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Abstract. The aim of this paper is to overcome the well-known lack of p-
optimality in hp-version discontinuous Galerkin (DG) discretizations for the
numerical approximation of linear elliptic problems. For this purpose, we shall
present and analyze a class of hp-DG methods that is closely related to other
DG schemes, however, combines both p-optimal jump penalty as well as lifting
stabilization. We will prove that the resulting error estimates are optimal with
respect to both the local element sizes and polynomial degrees.

1. Introduction

In this paper, we will propose and analyze a class of hp-version discontinuous
Galerkin (DG) methods for the numerical approximation of linear elliptic partial
differential equations. The focus of this work is to prove that the methods under
consideration are stable and converge optimally in both the local element sizes as
well as the local polynomial degrees.

We will consider the model problem

−∆u = f in Ω(1)

u = 0 on ∂Ω,(2)

with a unique solution u ∈ H1
0 (Ω), where Ω ⊂ R

2 is an open bounded Lipschitz
domain, and f ∈ L2(Ω). Here and in the sequel, we shall use the following standard
notation: for a domain D ⊂ R

n (n = 1 or n = 2), we denote by L2(D) the space
of all square-integrable functions on D. Furthermore, for an integer k ∈ N, Hk(D)
signifies the usual Sobolev space of order k on D, with norm ‖ · ‖k,D and semi-
norm | · |k,D. The space H1

0 (D) is defined as the subspace of H1(D) with zero trace
on ∂Ω.

The numerical approximation of second-order linear elliptic PDEs by DG meth-
ods was first studied in [1, 3, 9, 15, 23]. Later, additional DG formulations were
proposed in the literature; see, e.g., [2] for an overview and a unified analysis. In
recent years, some of the existent DG methods have been analyzed further within
an hp-context; see, e.g., [13, 16, 20, 21, 25] (cf. also [11, 12] for a posteriori results
and hp-adaptive DG schemes). Here, the possibility of dealing with discontinuous
finite element functions of possibly varying local approximation orders (even on
irregular meshes containing hanging nodes), results in a notable degree of flexibil-
ity and computational convenience. For example, for smooth problems with local
singularities, the hp-spaces can be quite effectively adjusted to the behavior of the
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solution, and high-order algebraic (or even exponential) convergence rates can be
attained; see, e.g., [24, 25].

The presence of discontinuous functions in DG finite element spaces is typically
accounted for by introducing suitable numerical fluxes in the formulations of DG
schemes. These are quantities which are defined on the boundaries of the elements
in the finite element mesh and supply the weak continuity of the numerical solution.
In the analysis of DG schemes, the numerical fluxes are usually handled by use of
so-called inverse estimates. For example, such bounds make it possible to control
the L2-norm of the trace of a polynomial on the boundary of an element by the L2-
norm of the polynomial in the interior of the element. Unfortunately, such inverse
bounds often suffer from a suboptimality with respect to the polynomial degree.
Consequently, the application of inverse estimates in the analysis of the numerical
fluxes appearing in DG schemes results in suboptimal effects. For instance, mild
over-stabilization with respect to the (local) polynomial degrees becomes necessary
in order to prove the stability of hp-DG schemes. This in turn leads to p-suboptimal
error estimates. We remark that, for interior penalty DG methods, this subopti-
mality can be overcome, provided that the exact solution u of (1)–(2) belongs to
an augmented Sobolev space; cf. [10].

The aim of this paper is to present a new class of DG methods, as well as an
appropriate analysis which does not rely on inverse estimates. To this end, we will
consider a DG formulation that is closely related to the well-known interior penalty
(IP) DG methods (cf., e.g., [13, 25]) and the hp-LDG method [16], and features hp-
optimal stabilization of the jump penalty terms. In order to avoid the necessity of
applying inverse estimates, some of the numerical flux terms will be replaced by
suitable lifting operators (see, e.g., [2, 4, 20]) in the analysis. Moreover, we note
that, in addition to the penalty jump stabilization in the classical IP methods, the
DG forms in this paper include a further term which penalizes the lifting operators.
We will prove that the new schemes are coercive and continuous (with explicit
constants that are independent of h and of p) and converge optimally with respect
to h and p.

The paper is organized as follows: In Section 2, we will present the new class
of hp-DG methods in this paper. Furthermore, the hp-optimal error analysis will
follow in Section 3. In addition, Section 4 contains a number of numerical results il-
lustrating the theoretical results in this work. Finally, we shall add some concluding
remarks in Section 5.

2. hp-Discontinuous Galerkin FEM

In this section, we shall present a class of hp-version discontinuous Galerkin
(DG) finite element methods for the discretization of (1)–(2). Furthermore, we
will discuss the well-posedness of these schemes, and prove some standard stability
properties with respect to a suitable DG energy norm.

2.1. Meshes, Spaces, and Element Edge Operators. Let us first consider
shape-regular meshes Th that partition Ω ⊂ R

2 into open disjoint parallelograms
{K}K∈Th

, i.e. Ω =
⋃

K∈Th
K. Each element K ∈ Th can then be affinely mapped

onto the reference square Ŝ = (−1, 1)2. We allow the meshes to be 1-irregular, i.e.,
elements may contain hanging nodes. By hK , we denote the diameter of an element
K ∈ Th. We assume that these quantities are of bounded variation, i.e., there is a
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constant ρ1 ≥ 1 such that

(3) ρ−1
1 ≤ hK♯/hK♭

≤ ρ1,

whenever K♯ and K♭ share a common edge. We store the elemental diameters in a
vector h given by h = {hK : K ∈ Th}. Similarly, to each each element K ∈ Th we
assign a polynomial degree pK ≥ 1 and define the degree vector p = {pK : K ∈ Th}.
We suppose that p is also of bounded variation, i.e., there is a constant ρ2 ≥ 1 such
that

(4) ρ−1
2 ≤ pK♯/pK♭

≤ ρ2,

whenever K♯ and K♭ share a common edge.
Moreover, we shall define some suitable element edge operators that are required

for the DG method. To this end, we denote by EI the set of all interior edges of
the partition Th of Ω, and by EB the set of all boundary edges of Th. In addition,
let E = EI ∪ EB. The boundary ∂K of an element K and the sets ∂K \ ∂Ω and
∂K ∩ ∂Ω will be identified in a natural way with the corresponding subsets of E .

Let K♯ and K♭ be two adjacent elements of Th, and x an arbitrary point on the
interior edge e ∈ EI given by e = ∂K♯ ∩ ∂K♭. Furthermore, let v and q be scalar-
and vector-valued functions, respectively, that are sufficiently smooth inside each
element K♯/♭. By (v♯/♭, q♯/♭), we denote the traces of (v, q) on e taken from within
the interior of K♯/♭, respectively. Then, the averages of v and q at x ∈ e are given
by

〈〈v〉〉 =
1

2
(v♯ + v♭), 〈〈q〉〉 =

1

2
(q♯ + q♭),

respectively. Similarly, the jumps of v and q at x ∈ e are given by

[[v]] = v♯ nK♯
+ v♭ nK♭

, [[q]] = q♯ · nK♯
+ q♭ · nK♭

,

respectively, where we denote by nK♯/♭
the unit outward normal vector on ∂K♯/♭,

respectively. On a boundary edge e ∈ EB, we set 〈〈v〉〉 = v, 〈〈q〉〉 = q, and [[v]] = vn,
[[q]] = q · n, with n denoting the unit outward normal vector on the boundary ∂Ω.

Given a finite element mesh Th and an associated polynomial degree vector
p = (pK)K∈Th

, with pK ≥ 1 for all K ∈ Th, consider the hp-discretization space

(5) V (Th, p) = {v ∈ L2(Ω) : v|K ∈ QpK (K), K ∈ Th},
for the DG method. Here, for K ∈ Th, QpK (K) is the space of all polynomials of
degree at most pK in each variable on K.

In addition, consider the space

Hs(Ω, Th) =
{
u ∈ L2(Ω) : u|K ∈ HsK (K), K ∈ Th

}
.

Here, s = (sK)K∈Th
, sK ≥ 1 for all K ∈ Th, is an integer vector. Let 1 be the

vector containing only ones. Then, we shall introduce the lifting operator

L : H1(Ω, Th) → V (Th, p)2,

defined by

(6)

∫

Ω

L(w) · φdx =

∫

E
[[w]] · 〈〈φ〉〉ds ∀φ ∈ V (Th, p)2;

see, e.g., [2, 4, 20].
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2.2. hp-DG Discretization. We will now develop the hp-DG methods to be con-
sidered in this paper. To this end, we multiply the equation (1) by a test function
v ∈ V (Th, p) and integrate by parts. Then, applying standard manipulations and
using that [[∇u]] = 0 on all internal edges (since ∆u ∈ L2(Ω)), we obtain

∫

Ω

∇u · ∇hv dx −
∫

E
〈〈∇u〉〉[[v]] ds =

∫

Ω

fv dx.

Here, ∇h is the elementwise gradient. Furthermore, because u ∈ H1
0 (Ω), there

holds

[[u]] = 0 on E and L(u) = 0 on Ω.

Hence, for any constants θ, γ, δ, there holds
∫

Ω

∇u · ∇hv dx −
∫

E
〈〈∇u〉〉 · [[v]] ds − θ

∫

E
[[u]] · 〈〈∇hv〉〉ds

+ δ

∫

Ω

L(u) · L(v) dx + γ

∫

E
σ[[u]] · [[v]] ds =

∫

Ω

fv dx

(7)

for any v ∈ V (Th, p), where

(8) σ =
p

h

is defined through the two functions h ∈ L∞(E) and p ∈ L∞(E) given by

h(x) =

{
min(hK♯

, hK♭
) for x ∈ ∂K♯ ∩ ∂K♭ ∈ EI

hK for x ∈ ∂K ∩ ∂Ω ∈ EB
,

p(x) =

{
max(pK♯

, pK♭
) for x ∈ ∂K♯ ∩ ∂K♭ ∈ EI

pK for x ∈ ∂K ∩ ∂Ω ∈ EB
.

An hp-DG discretization for (1)–(2) is now obtained by restricting (7) to the hp-
space V (Th, p). More precisely, for w, v ∈ V (Th, p), let

aγ,δ,θ
DG (w, v) =

∫

Ω

∇hw · ∇hv dx −
∫

E
〈〈∇hw〉〉 · [[v]] ds − θ

∫

E
[[w]] · 〈〈∇hv〉〉ds

+ δ

∫

Ω

L(w) · L(v) dx + γ

∫

E
σ[[w]] · [[v]] ds,

(9)

and

(10) ℓDG(v) =

∫

Ω

fv dx,

and define an approximate solution uDG ∈ V (Th, p) of (1)–(2) by

(11) aγ,δ,θ
DG (uDG, v) = ℓDG(v) ∀v ∈ V (Th, p).

We note that, recalling the definition (6) of the lifting operator L, there holds

aγ,δ,θ
DG (w, v) =

∫

Ω

∇hw · ∇hv dx −
∫

Ω

∇hw · L(v) dx − θ

∫

Ω

L(w) · ∇hv dx

+ δ

∫

Ω

L(w) · L(v) dx + γ

∫

E
σ[[w]] · [[v]] ds

(12)

for all w, v ∈ V (Th, p).
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Remark 2.1. We note that the method proposed in this paper is closely related to
other DG schemes in the literature; see, e.g., [2]. In the following, we shall display

how different choices of the parameters γ, δ and θ appearing in the form aγ,δ,θ
DG

from (12) result in previously known DG bilinear forms (considered in their hp-
version primal form):

stability parameters DG method

γ = 0 δ > 0 Bassi-Rebay [4]
θ = 1 γ = O(p) δ = 0 SIPG [1, 9, 25]

γ = O(p) δ = 1 LDG (with β = 0 in [2]) [7, 16]

γ = 0 δ = 0 Baumann-Oden [5, 14, 19]
θ = −1

γ = O(p) δ = 0 NIPG [13, 19, 25]

θ = 0 γ = O(p) δ = 0 IIPG [8]

Furthermore, we remark that, although hp-version analyses for most of the above
methods are available, the corresponding error estimates usually encounter a sub-
optimality with respect to p. This is mainly due to the fact that the parameter γ
in the jump stabilization terms of the DG forms is chosen of order p in order the
ensure the stability (i.e. coercivity) of the methods. In this paper, we will prove
that, choosing γ ∼ δ ∼ O(1) (and γ, δ > 0), the proposed DG method (11) is stable
and converges optimally in h and p.

We conclude this section by introducing an energy norm for the DG method (11):

(13) |||w|||2DG,γ,δ =

∫

Ω

|∇hw|2 dx + δ

∫

Ω

|L(w)|2 dx + γ

∫

E
σ|[[w]]|2 ds.

Henceforth, we shall always suppose that

(14) γ > 0, δ ≥ 0,

i.e., ||| · |||DG,γ,δ is indeed a norm.

2.3. Stability. The aim of this section is to discuss the stability and well-posedness

of the DG method (11). Particularly, we will prove that the bilinear form aγ,δ,θ
DG

from (12) is continuous and coercive on V (Th, p) × V (Th, p). We note that the
corresponding continuity and coercivity constants can be represented explicitly.

Proposition 2.2. Suppose that (14) is satisfied.

a) If δ > (1+θ)2

4 for θ 6= −1 and δ ≥ 0 for θ = −1, then the form aγ,δ,θ
DG is

coercive in the norm ||| · |||DG,γ,δ. More precisely, we have

aγ,δ,θ
DG (w, w) ≥ Ccoer|||w|||2DG,γ,δ ∀w ∈ V (Th, p),

where

Ccoer =

{
1 − |1+θ|

2
√

δ
for θ 6= −1

1 for θ = −1
.

b) If δ > 0, the form aγ,δ,θ
DG is continuous, i.e.,

∣∣∣aγ,δ,θ
DG (w, v)

∣∣∣ ≤
(

1 +
max(1, |θ|)√

δ

)
|||w|||DG,γ,δ|||v|||DG,γ,δ

for any w, v ∈ V (Th, p).
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Proof. Let w, v ∈ V (Th, p).

Proof of a): We use the representation (12) of the DG form aγ,δ,θ
DG . The case

θ = −1 follows directly from the definition of the norm ||| · |||DG,γ,δ. Hence, consider
θ 6= −1 and choose ε > 0. Then, using Young’s inequality,

(15) |ab| ≤ 1

2ε
a2 +

ε

2
b2, a, b ∈ R,

leads to

aγ,δ,θ
DG (w, w) ≥ ‖∇hw‖2

0,Ω − (1 + θ) ‖L(w)‖0,Ω ‖∇hw‖0,Ω

+ δ ‖L(w)‖2
0,Ω + γ

∥∥√σ[[w]]
∥∥2

0,E

≥
(
1 − ε

2

)
‖∇hw‖2

0,Ω +

(
1 − (1 + θ)2

2εδ

)
δ ‖L(w)‖2

0,Ω + γ
∥∥√σ[[w]]

∥∥2

0,E .

Then, with ε = |1+θ|√
δ

, it holds that

1 − ε

2
= 1 − (1 + θ)2

2εδ
= 1 − |1 + θ|

2
√

δ
,

and thus,

aγ,δ,θ
DG (w, w) ≥

(
1 − |1 + θ|

2
√

δ

)
|||w|||2DG,γ,δ.

We need the above constant to be positive, i.e., δ > (1+θ)2

4 .
Proof of b): Using a weighted Cauchy-Schwarz inequality, we obtain that

∣∣∣aγ,δ,θ
DG (w,v)

∣∣∣

≤
∫

Ω

|∇hw| |∇hv| dx +

∫

Ω

|∇hw||L(v)| dx + |θ|
∫

Ω

|L(w)| |∇hv| dx

+ δ

∫

Ω

|L(w)| |L(v)| dx + γ

∫

E
σ|[[w]]||[[v]]| ds

≤
((

1 +
1√
δ

)
‖∇hw‖2

0,Ω +

(
1 +

|θ|√
δ

)
δ ‖L(w)‖2

0,Ω + γ
∥∥√σ[[w]]

∥∥2

0,E

) 1
2

×
((

1 +
|θ|√

δ

)
‖∇hv‖2

0,Ω +

(
1 +

1√
δ

)
δ ‖L(v)‖2

0,Ω + γ
∥∥√σ[[v]]

∥∥2

0,E

) 1
2

≤
(

1 +
max(1, |θ|)√

δ

)
|||w|||DG,γ,δ|||v|||DG,γ,δ.

This completes the proof. �

Moreover, we shall discuss the continuity of the linear form ℓDG from (10) with
respect to the DG energy norm.

Proposition 2.3. The linear form ℓDG is continuous, i.e., there exists a con-
stant C > 0 independent of h and of p such that

(16) |ℓDG(v)| ≤ C ‖f‖0,Ω |||v|||DG,γ,δ

for all v ∈ V (Th, p).
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Proof. Eq. (1.8) in [6] (see also Theorem 6.2) implies that there exists a constant
C > 0 independent of h and p such that the following discrete Poincaré-Friedrichs
inequality is satisfied

‖w‖2
0,Ω ≤ C

(
‖∇hw‖2

0,Ω +

∫

EI
h
−1 |[[w]]|2 ds +

∫

∂Ω

|w|2 ds

)

for all w ∈ {v ∈ L2(Ω) : v|K ∈ H1(K) ∀K ∈ Th}. Therefore, we obtain

‖w‖0,Ω ≤ C|||w|||DG,γ,δ ∀w ∈ V (Th, p).

Hence, it follows that

|ℓDG(v)| ≤ ‖f‖0,Ω ‖v‖0,Ω ≤ C ‖f‖0,Ω |||v|||DG,γ,δ

for all v ∈ V (Th, p). �

The above results, Propositions 2.2–2.3, imply the well-posedness of the DG
discretization (11).

Theorem 2.4. The hp-DG method (11) has a unique solution uDG ∈ V (Th, p).
Furthermore, if the bound (16) in Proposition 2.3 holds, then we have

|||uDG|||DG,γ,δ ≤ C ‖f‖0,Ω ,

where C > 0 is a constant independent of h and of p.

3. hp-Error Analysis

The goal of this section is to show that the DG method (11) converges optimally
with respect to both the local element sizes h and the polynomial degrees p. To do
so, we shall briefly collect some hp-approximation results that will play an important
role in the subsequent error analysis. Furthermore, later on in this section, the main
result of this paper will be given.

3.1. hp-Approximations. The first of the following two lemmas shows that the el-
ementwise L2-projection on V (Th, p) remains optimal on the edges of affine quadri-
lateral elements (in the corresponding L2-norm). The second result is an optimal
(with respect to the H1-norm) conforming hp-interpolant in V (Th, p).

Lemma 3.1. Let K ∈ Th and suppose that u ∈ Hs(K) for some integer s ≥ 1.
Then, for 1 ≤ s̃ ≤ min(p + 1, s), and p ≥ 0, we have that

‖u − πpu‖0,∂K ≤ C

(
hK

p

)es− 1
2

|u|H es(K).

Here, C > 0 is a constant independent of hK and p, and πp : L2(K) → Qp(K) is
the L2-projection of degree p on K.

Proof. See [13, Lemma 3.9 and Remark 3.10]. �

Lemma 3.2. Given u ∈ Hs(Ω, Th)∩H2(Ω)∩H1
0 (Ω), then there exists a continuous

interpolant Pp(u) ∈ V (Th, p) ∩ H1
0 (Ω) of u such that

‖u − Pp(u)‖2
H1(Ω) ≤ C

∑

K∈Th

(
hK

pK

)2esK−2

|u|2
H esK (K)

,

for 2 ≤ s̃K ≤ min(pK + 1, sK), K ∈ Th. Here, C > 0 is a constant independent
of h and p.
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Proof. See, e.g., [22, Theorem 4.72 and Remark 4.73] �

3.2. hp-Optimal Error Estimates. Let us analyze the error

eDG = u − uDG,

of the DG method in the energy norm ||| · |||DG,γ,δ. Here, u is the exact solution
of (1)–(2), and uDG is the DG approximation from (11). We will proceed in a
similar way as in [13, 24], for example. More precisely, we split the DG error into
two parts,

eDG = η + ξ,

where η = u − Pp(u) and ξ = Pp(u) − uDG, and Pp(u) ∈ V (Th, p) ∩ H1
0 (Ω) is the

conforming hp-interpolant of u from Lemma 3.2. We note that η ∈ H1
0 (Ω) and

ξ ∈ V (Th, p). Then, applying the triangle inequality, there holds

(17) |||e|||DG,γ,δ ≤ |||η|||DG,γ,δ + |||ξ|||DG,γ,δ.

We first analyze the term |||ξ|||DG,γ,δ and aim at bounding it in terms of η; this
will make it possible to estimate the DG error by the interpolation error η only.
Due to the consistent construction of the DG method (11), Galerkin orthogonality

holds true. This and the coercivity of aγ,δ,θ
DG , Proposition 2.2, imply

(18) C|||ξ|||2DG,γ,δ ≤ aγ,δ,θ
DG (ξ, ξ) = aγ,δ,θ

DG (eDG − η, ξ) = −aγ,δ,θ
DG (η, ξ) ≤

∣∣∣aγ,δ,θ
DG (η, ξ)

∣∣∣ .

Because η ∈ H1
0 (Ω) we have that

(19) [[η]] = L(η) = 0 on E .

Hence, using the definition (9) of the bilinear form aγ,δ,θ
DG , results in

∣∣∣aγ,δ,θ
DG (η, ξ)

∣∣∣ =

∣∣∣∣
∫

Ω

∇η · ∇hξ dx −
∫

E
〈〈∇η〉〉 · [[ξ]] ds

∣∣∣∣

Applying the definition (6) of the lifting operator L, there holds

−
∫

E
〈〈∇η〉〉 · [[ξ]] ds = −

∫

E
〈〈∇η − Πp(∇η)〉〉 · [[ξ]] ds −

∫

E
〈〈Πp(∇η)〉〉 · [[ξ]] ds

= −
∫

E
〈〈∇η − Πp(∇η)〉〉 · [[ξ]] ds −

∫

Ω

Πp(∇η) · L(ξ) dx

= −
∫

E
〈〈∇η − Πp(∇η)〉〉 · [[ξ]] ds −

∫

Ω

∇η · L(ξ) dx,

where Πp is the elementwise L2-projection on V (Th, p)2. Therefore, it follows that

∣∣∣aγ,δ,θ
DG (η, ξ)

∣∣∣ =

∣∣∣∣
∫

Ω

∇η · ∇hξ dx −
∫

E
〈〈∇η − Πp(∇η)〉〉 · [[ξ]] ds −

∫

Ω

∇η · L(ξ) dx

∣∣∣∣

≤ ‖∇η‖0,Ω ‖∇hξ‖0,Ω +
∥∥∥p−

1
2 h

1
2 〈〈∇η − Πp(∇η)〉〉

∥∥∥
0,E

∥∥∥p
1
2 h

− 1
2 [[ξ]]

∥∥∥
0,E

+ ‖∇η‖0,Ω ‖L(ξ)‖0,Ω .

Thus, if

(20) γ, δ > 0,
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we conclude that∣∣∣aγ,δ,θ
DG (η, ξ)

∣∣∣

≤ C

(
(1 + δ−1) ‖∇η‖2

0,Ω + γ−1
∥∥∥h

1
2 p

− 1
2 〈〈∇η − Πp(∇η)〉〉

∥∥∥
2

0,E

) 1
2

|||ξ|||DG,γ,δ.

Therefore, due to (18) and (3), (4), we have

|||ξ|||2DG,γ,δ

≤ C

(
(1 + δ−1) ‖∇η‖2

0,Ω + γ−1
∑

K∈Th

hK

pK
‖∇η − Πp(∇η)‖2

0,∂K

) 1
2

|||ξ|||DG,γ,δ.

Dividing both sides of the above inequality by |||ξ|||DG,γ,δ, leads to

|||ξ|||DG,γ,δ ≤ C

(
(1 + δ−1) ‖∇η‖2

0,Ω + γ−1
∑

K∈Th

hK

pK
‖∇η − Πp(∇η)‖2

0,∂K

) 1
2

.

Furthermore, since ∇(Pp(u)) ∈ V (Th, p)2 and because the L2-projection preserves
polynomials, it follows that

∇η − Πp(∇η) = ∇u −∇(Pp(u)) − Πp(∇u) + Πp(∇(Pp(u))) = ∇u − Πp(∇u).

Hence,

|||ξ|||DG,γ,δ ≤ C

(
(1 + δ−1) ‖∇η‖2

0,Ω + γ−1
∑

K∈Th

hK

pK
‖∇u − Πp(∇u)‖2

0,∂K

) 1
2

,

and inserting this into (17), implies

|||e|||DG,γ,δ

≤ |||η|||DG,γ,δ + C

(
(1 + δ−1) ‖∇η‖2

0,Ω + γ−1
∑

K∈Th

hK

pK
‖∇u − Πp(∇u)‖2

0,∂K

) 1
2

.

Then, using (19), we obtain

|||e|||DG,γ,δ ≤ C max(1, γ−1, δ−1)

(
‖∇η‖2

0,Ω +
∑

K∈Th

hK

pK
‖∇u − Πp(∇u)‖2

0,∂K

) 1
2

.

Finally, using the approximation properties of the interpolants Pp and Πp (cf. Lem-
mas 3.1 and 3.2), and recalling (20) and Proposition 2.2, leads to the main result
of this paper.

Theorem 3.3. Suppose that γ > 0 and δ > (1+θ)2

4 . Furthermore, let the exact

solution u of (1)–(2) belong to Hs(Ω, Th) ∩ H2(Ω) ∩ H1
0 (Ω), with sK ≥ 2 for all

K ∈ Th. Then, there exists a constant C > 0 independent of h and p such that
there holds the a priori hp-error estimate

(21) |||u − uDG|||2DG,γ,δ ≤ C
∑

K∈Th

(
hK

pK

)2esK−2

|u|2
H esK (K)

,

for 2 ≤ s̃K ≤ min(pK +1, sK), K ∈ Th, where uDG is the hp-DG solution from (11).
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Remark 3.4. We note that the error estimate in Theorem 3.3 is optimal with respect
to both the local element sizes and polynomial degrees. The main ingredients for
the proof of this result are 1) the fact that the elementwise L2-projection remains
optimal on the edges of affine quadrilateral elements, and 2) that both stabiliza-
tion parameters γ and δ are strictly positive. Hence, in order to obtain hp-optimal
convergence of the DG method in this paper, we propose the use of jump penalty
stabilization with γ = O(1) > 0 (notice that IP and LDG methods feature sim-
ilar jump penalty terms, however there, γ is typically chosen of order O(p), i.e.,
the stabilization becomes stronger as p increases), and, furthermore, a term that
stabilizes the lifting operators (with δ = O(1) > 1

4 (1 + θ)2).

Remark 3.5. The techniques used in the proof of Theorem 3.3 apply basically also in
three (or even higher) space dimensions. In particular, the hp-interpolation results
from Section 3.1 are based on tensor-product arguments and can be generalized
to hexahedral elements in 3d, for example. The construction of a conforming hp-
interpolant (that is optimal with respect to the H1-norm) on meshes containing
hanging nodes (respectively edges or faces) is, however, remarkably more technical
in higher space dimensions.

4. Numerical Experiments

We shall present two test problems for the proposed DG methods in this paper.
In both examples, we consider (1)–(2) on the open unit square Ω = (0, 1)2. A
sequence of structured meshes containing square elements with uniform meshsize h
and uniform polynomial degree p for the numerical approximation will be used.
The implementation uses the software library life, a unified C++ implementation
of finite and spectral element methods in 1–3d; see [17, 18]. We shall mainly focus
on the symmetric version of the proposed method, i.e., θ = 1. Further computations
for θ = 0 and θ = −1 show similar convergence behavior (under the conditions of
Theorem 3.3).

Example 1: Smooth solution. Consider the exact solution

u(x, y) = sin(πx) sin(πy) ∈ C∞(Ω) ∩ H1
0 (Ω)

of (1)–(2). Then, the force term is given by f(x, y) = 2π2 sin(πx) sin(πy), and the
error bound from Theorem 3.3 implies that

|||u − uDG|||DG,γ,δ ≤ C

(
h

p

)p

|u|Hp+1(Ω).

In Figure 1, the errors measured in the energy norm ||| · |||DG,γ,δ for both h- and
p-refinement have been plotted. We clearly observe algebraic convergence of order
p with respect to h in Figure 1 (a), and exponential convergence with respect to p
in Figure 1 (b) (lin-log plot).

Example 2: Solution with local singularity. We now choose the exact solution of (1)–
(2) to be

(22) u(x, y) = xα sin(πx) sin(πy),

with a corresponding force term f . Note that, for α < 1, the Hessian D
2u of u has

a singularity at the origin (0, 0). More precisely,

u ∈ Hα+ 3
2
−ε(Ω) ∩ H1

0 (Ω)
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Figure 1. Example 1: Error in the DG energy norm for (a) h-
and (b) p-refinement; θ = 1, δ = γ = 10.
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Figure 2. Example 2: Error in the DG energy norm for (a) h-
and (b) p-refinement; θ = 1, δ = γ = 10.

for all arbitrarily small ε > 0.
Let us consider the case α = 0.5. Then, we expect that the error in the energy

norm, i.e., |||u − uDG|||DG,γ,δ, decays at a rate of (h/p)
1−ε

. In Figure 2, the error
for h- and p-refinement, with δ = γ = 10, is presented. We see that, essentially,
algebraic convergence of order 1 with respect to h is obtained. Furthermore, we
notice that we observe superconvergence of order 2 with respect to p.

The nonsymmetric method θ = −1. We note that the DG method (11) with θ =
−1 remains coercive robustly in p even in the case δ = 0; cf. Proposition 2.2.
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Figure 3. Example 2: Error of the DG method in (a) the DG
energy norm and (b) the L2-norm, for θ = −1, h = 0.05, γ = 10,
and different values of δ and p.

Theorem 3.3, however, suggests δ > 0 for optimal convergence (with a constant of
order δ−1 in the error estimate (21) for small δ). Indeed, in Figure 3, we observe
a mild loss of accuracy in the DG approximations (for θ = −1) of the singular
solution u from (22) with δ → 0.

5. Concluding Remarks

In this paper we have presented a new class of hp-version discontinuous Galerkin
methods for the numerical solution of linear elliptic partial differential equations.
The schemes are stable and optimally convergent with respect to both the local
element sizes and polynomial degrees (provided that the involved parameters are
chosen appropriately). Our analysis indicates that the use of combined (optimal-
order) jump penalization and lifting stabilization might be essential for hp-optimal
convergence. Future work includes the a posteriori error analysis of the proposed
DG methods and the application to nonlinear elliptic PDEs.
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