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Abstract. This paper investigates the neural mechanisms of visuo-motor
imitation in humans through convergent evidence from neuroscience. In
particular, we consider a deficit in imitation following callosal brain le-
sion, based on the rational that looking at how imitation is impaired can
unveil its underlying neural principles. We ground the functional archi-
tecture and information flow of our model in brain imaging studies and
use findings from monkey brain neurophysiological studies to drive the
choice of implementation of our processing modules. Our neural model
of visuo-motor imitation is based on self-organizing maps with associ-
ated activities. Patterns of impairment of the model, realized by adding
uncertainty in the transfer of information between the networks, account
for the scores found in a clinical examination of imitation [1]. The model
also allows several interesting predictions.

1 Introduction

Apraxia is generally defined as the inability to perform voluntary movements
that cannot be explained by elementary motor, sensory or cognitive deficits (not
caused by weakness, ataxia, akinesia, deafferentation, inattention to commands
or poor comprehension). A standard test for clinical examinations of apraxia
is imitation of meaningless gestures which is believed to test the integrity of a
direct route from visual perception to motor control, not mediated by semantic
representations or verbal concepts [2]. Goldenberg has shown that knowledge
about body parts is also relevant, as apraxic patients were unable to map body
configurations to their own body nor to a mannikin [3]. Kinematic studies of
apraxia show spatial parapraxias (i.e., normal kinematic profiles with abnormal
final positions) that seem to arise from a basic deficit that concerns the mental
representation of the target position [4].

Goldenberg’s study. A seminal study of imitation of meaningless gestures ex-
amines a patient with callosal brain lesion (disconnected hemispheres) [1]. The
patient was asked to imitate a set of visual stimuli that present different positions
of the hand relative to the head (see Fig. 1). To disentangle the contribution of
each hemisphere the patient was tested tachistoscopically (i. e., the stimulus was



presented either to the left or right visual field) in a left- or right-hand imita-
tion condition. As shown on the figure (upper right) the pattern of errors varies
as a function of the visual field to which the stimuli were displayed and the
hand used to execute the imitative movement. The schema in Figure 1 shows
the hypothesized non-uniform information flow across the two hemispheres in
the different conditions, related to regions in the brain based on brain imaging
and lesion studies [5–7]. The stimulus is visually processed in the hemisphere
contralateral to the visual field (due to optic chiasm) and the motor command
is prepared in the hemisphere contralateral to the hand. The arrows show the
necessary transfer of information between the two hemispheres, thus a possible
source of spatial errors in the imitation (as the patient suffers from disconnected
hemispheres). Imitation was perfect only in the right visual field - right hand
condition, indicating a lateralization of the processing to the left hemisphere and
a necessary computational process in the brain area shown in dark grey.
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Fig. 1. Upper left Goldenberg’s experiment of imitation of meaningless gestures, an
example of a visual stimulus to imitate and the errors made by the patient. Upper
right the patient’s score of success in the four conditions (several trials, in white control
data), taken from [1]. In the lower part, schema of information flow through the left
and right hemispheres of the brain in the four conditions, see the text for explanation.

2 Neurocomputational Model of Imitation

In this paper, we investigate impaired imitation of meaningless gestures, namely
hand postures relative to the head as the one shown in Figure 1. This work
follows from a general effort in our group to decipher the neural mechanisms of



visuo-motor imitation [8, 9]. In order to model the behavioral data reported in
Goldenberg’s study, we developed a neural network architecture that accounts
for the transformations required to translate the observation of the visual stim-
ulus to imitate to the corresponding tactile and proprioceptive information that
will guide the imitative gesture. We simulate a callosal lesion by impairing the
transfer of information between the networks and observe the occurrence of spa-
tial parapraxias. Next, we describe the model.

2.1 Description of the model

The model is composed of three neural networks, see Fig. 2: a face visual network
in Brodmann Area BA 19/37 at the level of the occipito-temporal junction, a
face somatic network in area BA 40 in the parietal cortex and a hand position
network probably in dorsal premotor area BA 6. As it is the case in imitation
of meaningless gestures we have implemented a visuo-motor route mediated by
somatic knowledge of body parts. The face visual network receives geometrical
properties of the visual stimulus to imitate (such as the position and angle of
the hand relative to the nose, see Fig. 2. The face somatic network receives input
from the face visual network and somatic input from tactile sensors of the face.
The hand position network receives visuo-somatic input from the face somatic
network and proprioceptive input from the arm. The neurons in our model are
leaky integrator neurons in order to account for variations of the membrane
potential in time and to have integrating properties.

Face visual network The face visual network encodes geometrical properties of
the stimulus to imitate. The network receives the two-dimensional input xH

composed of the distance dH ∈ IR[0, 9] and angle φH ∈ IR[0, 2π] of the hand
relative the nose (shown on Fig. 2). We decided to use these two properties as
they univocally define the stimulus to imitate and are quantities easy to process
visually. It is certain that the brain uses also other quantities when imitating
a hand posture relative to the head (position relative to the eye may be more
appropriate in some cases), however we decided to limit the number of visual
properties for simplicity. It was important that the visual and somatic networks
rely on completely different representations.

The membrane potential mi of the visual neuron i is governed by a first order
differential equation modulated by a gaussian input:
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where τV is a time constant, wH
i are the synaptic weights that connect the

neuron i to the input xH = {dH , φH} and σV corresponds to the "sensitivity" of
the neuron to the input (a neuron with a large σV responds to a larger interval
of inputs values).

The firing rate is a sigmoid function of the membrane potential with slope a
and offset b:
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Fig. 2. Schema of the neurocomputational model. The model is composed of three
neural networks that receive visual, tactile and proprioceptive input: a face visual
network that corresponds to Brodmann Area BA 19/37 at the level of the occipito-
temporal junction, a face somatic network that corresponds to area BA 40 in the
parietal cortex and a hand position network in dorsal premotor area BA 6.
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Face somatic Network The face somatic network is a somatotopically organized
network principally processing tactile information from the face. It receives input
xT ∈ IRNT

[0, 1] from NT = 1500 tactile sensors non-uniformly distributed on the
face (with a preponderant number of sensors around the eyes, nose and mouth).
It also receives visual input from the face visual network described previously.
The membrane potential mS

j of a somatic neuron with index j is equal to:
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where τS is a time constant, wT
ik is the synaptic weight of the neuron to the

tactile sensor with index k and wV
ij is the synaptic weight to the visual neuron



with index i, NT and NV are the numbers of tactile sensors and visual neurons
respectively, rT

k ∈ IR3 is the position of the tactile sensor k in space, xP ∈ IR3 is
the center position of the hand-face contact and σT is the width of the contact.
Note that the face somatic network integrates inputs of different types, namely
somatic input from the tactile sensors and visual input preprocessed by the face
visual network.

Three layers of the hand position network encode proprioceptive information
from the arm. Each layer encodes a different coordinate of the position of contact
xP ∈ IR3 of the hand and the face, expressed in head-centered cartesian coor-
dinates. Our motivations were the following: there is no "real" proprioceptive
information from the face and we hypothesized that this information could be
learned from correlations between the face tactile sensory activity and arm pro-
prioceptive activity during reaching movements toward the face. A "positional
code" may well be used in the brain where different coordinates are processed in
segregated neural substrates, possibly in Cartesian coordinates [10]. The frame
of reference is centered in the head to maximize the invariance of the positions
of the tactile sensors (which would not be the case in a body-centered frame of
reference because of the rotation of the head).

The neurons in the hand position network each have a preferred coordinate
value ck, preferred values were uniformly distributed in a volume that contains
the head IR3[-8,8]. The membrane potential mP

k integrates over the propriocep-
tive input xP and the visuo-somatic input g(mS

j ) from the face somatic network
(the vectorial notation expresses the three layers of the hand position network):
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where wS
kj are the weights between a somatic neuron j and a position neuron

k, σP is the width of the receptive field of the position neuron and NS is the
number of neurons in the face somatic network. The activation function is the
same as in equation 2. The output of the hand position network is decoded
using a weighted average of NP (number of position neurons) firing rates which
corresponds to the position p on the face:

p =
∑NP

k=1 ckg(mP
k )

∑NP

k=1 g(mP
k )

(5)

The decoded activity of the hand position network is used as a target for the
imitation of a visual stimulus.

2.2 Training the weights

The synaptic weights between the networks and their sensory inputs (i. e.,
weights WH between the face visual network and the extracted visual para-
meters and weights WT between the face somatic network and the face tactile



input) have been trained with Kohonen’s algorithm [11]. Thus our networks are
self-organizing maps (SOM) whose weights preserve the topology of the input.
The unsupervised learning algorithm consists of randomly choosing a sensory
input x and determining the "winning neuron" with index j∗ whose weights
are closest to the input. It then updates the synaptic weights of the "winning"
neuron and neurons in its neighborhood by the following rule:

∆wi(j∗) = ε · e−
|i−j∗|2

2σ2
K [x−wi] (6)

where ε is the learning rate, wi are the synaptic weights of the neuron with
index i and σK corresponds to the size of the neighborhood1. In the end stimuli
close in the input space are also close in the 2D neural space and more frequent
inputs yield larger neural activities.

The synaptic weights between the networks (i. e., weights WV between the
visual and the face somatic network and weights WS between the face somatic
and hand position network) were trained with a presynaptic gating anti-hebbian
learning rule:

∆wi,j = η · xj [2
∑

wi,kxk −mi] (7)

where wi,j is the synaptic weight between a presynaptic neuron xj and a
postsynaptic neuron with membrane potential mi and η is the learning rate. The
learning process associates correlated activities of two networks. The connecting
weights learn a mapping between the neural activity of one input and one output
network for a given stimulus. In other words the weights organize in order to
have the sensory activity in the input network represent the sensory activity in
the output network. Both WV and WS were trained during the same process
of self-observation, which simulates sensory input during reaching movements
toward the face in front of a mirror. For example, the activity in the face visual
network is associated to the somatic activity due to touching the face and is
associated with a position in space through proprioceptive information from the
arm. In the end presentation of the visual stimulus to imitate alone yields the
corresponding neural activities in the face somatic and position networks thus
guiding a correct imitative action. The values used for the parameters of the
model were selected by trial and error and are shown in Table 12.

2.3 Simulation of the lesion

For simulating the lesion of the corpus callosum (i. e., impaired transfer of in-
formation across the two hemispheres) we have taken into account two obser-
1 The weights were initialized with random values between 0 and 1 and the parameters

ε and σK were decreased at each step according to the functions in Table 1.
2 The inputs selected in the learning processes form a random uniform distribution in
the input space. For a faster convergence all the time constants were set to 1. The
Kohonen algorithm was run 100 times for the face visual network, 9000 times for the
face somatic network and the anti-hebbian learning process was iterated 5000 times.



Table 1. Parameter values

NV = 400 τV = 35ms σV = 0.6 σV K = 8 lV = 0.97 εV = 1 nV = 0.98
NS = 1225 τS = 35ms σS = 0.3 σSK = 22 lS = 0.9996 εS = 1 nS = 0.99999
NP = 3x100 τP = 35ms σP = 0.3
a = 15 b = 0.5 σ = lσ ε = nε η = −0.02

vations. First, some of the visual information must cross the callosum since the
patient succeeds to imitate some hand positions when he/she visually processes
the stimulus in one hemisphere and prepares the motor command in the other
hemisphere. Second, interestingly enough, time is a very important variable. If
the patient was given "unlimited time" he/she imitated correctly [12]. To model
the observation that some of the information crosses, we introduce a probabil-
ity of information transfer ρ . The impairing function is either applied at the
level of the connection (model 1) or at the level of the input of the neuron
(model 2). To model the improvement of the patient’s performance with time
we hypothesized an integrating factor greater than the decay factor. We added
a constant λ ∈ IR[0, 1], which slows down the membrane decay. The dynamics of
the membrane potential m of one neuron for the two models is then expressed
by:

1) τ
d

dt
m = −λm + Wf(I) 2) τ

d

dt
m = −λm + f(WI) m < f(WI) ⇒ λ = 0

(8)
where W is the weights matrix, I is the membrane input and f is the im-

pairment function such as f(x) = x with probability ρ and f(x) = 0 otherwise,
see Figure 3. Therefore even if the neuron receives bits of information from time
to time, the membrane potential is no more precisely tuned to the input but
continues to integrate. As the face somatotopic network is situated in the left
parietal cortex,we impair the connecting weights WV in condition "left visual
field" and the weights WS in condition "left hand".

3 Results

To analyze the performance of our impairment models we have trained the
weights once, then quantified the spatial parapraxias as the distance E between
the desired end-target position r and the position p computed from the hand
position network under different patterns of impairment3.

A property of the model is to always converge to the right response given
unlimited time no matter how impaired the transfer of information is, as long as

3 For a simpler analysis of the results we have impaired all the connections equally,
but our implementation allows variations of the percentage of impairment or location
and size of the lesion.
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Fig. 3. The dynamics of the membrane potential of one neuron in model 1 which
impairs the connection (on the left) and in model 2 where the impairment occurs at
the neuron’s input (on the right). Input I = 0.5 was applied during 100ms and τ was
set to 30ms.

some information does transfer (ρ > 0) and λ is small. As you can see in Figure 4
even for a probability of information transfer as small as ρ = 0.1 at the level of
a single connection, the model converges to the correct position over time given
a sufficiently small λ (0.1 in model 1 and 0.03 in model 2). The presence of λ
deteriorates the performance in the unimpaired situation (ρ = 1) in model 1 (see
Fig. 4) as the neuron membrane "overintegrates" in the first model, as shown
on Figure 3. Another drawback is that small values of λ render adaptation to
a novel stimulus slower. However a longer decay time presents the advantage of
having a "fading memory" of the stimulus, the stimulus remains represented in
the brain after the presentation time, which is compatible with the occurrence of
perseveration errors observed in experimental studies. Several predictions can be
made on the basis of these models. With severe lesions, the patient needs more
time to do a correct imitation, shown in Figure 4. It suggests that it is possible
to obtain a measure of severity of the lesion based on the time needed by the
patient to do the imitation. Small λ values would enable a correct processing
even at very high impairment rates, but would depreciate the reaction time.

We compared the results of the simulations to the scores in Goldenberg’s
study with some adaptation. As we consider only the end-target spatial errors
and not errors in the hand posture (such as orientation of the hand or finger
configuration), we took the upper bound of the score used in the study (2 points
for a correct imitation). We replicated the same experimental conditions (i. e.,
same visual stimuli, 180ms of stimulus presentation and weights impairment
coherent with the four conditions as described in the study). A set of values
could explain the scores in the Goldenberg study, as shown in Figure 5. The
second model shows slightly better results, however this was not significant.

The representation of parts of the face in the "face somatic" network is non-
uniform, some face parts such as the eyes or the mouth are overrepresented in
contrast with the cheek or the chin. This is due to the non-uniform distribution
of the tactile sensors. Therefore we observe inhomogeneities in the precision of
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Fig. 4. The error in imitation computed as the distance between the desired and sim-
ulated end-target position for different values of ρ and λ according to model 1 (on the
left) and model 2 (on the right). The observation that the patient required 180ms of
visual stimulus presentation time to be able to imitate motivated the choice for the pa-
rameters of the activation function and of τ (τ = 35). The starting position is the same
throughout the trials and corresponds to the origin of the head-centered coordinate
axis. We observe that more severe lesions necessitate longer processing time.

the imitation task and in the processing times (shown in Fig. 5). Interesting
predictions can be made from focal rather than diffuse lesions (i. e., stroke vs
degenerative lesions). If only one part of the information transfer in weights
WV connecting the visual and somatic networks is impaired, then one should
observe deficits in imitation only in some parts of the face and not in others.
Specific local impairment of the weights WS connecting the somatic and position
networks could provoke errors in only one coordinate. For example, if the brain
really uses a Cartesian representation in a head-centered frame of reference,
then the position of the hand when reaching for the final target would be shifted
only along one coordinate axis around the head. Spatial errors made by stroke
patients should be used to test the plausibility of the model. However, because of
brain reorganization, one should look at the impairment in imitation immediately
after the lesion. As our model has learning properties, the model could possibly
account for some of the effects of brain organization.

3.1 Conclusion

We presented a neural network architecture that could reproduce the deficits in
visuo-motor imitation of meaningless gestures, reported in Goldenberg’s seminal
study [1]. We modelled two types of lesions that would affect either the integra-
tive computation of the neuron or the connectivity across the neurons, leading to
different predictions. Further, the model makes hypotheses on the type of repre-
sentation used for the stimuli, for which there is as yet no neurological evidence.
Further behavioral studies will be required to validate or invalidate the model’s
hypotheses and predictions.
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Fig. 5. Left, comparison of the results of the Goldenberg’s study (light grey histograms)
to the results of the simulations using the impairment model 2 (dark grey, τ = 30ms,
ρ = 0.5, and λ = 0.3) and model 1 (black, τ = 30ms, ρ = 0.4, and λ = 0.4) respectively.
The imitation was considered correct if the error distance was lower than 2.5/1.3.
Right, inhomogeneities in the precision and processing time of imitation gestures toward
different parts of the face, dependent on how well represented they are in the face
somatic network (in our case the eye has a larger representation than the chin).
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