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Abstract

The role of the visual attention system is to di-
rect computational and behavioral resources to-
ward salient stimuli and to organize behavior
around them. This paper presents a biologically
inspired model of visual attention mechanisms,
based on the integration of multiple bottom-up
and top-down constraints. The model has been
successfully applied to learning of a complex ob-
ject manipulation task with a pair of imitator-
demonstrator simulated robots.

1 Introduction

Social robotics emphasize the key role of human-robot
interaction in building intelligent systems capable to un-
derstand and predict human behavior (Billard and Daut-
enhahn, 2000; Breazeal, 2002). Social abilities, such as
imitation, turn taking, joint attention and intended body
communication, are fundamental for the development of
language and human cognition. In recent years many
robotic frameworks have been equipped with imitative
skills (Schaal, 1999; Breazeal and Scasselatti, 2000; Koz-
ima and Yano, 2001; Billard, 2002; Demiris and Hayes,
2002). The reason for interest in imitation is obvi-
ous: imitative robots offer rapid learning compared to
traditional robots requiring laborious pre-programming.
Learning by imitation requires the capacity to recog-
nize goals, understand how individual actions are em-
bedded in a hierarchy of sub-goals, and extract and re-
compose recursive structures (Byrne and Russon, 1998).
In order to assist the imitator in recognizing the goal
of the demonstration and in structuring the imitation
behaviour, the teacher can use instruction. In learning
by instruction the agent is given information about the
environment, domain knowledge, or about how to ac-
complish a particular task on-line.

There is recent interest in robotics, towards collabo-
rative learning based on joint intention, imitation and

progressive tutoring of the learner. Breazeal and col-
leagues (2004) explore multiple forms of socially guided
learning, in order to enable robots to quickly learn new
skills from human natural instruction and to perform
goal-directed tasks in partnership with a human. In
similar work, Nicolescu and Mataric (2003) investigate
a tutelage-inspired paradigm where a robot learns a se-
quentially structured task from human demonstration.
The human uses short verbal commands to frame the
interaction into instruction or demonstration episodes,
and provides feedback to correct the robots task model.

We follow this trend by investigating the development
in cognitive agents of social abilities using imitation and
progressive tutoring. The research described here is part
of a long-run project, which explores the means by which
a caregiver educates the attention of a learner (human
or robot) (Goga and Billard, 2006). Learning by im-
itation and progressive tutoring can be seen as build-
ing blocks of a general bootstrapping mechanism, which
uses all available means to focus attention, extract a bit
of knowledge, and use this knowledge to perform little
more analysis on future inputs. The system starts with
a set of pre-programmed behaviors (i.e., gaze following,
skin color preference, visuomotor coordination, grasping
abilities) and develops in an incremental manner goal-
directed behavior and language. The more knowledge
the agent acquires through verbal and sensorimotor imi-
tation, the more it can understand instruction and focus
its attention. The more it understands, the more it can
learn and develop better imitation and cognitive strate-
gies. In this paper, we focus on the description of the
attention module, which supports the integration of tu-
toring and imitation in simulated agents.

2 A general attention framework for in-
teractive learning

An attention framework for collaborative learning should
allow the selection of interesting features, the creation



of a shared context between the teacher and the learner,
the recognition and categorization of action, and should
support the proactive behavior of the system during the
imitation phase.

2.1 Joint attention

To benefit from communication and social learning, it
is important that both robot and human find the same
sorts of perceptual features interesting. Joint attention
with a caregiver is one of the abilities that help the infant
to direct attention to perceptual structure that makes
prominent the relations among objects and caregivers
actions, and thus to detect the intention of the care-
giver(Tomasello, 1988). In robotics, the investigation of
joint attention mechanisms received increased attention
during the last decade, due to its crucial role in the de-
velopment and performance of imitative behaviors. Sev-
eral researchers attempted to build mechanisms of joint
attention inside the robots (Scassellati, 1998; Kozima
and Yano, 2001; Breazeal and Scassellati, 2000; Nagai et
al., 2003). Robotic systems, such as those of Scasellati
(1998) and Demiris and Hayes (2002) are able to track
the gaze of a human instructor and to imitate the motion
of the instructors head.

The ability of joint attention develops gradually. Re-
searchers in cognitive sciences and robotics agree that
the main steps in producing the mechanisms of joint at-
tention are: a) recognition and maintenance of eye con-
tact; b) engagement in joint attention through gaze fol-
lowing; c) imperative pointing used to obtain an object
that is out of reach by pointing at that object; and d)
declarative pointing used to draw attention to a distal ob-
ject (Scasselatti, 1998). Nagai et al. (2003) illustrated
how based solely on visual attention mechanisms and
learning with self-evaluation, a robot can acquire sen-
sorimotor coordination through a staged developmental
process similar to the developmental path that human
infants undergo.

We take into account the results of previous work in
the modeling of joint attention behavior and we focus on
the investigation of the role that joint attention mecha-
nisms may play in the extraction and reproduction of the
imitation goals. Recently Kaplan and Hafner (2006) em-
phasized the importance of moving towards the higher-
order, cognitive aspects of joint attention behavior. Joint
attention is more than gaze following or simultaneous
looking attention, and it can be better defined as ’a co-
ordinated and collaborative coupling between intentional
agents where the goal of each agent is to attend to the
same aspect of the environment’. For an agent to learn
from social interaction, it must be able to detect and to
manipulate the focus of attention of other agents, and to
engage in coordinated interaction.

We use simulated robots acting in a controlled environ-
ment, and we implement the prerequisites for joint atten-

tion behavior. The demonstrator can be programmed to
execute different types of tasks (translation movements,
push or hit objects, seriate a number of cups, describe
objects verbally; see also Billard et al., 2003). The imi-
tator is able to follow the gaze of the demonstrator and
to detect the movements of the hands. Detection of
the hands provides valuable information on the course
of the action currently taken by the demonstrator (i.e.,
whether the hand approaches an object to grasp it, it
manipulates the object, or it approaches a target while
grasping the object). Sharing the visual context with
the demonstrator helps the imitator to infer the goal of
the action. A general constraints satisfaction framework
is implemented to account for different attention behav-
iors: select objects from environment and keep the focus,
follow the caregiver’s gaze and detect the movements of
the end-effectors, perform shifts of attention between dif-
ferent locations of interest.

2.2 Attention for recognition and learning

During demonstration the learner must recognize the
movements performed by the demonstrator, infer the
goal of its behavior and learn an internal model for
further reproduction. The attention system cannot be
investigated separately from processes such as object
recognition and categorization. One of the classical mod-
els dealing with attention for categorization is the Adap-
tive and Resonance Network ART (Carpenter and Gross-
berg, 1998). A central feature of all ART systems is a
pattern matching process that compares an external in-
put with the internal memory of an active code. ART
matching leads either to a resonant state, which persists
long enough to permit learning, or to a parallel memory
search. If the search ends at an established code, the
memory representation may either remain the same or
incorporate new information from matched portions of
the current input. If the search ends at a new code, the
memory representation learns the current input.

More recently, Marsland et al. (2005) developed a
Growing-When-Required GWR neural network, to deal
with novelty detection for on-line learning in mobile
robots. A neural network inspects each new input and
evaluates it for novelty with respect to data already per-
ceived. For each node a measure of habituation is main-
tained, which gives an indication of the familiarity with
that stimuli. When fully habituated, nodes ignore fur-
ther stimulation and do not get updated. When the
orienting response is reinstated either due to novelty de-
tection, when a new node is created, or due to forget-
ting, when a node is dishabituated, the information goes
through the focus of attention, to higher level process-
ing, such as learning. Maistros and colleagues (2001) in-
tegrated the GWR network with a schema network that
handles the perception-action coupling for an imitation
task. The attention system is used to cluster the prin-



cipal components of the demonstrated behavior and to
activate the corresponding nodes in the network for the
recall.

In Goga and Billard (2006) a layered neural archi-
tecture is implemented for categorization and sequence
learning. The sensorial external maps operate on a short
time scale, in the sense that they respond spontaneously
to external inputs. At this level of visual awareness, the
systems capacity to store associations is limited to the
duration of the short-term memory. A saliency signal
received by an object which is in the focus of attention
enhances the object’s neural representation and enables
the creation of a new node, in a categorical, higher-level
processing layer. A wigilance parameter inspired by the
adaptive resonance theory is used to weight how close
an input must be to the prototype for matching to oc-
cur, and when a new representation node should be cre-
ated. The categorical layer operates on a larger time
scale, allowing the system to extract and store temporal
sequences with various time lags. During the demon-
stration, statistical regularities about objects located in
the focus of attention are extracted in different sets of
weights.

2.8 Attention for goal-directed imitation

During imitation, the learner composes the actions ex-
tracted in the internal model in order to reproduce a
part or the entire sequence demonstrated by the teacher.
Human infants and adults do not copy exactly the move-
ments of the demonstrated act. Deciding what to imitate
may represent a problem of determining the saliency of
objects (Breazeal and Scassellati, 2000), extracting the
invariants of the demonstrated acts (Billard et al., 2003)
or parsing the structure of the goal hierarchy (Byrne and
Russon, 1998).

For instance, when presented with a complex sequence
of nesting actions, children aged between 11 and 36
months exhibit different imitation strategies, correlated
to their developmental age (Greenfield et al., 1972). Dur-
ing the first stage (12-14 months), infants typically place
a single cup in/on a second cup and use a proximity cri-
terion (i.e., same side of the table with the moving hand)
for pairing cups. In a second stage (16-24 months) two
or more cups are placed in/on another cup and the con-
tiguity criterion is followed (i.e., never reaching behind
a nearer cup to use a more distant cup). In the third
developmental stage, 28-36-months olds spontaneously
imitate using the most advanced nesting strategy, by us-
ing a size criterion.

We simulated the imitation of the seriated cups task
with a pair of humanoid robots. The demonstrator se-
riates a set of 5 cups, by using a sub-assembly strategy
(i-e., a previously constructed structure consisting of two
or more cups is moved as a unit in another cup or cup
structure). The imitator follows the demonstration and

its task is to reproduce the sequence of actions. Dur-
ing the imitation phase, the attention system parses the
objects in the environment and computes their feature-
based saliency (i.e., color contrast or motion contrast).
Objects which enter the focus of attention can activate
the corresponding nodes in the categorical layer, and
eventually one of the goals of the system is activated
through bottom-up stimulation. The goal sets the type
of the action (i.e., grasp or move), which is further exe-
cuted by the system through a process of successive op-
erations aimed at minimizing the distance between the
current state of the world and the desired state corre-
sponding to the goal. As a result of probabilistic sat-
isfaction of multiple constraints, the imitator is able to
reproduce a variety of imitative behaviors, in a similar
manner with the human infant.

3 The visual attention model

Our approach to computational modeling of visual at-
tention draws inspiration from different sources. Inves-
tigations in the visual system processes suggest that the
control inputs to the attention mechanism can be divided
into two categories: stimulus-driven (or bottom-up) and
goal-directed (or top down) (Itti and Koch, 2001).

3.1 Bottom-up attention

Bottom-up attention is computed in a pre-attentive man-
ner across the entire visual image. The bases of bottom-
up computational models are the experimental results
obtained using the Feature Integration theory of Treis-
man and colleagues (Treisman and Gelade, 1980). The
first neurally plausible computational architecture for
controlling visual attention was proposed by Koch and
Ullman (1985), whose model was centered around a
saliency map concept. The map calculates saliency,
that is, stimulus conspicuity, at every location in the
visual scene, based on low-level features of the object. A
winner-take-all approach is then used to decide on the
most salient part of the scene (Koch and Ullman, 1985;
Khadhouri and Demiris, 2005).

We implemented a two-component framework consist-
ing of a saliency map that controls the deployment of at-
tention on the basis of bottom-up saliency and top-down
cues. The focus of attention is deployed to the most
salient location in the scene, which is detected using a
winner-take-all strategy (See Figure 1). Once the most
salient location is focused, the system uses a mechanism
of inhibition of return to inhibit the attended location
and to allow the network to shift to the next most salient
object (Itti and Koch, 2001). Computationally, inhibi-
tion of return implements a short-term memory of the
previously visited locations and allows the attentional
selection mechanism to focus instead on new locations.
An alternative mechanism which prevents attention from
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Figure 1: Model of visual attention based on the integration of bottom-up saliency and top-down constraints. Low-level

features (color and motion) are extracted from the visual image for each object and its context. Feature contrast is combined

in a two-dimensional saliency map for all the objects in the environment and for the end-effectors.

Top-down cues and

inhibition of return modulate the activity of the saliency map. Attention is deployed to the most salient location, selected

through a winner-take-all mechanism.

permanently focusing on the most active location is that
of habituation implemented by Marsland et al. (2005)
and Maistros et al. (2001).

Some of the most common pre-attentive features sug-
gested by researchers in their theories are color, orien-
tation, luminance, depth and motion. What seems to
matter in driving the bottom-up attention is the contrast
of the features with respect to the contextual surround,
rather then the absolute values of the features (Noth-
durft, 2000). In our model, saliency is computed based
on the linear integration of contrast of color and motion.

Each contrast unit V;° receives input from two pairs
of external units V;°, that encode color components
(R,G,B) or the projections on (X,Y,Z) axes of the ob-
ject’s speed of motion. Color contrast is computed using
the value of the sensor n;; at the object location ! and
N = 6 values corresponding to 6 contact points with the
surrounding context. Motion contrast is computed us-
ing one reading of the speed value for the object and N
context readings n;;.,...... corresponding to the speeds
of all objects in the visual image. The output of an ex-
ternal unit V7 corresponding to the component j read
at location [ is given by:

|

if location 1 is visible at t,
otherwise,

VP =4

J

(1)

N

VjE (t) lcontewt) = % Z nk,lwmen . (2)
k=1

The output of a contrast unit V,® is given by the eu-

clidean distance between the components of the feature

corresponding to the object location [ and to the context

surrounding the object:

3

VE®D = F(\| S OFED =V (b leonteat))?)  (3)

=1

where F is the sigmoid output function F(z) = 1/(1 +
e~ %) used for all units.

The output of a saliency unit V’* is given by the
weighted summation of the saliency features j € C' and
the contribution of the top-down cues k € T

3 1
Va1 = F( D wf Ve D+Y wi- ViD=V D)
j=1 k=1

(4)

The output of a top-down unit is V;'(¢,]) = 1 if the
location [ is referred by the top-down cue k and O oth-
erwise. The weights w® stand for the gains of object’s
color, speed of object’s motion and skin color. The top-
down w™ weight stands for gaze following. The weights



are independent of ¢ (object identity) and result from
the satisfaction of the attention constraints (see Section
3.2).

Neurons in the saliency map compete according to a
winners-take-all strategy and the winning unit ¢ sets the
activity of its output unit to 1:

snop [ 1, i VIR > VLD,V £
vt = { 0, otherwise.

(5)

The activity of the inhibitory unit is a function of the
input received from the salient unit V;** if it corresponds
to the winner location, otherwise its activity is a decayed
memory of its previous activation:

(eXp(f(V A b) VD,
if Vs2-©(t,1) =
i - VIt — 1 0, otherw1se,

Vil(ta l) =

(6)
where 7; is the time decay rate of inhibitory unit i. Pa-
rameters a and b are set so that inhibition increases from
0 to a maximum value equal to V;**, when it shunts down
the salient unit. The larger the value of the saliency
winner unit, the longer it will stay active, but also the
higher will be its inhibition. After shutting down the
salient unit, the inhibitory unit preserves a memory of
its activation, which decays in time and allows the unit
to win again further in future.

3.2 Integration with top-down constraints

Top-down attention is deliberate and more powerful in
directing the attention. Wolfe (Wolfe and Gancarz,
1996) constructed a flexible model of human visual
search behavior that uses a top-down mechanism to con-
trol bottom-up features, which are relevant to the cur-
rent task. Visual stimuli are filtered by broadly-tuned
channels (such as color and orientation) to produce fea-
ture maps with activation based upon both bottom-up
and top-down demands. The feature maps are combined
by a weighted sum to produce an activation map.

Using a similar concept, Breazeal (2002) has aug-
mented a vision system (described in Scassellati, 1998)
with facial features for emotive expression. The im-
plementation focuses on three pre-attentive processes:
color, motion, and face pop-outs represented in bottom-
up feature maps, which are further combined with a
habituation function to produce an attention activation
map. Top-down influences from motivational and be-
havioral sources, combine with bottom-up habituation
effects to bias the robot’s gaze preference. For instance,
when the top-down social drive is activated by face stim-
uli, the face gain is influenced by the seek people and
avoid people behaviors. This result in a system that di-
rects eye gaze based on current task demands.

In our model, during the demonstration phase the top-
down constraints support the formation of a shared at-

tention context between the teacher and the learner. The
focus of attention is deployed as a function of the satis-
faction of the bottom-up and top-down constraints and
of the functioning of the inhibition mechanisms. In the
lack of top-down cues, attention is deployed as a result of
satisfaction of bottom-up saliency constraints (i.e., pref-
erence for moving objects and for the skin color). The
model can be easily extended to integrate other types of
constraints.

e Skin color preference. For any static scene, the
bottom-up saliency of the hand is higher than that
of any object.

e Preference for moving stimuli. For any moving
object, its bottom-up saliency is higher than that of
any static object, including the hands.

e Motion versus skin color preference. Saliency
of a moving object is smaller than the saliency of a
hand moving at comparable speed.

e Gaze following versus moving objects. The
global saliency of any static object located in the fo-
cus of attention is higher than the bottom-up saliency
of any moving object located outside the focus.

e Gaze following versus moving hand. The
bottom-up saliency of a moving end-effector is higher
than the saliency of a static object located in the fo-
cus of attention.

Based on these constraints, we compute the weights
w® for object’s color, speed of object’s motion and skin
color, and the weight w™ for gaze following.

4 The simulation environment

An environmental setup for the joint attention model
was implemented using Xanim dynamic simulator
(Schaal, 2001), to model a pair of 30 degrees of freedom
(Head 3, Arms 7 *2, Trunk 3, Legs 3*2, Eyes 4 D.O.F.)
humanoid robots. The simulated robot is controlled from
Cartesian states through inverse dynamics and inverse
kinematics servos. The external force applied to each
joint is gravity. There is no collision avoidance module.
The environment is controlled, in other words, only a
predefined set of objects and end-effectors are visually
recognized and manipulated. A motor servo is used to
read the current state of the robot/simulation (i.e., posi-
tion, color, orientation and rotation angles, and motion
speed) and to send commands to the robot/simulation.

5 Attentional behavior

The attention system was tested during the simulation
of the seriation cups task with the pair of demonstrator-
imitator agents. The deployment of the focus of atten-
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Figure 2: Shifts of focus of attention for the pair of demonstrator-imitator simulated robots, illustrating the functioning of the

multiple constraints framework. A state space grid is used to display the duration values for each event in the appropriate
location cell. The connectivity arrows show the flow of real time. a) The attention of the demonstrator is focused on the cup
that it intends to grasp (in the center of the grid). The imitator’s focus of attention shifts between the acting cup and the
acting hand of the demonstrator. b) While approaching the acting cup, the attention of the demonstrator shifts between the
acting hand and the position of the cup, and the imitator closely follows it.

tion of the demonstrator is a good predictor of its inten-
tions. During the seriation of two objects, the teacher
gazes successively, the acting hand, the acting cup, the
hand manipulating the cup and the target cup. By fol-
lowing the demonstrators gaze, the imitator learns how
to segment the sequence of behaviors, which are the pre-
decessors of each action, and how to recompose the se-
quence of movements during imitation.

If the demonstrators gaze signal is not available, atten-
tion is deployed as a result of the satisfaction of saliency
constraints. For any static scene, the saliency of an end-
effector is higher than that of any colored object, and
the focus of attention of the imitator shifts between the
locations of the demonstrator’s hands. In other words,
in the absence of top-down cues from the demonstrator
(i-e., gaze or speech), its hand actions carry the most
valuable information, which are available to the imitator
to infer its intentions.

When the demonstrators gaze signal is available, the
weights are adapted in such a way, that gaze following
is preferred to looking at any static object. This be-
havior is illustrated in Figure 2a. The imitator learns
about the affordances of an object (i.e., an object can
be grasped by an empty hand) as well as the effectivi-
ties of its hand (i.e., how to grasp it). When the hand
approaches the object, the preference for moving objects
equals the effects of gaze following and the imitator’s
focus of attention shifts between the moving hand and
the location of the acting cup (Figure 2b). By paying
attention to the hand’s movements, the imitator learns
how to shape the hand (i.e., rotate the end-effector and
lift the object from bellow) in order to grasp the object.

We were interested in comparing the effects of mod-
ulating the weights of the constraints on the imitative
behavior of the learner. In Figure 3 is depicted the tim-

ing between the demonstrator’s attention behavior and
the imitator’s shift of focus. When the gaze signal is
not available (left side of Figure 3), the attention of the
imitator can shift between the hands and one or several
colored objects in the environment. By increasing the
gain of the color constraint and the inhibition of return,
all the objects posted on the table can be gazed alter-
natively. During imitation, this is a desired attentional
behavior, which allows the robot to parse all objects be-
fore activating its internal goal and choosing the acting
and target cups.

When the gaze signal is available, the imitators focus
of attentions closely follows the gaze of the demonstra-
tor (central and right side in Figure 3a). The atten-
tion mechanism helps the learner to extract the sequen-
tial structure existent in the demonstrated actions (i.e.,
grasp the acting cup and move it to the location of the
target cup). The amount of time spent in gazing each
object or segment of behavior determines the strength
of the precedence links created. An empty hand and a
colored object activate the motor schema for grasping
the object, which in turn activates a translation motion
of the hand holding the cup, towards the location of the
target cup. If the weights of all constraints in the system
are decreased, the imitator focuses equally on all objects,
without being able to select the relevant stimuli. This
behavior is illustrated in Figure 3b.

6 Discussion and future work

The current model can be enhanced by addressing the
instability of the attentional focus. This occurs due to
the operation on a low-time scale of the mechanism of
inhibition of return. One possibility is to implement
a mechanism that learns to predict which will be the
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Figure 3: Overall times spent in gazing different stimuli from the environment by the demonstrator-imitator pair of simulated
robots. a) The imitator closely follows the focus of attention of the demonstrator, when this is available. Time percents
are indicated for different phases of the demonstration. b) All gains in the system are decreased, and the imitator focus of

attention shifts from one object to another.

shared focus of attention in the next moments and thus,
to maintain the joint focus of attention over larger time
periods. Another improvement would consist in allowing
the imitator to continuously adapt the weights of the at-
tention constraints. In different phases of the task, the
imitator can learn to weight differently the top-down and
the bottom-up constraints, as a function of the adaptive
value carried out by the demonstrator’s actions.

In future work the attention system presented here
will be developed to support progressive tutoring of the
learner. Caregivers assist their infants to perceive re-
ferring actions by providing them timely feedback and
guidance. Besides pointing, researchers in developmen-
tal psychology described the usage of different gestures
that direct the childs attention, narrow the search space
and enhance the speed of achieving a common under-
standing. According to Zukow-Goldring (2003), five ges-
tures that direct attention often accompany caregivers’
verbal messages: embody, show, demonstrate, point, and
look. Longitudinal data suggest that caregivers of less
advanced infants (not necessarily younger infants) use
embody and show most frequently, shifting to demonstra-
tions, points, and eventually looks as the infant devel-
ops (Zukow-Goldring, 1997). There is large, unexploited
learning potential in the usage by humans of the embody
gesture to teach the robot the dynamics of a movement.

We are currently investigating the strategies used by
human caregivers to scaffold the experience of their in-

fants during the execution of a complex task in collabo-
ration. In order to implement these processes in robots,
the demonstrator robot should be able to continuously
tune its verbal, motor and attention behavior to the re-
actions of the learner. On the other hand, if we are to
build an infant robot capable to work in collaboration
with a human, we have to enable it to provide feedback.
We intend to develop a strategic attention behavior for
the demonstrator, which will allow it to follow and to
achieve its goals, as well as to detect and to respond in a
timely fashion to the feedback provided by the learner.
The learner will help the instructor by expressing its in-
ternal state via communicative acts (i.e., speech, hand’s
gestures). The ecology, and in the same time the novelty
of our approach results from the investigation of these
issues based on real data transcripts, which characterize
the sensorimotor and linguistic patterns of interaction
between human caregivers and infants aged between 1
and 3 years (Goga and Billard, 2006).
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