for t = 1, 2, . . . , l) be the encapsulations of the corresponding responses rt

to this ith query q. If the environment submits a “RESPOND Bt” message (t ∈ {1, 2, . . . , l})
to Si, the system checks if some 〈A′, B′

1, B
′
2, B

′
3, . . . , q

′, r′1, r
′
2, r

′
3, . . . 〉 with A′ = A and B′

s = Bs

(for s ≤ t) exists in its record. r′t is returned if this is so. In other cases, Si aborts.
Si−1 and Si only differ in the treatment on the “RESPOND Bt” (for t = 1, 2, . . . , l)

messages initiated by the ith “QUERY A” message. They can be simulated without the
initial secret key sk provided that we get pk and we can use an OQEM.Dec(·) oracle to
treat “QUERY A′” with A′ 6= A messages. We define an adversary Ai against the AUTH-
CCA-QREM game this way (See Fig. 4): The adversary first receives the public key pk and
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simulates the interaction with adversary E and O until S issues its ith query q. Then, Ai

submits q∗ to the challenger and receives an encapsulation A∗. The adversary can call the
OQEM.Dec(·) oracle except for input A∗ to treat the “QUERY A′” message with A′ 6= A∗.
To treat the “QUERY A′” and subsequent “RESPOND B′

t” messages with A′ = A∗ and
B′

s = Bs (for s ≤ t), recall that Ai knows q∗ so it simply queries O with q∗ as many times as
necessary to get r∗t+1 and calls OREM.Enc(t+1, r∗t+1) to get B∗

t+1. Note that it is important
to query O every time since the oracle may not be deterministic, e.g. stateful oracles. The
final Bl in the “RESPOND Bl” message to the system is the final Bl in the AUTH-CCA-
QREM game, so the simulation is perfect. In the event E that Bl equals one of the obtained
B∗

t from OREM.Enc, then Ai fails to win the AUTH-CCA-QREM game; in which case the
behavior of E(Si−1,O) and E(Si,O) are identical, and Ai perfectly simulates Si−1 or Si to
E . Hence Pr[E(Si−1,O) wins|E] = Pr[E(Si,O) wins|E]. Otherwise, Ai wins. If Q/REM is
AUTH-CCA secure, the advantage for Ai is negligible, meaning that Pr[Ai wins] ≤ εauth.
We deduce |Pr[E(Si−1,O) wins] − Pr[E(Si,O) wins]| ≤ εauth since the complexity of Ai is
c− µ + µ1 for some small overhead cost µ1.

We define the oracle-system S ′i ↔ O which slightly differs from S ′i−1
↔ O. Now, instead of

encapsulating q to produce 〈K,A〉 in the ith query from S, S ′i encapsulates a random query q̃
of the same length and keeps record of 〈K,A, q〉. Similarly, for any “QUERY A′” message from
the environment with A′ = A for some 〈K,A, q〉 record, S ′i gets q from the record, queries O
with q′ = q, and obtains the response r′1 = r1. Nevertheless, instead of encapsulating r1, the
system directly encapsulates a random response r̃1 to produce B′

1. The record 〈A′, B′
1, q, r1〉

is inserted. This querying of the oracle O is just to update the internal state of O to handle
the case of stateful oracles. The same occurs when producing subsequent response messages
rt+1 (t ∈ {1, 2, . . . , l}) triggered by a preceeding message rt i.e. a random r̃t+1 is encapsulated
instead of querying O(rt) and 〈B′

t+1, rt+1〉 are added to the record.
S ′i−1 and S ′i only differ in the treatment on the ith “QUERY A” message and related

“QUERY A′” messages with A′ = A; and corresponding “RESPOND Bt” and “RESPOND
B′

t” messages. They can be simulated without the initial secret key sk provided that we get
pk and we can use an OQEM.Dec(·) oracle to treat “QUERY A′” with A′ 6= A messages; and
OREM.Dec(·) oracle to treat “RESPOND Bt” with B′

s 6= Bs(s ≤ t) messages. We define an
adversary A′

i against the IND-CCA-QREM game this way (See Fig. 5): The adversary first
receives the public key pk and simulates the interaction with adversary E and O until S issues
its ith query q∗. Then, A′

i submits q∗ to the challenger and receives an encapsulation A∗. The
adversary can call the OQEM.Dec(·) oracle except for input A∗ to treat the “QUERY A′”
message with A′ 6= A∗. To treat the “QUERY A′” message with A′ = A∗, A′

i knows q∗ so it
simply queries O with q∗ as many times as necessary to get r∗t (for t = 1, 2, . . . , l). and calls
OIREM.Enc(t, r∗) to get B∗. The success of the Γ -adversary against the system yields the
final guess bit in the IND-CCA-QREM game. If Q/REM is IND-CCA secure, the advantage
for A′

i is negligible, meaning that Pr[A′
i wins] ≤ εsem. We deduce |Pr[E(S ′i−1

,O) wins] −
Pr[E(S ′i,O) wins]| ≤ εsem since the complexity of A′

i is c − µ + µ2 for some small overhead
cost µ2.
S ′Q is such that whenever E(S ′Q,O) wins for any i, between any ith QUERY A and ith

“RESPOND Bt” messages, there is at least one “QUERY A′” with A′ = A and B′
s = Bs(s ≤ t)

from E (otherwise some modified treatment of the “RESPOND Bt” message brought by Si

fails, since if A′ = A and and B′
s = Bs(s ≤ t) then Si will not answer r′t to S). Due the

assumption on O, discarding repeating queries is harmless. We define a new system S ′′ ↔ O
which differs from S ′Q ↔ O in the sense that for any “QUERY A′” or “RESPOND B′

t”
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message such that there is one record 〈K,A,B1, B2, . . . , q, r1, r2, . . . 〉 with A′ = A then O is
not queried but S ′′ picks a random r̃ of same length as r′, does REM.Enc(K∗, t, r̃) = B′

t and
answers “RESPOND B′

t”. Obviously, Pr[E(S′′,O) wins] ≥ Pr[E(S′
Q,O) wins].

Finally we construct a new adversary E ′ against Stoll from the adversary E attacking
S ′′. See Fig. 6. E ′ first generates QEM.Key(1λ) = 〈pk, sk〉 and simulates E with input pk.
Interactions between E and S remain unchanged. When E ′ receives a “QUERY l” message
from Stoll, E ′ picks a random q̃ of length l, runs QEM.Enc(pk, q̃) = 〈K ′, A′〉 and sends
a “QUERY A” message to E . When E yields a “QUERY A′” message with A′ = A, a
“GO” message is given to Stoll and a random response r̃1 is encapsulated. When Stoll is-
sues a “RESPOND m” message to E ′, then E ′ answers “RESPOND B′

t” to E . Finally when
E sends a “RESPOND B′

t” message to E ′, then E ′ sends a “GO” message to Stoll. Obviously,
Pr[E ′(Stoll,O) wins] = Pr[E(S

′′
,O) wins]. Since S is ε-Γ -toll-secure with O, we know that

Pr[E(Stoll,O) wins] ≤ ε since the complexity of E ′ is c− µ + µ3 for some small overhead cost
µ3. Hence, Pr[E(Senc,O) wins] ≤ (Q(εsem + εauth) + ε).

⊓⊔
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E Ai simulates Si QREM Challenger
pk
←−

pk
←− QEM.Key(1λ) = 〈pk, sk〉.

Case: Receive jth query q (for j 6= i) from S .
QEM.Enc(pk, q) = 〈K, A〉.

QUERY A
←− Keep 〈j, K〉 in memory.

QUERY A′

−→
OQEM.Dec(A′)

−→ QEM.Dec(sk, A′) = 〈K′, q′〉.

If q′ =⊥ then halt. Else O(q′) = r′1.
〈K′,q′〉
←− .

REM.Enc(K′, 1, r′1) = B′
1.

RESPOND B′

1←− Record 〈K′, A′, B′
1, q

′, r′1〉.
RESPOND Bt(t=1,... )

−→ For (j < i),
if 〈K′, A′, B′

1, B
′
2, . . . , q

′, r′1, r
′
2, . . . , 〉 exists

s.t. A′ = A and B′
s = Bs(s ≤ t),

answer r′t to S/O else halt.
For (j > i), REM.Dec(K, t, Bt) = rt.

If rt =⊥ then halt.
Else answer rt to S/O and get r′t+1.
REM.Enc(K′, t + 1, r′t+1) = B′

t+1.
RESPOND B′

t+1
←− Add 〈B′

t+1, r
′
t+1〉 to the record.

Case: Receive ith query q∗ from S.
q∗

−→ QEM.Enc(pk, q∗) = 〈K∗, A∗〉.
QUERY A∗

←− Keep 〈q∗, A∗〉 in memory.
A∗

←−
QUERY A′

−→ If A′ 6= A∗, then proceed as for normal QUERY A′

RESPOND B′

1←− : : :
QUERY A′

−→ If A′ = A∗, then O(q∗) = r∗1 .
OREM.Enc(1,r∗

1)
−→ REM.Enc(K∗, 1, r∗1) = B∗

1 .
RESPOND B∗

1←− Record 〈A∗, B∗
1 , q∗, r∗1〉.

B∗

1←−
RESPOND B′

t
(t=1,... )

−→ If 〈A′, B′
1, B

′
2, . . . , q

′, r′1, r
′
2, . . . 〉 exists

s.t. A′ = A∗ and B′
t = B∗

t ,

then answer r′t to S/O else halt. Get r∗t+1.
OREM.Enc(t+1,r∗

t+1)
−→ REM.Enc(K∗, t + 1, r∗t+1) = B∗

t+1.
RESPOND B∗

t+1
←− Add 〈B∗

t+1, r
∗
t+1〉 to the record.

B∗

t+1
←−

RESPOND Bl−→ If 〈A′, B′
1, B

′
2, . . . , B

′
l , q

′, r′1, r
′
2, . . . , r

′
l〉 exists

s.t. A′ = A∗ and B′
l = Bl, answer r′l to S .

Else, output Bl to QREM challenger.
Bl−→

Fig. 4. Reduction from Γ -encapsulate-secure∗ to AUTH-CCA-QREM
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E A′
i simulates S′

i QREM Challenger
pk
←−

pk
←− QEM.Key(1λ) = 〈pk, sk〉.

Receive jth query q from S .

If (j < i): Set q† = q̃ for random q̃.

QEM.Enc(pk, q†) = 〈K, A〉. Record 〈K, A, q〉.

If (j > i): Set q† = q. QEM.Enc(pk, q†) = 〈K, A〉.

If (j = i):
q∗=q
−→ Choose b ∈ {0, 1}.

: Set q0 = q∗. Select random q1.
QUERY A
←− Record 〈⊥,A∗, q〉.

A∗

←− QEM.Enc(pk, qb) = 〈K∗, A∗〉.
QUERY A′

−→ If 〈K, A, q〉 exists s.t. A′ = A, then:
O(q) = r1.
If K 6=⊥ then set r† = r̃ for random r̃.

REM.Enc(K, 1, r†) = B′
1.

Else if K =⊥ call OIREM.Enc(1, r1).
OIREM.Enc(1,r1)

−→ Set r0 = r1. Select random r1.

Set B′
1 = B∗. Record 〈A′, B′

1, q, r1〉.
B∗

←− REM.Enc(K∗, 1, rb) = B∗.

Else call OQEM.Dec(A′).
OQEM.Dec(A′)

−→ QEM.Dec(sk, A′) = 〈K′, q′〉.

If q′ =⊥ then halt. O(q′) = r′1.
〈K′,q′〉
←−

RESPOND B′

1←− REM.Enc(K′, 1, r′1) = B′
1. Record 〈A′, B′

1, q
′, r′1〉.

RESPOND Bt−→ If 〈K, A, B1, B2 . . . , q, r1, r2, . . . 〉 exists
s.t. A′ = A and B′

s = Bs(s ≤ t), then:
Answer rt to S/O and get rt+1.

If K 6=⊥ then set r† = r̃ for random r̃.

REM.Enc(K, t + 1, r†) = B′
t+1.

Else if K =⊥ call OIREM.Enc(t + 1, rt+1).
OIREM.Enc(t+1,rt+1)

−→ Set r0 = rt+1. Select random r1.

Set B′
t+1 = B∗. Add 〈B′

t+1, rt+1〉 to record.
B∗

←− REM.Enc(K∗, t + 1, rb) = B∗.

Else call OREM.Dec(t + 1, B′
t+1).

OREM.Dec(t+1,B′

t+1)
−→ REM.Dec(K∗, t + 1, B′

t+1) = r′t+1.
RESPOND B′

t+1
←− If r′t+1 =⊥ then halt. Add 〈B′

t+1, r
′
t+1〉 to record.

r′

t+1
←−

RESPOND Bl−→ If 〈A′, B′
1, . . . , B

′
l, q

′, r′1, . . . , r
′
l〉 exists

s.t. A′ = A and B′
l = Bl, answer r′l to S .

Γ−Judge: end
−→ If A wins, output b̃ = 1, else b̃ = 0.

b̃
−→

Fig. 5. Reduction from Γ -encapsulate-secure∗∗ to IND-CCA-QREM

E A′ Stoll

pk
←− QEM.Key(1λ) = 〈pk, sk〉.

QUERY A′

−→ QEM.Dec(sk, A′) = 〈K′, q′〉.
RESPOND B′

1←− O(q′) = r′1. REM.Enc(K′, 1, r′1) = B′
1.

RESPOND Bt−→ REM.Dec(K′, t, Bt) = r′t.
RESPOND B′

t+1
←− O(r′t) = r′t+1. REM.Enc(K′, t + 1, r′t+1) = B′

t+1.
QUERY A
←− Pick random q̃ of length l. QEM.Enc(pk, q̃) = 〈K, A〉.

QUERY l
←−

QUERY A′

−→ If A′ 6= A, do as before. Else if A′ = A, pick random r̃ of length m.

REM.Enc(K, 1, r̃) = B′
1.

GO
−→

RESPOND B′

1←−
RESPOND m
←−

RESPOND Bt−→ If B′
t 6= Bt, do as before. Else pick random r̃ of length m.

REM.Enc(K, t + 1, r̃) = B′
t+1.

GO
−→

Fig. 6. Going from S
′′

to Stoll
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