A Platform for Mixed HW/SW Algorithm
Specifications for the Exploration of SW and
HW Partitioning

Christophe Lucarz and Marco Mattavelli

Ecole Polytechnique Fédérale de Lausanne, Switzerland
{christophe.lucarz,marco.mattavelli}@epfl.ch

Abstract. The increasing complexity in particular of video and mul-
timedia processing has lead to the need of developing the algorithms
specification using software implementations that become in practice
generic reference implementations. Mapping directly such software mod-
els in platforms made of processors and dedicated HW elements becomes
harder and harder for the complexity of the models and for the large
choice of possible partitioning options. This paper describes a new plat-
form aiming at supporting the mapping of software specifications into
mixed SW and HW implementations. The platform is supported by pro-
filing capabilities specifically conceived to study data transfers between
SW and HW modules. Such optimization capabilities can be used to
achieve different objectives such as optimization of memory architectures
or low power designs by the minimization of data transfers.

1 Introduction

Due to the ever increasing complexity of integrated processing systems, software
verification models are necessary to test performance and specify accurately a
system behaviour. A reference software, in both cases of the processing speci-
fied by a standard body or for any other ”custom” algorithm, is the starting
point of every real implementation. This is typical case for MPEG video cod-
ing where the "reference software” is now the real specification. There is an
intrinsic difference between real implementations that can be made of HW and
SW components working in parallel using specific mapping of data on differ-
ent logical or physical memories and the "reference software” that is usually
based on a sequential model with a monolithic memory architecture, such dif-
ference is generically called ”architectural gap”. In the process of transforming
the reference SW into a real implementation the possibility of exploring dif-
ferent architectural solutions for specific modules and study the resulting data
exchanges for defining optimal memory architectures is a very attractive ap-
proach. This system exploration option is particularly important for complex
systems where conformance and validation of the new module designs need to
be performed at each stage of the design otherwise incurring into the risk of

N. Azemard and L. Svensson (Eds.): PATMOS 2007, LNCS 4644, pp. 485-94] 2007.
© Springer-Verlag Berlin Heidelberg 2007

486 C. Lucarz and M. Mattavelli

developing solutions not respecting their original specification or not providing
adequate performances.

This paper presents an integrated platform and the associated profiling capa-
bilities that supports mixed SW and HW specifications and enables the hardware
designer to seamlessly transform a Reference Software into software plus hard-
ware modules mapped on an FPGA.

The paper is organized as follows: section 2 presents a brief state of the art
on integrated HW /SW platforms. Section 3 provides a general view of the plat-
form introducing the innovative elements. Section 4 describes the details of the
platform that enables HW/SW support. Section 5 presents the capabilities of
the profiling tool and explain how it can be used to study and optimize data
transfers satisfying different criteria.

2 State of the Art of Platforms Supporting Mixed
HW /SW Implementations

Many platforms have been designed to support mixed SW/HW implementations,
but all of them suffer from the fact that there is no easy procedure capable to
seamlessly plug hardware modules described in HDL to a pure software algo-
rithm. Either the memory management is a burdensome task or the call of the
hardware module is done by an embedded processor on the platform.

Environments which support HW/SW implementations are generally based
on a platform containing an embedded processor and some dedicated hardware
logic like FPGA as described in the work of Andreas Koch [2]. The control
program lies in the embedded processor. However, data on the host are avail-
able easily thanks to virtual serial ports. But the plugging of hardware modules
inside the reference software running on the host remains the most difficult
task.

The work of Martyn Edwards and Benjamin Fozard [3] is interesting in the
way a FPGA-based algorithm can be activated from the host processor. This
platform is based on the Celoxica RC1000-PP board and communicates with the
host by using the PCI bus. The control program is on the host processor, sends
control information to the FPGA and transfers data in small shared memory
which is part of the hardware platform. In this case, the designer/programmer
must do explicitly the data transfer between the host and the local memory.
Many other works about coprocessors have been reported in literature. Some
examples are given in [4] [5]. However the problem of seamless plug-in of HDL
modules is still there, the data transfers in the charge of the designer with can
be a very burdensome task when dealing with complex data-dominated video or
multimedia algorithms.

In some works on coprocessors, data transfers can be generated automatically
by the host like for instance in [6]. But data are copied in the local memory at
a fixed place. Thus, the HDL module must be aware of the physical addresses

A Platform for Mixed HW/SW Algorithm Specifications 487

of the data in the local memory. The management of the addresses can be a
burdensome task when dealing with complex algorithms.

The Virtual Socket concept and associated platform has been presented in [10]
[9) [7] and has been developed to support the mixed specification of MPEG-4
Part2 and Part 10 (AVC/H.264) in terms of reference SW including the plug-in
of HDL modules. The platform is constituted by a standard PC where the SW
is executed and by a PCMCIA card that contains a FPGA and a local memory.
The data transfers between the host memory and the local memory on the FPGA
must be explicitly specified by the designer/programmer.

Specifying explicitly the data transfers would not constitute a serious burden
when dealing with simple deterministic algorithms for which the data required by
the HDL module are known exactly. Unfortunately for very complex design cases
where design trade-offs are much more convenient (and often are the only viable
solutions) than worst case designs data transfers cannot be explicitly specified
in advance by the designer.

Our work is based on the Virtual Socket platform to which we add the virtual
memory capability to allow automatic data transfers from the host to the local
memory. The goal of our platform implementation is to provide a ”direct map”
of any SW portion to a corresponding HDL specification without the need of
specifying any data transfer explicitly. In other words, to extend the concept
of Virtual Socket for plugging HDL modules to SW partition with the concept
of virtual memory. HDL modules and software algorithm share an unified vir-
tual memory space. Having a shared memory - enforced by a cache-coherence
protocol - between the CPU running the SW sections and the platform sup-
porting HW avoids the need of specifying explicitly all the data transfers. The
clear advantage is that the data transfer needs of the developed HDL module
can be directly profiled so as to explore different memory architecture solutions.
Another advantage of such direct map is that conformance with the original
SW specification is guaranteed at any stage and the generation of test vectors is
naturally provided by the way the HDL module is plugged to the SW section.

3 Description of the Virtual Socket Platform

The Virtual Socket platform is composed of a PC and a PCMCIA card that
includes a FPGA and a local memory. The Virtual Socket handles the commu-
nications between the host (the PC environment) and the HDL modules (in the
FPGA inside the PCMCIA).

Given that the HDL modules are implemented on the FPGA, in principle
they would only have access to the local memory (see figure [[l). This was the
case of the first implementation of the Virtual Socket platform, with the con-
sequence that all the data transfers from the host to the local memory had to
be specifically specified in advance by the designer/programmer himself. Such
operation beside being error prone or be implemented transferring more data
than necessary it is not straightforward and may become difficult to be han-
dled when the volume of data is comparable with the size of the (small) local

488 C. Lucarz and M. Mattavelli

MPEG C# functions / I : \
Host / 1o \
Local Virtual Socket \
! Memory Platform |
|
|
! e
| / S
Virtual Socket ‘ physical addresses ~* |
P‘;Il‘)’[C:A Local Memory Prat '™ Window » Virtual I
C G atonn I Memory P Memory |
ard L unie [Controller |
| A
d /‘ virtual addresses - _ |
_ .
| [L v !
HDL HDL DL |
module module (@ e @ o @ module | |
1 31 \

HDL module I}
HDL description of the functions

Fig. 1. The Virtual Socket platform overview

memory. Therefore, an extension has been conceived and implemented so as
to handle these data transfers automatically. The Virtual Memory Extension
(VME) is implemented by two components: the hardware extension to the Vir-
tual Socket platform (Window Manager Unit) and a Virtual Manager Window
(VMW) library on the host PC. The cache-coherence protocol is implemented in
the Window Manager unit (WMU) using a TLB (Translation Lookaside Buffer)
and is handled by the software support (VMW). The HDL module is designed
simply generating virtual addresses relative to the user virtual memory space
(on the host) to request data and execute the processing tasks.

The processing of the data on the platform using the virtual memory feature
proceed as follows. The algorithm starts the execution on the PC and associated
host memory. The Virtual Socket environment allows the HDL module to have a
seamless direct access to the host memory thanks to the Virtual Memory Exten-
sion and allows the HDL module to be started easily from the software algorithm
thanks to the VMW Library. Figure 2 shows what are the relations between the
host memory, the reference software algorithm, the hardware function call and
the HDL module.

Given an algorithm described in a mixed HW/SW form (1): some parts are
executed in software with the host processor (5), some other parts are executed
by hardware HDL modules (4) on the Virtual Socket platform hardware. To
deal with mixed HW/SW algorithms, it is very convenient if the HDL and C
functions have access to the same user memory space (6) which is part of the
host hardware and where are stored the data to process. The main memory space
is trivially available for the parts of the algorithm executed in software, which
is much less evident for the parts executed in hardware.

The section of C code the programmer intends to execute in hardware is re-
placed by the hardware call function (2). This latter is based on the Virtual
Manager Window Library. The programmer sets the parameters to give to the
HDL module. The Start_module () function drives the Virtual Socket platform

A Platform for Mixed HW/SW Algorithm Specifications 489

(6)

User Software
Virtual Memory
Space

HOST
HARDWARE

(5) Host.

Processor

PLATFORM
HARDWARE

Open platform @)
(2) Configure platform

Set Parameters

Virtual VHDL

Fstort DL iodiie” /| — 5 —(() Socket described HDL
Close the platform + VME modules

mixed HW/SW Algorithms VMW library Virtual Socket Platform
(from reference C Functions) with Virtual Memory
Extension

Implemented HDL
SOFTWARE Functions

Fig. 2. Interactions between the C function, the HDL module and the shared memory
space

and the VME (3) to activate the HDL module (4). The VMW library manages
all the data transfers between the main memory (6) and the local memory of
the platform (3) because as the HDL module is in a FPGA, it has access only
this local memory. Thanks to the VME, the HDL module has access to the
host memory without intervention of the programmer. Data are sent to the
HDL module and results are updated in the main memory automatically thanks
to the software library support. When the HDL module finishes its work, the
hardware call function is terminated by closing the platform and the reference
software algorithm can be continued on the host PC.

4 Details on HW Implementation and SW Support

The following section describes in more details how the Virtual Socket platform
supporting the Virtual Memory Extension is implemented. The first part ex-
plains how virtual memory accesses are possible from the HDL modules. Then,
the Virtual Memory Window library, i.e. the software support is described in
details to show how virtual memory accesses are handled. The final part ex-
plains how HDL modules can be integrated in the platform using a well-defined
protocol.

490 C. Lucarz and M. Mattavelli

4.1 The Heart of Simplicity: HDL Modules Virtual Memory
Accesses

The HDL modules are implemented on the FPGA, so that they have access only
to the local memory of the Virtual Socket platform. With the implementation
of the Virtual Memory Extension, the HDL modules have a direct access to the
software virtual memory space located on the host PC.

The right part of figure [I] shows in details how the connections between a
HDL module, the Virtual Socket platform and the Virtual Memory Extension
are implemented (in the hardware of the PCMCIA card). The virtual addresses
generated by the HDL modules are handled by the Virtual Memory Controller
(VMC) and the Window Memory Unit (WMU). The WMU is a component taken
from the work of Vuleti¢ and al.[8]. The WMU translates virtual addresses into
physical addresses. The VMC is in charge of intercepting precise signals at right
time from the interface between the HDL module and the platform in order
to send information to the WMU which executes the translation. Among the
signals intercepted by the VMC, can be mentioned the address signal, the count
signal (number of data requested by the HDL module) and the strobe signal.
The virtual addresses refer to the unified virtual memory space and the physical
addresses refer to the local memory on the card. A physical address is composed
of an offset and a page number. The local memory (on the current PCMCIA
card platform) is composed of 32 pages of 2 kB. The offset corresponds to the
location of the data in the page. The software support library (on the host PC)
fills the pages of the local memory with the requested data coming from the
virtual memory. When the WMU receives an unknown virtual address, it raises
an interrupt through the interrupt controller of the card. The interrupt is taken
in charge by the software support (on the host PC) and the requested data are
written from the host memory to the local memory.

From the designer/programmer point of view using the Virtual Memory Ex-
tension, the whole process of data transfers is completely transparent. The only
issue the designer/programmer has to care of is to generate the virtual addresses
accordingly to the data contained in the host memory space. The whole task
of transferring data to local memory is done by the platform and its software
support.

4.2 The Software Support: The Virtual Memory Window Library

The Virtual Memory Window (VMW) library is built on the FPGA card driver
(Wildcard II API), the Virtual Socket API developed by Yifeng Qiu and Wael
Badawy bases on the works [9] [10] and the WIN32 APIL

The Virtual Socket platform can be used with or without the Virtual Mem-
ory Extension. The designer/programmer is free to choose if the data transfers
between the main memory on the host and the local memory on the card are
done automatically (virtual mode) or manually (explicit mode).

A Platform for Mixed HW/SW Algorithm Specifications 491

The following piece of C code shows how a HDL module can be easily called
from the Reference Software by using the Virtual Memory Extension:

int main(int argc,char *argv[]) {

/* [. . .] Reference Software Algorithm stops here */

/* Beginning of the HDL module calling procedure */

/*xk%skk CONFIGURING THE PLATFORM ks /
Platform_Init(); // Virtual Socket

VMW_Init() ; // Virtual Memory Extension

/***x*x* PARAMETERS SETTINGS s**x***x*/

Module_Param.nb_param = 4 ; // number of parameters
Module_Param.Param[0] = A ; // parameter 1
Module_Param.Param[1] = B ; // parameter 2
Module_Param.Param[2] = C ; // parameter 3
Module_Param.Param[3] = D ; // parameter 4

/*%xxx*%xx*x HDL MODULE START ssk**xx/
Start_module(1, &Module_Param) ;

/*x*x*xx* CLOSING THE PLATFORM x**¥x**x/
VMW_Stop () ; // Virtual Memory Extension
Platform_Stop(); // Virtual Socket

/* End of the HDL module calling procedure */
/* [. . .] the Reference Software Algorithm continues*/

}

First the designer/programmer must configure the platform by using the
Platform_Init() and VMW_Init() functions from the Virtual Socket APT and
VMW API. HDL modules are activated thanks to the function Start_module()
from the VMW API. The designer/programmer must set a given number of pa-
rameters needed for the configuration of the HDL module. This can be done
thanks to the data structure Module_Param. Sixteen parameters are available
for each HDL module.

4.3 The Integration of the HDL Modules in the Platform

The HDL module is linked to the Virtual Socket platform thanks to a well-defined
interface and a precise communication protocol.

Figure [illustrates the essential elements of the communication protocol.
A HDL module can issue two types of requests: read or write data (in main
or local memory, it depends on the operating mode: virtual or explicit mode).

492

C. Lucarz and M. Mattavelli

Steps 1 and 2 : Step 3

Virtual E Virtual ‘

Socket H Socket

Platform request for H Platform

read (write) HDL H | g Parameters of the HDL
' [read (write) request
e module H b module
acknowledgment :

Local H Local

Memory . Memory
...
Steps 4 and 5 H : Steps 6 and 7

Virtual | : Virtual |

Socket . : Socket

Platform input valid” : Platform release

output valid”) HDL : Tequest HDL
read data module | module
(write data) P
acknowledgment

Local Local

Memory Memory

Fig. 3. The communication protocol between a HDL module and the Virtual Socket
Platform

Read and write protocols are very similar. The following is the description of
the communication protocol for the read (write) request:

1.

The user HDL module asks to read (write) data, it issues a read request for
reading (writing) the memory.

The platform accepts the reading (writing) request and if the data are avail-
able in the local memory, it generates an acknowledgement signal to the
user HDL module. Otherwise the Virtual Memory Extension copies the re-
quested data of the host memory into the local memory and then generates
the acknowledgement.

Once the user HDL module receives the acknowledgement signal, it asks
for reading (writing) some data directly from (to) the memory space. This
request is performed by asserting a "memory read” (”output valid”) signal
together with setting up some other parameters signals (identification num-
ber of the HDL module used, the virtual address and how much data must
be read (written)).

The platform accepts those signals and reads (writes) data from (to) the
memory space. When the platform finishes each reading (writing), it asserts
”input valid” ("output valid”) and the data are ready to input of the user
HDL module (platform).

The user HDL module receives (sends) the data from (to) the interface.
The user HDL module asserts a request to ask for releasing the reading
(writing) operations when finished.

The platform generates an acknowledgement signal to release the reading
(writing) operations.

A Platform for Mixed HW/SW Algorithm Specifications 493

In the Virtual mode, the read and write addresses contain the addresses of
the data in the unified virtual memory space. It was like the HDL modules see
the host memory.

5 Profiling Tools: Testing and Optimizing Data Transfers

Optimization of data transfers is a very important issue particularly for data
dominated systems such as multimedia and video processing. Minimizing data
transfer is also important for achieving low power implementations that are
fundamental for mobile communication terminals. Data transfers contributes to
the power dissipations and need to be optimized to achieve low power designs.
The profiling tools supported by the platform allow the programmer to receive
a feedback on the data requested by the HDL module.

HDL HOST

(1) Conformance test module MEMORY

Virtual Memory Extension (virtual mode)
No profiling

o HDL HOST
(2) Global optimization module MEMORY
Virtual Memory Extension (virtual mode)
With profiling
(3) Final optimization and validation HDL »| CACHE HOST
’ module " " |MEMORY| MEMORY

Original Virtual Socket
(explicit mode)

profiling

Fig. 4. The optimization methodology

Figure @] shows the methodology to achieve an optimized hardware function
(HDL module) relative to data transfers. The first step concerns the valida-
tion of the design. Using the Virtual Memory Extension, the equivalency of
the C and HDL functions are verified. Virtual memory feature allows the de-
signer/programmer to focus exclusively on the HDL module conformance check-
ing. He can forget about the memory management during this phase. The second
phase consists in understanding and having a global overview of the data trans-
fers made between the platform and the HDL module. The way the data are
accessed, the re-organization of data can be source of optimization. When the
data required by the HDL module are profiled, the designer/programmer enters
the last phase in which data transfers are optimized between HDL module and
cache memory.

494 C. Lucarz and M. Mattavelli

6 Conclusion

This paper describes the implementation of a platform capable of supporting
the execution of algorithms described in mixed SW and HW form. The plat-
form provide a seamless environment for migrating section of the SW into HDL
modules that include a ”virtual memory space” common to SW sections and
to the HW modules. On one side conformance of the HDL modules with the
reference SW is guaranteed at any stage of the design, on the other side the
programmer /designer can focus on different aspects of the design. First design
efforts can be focused on the module functionality without worrying about data
transfers, then using the profiled data transfer on design of appropriate memory
architectures or any other design optimization that matches the specific criteria
of the design.

References

1. Annapolis Micro Systems, WILDCARD-II Reference Manual, 12968-000 Revision
2.6 (January 2004)

2. Koch, A.: A comprehensive prototyping-platform for hardware-software codesign.
Rapid System Prototyping, 2000. In: RSP 2000 Proceedings. 11th International
Workshop, 21-23 June, 2000, pp. 78-82 (2000)

3. Edwards, M., Fozard, B.: Rapid prototyping of mixed hardware and software sys-
tems. In: Digital System Design, 2002, Proceedings. Euromicro Symposium, 4-6
September, 2002, pp. 118-125 (2002)

4. Pradeep, R., Vinay, S., Burman, S., Kamakoti, V.: FPGA based agile algorithm-on-
demand coprocessor, Design, Automation and Test in Europe 2005 (March 2005)

5. Plessl, C., Platzner, M.: TKDM - a reconfigurable co-processor in a PC’s memory
slot. In: Field-Programmable Technology (FPT) Proceedings. 2003 IEEE Interna-
tional Conference, 15-17 December, 2003, pp. 252-259. IEEE Computer Society
Press, Los Alamitos (2003)

6. Sukhsawas, S., Benkrid, K., Crookes, D.: A reconfigurable high level FPGA-based
coprocessor. In: Computer Architectures for Machine Perception, 2003 IEEE In-
ternational Workshop, 12-16 May 2003, p. 4 (2003)

7. Schumacher, P., Mattavelli, M., Chirila-Rus, A., Turney, R.: A Virtual Socket
Framework for Rapid Emulation of Video and Multimedia Designs. In: Multimedia
and Expo, 2005 (ICME 2005) IEEE International Conference, 6-8 July, 2005, pp.
872-875 (2005)

8. Vuletic, M., Pozzi, L., Ienne, P.: Virtual memory window for application-specific
reconfigurable coprocessors. In: Proceedings of the 41st Design Automation Con-
ference, June 2004, San Diego, Calif (2004)

9. Amer, I., Rahman, C.A., Mohamed, T., Sayed, M., Badawy, W.: A hardware-
accelerated framework with IP-blocks for application in MPEG-4. In: System-on-
Chip for Real-Time Applications, Proceedings. Fifth International Workshop, 20-24
July, 2005, pp. 211-214 (2005)

10. Mohamed, T.S., Badawy, W.: Integrated hardware-software platform for image pro-
cessing applications, In: System-on-Chip for Real-Time Applications, Proceedings.
4th TEEE International Workshop, IEEE Computer Society Press, Los Alamitos
(2004)

	A Platform for Mixed HW/SW Algorithm Specifications for the Exploration of SW and HW Partitioning
	Introduction
	State of the Art of Platforms Supporting Mixed HW/SW Implementations
	Description of the Virtual Socket Platform
	Details on HW Implementation and SW Support
	The Heart of Simplicity: HDL Modules Virtual Memory Accesses
	The Software Support: The Virtual Memory Window Library
	The Integration of the HDL Modules in the Platform

	Profiling Tools: Testing and Optimizing Data Transfers
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

