000114024 001__ 114024
000114024 005__ 20190316234050.0
000114024 0247_ $$2doi$$a10.1016/j.sna.2005.11.069
000114024 02470 $$2ISI$$a000239295000022
000114024 037__ $$aARTICLE
000114024 245__ $$aMicroactuators based on ion implanted dielectric electroactive polymer (EAP) membranes
000114024 269__ $$a2006
000114024 260__ $$c2006
000114024 336__ $$aJournal Articles
000114024 520__ $$aWe report on the first successfully microfabricated and tested ion-implanted dielectric electroactive polymer (EAP or DEAP) actuators. Dieletric EAP (DEAP) actuators combine exceptionally high energy-density with large amplitude displacements [1,2]. Scaling DEAPs down to the milimeter and micron scale requires patterning compliant electrodes on such a scale on the surfaces of the polymer. We used ion implantation to make the surfaces of the polymer locally conducting. Implanting the compliant electrodes solves the problem of microfabricating patterned electrodes whose elasticity is close to that of the insulating elastomer, thus avoiding the deposition of metal electrodes on the polymer which leads to significant stiffening of the membrane [3]. Several techniques based on ion implantation for chip level and wafer level fabrication are presented. Ion implanted DEAP membranes were both simulated (FEM) and characterized. We report measurements on an actuator consisting of a 30-um-thick ion implanted PDMS membrane bonded to a silicon chip into which a cavity had been etched. We measured 110 um vertical displacements for a 0.72 mm2 square membrane, achieving for the first time the same percent displacement in microscopic EAPs as in macroscopic devices. These observations show that ion implantation allows the patterning of electrodes on PDMS membranes with negligible increase in stiffness.
000114024 6531_ $$aIon implantation;
000114024 6531_ $$aDielectric electroactive polymer;
000114024 6531_ $$aEAP;
000114024 6531_ $$aDielectric elastomer actuator;
000114024 6531_ $$aDEA
000114024 700__ $$0240308$$g168661$$aDubois, Philippe
000114024 700__ $$0241188$$g127048$$aRosset, Samuel
000114024 700__ $$aKoster, Sander
000114024 700__ $$aStauffer, Johann
000114024 700__ $$aMikhaïlov, Serguei
000114024 700__ $$aDadras, Massoud
000114024 700__ $$g104887$$ade Rooij, Nico-F.$$0243301
000114024 700__ $$aShea, Herbert$$g162368$$0240376
000114024 773__ $$j130-131$$tSensors and Actuators A: Physical$$q147-154
000114024 8564_ $$uhttps://infoscience.epfl.ch/record/114024/files/LMTS-ARTICLE-2006-001.pdf$$zn/a$$s415683$$yn/a
000114024 909C0 $$xU10329$$0252173$$pSAMLAB
000114024 909C0 $$pLMTS$$xU10955$$0252107
000114024 909CO $$qGLOBAL_SET$$pSTI$$particle$$ooai:infoscience.tind.io:114024
000114024 917Z8 $$x102085
000114024 917Z8 $$x162368
000114024 937__ $$aLMTS-ARTICLE-2006-001
000114024 973__ $$rNON-REVIEWED$$sPUBLISHED$$aEPFL
000114024 980__ $$aARTICLE