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Abstract

Humans’ capacity to imitate has been extensively investigated through a wide-range of behavioral and developmental studies. Yet, despite the

huge amount of phenomenological evidence gathered, we are still unable to relate this behavioral data to any specific neural substrate. In this

paper, we investigate how principles from psychology can be the result of neural computations and therefore attempt to bridge the gap between

monkey neurophysiology and human behavioral data, and hence between these two complementary disciplines.

Specifically, we address the principle of ideomotor compatibility, by which ‘observing the movements of others influences the quality of

one’s own performance’ and develop two neural models which account for a set of related behavioral studies [Brass, M., Bekkering, H.,

Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: comparing symbolic, spatial and

imitative cues. Brain and Cognition 44, 124–143]. We show that the ideomotor effect could be the result of two distinct cognitive pathways, which

can be modeled by means of biologically plausible neural architectures. Furthermore, we propose a novel behavioral experiment to confirm or

refute either of the two model pathways.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Human capacity to imitate has been extensively investigated

through a wide range of behavioral and developmental studies

(see Billard, 2002 for a review). Yet, despite the huge amount

of phenomenological evidence gathered, we are still unable to

relate this behavioral data to any specific neural substrate.

Particularly informative in the attempt to resolve this issue was

the neurological evidence for the existence of a common neural

substrate devoted to the recognition and production of

movements, the so called mirror neuron system (see Decety

& Sommerville, 2003; Iacoboni et al., 1999; Rizzolatti et al.,

2001 for recent reports on this system in monkeys and

humans). While the mirror neuron system offers an exciting

line of study, it has yet to be shown how this circuit, in

connection with other well-known neural circuits for visual

representation of motion and for motor control, may explain

the behavioral data on imitation.
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Several computational studies using different approaches

have already attempted to address the issue of the mirror

neuron system. A comprehensive review of these studies can be

found in Oztop, Kawato, and Arbib (2006). One of the most

influential approaches is based on motor control theory (Billard

& Mataric, 2001; Demiris & Hayes, 2002; Oztop et al.;

Wolpert, Doya, & Kawato, 2003), which considers the tight

link between motor execution and action observation. In this

approach, a set of predictive inverse and forward models

allows an observed movement to be compared with entries in

the observer’s motor repertoire. When a sufficiently similar

action is found, its execution is facilitated. Our work is more in

line with that of Arbib, Billard, Iacoboni and Oztop (2000),

which attempts to uncover the neural pathways at the origin of

human imitation capabilities. Our approach, however, is

strongly multidisciplinary, in that its main sources of

inspiration come from both psychological theories and

neuroscience. We investigate how the former’s principles can

be the result of neural computations and therefore attempt to

bridge the gap between monkey neurophysiology and human

behavioral data, and hence between these two complementary

disciplines.

In this paper, we address the principle of ideomotor

compatibility, by which ‘observing the movements of others

influences the quality of one’s own performance’ (Brass,
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Bekkering, & Prinz, 2001; Brass, Bekkering, Wohlschäger,

2000; Heyes, Bird, Johnson, & Haggard, 2005; Kilner,

Paulignan, & Blakemore, 2003), and develop two neural

models which account for a set of related behavioral studies

(Brass et al., 2000). We show that the ideomotor effect could be

the result of two distinct cognitive pathways, which can be

modeled by means of biologically plausible neural architec-

tures. Furthermore, we propose a novel behavioral experiment

to confirm or refute either of the two model pathways. In

Section 2, we briefly recall the experiment by Brass et al.

1.1. Brass et al. experiment

In their experiment Brass et al. (2000), used a stimulus–

response (SR) paradigm to verify two hypotheses of the

ideomotor theory. These two hypotheses are based on the neural

correlate that the human brain appears to possess highly

specialized neural circuits devoted to the recognition of move-

ments performed by others and that these circuits are likely to be

shared by the motor preparation circuits (Decety & Sommerville,

2003; Iacoboni et al., 1999). The first of the hypotheses states that

if a subject was requested to respond to the motion of a

demonstrator then he would experience a motor facilitation,

giving faster reaction times compared to if the subject was asked

to make the same movement in response to a spatial cue. The

second hypotheses states that the facilitatory effect would be

greater if the movements of the demonstrator and subject were

very similar (ideomotor compatible) than if they were of a

different type (ideomotor incompatible).

The experimental setup comprised of three independent

binary variables, leading to eight conditions plus four baseline

conditions. The experimental stimuli consisted of a combi-

nation of a finger-lifting movement (either index or middle

finger) and of a spatial cue consisting of a cross painted on the

corresponding or opposite fingernail (see Fig. 1). The subjects

reaction times (RTs) were measured while they were asked to
Fig. 1. (a) Examples of congruent and incongruent stimuli used by (Brass et al.,

2000) in their experiment; (b) reaction times observed in the original

experiment.
respond to the various stimuli by moving the finger that was the

closest to either cue (e.g. by moving their index finger for a

demonstration of the index finger or for the presentation of a

cross on the demonstrator’s index fingernail).

These instructions determined the first experimental

variable, the relevant stimulus dimension. Furthermore, an

interfere paradigm was used in order to examine the effect of

the presentation of congruent or incongruent1 stimuli against a

baseline condition in which only the relevant stimulus was

presented to the subject. Finally, the experiment was varied in

order to examine the effect of ideomotor similarity between

observed and executed movements. In one case, the subjects

were asked to lift their finger (ideomotor compatible) and in the

second they were asked to produce a finger-tapping movement

(ideomotor incompatible).

The results, shown2 in Fig. 1, were in agreement with the

hypotheses. Indeed, responses to finger movements were faster

than responses to spatial cues, and ideomotor compatible pairs

of observed/executed movements generally produced better

RTs. Moreover, typical facilitatory and interference effects

were observed between congruent and incongruent conditions,

respectively. Next, we present two neural models, which

account for these results.
2. Models

Our modeling approach starts with the well-accepted

hypothesis that the brain uses parallel pathways to process

multimodal information. This so called parallel distributed

processing (PDP) framework has been successfully applied in

explaining a variety of effects observed during stimulus–

stimulus and stimulus–response compatibility experiments

(Erlhagen & Schöner, 2002; Hasbroucq & Guiard, 1991;

Kornblum, 1994; Zhang et al., 1999). In these models, the

information passes through a layered network organization,

usually consisting of the perceptual, decisional and motor

preparatory stages of computation. Generally, multimodal

perceptual information is processed separately and simul-

taneously in a first stage and is then combined within the other

layers depending on the nature of the information. This fusion

of information within a common layer has sometimes been

referred to as the dimensional overlap (Kornblum, 1994),

which gives a measure of the degree to which sets of items are

perceptually, structurally or conceptually similar. This prin-

ciple allows perceptually similar information to be merged into

a common neural substrate and such a mechanism has proved

useful in explaining a wide range of human behaviors

(Erlhagen & Schöner, 2002; Hasbroucq & Guiard, 1991;

Kornblum, 1994; Zhang, Zhang, & Kornblum, 1999). In this
1 Congruent condition: a left (right) finger movement with a cross on the left

(right) fingernail. Incongruent condition: a left (right) finger movement with a

cross on the right (left) fingernail.
2 As the ideomotor variable was tested among two distinct groups of subjects,

we shifted the reaction times to make the baseline condition in the spatial cue

task coincide in both experiments, since this is the only case in which both

experimental conditions are identical.
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paper, we develop a similar type of neural architecture to

account for the visuo-motor flow at the basis of our simple

imitation task. We note that the classical PDP layered

architecture was adapted in order to account for the evidence

that the perception of movements of others and the motor

representation of one’s own motions share a common neural

substrate (Decety & Sommerville, 2003; Iacoboni et al., 1999;

Rizzolatti, Fogassi, & Gallese, 2001).

The two models which we propose here, mainly rely on the

same principles and so we will describe them first, then we will
Fig. 2. Schematic of the two architectures proposed to model the behavioral effect rel

that all the processed stimuli interact within the same integration layer. At the botto

pathway accounts for the selection across spatial cues, whereas the ideomotor pathw
explore the fundamental differences in the network connec-

tivity between these two models, and finally we will present

their neural implementation.

2.1. Models principles

The two proposed networks are illustrated in Fig. 2. They

can be split into three major parts: the perceptual, decisional

and motor preparatory layers, which respective tasks are to

represent visual information, to determine the right response to
ated to the ideomotor principle. At the top, the single-route architecture assumes

m, two separate pathways are involved in the computation. The cue integration

ay influences the motor selection mechanism by means of a direct connectivity.
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external stimuli, and to prepare and trigger motor execution.

Moreover, the processing of the task instructions will not be

explicitly explained here, as we assume it to be localized in

frontal cortices and to drive the network models by modulation

of neural activity.
2.1.1. Perception

In our models, perception is only considered in its final stage,

in that we assume visual information to have already been

processed by highly specialized circuits and represented in a

manner relevant for the task. We consider three types of visual

inputs in our model. First, the motion and spatial cues encode,

respectively, the location, in retinal coordinates, of the observed

moving finger and of the cross-drawn on the fingernail. As this

cues are encoded into spatial coordinates, we assume that these

representations are located in the visual ‘where stream’, in areas

such as the medial superior temporal cortex (MST) (Andersen,

Snyder, Bradley, & Xing, 1997) or the lateral intraparietal area

(LIP) (Schadlen & Newsome, 2001).3

Concerning the internal properties which this model region

should possess, we first have to determine in what manner task

instructions might act upon the perception of these two types of

stimuli. Indeed, given the instructed task-relevant stimulus, the

decisional process should be able to activate the correct

stimulus–response association. It has been suggested that such

a process is the result of a top-down modulation of cortical

activity (Itti & Koch, 2001). This principle is directly applied to

the perceptual representations of our models.

Second, it has been shown in human subjects that the

presentation of these two types of stimuli do not produce

similar results in terms of RTs, as motion cues generally

receive more attention than spatial cues (Franconeri & Simons,

2005). Therefore, in order to account for the results of Brass

et al., which also showed significantly faster reaction times for

motion cues than for spatial cues, the influence of the motion-

related stimuli was given greater importance by modeling it

with a greater amplitude.

Moreover, behavioral studies investigating visual percep-

tion have shown that in the presence of N stimuli, the RT

increases proportionally with the binary logarithm of N, an

effect usually referred to as Hick’s law (Hick, 1952). In simpler

terms, the more information that is perceived, the longer the

RT. In Brass et al. experiment, the baseline condition involved

only one stimulus, while the normal task conditions involved

two. The respective influence of both types of stimuli would, in

the latter case, compete and hence slow down the overall

integration process. As shown in Section 2.4.3, this effect was

modeled using competitive interactions across the perceptual

representations.

Finally, the third type of visual input concerns movement

observation. It has been shown, in the superior temporal sulcus

(STS) of the monkey, that the activity patterns of neural
3 As the neural recordings were mainly obtained in monkeys we assume,

throughout this paper, the homologies across brain areas between humans and

monkeys (Arbib and Bota, 2003).
populations correlate with the observation of specific limb

movements (Jellema, Maassen, & Perrett, 2004; Perrett,

Harries, Mistlin, & Chitty, 1989). Furthermore, as movement

observation has also been shown to activate the human

homologue region (Decety & Sommerville, 2003; Iacoboni

et al., 1999), we assume here, the existence of neural

populations in which movements performed by others, such

as finger movements, are encoded. Consistently with the part of

the model dedicated to motor preparation, which will be

described later, and following the observation that mirror

neurons fire similarly when observing or executing an action

(Rizzolatti et al., 2001), we also hypothesize that this

representation lies within the same frame of reference (FR)

as self organized movements, i.e. within motor coordinates. As

will be further explained, this property allows the model to

compare these two forms of information, and hence to produce

the reported effects of ideomotor compatibility.

2.1.2. Decision and response selection

The main task of the proposed models is to perform a

selection among different sources of stimuli. As previously

mentioned the information related to motion and spatial cues is

supposed to follow the dorsal ‘where stream’. Therefore, this

perceptual information is then fed to a decisional process,

whose neural substrate seems to be located in the posterior

parietal cortex (PPC), a region that was shown to be the locus

of visual target selection (Andersen et al., 1997; Schadlen &

Newsome, 2001).

Furthermore, as soon as the decision process is performed,

the brain must transform information from stimulus space to

motor space by means of stimulus–response associations

(SRA) (Wilimzig & Schöner, 2005). It is not within the

scope of this paper to explain how such mechanism can be

modeled but a plausible answer has been proposed in Wilimzig

and Schöner (2005). The proposed solution consists of a

complete representation of all the combinations, which can be

mapped using the stimulus and response space. When a

stimulus is presented, it activates all the combinations it

corresponds to and the response is then chosen according to the

favorite SRA, or according to another mapping that can be

favored by the task instructions. In our present models, we have

assumed that such a transformation is carried out by hard-wired

connections from the decisional process to the final motor

preparatory stage. In addition, this connectivity can be

modified by the task instructions mediated by the prefrontal

cortex, so that different SRA’s can be produced. However,

associations that are different from the mirror responses, i.e. a

left/right movement in response to a left/right stimulus, would

result in longer reaction times. Indeed, behavioral studies

addressing this issue have shown a constant increase of the RT

under such conditions, and have thus suggested that processing

in higher cognitive areas is involved (Hasbroucq & Guiard,

1991; Hedge & Marsh, 1975; Proctor & Pick, 2003).

2.1.3. Motor preparation

The motor preparation layer that we consider consists of

three areas, coding, respectively, for the motor plan of each
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finger, for the final motor selection, and for the shared

representation between movement observation and motor

execution that we will designate as the ideomotor integration

area. The motor plans are fed either directly or indirectly

through the ideomotor area to the final motor selection layer

which is waiting for the execution signal coming from the

decisional layer (see Fig. 2).

By definition, the ideomotor region is where information

related to both movement observation and movement

preparation overlap and hence is the area responsible for

ideomotor effects. Indeed, the ideomotor theory predicts

that the ease with which a stimulus can be transformed

into an action depends on the similarity between the observed

event and the executed action (Brass et al., 2000; 2001;

Greenwald, 1970; Wohlschläger et al., 2003). As suggested by

Greenwald, (1970), the ideomotor theory relies on the

assumption that sensory feedback is compared with the

response image.

We then follow the neurological evidence of the direction

along which both intended and observed movement are

represented within populations of neurons (Cisek & Kalaska,

2005; Perrett et al., 1989; Schwartz et al., 1988) and we

associate to each finger a population coding for the imitator’s

intended motor plan and for the observation of the

corresponding demonstrator’s finger movement. These popu-

lations are, respectively, assumed to be located in the dorsal

premotor cortex (PMd) (Rizzolatti et al., 2001) and STS

(Jellema et al., 2004; Perrett et al., 1989). Both populations

then project onto a single motor preparatory population in

the area F5 of the ventral premotor cortex (PMv), a region

where mirror neurons were found (Rizzolatti et al., 2001).

This latter area will evaluate the ideomotor compatibility of

observed and intended movements. High ideomotor compat-

ibility happens when the demonstrator and the imitator move

the same finger in the same direction. Conversely, low

ideomotor compatibility is reached when demonstrator and

imitator produce movements of different fingers in the

opposite direction.
2.2. Models architecture
2.2.1. Single-route model

Following a PDP-like architecture as usually proposed in

experimental psychology (Hasbroucq & Guiard, 1991;

Kornblum, 1994; Zhang et al., 1999), we first designed a

model, which consisted of a typical layered model where the

spatial cue, the motion cue, and the ideomotor compatibility

cue interact together within the decisional layer. The location

of the winning stimuli is then used to trigger movement

execution4 in the final motor selection area (located in area F4

of PMv region known to encode motor programs before
4 The motor execution part will not be modeled in this paper, as the execution

time is assumed to be constant under all conditions.
execution (Cisek & Kalaska, 2005)) by means of stimulus–

response mapping.

2.2.2. Direct-matching model

Second, we propose an alternative model illustrated at the

bottom of Fig. 2. As suggested by the direct-matching

hypothesis (Meltzoff & Moore, 1997; Rizzolatti et al., 2001),

stating that the brain structures involved directly in action

observation interact with those concerned with the correspond-

ing motor execution, a second architecture was built, in which

two distinct information pathways and two selection processes

coexist. The first pathway is strictly concerned with integrating

spatial visual information such as spatial cues and spatial

localization of motion. This corresponds to the dorsal ‘where’

stream, that is assumed to originate from the MST region

(Andersen et al., 1997). Separately, the so-called ideomotor

pathway integrates the representation of the motor plans

together with the representation of movements performed by

others. This pathway is assumed to follow the ventral ‘what’

stream, which passes through STS and then projects onto the

so-called mirror areas in PMv (Rizzolatti et al., 2001). Both

these pathways finally converge toward the final motor

selection area, which has to execute the correct response

instructed by the decisional layer, under the influence of the

ideomotor pathway.

2.3. Dynamic neural field model

The neural implementation of the two models is inspired by

neurophysiological evidence suggesting a continuous rep-

resentation of stimuli in feature maps (Ashbridge et al., 2000;

Cisek & Kalaska, 2005; Schwartz et al., 1988). In such neural

populations, neurons generally respond to external stimuli with

broad tuning curves of activity. Therefore, we adopted the

dynamic neural field approach (Amari, 1977; Erlhagen &

Schöner, 2002; Zhang, 1996) which integrates the principles of

continuous representations endowed with a metric (Erlhagen &

Schöner, 2002; Wilimzig & Schöner, 2005), and can account

for temporal dynamics of stimuli interactions. We then assume

that each variable considered in the models is represented

within a distinct neural population.

Before we start, we should stress that while we aim to

explain the difference in reaction times between two behavioral

processes, it is beyond the scope of the present paper to account

for the precise time course of the neural and sensorimotor

processes. Thus, in the remainder of this paper we will report

on qualitative effects, measured as the relative time required for

a given network to perform the task. For convenience, this data

was fitted to the original reaction times in order to be able to

compare simulation results and behavioral data on the same

time scale (see Appendix A).

2.3.1. Definition

Formally, a neural field is composed of a continuous set of

neurons firing maximally for a specific value q in the parameter

space. This unimodal type of activation is illustrated in Fig. 3a.

In order to avoid the problem of boundary effects, preferred



Fig. 3. (a) Illustration of a neural field subjected to a spatial input localized at

p/2. (b) The population profile of activity is gain-modulated by means of an

external homogeneous input h. This effect is shown for various values of h.
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values of q are uniformly distributed along a circular space

such that q2[Kp,p]. It should be emphasized here that any

kind of information could be encoded by means of a neural

field. Indeed, a unidimensional variable y defined in an

arbitrary domain can be transformed into the considered

space using a mapping function f(y)/q. In the present case,

spatial and motion cues are assumed to be encoded in retinal

coordinates, whereas movement observation and motor plans

are represented in motor coordinates using the movement

direction as a basis for each finger (Cisek & Kalaska, 2005;

Schwartz, Kettner, & Georgopoulos, 1988).

The network is fully connected by means of recurrent

synaptic weights WR
i , exhibiting symmetry, rotation invariance

and center-surround excitation–inhibition characteristics. The

network’s dynamic follows

t _uiðq;tÞZKuiðq;tÞCxiðq;tÞChiðtÞC#WR
i ðqKfÞf ðuiðf;tÞÞdf

(1)

where ui(q,t) is the membrane potential of the neuron with

preferred value q at time t, belonging to the population i. The

non-linear activation function is defined as f(y)Zmax(0,y).

xi(q,t) corresponds to the external input and hi(t) to a global

homogeneous input. The weight linking two neurons, with

preferred directions q and f, is given by a periodical Gaussian

profile defined as

WR
i ðqKfÞZ

ai

k
exp

cosðqKfÞK1

2s2

� �
K1

� �
(2)

where ai and s are, respectively, the amplitude and variance of

the weights. kZ1KeKð1=s2Þ ensures that the weights are

inhibitory and bounded, i.e. WR
i ðqKfÞ2½Kai;0�. As shown

in Section 2.4.2, these recurrent connections define the metric

and the interaction strength between spatially localized inputs

such that close stimuli cooperate in the representation, whereas

far ones compete and interfere.

2.3.2. External inputs

Each network i can receive an external input xi(q,t)

consisting of a periodic Gaussian gi localized at fi in the

neural space, such that

giðq;tÞZ
biðtÞ

k
exp

cosðqK4iÞK1

2s2

� �
Kh

� �
xiðq;tÞZ giðq;tÞ ð3Þ
where bi(t) is the input amplitude, and h is a normalization

factor, ensuring that
Ð

giðq;tÞdqZ0. As illustrated in Fig. 3a, an

external input produces a unimodal increase of the population

potential. In the experiments reported in Section 3, the external

cues (e.g. the cross and the finger movement) are being

modeled as external inputs located at positions 4i driving the

dynamics of the their corresponding populations i.
2.3.3. Projection between populations

In addition to the external inputs mentioned in Section 2.3.2,

a neural field can be subjected to synaptic projections arising

from other populations. The projections between two neural

fields can be of two types. First, topology preserving

projections ensure that a localized peak of activity in the

source population also produces a localized input in the target

population. Secondly, homogeneous projections uniformly

modulate the target population proportionally to the global

activity of the source field.

Topology preserving projections are made through synaptic

weights WP
i/jðqKfÞ between neuron with preferred directions

q and f of the source and target population, i and j,

respectively. They are defined by

WP
i/jðqKfÞZ

gi/j

k
exp

cosðqKfÞK1

2s2

� �
Kh

� �
(4)

such that the external input xj(f,t) of the target population

becomes

xjðf;tÞZ#WP
i/jðqKfÞf ðuiðq;tÞÞdq (5)

where gi/jO0 is the strength of the projection weights.

Homogeneous projections consist of a uniform modulation

that could either be excitatory or inhibitory. They are defined

such that

hjðtÞZWM
i/j#f ðuiðq;tÞÞdq (6)

where WM
i/j corresponds to the weight of the homogeneous

modulation from initial population i to the target j.
2.3.4. Stimulus–response and inverse mapping

The stimulus–response projections from the cue integration

layer uniformly modulate either of the sub-areas of the motor

selection layer and are defined by

hjðtÞZ#WP
i/jðqKfjÞf ðuiðq;tKDÞÞdq (7)

where i applies only for the population cue integration and j for

motor selection left and right. D corresponds to an artificial

processing time taken by that operation which is zero when the

mapping is natural (see Section 2.1.2), and otherwise is set

according to behavioral literature (Proctor & Pick, 2003) (see

Appendix A).

As can be seen in Fig. 2, the Single-Route model possesses

connections from the ideomotor area to the cue integration

area. As the representation of both systems differs, one has to
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define an inverse transformation of that defined previously. It is

given by adding localized inputs gi(q,t) to the cue integration

area similarly to Eq. (3)

xjðq;tÞZ
X

i

giðq;tÞ (8)

where i2{ideomotor integration left, right} and jZcue

integration. The amplitude bi(t) of the input gi(q,t) as defined

in Eq. (3) is equal to

bi Zgi/j#f ðuiðq;tÞÞdq (9)

and its location 4i corresponds to that of the motion cue.
2.4. Network properties

In the following paragraphs, we will summarize briefly the

properties of neural fields relevant to our models. Since the

main task of the proposed models is to perform a selection

among different stimulus sources we start by showing how

such a selection mechanism can be produced within a single

neural field. We will then illustrate how a similar mechanism

can be applied to model the Hick’s law effect on spatial and

motion cue integration during the early sensory processing

stage.
2.4.1. Stimulus enhancement

In order to choose one of two stimuli, we will use a metric

which gives a measure of the relevancy or importance of each

stimulus (Erlhagen & Schöner, 2002). Here, we follow (Pouget

et al., 2003) and take the amplitude of the stimulus as a measure

of its relevancy. Therefore, in the task we consider here, when

two stimuli convey an equal amount of information the

relevant (task-related) stimulus must first be enhanced in order

for it to be selected. Such an increase in the stimulus amplitude

can be induced by simply increasing the homogeneous

excitatory input h in Eq. (3). h acts as an attentional gain, by

modulating the shape of the network’s activity profile (Salinas

& Abbott, 1996; Sauser & Billard, 2005) (see Fig. 3).
Fig. 4. Time tA: two equal and competing stimuli are presented to the network. The

Time tB: a short perturbation is induced in the first stimulus. This is enough to brea
In the experiments reported in Section 3, the models will be

driven by the task instructions that will help select the relevant

stimulus, by enhancing the corresponding brain area by means

of cortico-cortical connections, represented in our model as a

top-down modulatory input hT such that

hiðtÞZ dði;jÞhT and dði;jÞZ
1 i Z j

0 isj

(
(10)

where i2{spatial cue, motion cue} and j is the index of the

neural field corresponding to the task-relevant stimulus

dimension.
2.4.2. Selection, cooperation and interference

In order to select from two competing stimuli within a single

neural population, one must apply sufficiently strong recurrent

weights across neurons within the neural field (Erlhagen &

Schöner, 2002; Kopecz & Schöner, 1995). This selection

process is illustrated in Fig. 4. Two competing stimuli of

equivalent strength are simultaneously presented to the

network (initially at rest) at different locations. The network

converges toward an unstable state composed of two distinct

regions of activity. Because of the interaction across these two

regions, even a small variation in intensity of one of the two

inputs is sufficient to break the symmetry and results in a single

peak of activity.

Both the cue and ideomotor integration fields work on this

principle. As two inputs interact within the same neural

population, if they are close enough, in the neural population,

they will cooperate, otherwise they will interfere.
2.4.3. Competition between populations

As mentioned in Section 2.1.1, the results in Brass et al.

(2000) suggest an occurrence of the Hick’s law effect in their

experimental paradigm. This suggests a neural process that

cannot solely be the result of the selection mechanism as

previously described. Indeed, the aforementioned selection

process produces a clear facilitatory effect for the congruent

conditions, an effect already demonstrated by Erlhagen and
network converges toward an unstable state where both stimuli are represented.

k the symmetry and leads to a single blob of neural activity.



Fig. 5. Illustration of the mechanism reducing the RT difference between the congruent and baseline conditions. For each neural population involved here, only the

neuron with maximal activation is shown. In each subplot, the top panel shows the evolution of activity of the perceptual cues’ representations while the bottom panel

shows the cue integration layer. The vertical bar indicates the time when the cue integration layer reached a given threshold.
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Schöner (2002). They also showed how Hick’s law could be

reproduced from interactions within the same neural layer.

Here, we apply the same technique but between different

stimulus representations using reciprocal inhibitory connec-

tions WM
Perc between the two neural fields corresponding to the

spatial and motion cues. When two inputs are present they

inhibit each other by decreasing their respective amplitudes.

When there is only a single input, however, it is freely

integrated without any competition. As a result, in the

congruent condition, the selection layer will converge slower

and the RT difference will then be decreased. This effect is

illustrated in Fig. 5.

Finally, such a mechanism is, on its own, also a selection

process between the representation of two distinct populations.

Therefore, the mechanism described was also applied to the

motor selection area containing preshapes of both the fingers’

motors plans in two distinct sub-populations. The selected

motor plan is then executed as soon as the global activity of its

corresponding population reaches the threshold d as defined by

#f ðuiðq;tÞÞdqOd0Motor plan i is executed (11)

where i2{motor selection left, right}.
3. Results

The behavioral experiments were simulated by the two

models using the same initial conditions as those used by Brass

et al. in their behavioral experiments (Brass et al., 2000). The

results are shown in Fig. 6, while simulation parameters are

summarized in Appendix A. We can see that the two models

are in good agreement with the original data. The reason why
these two models show such a similar behavior is that, despite

their conceptually different architectures, all the necessary

components which determine the interactions between the

perceptual parts of the stimuli are similar. Indeed, all the

processing stages are treated similarly and the different

connectivity only provides a shortcut in the information

pathways.

More details concerning the dynamics of the second

network are illustrated in Fig. 7. Only the spatial cue task

condition is shown, as it best represents the model’s interesting

characteristics. First, it can be seen in the cue integration layer

that the selection process takes longer in the incongruent

condition than in the congruent condition, as the selection

mechanism must inhibit the movement cues. As for the motor

selection areas it can be seen that ideomotor compatibility has a

definite influence on RTs. Indeed, in the ideomotor compatible

and congruent condition, the slope of the motor selection

activity profile is the sharpest, indicating that the ideomotor

region is facilitating the selection process. Conversely, in the

incongruent condition, the ideomotor region facilitates the

response in an opposite fashion to the one given by the cue

integration layer, and hence slows down the final decision

process. This interference effect is the cause of the increase in

the RT.
3.1. SR-incompatible mapping

Since the previously reported simulation results of the two

models are barely distinguishable (see Fig. 6), it shows us that

the Brass et al. experimental paradigm cannot clearly

discriminate between these two architectures. Therefore, it is

important to devise a method for determining which model best



Fig. 6. Simulation results of our two model architectures under the same conditions as in the experiment by Brass et al. (2000). Both models are in good agreement

with behavioral data (see Fig. 1).

Fig. 7. Dynamics of the direct-matching model. The activity profiles of the cue integration population are shown on top. Dark areas correspond to regions of neural

activity and the vertical lines denote the time at which the population activity reached a certain threshold. Labels S and M on the y-axis indicate the spatial location of

spatial and movement cues, respectively. At the bottom, the time profile of the neuron with maximal activity of each motor selection area is shown. The vertical bar

indicates the time at which the execution threshold d was reached.
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Fig. 8. (a) Results of Brass et al. (2000) redrawn, in order to account for the congruency of the irrelevant stimulus location with the response, as in a typical Hedge

and Marsh experiment (Hedge & Marsh, 1975). The baseline conditions were omitted to conform to that notation. The labels on the x-axis correspond to compatible

and incompatible relationships of the irrelevant stimulus location with the response. (b) Predictive results of our models while confronted to an SR incompatible

mapping task.
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reflects the information pathway in the brain. Indeed, although

both models produced similar results, the two model

architectures are conceptually different.

To achieve this, we once again took inspiration from the

large amount of literature on stimulus–response compatibility

and decided to modify our models with an incompatible

stimulus–response mapping. Such a mapping would be

achieved by instructing our models to respond to a left cue

with a motion of the right finger (middle finger), and

conversely to respond to a right cue with a motion of the left

finger (index finger). Such a set of instructions resembles a

Simon-like task (Simon et al., 1981). Switching task

instructions from a compatible to an incompatible stimulus–

response mapping results in a reversal of the classic Simon

effect,5 as first reported by Hedge and Marsh (1975). Several

explanations of this phenomenon have been proposed

(Hasbroucq & Guiard, 1991; Proctor & Pick, 2003; Simon &

Berbaum, 1990). The most relevant to our argument is the

stimulus–stimulus congruency hypothesis. The latter stresses

that the facilitatory and interference effects are mainly caused

by integration of spatial cues occurring in an intermediate

processing level, rather than in late motor preparation stages.

This hypothesis suggests that the reversal effect might be

produced by a higher cognitive mechanism, involved in the

incompatibility inversion process and that it should occur

during the stimulus–response mapping process. This principle

was implemented as suggested in Sections 2.1.2 and 2.3.4, by
5 The Simon effect relates to the observation that even if the stimulus location

is an irrelevant dimension, a spatial congruency between that irrelevant

stimulus dimension and the response significantly facilitates the initiation of the

response.
switching the wiring of the stimulus–response association

module and by applying an additional processing time.

In Fig. 8a, we have redrawn the results of Brass et al. (2000),

so as to account for the compatibility of the irrelevant stimulus

location with the response, as in a typical Hedge and Marsh

experiment (Hedge & Marsh, 1975). In their experiment, Brass

et al. did not explicitly distinguish stimulus–stimulus from

stimulus–response congruency and we have to assume that

these did not show any discordance.

Fig. 8b shows the predictions of the two models. We can see

that these two models exhibit different behaviors. The first

model reproduces the classic reversal effect, i.e. the relative

reaction times between the two conditions is reversed in

contrast to the Brass et al. data. In other words, the RTs are

faster when the irrelevant stimulus is located at the opposite

side as that of the motor response. As for the second model, we

observe qualitative differences. In the ideomotor and spatial

cue condition, the reversal effect is reduced. This observation

was expected as the direct route between action observation

and action execution permanently activates the motor

preparation centers in an ideomotor compatible way. Indeed,

this effect can be seen in Fig. 9, where we compare the neural

dynamics of the second model under SR compatible and

incompatible mapping conditions. Results show that even in

the incompatible mapping task an ideomotor compatible

movement observation still strongly favors the corresponding

movement execution, as the finger movement stimulus was

unaffected by the task inversion process.

Moreover, in the ideomotor and movement cue condition,

the overall RT is increased. A close look at Fig. 9 provides the

explanation. First, the movement observation is used to

determine the correct response, which is always on the



Fig. 9. Illustration of the dynamics of the direct-matching model as in Fig. 7. For clarity reasons, in the plots showing the maximal neural activities of the motor

selection areas the profile of the less active population (i.e. left or right finger) was omitted. The SR compatible and incompatible mapping are compared for

ideomotor compatible observation–execution movement pairs. Moreover, both spatial and finger cue conditions are shown. The additional delay of the inversion

process was omitted here, in order to allow an easier comparison of the results. Finally, the small black arrow shows the effect, in RT, of switching from a compatible

to an incompatible mapping task. For comments on the figure, see text.
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opposite side. However, at the same time, the ideomotor

system enhances the spatially matching finger movement, and

as these two parallel processes always favor opposite

responses, an interference effect is constantly present and

results in an overall RT increase.

The reverse phenomena, although less significant, can be

observed during the non-ideomotor conditions, see Fig. 8. Indeed,

in the spatial cue condition, the Hedge and Marsh reversal effect

increases slightly, whereas in the movement cue condition the

overall RT decreases slightly. This can be explained by the fact

that, in our models, when the observed/planned movement-pair is

ideomotor incompatible, the network tends to favor, but to a lesser

extent, the execution of the finger opposite the observed one. This

opposite facilitatory effect therefore reverses the interference

observed in the ideomotor condition.
3.2. Metric of spatial representation

Since the Dynamic Field Theory (DFT) was applied as a

modeling framework, we present here our models predictions

concerning a variation along the metric of spatial cue

representation. The representation of spatial and motion cues

used in the perception layer is considered continuous, rather

than discrete. Therefore, as the DFT usually predicts

modification in reaction times when stimuli are displaced

according to their representation metric, we applied this

principle in a new experimental paradigm.

The new paradigm consists of the same paradigm as

employed by Brass et al. with the difference that the spatial cue,

i.e. the cross, is no longer placed on a specific fingernail, but in

a variable position between that fingernail and the midline of

both fingers (see Fig. 10a). Simulation results showing the

mean RT and the RT’s difference between congruent and

incongruent conditions as a function of the relative location of

the spatial cue are presented in Fig. 10b. The horizontal axis

represents the normalized spatial cue location so that a value of

0 corresponds to the fingernail position and 1 to the midline.

First, it can be seen that the mean RT of the two conditions

behave in an opposite way. As the spatial cue moves toward the

midline, its neural representation moves away from the finger
location it corresponds to, and thus its interfering and

triggering effect is reduced. This results in respective increase

and decrease of the mean RT of the spatial and movement cues.

If we consider now the variation of the RT difference between

congruent and incongruent trials, the difference is reduced as

the position of the spatial cue moves toward the center,

confirming our previous claim. This can be explained in a

similar fashion as when considering the mean RT above.
4. Discussion

In this paper, we presented two biologically inspired

computational models capable of reproducing the experimental

results obtained by Brass et al. (2000). These models are in line

with other computational models addressing imitation mech-

anisms in both humans and monkeys (Arbib et al., 2000;

Demiris & Hayes, 2002; Wolpert et al., 2003), in that they all

assume a shared representation between movement obser-

vation and action execution, which is mediated by competitive

interactions. However, our models are also largely inspired by

human behavioral phenomena reported in experimental

psychology literature such as Hick’s law, the Simon effect

and the Hedge and Marsh reversal effect (Hedge & Marsh,

1975; Hick, 1952; Simon et al., 1981).

More importantly, while the two models’ architectures

differed in their information pathway, they both successfully

reproduced the ideomotor compatibility principle, based on a

comparison of observed action with internally planned actions.

The models complied with the definition of ideomotor

compatibility, stating that if a perceptual event is similar to

the response image that is used to control a response, then the

perceived event should activate the response image and, hence,

influence the initiation of the response (Brass et al., 2000;

Greenwald, 1970; Wohlschläger et al., 2003).

In order to discriminate between these models, we proposed

a novel stimulus–response experiment and presented our

models’ predictions. The experimental protocol of the

experiment is similar to that conducted by Brass et al.

(2000), except that the subjects should be asked to respond to

any of the spatial cues with an incompatible response, i.e. they



Fig. 10. (a) The modification of the original experimental paradigm as used by Brass et al. is illustrated. (b) The predictions on the mean RTs and their difference is

shown, while varying the location of the spatial cue.
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should respond to a left (right) cue with a right (left) finger

movement. If that experiment was to be conducted and a strong

Hedge and Marsh reversal effect was to be measured, then this

would refute our direct-matching model and let the single-route

model appear to be more plausible.

The direct-matching model relies on the hypothesis that a

direct route between movement observation and movement

execution exists (Decety & Sommerville, 2003; Rizzolatti

et al., 2001). In other words, the model hypothesizes that the

spatial relationships between relevant and irrelevant stimuli is

processed first at an intermediate level, in brain areas primarily

concerned with task constraints. While the comparison

between planned and observed motions is conducted separately

but simultaneously through an ideomotor pathway, before both

pathways get merged.

We note that, if one would not observe the opposite of the

Hedge and Marsh reversal effect, this may not necessarily refute

the plausibility of the direct-matching model. Since the direct and

automatic imitative response in a simple stimulus–response (SR),

incompatible mapping tasks can be easily overridden after only a

brief training (Heyes et al., 2005). Therefore, it will be essential

that the experiment be performed with subjects who remain

totally unfamiliar with the task. Subsequently, it would be

interesting to see if such SR incompatible training results in an

effective suppression of the ideomotor effect.
The results of our simulations showed that the observation

of a non-ideomotor compatible finger movement results in a

slight facilitation of the initiation of the opposite finger. This

anti-facilitatory effect seems questionable, as such a phenom-

enon has never been observed in the corresponding literature.

This may be a weakness of our model. The main reason for

such effects to occur in our model is that, in the motor selection

area, the process of ideomotor facilitation and interference acts

within the same metric as that of the decisional layer, i.e. by

considering the global amplitude of the population activity.

Then, as the competition among the motor plans is performed

in that metric, the decrease in amplitude caused by an

ideomotor incompatible observed movement favors the

execution of the opposite finger’s motor plan. This problematic

issue raises the question of how the brain represents such

multimodal information.

Indeed, the last and unexplored hypothesis is effectively that

of the role taken by the metric of stimulus representation. By

assuming continuous representations, we do not claim here that

such unique and distinct representations exist as it is in the

brain, but this simplification is mainly used for convenience.

Indeed, it is not within the scope of this paper to address the

question of how distributed representations can emerge from

sensory receptors and cortical interactions. This topic is left for

future work. Similar questions arise when considering the



Table A1

Simulation parameters

Parameter Single-route Direct-matching

Perceptual layer

MST region

Spatial cue a 1.5 1.53

b 0.88 0.9

f Gp/2 Gp/2

Motion cue a 1.5 1.53

b 0.97 1.0

f Gp/2 Gp/2

Top-down

modulation

hT 0.26 0.2

Reciprocal

inhibition
WM

Perc 24.11 16.65

STS region

Movement

observation

a 0.0 0.0

b 0.79 0.5

f Gp/2 Gp/2

Decision layer

PPC region

Cue integration a 1.02 2.0

gSpaCue/CueInt 1.16 1.65
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metric of movement representation. In our modeling approach,

we assumed that the movements performed by others are

represented and encoded within the same frame of reference as

self-generated movements, in accordance with the direct-

matching hypothesis and the firing patterns of mirror neurons.

This computational issue was already addressed in Pouget et al.

(2003) and Sauser and Billard (2005). We also assumed that

opposite finger movements, such as tapping and lifting, are

encoded by means of directional information within the same

neural layer. This suggests that the spatial relationships at stake

in our experiments are encoded in a limb-centered frame of

reference. This later hypothesis remains yet to be verified.

Arguments in favor of this hypothesis are, for instance, the

fact that there exist direct pathways from the primary motor

cortex and the premotor cortex to the control of finger motion,

that the premotor cortex is involved in imitation of finger

movements (Iacoboni et al., 1999), and that movements in the

primary and premotor cortex are sometimes encoded by means

of directional information (Cisek & Kalaska, 2005; Schwartz

et al., 1988).
gMvtCue/CueInt 1.16 1.65

gIdeInt(L/R)/

CueInt

8.95 1.65

Motor preparation layer

PMd region

Motor plan (L/R) a 0.0 0.0

b 1.0 1.0

f Gp/2 Gp/2

PMv (F5) region

Ideomotor

integration (L/R)

a 1.98 1.81

gMotPlan(L/R)/

IdeInt(L/R)

1.08 1.19

gMotObs(L/R)/

IdeInt(L/R)

1.08 1.19

PMv (F4) region

Motor selection

(L/R)

a 0.15 0.09

gCueInt(L/R)/

Motsel(L/R)

3.91 4.02

gMotPlan(L/R)/

Motsel(L/R)

1.58 4.02

gIdeInt(L/R)/

Motsel(L/R)

1.58

Reciprocal

inhibition
WM

Motor 7.71 7.34

Execution

threshold

d 0.08 0.08

Other constants

Variance profile s 0.3 0.3
5. Conclusion

In this paper, we have presented two biologically plausible

neural architectures addressing the effect of ideomotor compat-

ibility between observed and executed movements as reported in

the behavioral experiment by Brass et al. (2000). These networks

were developed along a multidisciplinary approach linking

neuroscience with experimental psychology, which tries to

bridge the gab between human behavioral data and single cell

recordings in monkeys. Then, despite the different information

pathways used by these two models, they were both fairly capable

of reproducing the experimental results mentioned above.

Furthermore, the models have been subjected to two novel

experimental conditions in order to (1) investigate the metric of

stimulus representation in such a task and (2) to determine

which of the two models might be the most plausible.
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sCueInt(L/R)/

MotSel(L/R)

0.5 0.5

Time constant t 0.1 0.1

Additional time

delay (ms)

D

Compatible

mapping

condition

0.0 0.0

Incompatible

mapping

condition

73.0 73.0

Regression

constants

c1 3292.19 K263.32

c2 1770.54 K69.21
Appendix A. Simulation parameters

The parameters used in the simulations of our two models as

illustrated in Fig. 6, are summarized in Table A1.

Simulated RTs X were fitted to the original data Y using a

first order least squares error regression method. The estimated

RTs X̂ are given by

X̂ Z c1X Cc2 (A1)

where the constants c1 and c2 were determined so that the error
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E ZsYKX̂s2 (A2)

is minimized.

Concerning the choice of the simulations parameters, they

were initially tuned according to our work hypotheses as

presented in Section 2.1. Then, they were fine-tuned using a

gradient descent method in order to minimize the error

(Eq. (A2)) between the behavioral data and the simulation

results.
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