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Abstract—Wireless social community networks are emerging
as a new alternative to providing wireless data access in urban
areas. By relying on users in the network deployment, a wire-
less community can rapidly deploy a high-quality data access
infrastructure in an inexpensive way. But, the coverage of such
a network is limited by the set of access points deployed by the
users. Currently, it is not clear if this paradigm can serve as a
replacement of existing centralized networks operating in licensed
bands (such as cellular networks) or if it should be considered
as a complimentary service only, with limited coverage. This
question currently concerns many wireless network operators. In
this paper, we study the dynamics of wireless social community
networks by using a simple analytical model. In this model,
users choose their service provider based on the subscription fee
and the offered coverage. We show how the evolution of social
community networks depends on their initial coverage, the sub-
scription fee, and the user preferences for coverage. We conclude
that by using an efficient static or dynamic pricing strategy, the
wireless social community can obtain a high coverage. Using a
game-theoretic approach, we then study a case where the mobile
users can choose between the services provided by a licensed
band operator and those of a social community. We show that
for specific distribution of user preferences, there exists a Nash
equilibrium for this non-cooperative game.

I. INTRODUCTION

Wireless networks have traditionally been deployed and
operated by central authorities. The centralized management
of wireless network infrastructures guarantees a high quality of
service (QoS) in terms of network coverage, but at the expense
of substantial deployment and maintenance costs. By having
users form wireless social communities, a wireless network
operator can share infrastructure costs with its customers. The
WiFi technology (i.e., IEEE 802.11 devices) is a viable option:
WiFi networks offer inexpensive, high-speed wireless access
to users and do not necessitate expensive investments, because
the technology operates in an unlicensed frequency band.
Thus, there is no need for the operator to make substantial
initial investments to buy the spectrum license. Furthermore,
the access points (AP) are inexpensive, easy to deploy and
maintain. Still, the wireless social community typically has
limited coverage that depends on the size of the network.

In this paper, we are concerned with the potential of wireless
social communities to compete with traditional licensed band
networks. We first evaluate the evolution of wireless social
community networks by modeling users’ payoffs as a function
of the subscription fee1, as well as the operators’ provided cov-

1Note that the subscription fee corresponds to the price users have to pay.
Hence, we use the two terms interchangeably in the paper.

erage. We discuss static and dynamic strategies for attracting
new subscribers to improve the coverage of social community
networks. To the best of our knowledge, this is the first model
to address and evaluate the strategies of social community
operators, taking into account the preferences of users in term
of coverage and subscription fees.

Then, we discuss the competition between social community
operators and traditional licensed band operators by using a
game-theoretic approach. We investigate the strategies of the
operators in a competition and the corresponding outcomes
of the game. In the hope of mutually beneficial results, we
identify a Nash equilibrium in this game and discuss the
possible cooperation between the operators. We believe that
our paper gives an insight to understanding the evolution
of wireless social communities in the presence of traditional
wireless access providers.

The paper is organized as follows. In Section II, we charac-
terize the properties of users, the licensed band operator and
the social community operator. In Section III, we present the
main results and contributions of this paper. In Section IV
and V, we evaluate the dynamics of these networks separately
and derive the maximum payoff and the corresponding optimal
number of subscribers. In Section VI, we model the competi-
tion of these two types of network operators and discuss their
coexistence. Finally, in Section VII, VIII, and IX we discuss
the related work, conclusions and some open questions.

II. SYSTEM MODEL

We consider a network service area, where N users (N is
very large) have the choice between the services offered by
two wireless network operators. We assume that one operator
deploys his own network infrastructure in a licensed band
(e.g., WiMAX) to provide wireless access to users. The other
operator relies on technologies operating in unlicensed bands
(e.g., WiFi) and involves the wireless APs operated by the
users to establish a wireless social community. Consequently,
we refer to the two operators as the licensed band operator
(LBO) and the social community operator (SCO).

In our model, there exists a sequence of time, i.e., {t =
1, 2, · · · ,∞}, at which each user decides whether to subscribe
to a given operator depending on its payoff. At the same time,
each operator calculates the fraction of users that subscribed
to its service (0 ≤ n�[t] + ns[t] ≤ 1) and computes its payoff
(ui[t]), where i ∈ {�, s} (� and s represent LBO and SCO
respectively).



Let Qi ∈ [0, 1] and Pi, i ∈ {�, s} be the provided
coverage and subscription fee by a given network operator
(Qi = 1 means full coverage). We assume that the users
evaluate the usefulness of the networks based on the provided
coverage and subscription fee. The study of more sophisticated
user preferences is part of our future work (as discussed in
Section IX). We define the nature of the pricing strategy as
follows:

Definition 1: With a static pricing strategy, an operator
does not change the subscription fee Pi at decision times t.

Definition 2: With a dynamic pricing strategy, an operator
can change its price Pi at decision times t.

Next, we characterize the payoff functions of two operators
as well as the users.

A. Licensed Band Operator (LBO)

LBOs typically use a collision free protocol (e.g., WiMAX)
and licensed spectrum to provide the wireless access. We
suppose that the LBO has full coverage (i.e., Q� = 1). We
denote the payoff of the LBO at time t by u�[t]. This payoff
is a function of n�[t] and the cost of the LBO infrastructure c�

(e.g., the cost to deploy and maintain base stations, to acquire
the spectrum license, etc.). Hence, we define the payoff of the
LBO at time t as:

u�[t] = N · n�[t] · P� − c�. (1)

B. Social Community Operator (SCO)

Subscribers to the SCO participate in the deployment of the
network in the unlicensed band (e.g., by sharing their IEEE
802.11 APs). We assume that the users pay a monthly sub-
scription fee Ps to the SCO to be a member of the community.
This subscription fee is most likely to be substantially smaller
than the LBO subscription fee P�. We assume that for this
price, the SCO provides the APs to the users and maintains the
network infrastructure (e.g., the software that enables social
community services). Thus, the SCO has a small cost cs for
deploying the service. We assume that SCOs previously agreed
with ISPs to let users share their APs. We discuss the strategic
service agreements between ISPs and SCOs [3] in Section IX.

The coverage Qs of the social network, unlike for the LBO,
depends on the number of users who subscribed to the SCO
network. We assume that Qs is a linear function of ns[t], as
shown in Fig. 1(a), i.e., Qs[t] = ns[t].
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Fig. 1. System model: (a) Relation between subscribers and the social
community coverage at time t. (b) Uniform distribution of user types.

We also assume that the best coverage (i.e., Qs = 1) is
obtained if and only if all users subscribe to the community.
With this coverage function, we assume a channel assignment
scheme as introduced in [9], i.e., a non-interfering channel
assignment obtained via local channel bargaining. Similarly
to the LBO, the payoff function of the SCO at time t is:

us[t] = N · ns[t] · Ps − cs. (2)

C. User Model

In our model, users subscribe to a wireless network operator
based on the provided coverage as well as their sensitivity to
it and the subscription fee. Assume that user v subscribed to
operator i ∈ {�, s}. Then, we model the payoff of user v as
a function of the coverage provided by network operator Qi,
the subscription fee of operator Pi, and a user type parameter
av that characterizes its sensitivity to the provided coverage.
For any user v the payoff under operator i is:

ui
v = av · Qi − Pi. (3)

A user v subscribes to an operator if its payoff using that
operator is greater than zero, i.e., ui

v > 0. Note that we
consider a payoff function uv that depends linearly on the
available coverage. For instance, the users with low av require
high Qi to subscribe to operator i. A fraction of users with
very small av will refrain from subscribing to any operator,
because they are not satisfied with the available coverage. We
discuss the extension of the model to generic concave payoff
functions in Section IX. We make the following assumption
on the distribution of av:

Assumption 1: av is uniformly distributed in [α, β], where
α ≥ 0 (Fig. 1(b)) and this distribution is known to the
operators.

We can then define two types of distributions:

Definition 3: The distribution of user type av is called
a narrow distribution if β ≤ 2α and a wide distribution if
β > 2α.

Note that we assume a large population of users (N is very
large). As a result, the fraction of users – with a sensitivity
towards coverage that is larger than the given value of x ∈
[α, β] – can be calculated by β−x

β−α .

III. MAIN RESULTS AND CONTRIBUTIONS

The model presented in the previous section is evaluated
in two scenarios: (1) a monopoly, in which a unique operator
offers the wireless access, and (2) a duopoly, in which both
operators compete for subscribers. In the rest of the paper, we
obtain the pricing strategies that maximize the payoff of the
operators in both settings.

We first show that the strategy maximizing the LBO revenue
in a monopoly depends on the spread of the distribution
of user types. For wide distributions of user type, the LBO
maximizes its payoff by setting a high subscription fee such
that only users with a high user type av subscribe. In the case
of a narrow distribution of user types, the LBO should set a
subscription fee such that all users subscribe to its service.



The payoff achieved with the wide distribution is higher than
that achieved with the narrow distribution.

Next, we analyze the dynamics of the SCO in a monopoly;
we consider two pricing strategies: static and dynamic pricing.
We derive the equilibrium points of the SCO coverage with
both pricing strategies and determine the price that achieves
the maximal SCO payoff. We observe that the SCO payoff in a
monopoly is not only affected by the distribution of user types,
but also by its initial provided coverage. We also observe that
in the dynamic pricing strategy, the coverage Qs of the social
community directly affects the subscription fee. We conclude
that the SCO should first bootstrap its network with low prices
to reach a fair coverage, before adjusting its price to maximize
its revenue. This conclusion nicely matches the behavior of
real wireless social communities [4]. Finally, if the distribution
of user types is narrow, then the SCO coverage at optimal point
can converge to 1, whereas for a wide user type distribution,
it is less than 1. However, the achieved payoff is larger for the
wide user type distribution.

We finally consider the co-existence of a LBO and a SCO
and compute their respective best responses with a game-
theoretic approach. The competition ends up in two scenarios
depending again on the distribution of user types: (1) if
β ≥ 3

2α, then there is a Nash equilibrium in which both
operators have subscribers, else (2) if β < 3

2α, then there
is no Nash equilibrium for the game. A Nash equilibrium
strategy profile results in lower subscription fees and more
subscribers than monopoly scenario. We finally show that
wireless operators do not have an economic incentive to deploy
both a social community and a licensed band wireless access.

IV. REVENUE ANALYSIS OF A LICENSED BAND OPERATOR

In this section, we assume that only the LBO provides wire-
less data access in the service area. We derive the final fraction
of users n� who subscribe to the LBO. Given Assumption 1,
one can easily obtain n� by

n� =
1

β − α
(β − max{α, P�}) (4)

The LBO calculates its payoff by substituting (4) into (1):

u� =
N

β − α
(β − max{α, P�}) · P� − c� (5)

The following lemma shows the optimal price of LBO.

Lemma 1: The optimal subscription fee of the LBO is:

P opt
� = max{α,

β

2
} (6)

Proof: The proof is straightforward by taking the deriva-
tive of (5) with respect to P� and imposing it equal to 0.

At this point, we emphasize by the following two corollaries
that the solutions for the optimal prices and payoffs depend
on the distribution of user types defined by Definition 3.

Corollary 1: Given a narrow distribution of user types, the
optimal price of LBO is P opt

� = α and its corresponding
payoff and fraction of subscribed users are uopt

� = Nα − c�

and nopt
� = 1, respectively.

Corollary 2: Given a wide distribution of user types, the
optimal price of LBO is P opt

� = β
2 and its corresponding

payoff and fraction of subscribed users are uopt
� = N

β−α · β
2

4 −c�

and nopt
� = 1

2 · β
β−α , respectively.

The above corollaries show that the maximum payoff de-
pends on the distribution of user types. We observe that the
optimal payoff of the LBO for a wide distribution of user
types is always larger than that of narrow distribution. The
calculated nopt

� in Corollary 2 also shows that the LBO may
ignore a subset of users (up to half of the users), in order to
maximize its payoff.

V. DYNAMICS OF A SOCIAL COMMUNITY OPERATOR

In this section, we assume that the SCO is the only wireless
access provider and we study the evolution of its network. We
assume that user v will subscribe to the wireless access at
time t if and only if us

v is strictly greater than zero for a given
coverage Qs[t]. Similar to the LBO we calculate the fraction
of subscribed users, as well as the achieved coverage of the
SCO at time t by,

Qs[t] = ns[t] =
1

β − α
(β − max{α,

Ps

Qs[t − 1]
}) (7)

The following two lemmas clarify the boundary conditions
of Equation (7) for the number of subscribers and provided
coverage. The proofs are straightforward considering Equa-
tion (7).

Lemma 2: For all t > 0, if Qs[t − 1] = 0 then Qs[t] = 0
and the SCO never forms.

Lemma 3: For all t > 0, if Ps

Qs[t−1] < α then Qs[t] = 1
and all users subscribe to SCO at time t.

Corollary 3: For all t > 0, if Ps = 0 then Qs[t + 1] =
ns[t + 1] = 1.

If the condition of Lemma 3 does not hold, we denote the
difference in term of coverage between two time steps t and
t − 1, by ∆Qs and express it as follow using Equation (7):

∆Qs = Qs[t] − Qs[t − 1]

= −(β−α)Q2
s[t−1]+β·Qs[t−1]−Ps

(β−α)Qs[t−1] , (8)

where positive and negative values of ∆Qs express the im-
provement and degradation of the provided coverage of SCO
at time t, respectively. We also define the equilibrium of SCO
as follow:

Definition 4: For given values of Ps, α, β, and Qs[t − 1]
the SCO is in an equilibrium point Qeq

s , if ∆Qs = 0.

In the following analysis, we are interested in calculating the
equilibrium points of the SCO, i.e., where both the coverage
and the fraction of subscribed users stabilize. We are also
interested in determining the type of convergence to the
equilibrium points, i.e., decreasing or increasing. We will show
that the convergence of the social community depends on the
values of Ps, α, β, and the initial coverage of SCO. Similar
to LBO, we obtain different solutions for various distributions
of user types.



A. Dynamics of SCO under Static Price

In this section, we assume that the SCO applies a static
pricing strategy (Definition 1). Assume for example that the
coverage value Qs[t] is evaluated each month. It is reasonable
to assume that the SCO keeps its price fixed for a longer time
period to preserve the clarity of pricing for the users. We study
the benefits of dynamic pricing strategies in Section V-C. The
following lemmas show the equilibrium points of SCO under
static price strategy. The proofs are presented in Appendix A.

Lemma 4: For the narrow distribution of user types, there
exist three equilibrium points: Qeq

s = {0, Qs,1, 1}, where

Qs,1 =
β − √

β2 − 4(β − α)Ps

2(β − α)
(9)

Lemma 5: For the wide distribution of user types, there
exist four equilibrium points: Qeq

s = {0, Qs,1, Qs,2, 1}, where

Qs,2 =
β +

√
β2 − 4(β − α)Ps

2(β − α)
(10)

The following lemmas show the type of convergence of
SCO to the equilibrium points. The proofs are provided in
Appendix A.

Lemma 6: Assume that the price of SCO is selected such
that Ps ≤ α. For any distribution of user types, if Qs[t−1] <
Qs,1 then limt→∞ Qs[t] = 0, otherwise limt→∞ Qs[t] = 1.

Lemma 7: For narrow distribution of user types, if Ps > α
and for any given Qs[t − 1] then limt→∞ Qs[t] = 0.

Fig. 2 (a) and Fig. 3 (a) illustrate the dynamics of SCO
for Lemma 6. Fig. 2 (b) illustrates the dynamics of SCO in
Lemma 7.

1s,1

Q [t−1]sQ [t−1]s

Q [t−1]s

Q
(a)

0

Q
(b)

10

Q

Fig. 2. Dynamics of the SCO for a narrow distribution of user types: (a)
0 < Ps ≤ α, (b) Ps > α.

Lemma 8: For wide distribution of user types, if α < Ps <
β2

4(β−α) and Qs[t− 1] < Qs,1 then limt→∞ Qs[t] = 0. If α <

Ps < β2

4(β−α) and Qs[t−1] > Qs,1 then limt→∞ Qs[t] = Qs,2.

Lemma 9: For wide distribution of user types, if Ps =
β2

4(β−α) and Qs[t − 1] < Qs,1 then limt→∞ Qs[t] = 0. For
the same price if Qs[t − 1] > Qs,1 then limt→∞ Qs[t] =
Qs,1 = Qs,2 = β

2(β−α) .

Lemma 10: For wide distribution of user types, if Ps >
β2

4(β−α) , for any given Qs[t − 1] then limt→∞ Qs[t] = 0.

Fig. 3 illustrates the dynamics of SCO for Lemma 8, 9, and
10. The following lemma shows the monotonous convergence
of SCO coverage. The proof is in Appendix B.

Lemma 11: In Lemma 8 and 9, Qs converges monotoni-
cally to Qs,2.
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Fig. 3. Dynamics of SCO for a wide distribution of user types: (a) 0 <

Ps ≤ α, (b) α < Ps < β2

4(β−α)
, (c) Ps = β2

4(β−α)
, (d) Ps > β2

4(β−α)
.

Corollary 4: For any given Ps > 0, α, β, and time t
we observe that if the price selected by SCO is such that
Qs[t − 1] is less than Qs,1, then the SCO can never increase
its coverage and consequently, the proportion of subscribers
and its revenue. In this case limt→∞ Qs[t] = 0.

B. Optimal Static Price

Considering the dynamics of SCO under static price, here
we derive the optimal static price that maximizes the payoff
of the SCO.

Theorem 1: For the narrow distribution of user types and
with a given initial coverage Qs[0], the best value of Ps that
maximizes the SCO payoff is Ps = Qs[0]·(β−(β−α)·Qs[0]).

Proof: As shown in Lemma 6 and 7, the SCO can increase
its coverage if and only if Ps ≤ α. The upper limit of the
convergence is then 1 (as illustrated in Fig. 2(a)). According
to Corollary 4 and in order to increase the coverage, the SCO
should select a price such that Qs,1 < Qs[0]:

Qs,1 =
β − √

β2 − 4(β − α)Ps

2(β − α)
= Qs[0] − ε (11)

where ε > 0 is a small positive value. From (11), we can
express the value of Ps as, Ps = (Qs[0] − ε) · (β − (β − α) ·
(Qs[0] − ε)), and for ε → 0,

Ps → Qs[0] · (β − (β − α) · Qs[0]) (12)

The above price is always less than α for all Qs[0] ∈
[0, 1], hence it corresponds to convergence type presented in
Lemma 6. The final fraction of subscribed users is ns = 1 and
the corresponding payoff is:

us = N ·ns ·Ps−cs = N ·Qs[0]·(β−(β−α)·Qs[0])−cs (13)

Theorem 2: For the wide distribution of user types and if
Qs[0] ≤ α

β−α the best value of Ps that maximizes the SCO
payoff is Ps = Qs[0] · (β − (β − α) · Qs[0]).



Proof: Having a closer look at the Qs,1 expression, we
notice that for values of Ps in [0, α], Qs,1 will be in [0, α

β−α ].
For any Ps bigger than α, Qs,1 will be always greater than

α
β−α . According to Corollary 4, the SCO should select a
price such that Qs[0] > Qs,1. Hence, as Qs[0] ≤ α

β−α the
price should be selected from (0, α] and the convergence
type corresponds to Lemma 6, similar to the narrow band
distribution of user types. Then, the optimal static price and
payoff function can be calculated by Equation (12) and (13).

Theorem 3: For the wide distribution of user types and if
Qs[0] > α

β−α , the optimal static price is P opt
s = α for 2α <

β ≤ 3α. If β > 3α the optimal price is P opt
s = 2

9
β2

(β−α) .

Proof: If α
β−α < Qs[0] < 1, the fraction of subscribed

users can either converge to 1 (Lemma 6) or monotonically
(Lemma 11) to Qs,2 (Lemma 8 and 9). We assume that the
SCO selects a static price such that the scenario corresponds
to the Lemma 8. In other words, the SCO selects a price in
(α, β2

4(β−α) ). Hence, the social community stabilizes in Qs,2:

us = N · Ps · Qs,2 − cs (14)

= N · Ps ·
(

β+
√

β2−4(β−α)Ps

2(β−α)

)
− cs

We then calculate P opt
s that maximizes the SCO’s payoff

function us by making the derivative of (14) with respect to
Ps and imposing it equal to zero.

∂us

∂Ps
= − NPs√

β2 − 4(β − α)Ps

+ N
β +

√
β2 − 4(β − α)Ps

2(β − α)
= 0

The optimal static price for this case is then:

P opt
s =

2
9

β2

(β − α)
(15)

For the price in (15), the following fraction of users subscribe
to the SCO:

nopt
s = Qs =

2
3

β

β − α
(16)

Finally, we have to take into account that the SCO does not
decrease its price below the lower bound of Ps

Qs[t] , i.e.,

Ps

Qs[t]
=

P opt
s

nopt
s

=
β

3
> α (17)

This means that the above optimal static price exists if and
only if β > 3α. Accordingly, we can distinguish two subcases:

• If 2α < β ≤ 3α, then the optimal price in (15) is smaller
than α. One can show that the payoff function us =
N · Ps · Qs,2 − cs is a concave function of Ps and it is
decreasing in the interval α < Ps < β2

4(β−α) . This results
in the optimal price P opt

s = α (i.e., Qs,2 = 1) and the
maximum payoff value uopt

s = Nα − cs.
• If β > 3α, then the solution in (15) defines the optimal

static price. Consequently, the fraction of subscribed users
is defined in (16). For these P opt

s and nopt
s values, the

optimal payoff of the SCO is uopt
s = N 4

27
β3

(β−α)2 − cs.

We have seen that the initial coverage Qs[0], and the
distribution of user types determine the range of optimal static
prices from which the SCO can select its price. However, when
the distribution of user type is wide enough (β > 3α) and
Qs[0] > α

β−α , the optimal price does not depend on the initial
coverage.

C. Dynamic Pricing

Let us now assume that the SCO adjusts its price Ps at
time t to follow the evolution of its network. The essential
difference between static and dynamic pricing is that with
dynamic pricing the SCO can maintain a lower price until
a desired coverage is reached and then fine-tune the price.
The price at each time instance t is a function of coverage at
time t − 1. As ∆Qs must be strictly positive, we derive the
following condition from Equation (8);

Ps[t] < −(β − α)Q2
s[t − 1] + βQs[t − 1] (18)

The right-hand side of (18) is always positive for all Qs ∈
(0, 1]. Thus, the SCO maintains the increase of the coverage
by selecting appropriate dynamic prices Ps[t] at time t, such
that,

Ps[t] = −(β − α)Q2
s[t − 1] + βQs[t − 1] − ε (19)

where ε is a small positive value. Similar to the static price
strategy, two main scenarios can be distinguished.

1) Narrow Distribution of User Types: For this type of
distribution, Ps[t] is increasing in [0, 1] and its maximum value
is α corresponding to Qs = 1. Hence, if SCO selects a price
Ps[t] at time t from Equation (19), the coverage of the SCO
converges to 1 and us = Nα − cs, according to Theorem 1.

2) Wide Distribution of User Types: For this type of dis-
tribution, the maximum value of Ps[t] is β2

4(β−α) at Qs =
β

2(β−α) < 1. In order to find the optimal price we write the
SCO payoff at time t as a function of Qs[t − 1], by using
Equation (19) when ε → 0:

us[t] = N(β − α)(β − (β − α)Qs[t − 1])Q2
s[t − 1] − cs (20)

Maximizing (20), we can obtain the best price and coverage
that maximizes the SCO payoff, i.e., Qopt

s = 2
3

β
β−α , P opt

s =
2
9

β2

β−α , and uopt
s = 4

27
β3

(β−α)2 − cs. According to Theorem 3

and considering the lower bound on Ps

Qs[t] , we conclude that
the maximum value exists if β > 3α. But if 2α < β < 3α,
the best price is P opt

s = α and coverage will converge to 1.

VI. COEXISTENCE OF A SCO AND A LBO

So far, we evaluated the SCO and LBO individually and
derived their optimal static and dynamic strategies in a
monopoly. In this section, we consider a duopoly in which
the simultaneous presence of the LBO and SCO can result
in a competition for subscribers. We first show the possible
outcomes of the duopoly. Then, we derive using a game-
theoretic model [6], [7], [13] the best pricing strategy for each
operator to maximize its payoff. We show that the existence of
a Nash equilibrium depends on the distribution of user types.



A. Interaction between LBO and SCO

We assume that the LBO provides full coverage service with
price P� while the SCO offers service with coverage Qs for
a given Ps. A user v subscribes to the social community if
its payoff with the SCO is positive and strictly greater than
its payoff with the LBO, i.e., us

v > ul
v > 0. We express this

inequality with respect to av to exhibit the set of user v that
will prefer subscribing to the SCO, for a given P�, Ps and Qs:

avQs − Ps > av − P�

av <
P� − Ps

1 − Qs
(21)

Let us define θ = P�−Ps

1−Qs
. The lower bound on av is obtained

similarly:

avQs − Ps > 0
av > Ps

Qs
(22)

Considering (21) and (22), three possible scenarios can be
distinguished by the following lemmas.

Lemma 12: For given values of Ps, Qs, and P�, if P� ∈
(0, Ps

Qs
], then θ ≤ Ps

Qs
and all mobile users subscribe to the

LBO.

Lemma 13: For given values of Ps, Qs, and P�, if P� ∈
( Ps

Qs
, β(1 − Qs) + Ps), then Ps

Qs
< θ < β and a user with

av ∈ ( Ps

Qs
, θ) subscribes to the SCO, whereas a user with

av ∈ [θ, β] subscribes to the LBO.

Lemma 14: For given values of Ps, Qs, and P�, if P� ∈
[β(1 − Qs) + Ps,∞), then θ ≥ β and all LBO mobile users
subscribe to the SCO.

v LBO  Subscribers

SCO  Subscribers

lP

1/(β−α)

P /Qsα β

av

θs

f(a )

Fig. 4. Uniform distribution of user types and a scenario in which both
operators have some subscribers (Lemma 13).

The above lemmas show all possible outcomes of the
coexistence of two operators. Fig. 4 illustrates the interaction
of operators under the conditions of Lemma 13. In the next
section, we model and evaluate the strategies of the operators
using a game-theoretic approach.

B. Game Model

We define a two-player non-cooperative pricing game G
with the operators as players. The strategy of operator σi = Pi,
i ∈ {�, s} determines its subscription fee. We call the set of
strategies of all players a strategy profile σ = {σ1, σ2} =
{P�, Ps}. The players share the same strategy set Σ = [0,∞).
Note that for a given strategy profile σ, one of the three
scenarios (described with Lemma 12, 13, and 14) may take

place. The Qs will be then equal to 0 or 1, or can be calculated
by solving the following equation:

Qs =
1

β − α
(θ − Ps

Qs
) (23)

In order to get an insight into the strategic behavior of the
operators, we apply the following game-theoretic concepts.
First, let us introduce the concept of best response. We can
write bri(σj), the best response of player i to the opponent’s
strategy σj as follows.

Definition 5: The best response of player i to the profile of
strategies σj is a strategy σi such that:

bri(σj) = arg max
σi∈Σ

ui(σi, σj) (24)

If two strategies are mutual best responses to each other, then
no player has any motivation to deviate from the given strategy
profile. To identify such strategy profiles in general, Nash
introduced the concept of Nash equilibrium [11]:

Definition 6: The pure-strategy profile σ∗ constitutes a
Nash equilibrium if, for each player i,

ui(σ∗
i , σ∗

j ) ≥ ui(σi, σ
∗
j ),∀σi ∈ Σ (25)

where σ∗
i and σ∗

j are the Nash equilibrium strategies of player
i and j, respectively.

In other words, in a Nash equilibrium, none of the players
can unilaterally change his strategy to increase his utility. In
the next section, we derive the best pricing strategies for both
operators.

C. LBO and SCO Pricing Strategy

When the two operators are competing for subscribers, the
fraction of users who stay with the LBO for a given Ps and
Qs is:

n� =




1
β−α (β − P�) if θ < Ps

Qs
1

β−α (β − θ) if Ps

Qs
< θ < β

0 if θ > β

(26)

Similarly the fraction of users in the SCO is:

ns = Qs =




0 if θ < Ps

Qs
1

β−α (θ − Ps

Qs
) if Ps

Qs
< θ < β

1
β−α (β − Ps

Qs
) if θ > β

(27)

If θ < Ps

Qs
, then the best response of the LBO can be calculated

in the same way as in the monopoly scenario (i.e., P opt
� in

Section IV), whereas the SCO’s payoff is zero. If θ > β the
best response of the SCO can be calculated as presented in
Section V, whereas the LBO’s payoff is zero. The following
theorem shows the best response of the operators for the given
values of Ps, P�, and Qs, when Ps

Qs
< θ < β.

Theorem 4: If Ps

Qs
< θ < β, the LBO’s and SCO’s best

responses are br�(Ps) = β(1−Qs)+Ps

2 and brs(P�) = P�Qs

2
respectively.



Proof: If Ps

Qs
< θ < β, the LBO’s payoff can be

calculated by:

u� =
N

β − α
(β − θ)P� − c� (28)

Maximizing (28) with respect to P� results in:

∂u�

∂P�
= N β(1−Qs)−2P�+Ps

(β−α)(1−Qs) = 0

We obtain the LBO’s best response:

br�(Ps) =
β(1 − Qs) + Ps

2
(29)

Similarly, the SCO’s payoff can be calculated by:

us =
N

β − α
(θ − Ps

Qs
)Ps − cs (30)

Maximizing (30) with respect to Ps:

∂us

∂Ps
= N

P�− 2Ps
Qs

(β−α)(1−Qs) = 0

We obtain the SCO’s best response:

brs(P�) =
P�Qs

2
(31)

We observe that br�(Ps) depends on the strategy of the social
community and its coverage. Similarly, brs(P�) depends on the
subscription fee of the LBO and on the offered coverage by the
SCO. Finally, the LBO’s and SCO’s payoff at the best response
are u�(br�(Ps)) = N (β(1−Qs)+Ps)2

4(β−α)(1−Qs) − c� and us(brs(P�)) =

N
P 2

� Qs

4(β−α)(1−Qs) − cs respectively. It is worth mentioning that
the calculated payoff at the best response strategies could be
negative, depending on the infrastructure cost cs and c�.

D. Existence of a Nash Equilibrium

When both operators use their best response strategies,
the system may converge to a Nash equilibrium, if it exists.
The following theorem gives the sufficient conditions for the
existence of the Nash equilibrium and its value.

Theorem 5: Game G has a Nash equilibrium if the distribu-
tion of user types is such that β ≥ 3

2α. The Nash equilibrium

strategy profile is then (P ∗
� , P ∗

s ) =
(

β
2 · 1−Q∗

s

1−Q∗
s
4

,
βQ∗

s

4 · 1−Q∗
s

1−Q∗
s
4

)
,

where Q∗
s = 2 −

√
4 − β

β−α . If the distribution of user types

is such that β < 3
2α, there is no Nash equilibrium.

Proof: The Nash equilibrium strategy profile can be
computed using the best response of both operators defined
in (29) and (31), i.e.,

P ∗
� = br�(brs(P�)) =

β

2
· 1 − Qs

1 − Qs

4

(32)

P ∗
s = brs(br�(Ps)) =

βQs

4
· 1 − Qs

1 − Qs

4

(33)

Using (27) for the given (P ∗
� , P ∗

s ), the coverage of the SCO
at Nash equilibrium point can be computed by solving the
following quadratic expression:

− (β − α)
4

Q∗
s
2 + (β − α)Q∗

s −
β

4
= 0 (34)

Equation (34) has two solutions: Q∗
s,1,2 = 2 ±

√
4 − β

β−α .
Because Q∗

s must belong to the interval [0, 1], the only

acceptable solution is Q∗
s,2 = 2 −

√
4 − β

β−α . The Nash
equilibrium profile exists (i.e., Q∗

s,2 is less than 1) if the
distribution of user types is such that β ≥ 3

2α. If β < 3
2α

there is no SCO coverage, Qs, which satisfies (34) for the
calculated Nash equilibrium (P ∗

� , P ∗
s ).

We do not evaluate the time needed to converge to the
Nash equilibrium, but it clearly depends on the original pricing
strategies and original offered coverage by the SCO.

As a numerical example, if α = 0 then Q∗
s,2 = 2 −√

3. In
other words, the coverage achieved by the social community
at the Nash equilibrium is about 27%. This coverage is much
lower than that achieved in the case of a monopoly (Equa-
tion (16)), i.e., Qopt

s = 66%. The SCO and LBO strategies
are P ∗

� = 2β −1+
√

3
2+

√
3

∼= 0.39β and P ∗
s = β −5+3

√
3

2+
√

3
∼= 0.05β.

The LBO price decreases from 0.5β (Equation (6)) to 0.39β.
Similarly, the SCO price at equilibrium point (i.e., 0.05β) is
much lower than that of the monopoly (Equation (15)), i.e.,
0.22β. However, the total number of users considering both
LBO and SCO subscribers is now equal to 87%. In summary,
as a consequence of competition, prices are lowered and more
users are served. This means that operators provide service to
more users at a lower price in Nash equilibrium point.

VII. RELATED WORK

Wireless community networks over unlicensed band have
been recently deployed by some ISPs such as Free [5] in
France or FON, a worldwide WiFi community operator funded
by Google and Skype [4]. A charging model for wireless
social community networks without a centralized authority is
proposed by Efstathiou et al. [2]. Their solution relies on reci-
procity among subscribers. Zemlianov and de Veciana evaluate
the cooperation between licensed band WAN and WLAN
service providers using a stochastic geometric model [14].
Using different classes of payoff functions, they focus on
the mobile user decision and show that the class of payoff
functions that are congestion dependent provide on average a
much better performance to users than the simple proximity-
based decision strategy.

Determining the price to charge for a product is an old prob-
lem [1], [8]. In the neoclassical period, the models assumed
perfect information about the market demand for a product,
i.e., the profit function was deterministic. For simplicity, we
take this approach in our paper. The duopoly scenario with
linear payoff functions has also been studied extensively [10],
[12]. To the best of our knowledge, we are the first to apply it
to the study of the coexistence of SCOs with traditional LBOs.



VIII. CONCLUSIONS

In this paper, we have studied how the evolution of social
community networks is conditioned by the initial provided
coverage, the subscription fee and user sensitivity to the
provided coverage. In a monopoly, we have identified the
optimal static and dynamic pricing strategies for the social
community. We have shown that the optimal static price of a
social community is a function of the initial provided coverage.
We have concluded that a SCO should select a low price at
first, to reach a fair coverage while working at a loss (i.e.,
us < 0) before setting its optimal price. This strategy nicely
matches the behavior of wireless social communities. Our
model can help wireless social communities to determine when
the initial coverage is sufficient and then determine which price
to set. The model distinguishes pricing strategies for wide and
narrow distributions of user type preferences.

Subsequently, we have studied the coexistence of the SCO
and the LBO. We have identified both the scenarios in which
the SCO or LBO can eliminate each others, and in which they
can coexist. We have found that for a sufficient distribution
of user types β ≥ 3

2α, a unique Nash Equilibrium exists. We
have also given the prices that the operators should use to be at
the identified Nash Equilibrium. However, the model suffers
from stringent assumptions such as linear payoff functions,
linear dependence between the coverage and number of users,
and the distribution of user preferences. If the results cannot
be applied directly in practice, they still provide strong cues
about the SCOs potential as a wireless operator and its effects
over the mobile wireless market.

IX. OPEN QUESTIONS AND FUTURE WORK

The model presented in this paper can be extended to
consider various issues:
• Multiple Operators: In this paper, we assume that only

one LBO and SCO provide wireless access. In reality, many
centralized networks exist and concurrent social community
networks might emerge. The presence of several social com-
munities could decrease their competitiveness with respect
to LBOs. Furthermore, we assume that the ISPs providing
wired access allow the social communities to share this service
among the users. The competition or coalition between ISPs
and SCOs could influence the outcome of the study [5]. For
example, an ISP can cooperate with a SCO to provide a full
coverage solution comparable to that of a LBO.
• Distribution of User Types: We have seen that the solution

depends on the distribution of the user types. We assume that
this distribution is uniform and known to the operators. If this
distribution is not known to the operators, then they have to
base their decisions on incomplete information obtained from
past behavior of users. The coexistence of the two operators
with incomplete information can be studied in a Bayesian
game. We also have to mention that we assume a continuous
distribution of user types in the interval [α, β]. This enables
the social community to maintain continuous growth. If the
distribution of user types is not continuous, then the growth
of the social community might be interrupted.

• QoS of the Social Community: We assume that the users
choose their operator solely based on the provided coverage
and that the coverage grows linearly with the number of
users (Fig. 1). It is reasonable to consider that the users
also take other aspects into account (e.g., throughput) when
choosing their operator. Furthermore, the coverage of the
social community depends on the location of the APs deployed
by the users. Due to the lack of network planning, this
coverage might be uneven, irrespectively of the high number
of subscribers. The QoS is also affected by the density of
APs; interference due to high density of APs can reduce the
efficiency of the social community network. We extended our
model for QoS functions that include the offered throughput
by the operators and the interference generated by the AP of
other users. Unfortunately, we cannot present our preliminary
results in this paper due to the lack of space.
• Costs: We can further extend our model by considering

the switching cost for users. Typically, users have to suffer
a penalty if they want to switch between operators. This
cost makes the switching more difficult and might result in
a lock-in effect, where some users stay with their current
operator, even if they could enjoy a better service with another
operator. Furthermore, we assume that the operators have
a fixed network infrastructure cost. This might be the case
for the LBO who has to maintain the same infrastructure
independently of the number of its subscribers. The cost of
the SCO, however, might depend on the number of subscribers
because it has to provide the APs for new users.
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APPENDIX A
PROOF OF LEMMAS 4 TO 10

Given that β > α, the denominator of (8) is always positive,
hence we focus on the numerator. Let’s assume that E =
−(β − α)Q2

s[t − 1] + β · Qs[t − 1] − Ps.
The roots of the numerator E (i.e., ∆Qs = 0) are the

equilibrium points of SCO as defined in Definition 4. Note



that E is a quadratic form equation that has at maximum two
roots and one global maximum point. We call these roots, Qs,1

and Qs,2, and they can be written by the following expression:

Qs,1,2 =
β ± √

β2 − 4(β − α)Ps

2(β − α)
(35)

We are interested in determining these roots (i.e., if they occur
in [0, 1]) for values of α, β, and Ps. Let us first study the
behavior of E by taking its derivation and calculating its global
maximum point and the corresponding coverage, i.e.,

∂E

∂Qs
= −2(β − α)Qs + β = 0 (36)

So E has a global maximum point equal to β2

4(β−α) − Ps at

Qs =
β

2(β − α)
(37)

Note that, Qs is less than 1 for β > 2α and it is greater or
equal to 1 for β ≤ 2α. Considering this we provide the proofs
of Lemmas for narrow and wide distribution of user types in
the following parts.

If the distribution of user types is such that β ≤ 2α, ∂E
∂Qs

is
always positive for all Qs ∈ [0, 1] and E is always increasing
in this interval. Note that the values of E at 0 and 1 are −Ps

and α − Ps respectively. Hence, if α − Ps > 0, the first root
(i.e., Qs,1) is in [0, 1] and the second one (i.e., Qs,2) is greater
than one. On the other hand, if α−Ps < 0, then there is no root
in [0, 1] and ∆Qs is always negative (i.e., proof of Lemma 4).

Having the above calculation, we can now distinguish
two scenarios for the convergence of the social community
coverage depending on the values of Ps, α, β, and initial
coverage, Qs[t − 1], when β ≤ 2α as presented in Fig. 2.
(a) If 0 < Ps ≤ α, then 0 < Qs,1 < 1 and Qs,2 > 1. Two

subcases can be distinguished as follows (i.e., proof of
Lemma 6):

– If Qs[t − 1] < Qs,1, then ∆Qs < 0 and
limt→∞ Qs[t] = 0.

– If Qs[t − 1] > Qs,1, then ∆Qs > 0 and
limt→∞ Qs[t] = 1.

(b) If Ps > α, then there is no convergence point in
[0, 1], ∆Qs < 0, and limt→∞ Qs[t] = 0 (i.e., proof of
Lemma 7).

For a wide distribution of user types, we conclude that 0 <
Qs < 1. This means that the global maximum point of E
occurs in [0, 1]. Hence, the SCO can have four equilibrium
points in [0, 1] (i.e., proof of Lemma 5). Note that the values
of E at 0, 1, and the global maximum point are −Ps, α−Ps,
and β2

4(β−α) −Ps, respectively and β2

4(β−α) > α. Similar to the

previous case, considering the sign of α−Ps and β2

4(β−α) −Ps,
we can now distinguish four scenarios for the convergence of
the social community coverage as presented in Fig. 3.
(a) If 0 < Ps ≤ α, then 0 < Qs,1 < 1 and Qs,2 ≥ 1. It is

worth mentioning that as β > 2α then Qs,1 ∈ [0, α
β−α ].

We can thus distinguish these subcases (i.e., proof of
Lemma 6):

– If Qs[t − 1] < Qs,1, then ∆Qs is negative and
limt→∞ Qs[t] = 0.

– If Qs[t − 1] = Qs,1 then Qs[t] = Qs,1 for any t.
– If Qs[t − 1] > Qs,1, then ∆Qs is positive and

limt→∞ Qs[t] = 1.

(b) If α < Ps < β2

4(β−α) , then 0 < Qs,1 < Qs,2 ≤ 1 and the
convergence dynamics depends again on Qs[t − 1] (i.e.,
proof of Lemma 8).

– If Qs[t − 1] < Qs,1, then ∆Qs < 0 and
limt→∞ Qs[t] = 0.

– If Qs[t − 1] = Qs,1 then Qs[t] = Qs,1 for any t.
– If Qs,1 < Qs[t − 1] < Qs,2, then ∆Qs > 0 and

limt→∞ Qs[t] = Qs,2.
– If Qs[t−1] = Qs,2 then ∆Qs = 0 and Qs[t] = Qs,2

for any t.
– If Qs[t − 1] > Qs,2 then limt→∞ Qs[t] = Qs,2.

(c) If Ps = β2

4(β−α) then ∆Qs ≤ 0 and Qs[t] is always non-

increasing. Furthermore, Qs,2 = Qs,1 = β
2(β−α) < 1. In

summary, these subcases exist (i.e., proof of Lemma 9):

– If Qs[t − 1] < Qs,1 = Qs,2 then ∆Qs < 0 and
limt→∞ Qs[t] = 0.

– If Qs[t − 1] = Qs,1 = Qs,2 then ∆Qs = 0 and
Qs[t] = Qs,1 = Qs,2 = β

2(β−α) for any t.
– If Qs[t − 1] > Qs,1 = Qs,2 then limt→∞ Qs[t] =

Qs,1 = Qs,2 = β
2(β−α) .

(d) Finally, if Ps > β2

4(β−α) , then Qs,1 and Qs,2 do not exist,
∆Qs is always negative and thus limt→∞ Qs[t] = 0 for
all Qs[t − 1] (i.e., proof of Lemma 10).

APPENDIX B
PROOF OF LEMMA 11

We consider the case (b) in Fig. 3, where α
β−α < Qs[0] < 1

and Ps is selected such that Qs increases and converges to
Qs,2. We prove that Qs will never take a value greater than
Qs,2 during the convergence process. If Ps is selected such
that for a given Qs[t − 1], Qs[t] > Qs,2 then we can write:

1
β − α

(β − Ps

Qs[t − 1]
) >

β +
√

β2 + 4(β − α)Ps

2(β − α)
Ps > βQs[t − 1] − (β − α)Q2

s[t − 1]

This means that if Qs[t] > Qs,2, Ps should be greater
than βQs[t − 1] − (β − α)Q2

s[t − 1]. Let us assume that
Ps = βQs[t−1]−(β−α)Q2

s[t−1]+ε, where ε is a small pos-
itive number. We can calculate ∆Qs using Equation (8), i.e.,
∆Qs = −ε

(β−α)Qs[t−1] , which is always negative. Thus Qs[t]
could not be greater than Qs,2 if Qs[t] is increasing. Similar
proofs for convergence from right side, as well as monotonous
convergence to Qs,1 in Lemma 9, can be presented.


