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Abstract. In this paper, we propose a cost model for running partic-
ular component based applications on a computational Grid. This cost
is evaluated by a metascheduler and negotiated with the user by a bro-
ker. A specific set of applications is considered: hybrid methods, where
components have to be launched simultaneously. ¢

1 Introduction

Hybrid methods mix together several different iterative methods or several copies
of the same method in order to solve efficiently some numerical problems. They
can be considered as alternative to classical methods if two properties are matched:
the convergence of the hybrid method has to be faster than each individual
method and merging cost between methods has to be low in comparison with
the convergence speed-up.

Hybrid methods are used in different fields such as combinatorial optimiza-
tion [7], numerical linear algebra [5, 3] and general asynchronous iterative schemes
[1]. They are well suited for large parallel heterogeneous environments such as
Grids, since every method can run asynchronously at each own pace. In order
to accelerate convergence, they need however regular interactions, and there-
fore a suitable coschedule has to be proposed. In this paper, we introduce the
coscheduling problem for a specific class of hybrid methods. We start in the next
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section by describing a proposal for a cost model. We pursue in section 3 by
describing a class of hybrid methods (hybrid iterative methods for linear alge-
bra) as a case study for the scheduling. We continue in section 4 by presenting
POP-C++, which is a programming environment easying the development of
parallel applications on the Grid, and is well suited to deploy hybrid methods.

2 Description of a cost model

Computational grids offer a considerable set of resources to run HPC applica-
tions. Resource management and scheduling are of paramount importance to ex-
ploit economically these grids. We have to avoid for instance to run non adapted
applications on some resources and spoiled them.

Let consider one parallel application A composed of Cy, Cs, ..., C, com-
ponents (i.e. parallel tasks), which interact together (inter-parallelism). Compo-
nents have an internal parallel structure (intra-parallelism) and can be composed
and described by a workflow [2]. A computational grid is composed of Ry,... R,
resources, each of them disposing of a local resource information system.

We assume that one component Cj can only be placed on a certain amount
of nodes on one or more resources R; (each composed of p; nodes). Each resource
can run one or more components. A node is composed of one or a few processors.
We denote Pj; the node j on a resource ¢. At any time, each node can only be
devoted to at most one component. We will suppose also that the multiproces-
sor resources have a distributed-memory architecture. The Grid architecture we
focus on is a dedicated computational Grid, composed of several clusters.

A schedule S will be denoted by a list of mappings

Cr — ({Pyg i 517 5 k=1,....n 1)

ttert and ti"d are respectively the starting time and the estimated ending time
of a component Cy, on the set of nodes {P;; }.
The workflow is defined by two types of constraints:

— a partial order precedence relation <, Cx, < Ck, meaning that t{"¢ < t3fer,
We denote by P the set of all couples (ki, k2) such that Cy, < Cy,. These
constraints have to be strictly respected.

— a simultaneity relation ~, Cy, ~ Cj, meaning that #;'*"* and #;'*"* should
be equal. We denote by S the set of all couples (k1, k2) such that Cj, ~ C,.

This last set of constraints is very important for hybrid methods where dif-
ferent collaborative components should be launched at the same time.

The basic model for scheduling the components Cy, Cs,..., C, on the grid
for one HPC application A is defined as:

Find a schedule S such that it minimizes cost(A,S) with respect to constraints:

VP;; € {P;j}r, Pij is admissible for running Cy (2)



Towards a scheduling policy for hybrid methods on Grids 3

114, 5) < £ (A) 3)
cost(A, S) < costmar(A) (4)

Cry, < Ch, V(k1,ke) € P (5)
Ch, =~ Ch, V(ki,ko) €S (6)

The function cost(A, S), which represents the cost for the user, has to take
account of different parameters: cpu time, elapsed time, communication volume,
storage cost, number of used processors on a resource R;, usage cost of this
resource, execution time interval, power consumption, etc. It is evaluated by the
metascheduler, on the basis of the information provided by the local schedulers.

It will be the task of a resource broker to propose a suitable allocation and
schedule. This broker will invoke a metascheduler, which will call the local re-
source information system on each resource or pool of resources. Each local
scheduler will reply by a service message describing availabilities, nodes specifi-
ties (e.g. softwares and libraries) and reservation costs (cost per hour for each
type of nodes, cost for a certain volume of transferred data, cost for power con-
sumption, etc.). The metascheduler, by the mean of the data repository, will
be able to select suitable schedules that will meet users and resource adminis-
trators requirements. We intend to exploit the UniCORE/MetaScheduler /ISS
Grid middleware [6]. While this approach is feasible for small sets of resources,
it would not scale up to large scale Grids, where a discovery and preselection
phase would have to be implemented.

The admissibility of the allocation of A (2) lies in that all nodes in { P;; }, have
to meet all the requirements of Cj in terms of permissions, operating system,
software, licenses, storage, memory, minimal and maximal number of processors
and local policy.

The end user will give his requirements by specifying two parameters: the
maximal cost costq.(A) that he wants to pay for running his application and
the deadline upper limit "¢ (A). The metascheduler will propose suitable re-
sources for each component C}, with table of costs, starting time and ending
time. If both user requirements costqz(A) and t&7% (A) can not be simulta-
neously met, schedule bids will be proposed in two groups: the first one with
schedules respecting the cost limit; the latter one with schedules respecting the
ending time limit. We will not consider here the problem of rescheduling com-
ponents or preemption of resources.

In order to illustrate the cost model, let us consider an application with two
components C7 and C5 in a serial workflow and a grid made of 3 resources R,
Ry, R3 composed of 16, 4, and 16 computing nodes, respectively. The collected
information about resources (number of processors available during a certain
time interval, available librairies and cost) is presented in Table 1. In this ex-
ample, the resource R3 is the most expensive one. The cost is defined by each
resource administrator and the high cost of a resource will generally means a
high performance network and high performance nodes. An administrator can
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|resource|#proc|t$t”t|t€"d|supplied 1ibraries|cost / (tu. x proc)|

[ R [ 12 ] 1 J20] Lo | 20 |
Ry 4 T176 Ly, Ly, Ls 20
Ry 4 [ 7 J20] LiLsyLs 15

| Rs | 8 5 [15] Ly, L3 | 25

Table 1. Collected information from each local scheduler by the metascheduler

impose high cost without proposing high performance resources to keep the re-
source unused (e.g. for local usage). R3 is assumed to be perfectly scalable and
its per processor computing time is 256% lower than Rs. On resource Rs, scala-
bility is linear until 2 processors, and has a value of 3.2 on 4 processors. Each
local scheduler can impose varying costs depending on specified time intervals.
For instance, the Ry administrator encourages the use of Ry after time 6 by
applying attractive costs. User requirements are identified by cost and comple-
tion time bounds. In this example, user has fixed costpq.(A4) at 540 units and
tend (A) at 10 time units. The user do not give any information concerning the
number of required processors : this kind of information will be provided by the
Gamma model of the ISS [4]. We consider that C; needs the library L; and Cy
needs libraries Lo and Ls. Therefore, Cy is admissible on resource Ry only and
C5 on resources Ry and R3. We suppose that the processor time for C; on Rs is
8 time units, independent of the number of processors used, and the processing
time of C' is 16 units on R3, thus 20 units on a 2 processor Ry, and 25 units for
a 4 processor Ry. Such information can be obtained through the Gamma model.
The resource broker will gather from the metascheduler and the local schedulers
potential schedules of the type illustrated at Table 2.

| # |comp|resource|#proc| #start|#end|cost|

1] Ci | R 2 1 4 1160
2G| R 2 5 8 [140
3] Ci | Re 2 7 | 11 [120
4] C | Re 4 7 8 [120
5G| R 4 1 2 [160
6] Co | Re 2 5 | 14 [320
71 C | R, 2 9 [ 18 [300
8] C2 | R 4 3 | 87 [455
9] C2 | Re 4 7 [121 375
10 C2 [ Rs 8 5 6 [400
11 Co | Ry 8 9 | 10 [400

Table 2. Scheduling of components on available and admissible resources.

Taking into account the precedence constraint (C; < C2), some bids can be
proposed for which:
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1. costmaz(A) is respected
2. tend (A) is respected

max
3. Both criterions are respected

Therefore, the metascheduler will propose three bids as shown in Table 3, all
of them respecting the sequential workflow. The first one is of minimal cost of
420 cost units, but lasts 18 time units instead of 10, as requested by the user.
The second one has a minimal ending time of "¢ = 6, but costs 560 units
instead of 540 demanded by the user. The last one respects both constraints.

| # | sched |te"d|cost|
bidl| 4 — 7| 18 420
bid2|5 — 10| 6 |560
bid3|4 — 11| 10 |520
Table 3. Scheduling bids proposed by the broker. The notation i — j means that
scheduling is based on rows i and j of Table 2.

Our proposed allocation and scheduling problem is combinatorial. Some heuris-
tics will have to be exploited in order to explore the set of admissible schedules
and propose consistent bids. The idea is to develop a Contract Manager between
the user and the Grid. Different bids can be proposed to the user, with different
costs respecting the user requirements. The plausibility of the given ending time
should be estimated in such a way that realistic contract offers can be proposed.
Therefore, an evaluation phase can be required in order to evaluate the size of
the user application A (computation and communication requirements). The us-
age of a data repository as proposed in the Intelligent Scheduling System [6] will
be necessary for this phase.

One major difficulty is the necessary coallocation and coscheduling of commu-
nicating components. Here we will consider a particular class of hybrid iterative
methods. This will serve us as a case study and will be presented in the next
section.

3 Case study

3.1 Hybrid iterative methods for linear algebra

Hybrid methods combine several different numerical methods or several copies
of the same method parameterized differently to solve efficiently some numerical
scientific problems. For example, both convergence acceleration techniques and
preconditioning methods could be used to develop a hybrid method using the
first way. An asynchronous parallel hybrid method has some properties such as
asynchronous communications between its coarse grain subtasks, fault tolerance
and dynamic load balancing which make this kind of methods well-adapted to
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the Grid computational environments. The asynchronous hybrid algorithms can
be easily implemented on a cluster of heterogeneous machines or on a Grid as it
exhibits a coarse grain parallelism. These machines can be sequential, vector, or
parallel. The number of iterations to convergence of the main process of a hybrid
method can be reduced by combining results from other processes at runtime.

Each collaborative copy of a method, taking part in such hybrid computa-
tion is called a co-method and can be represented by a component. The nat-
ural parallelism of these components constituting a hybrid method can be dif-
ferent. An example of the second kind of the hybrid methods to compute a
few eigenpairs of a large sparse non-hermitian matrix is the multiple explic-
itly restarted Arnoldi method (Multiple ERAM or MERAM) [3]. This method
is based on a multiple projection of the explicitly restarted Arnoldi method
(ERAM). Every collaborative component representing a co-method and taking
part in such hybrid computation projects the initial problem in a different sub-
space. Each co-method calculates an approximated solution of the problem on
its own subspace. The collaborative process is activated at the end of each it-
eration of every co-method. At this stage, the available intermediary results of
the other co-methods are also considered in order to determine a better pro-
jection subspace for the next iteration. This process is depicted in Figure 1 in
which HR(1k,, 2k, - -+, k) = HR(UY™, ..., U;*) denotes the hybrid restarting
strategy taking into account U,zn Where U,zn is the set of the intermediary
eigenvectors computed by the k;th restart of the ith co-method (fori=1,...,¢
and k; = 1,2,...). In this figure, we suppose that we have to compute an approx-
imation (A™,u™) for the eigenpair (A, u) of the matrix A. Thus, U, represents
just the approximated eigenvector uzzl computed by the k;th restart of the ¢th
co-method.

Many algorithms based on the Krylov subspace methods, like ERAM, GM-
RES, Generalized Conjugate Residual method,. ..can be executed concurrently
as a hybrid method. Indeed, once a co-method ends an iteration, the just com-
puted information can be sent to the others to be incorporated in their next
restarting strategy. Thus, each co-method can benefit from two types of results:
its own results and the remote ones, issued from the other co-methods in collab-
orating computations.

3.2 Parallelism analysis and scheduling challenge

One of the great interests of the hybrid methods in linear algebra is their coarse
grain parallelism. Nevertheless, the parallelization of these methods is a complex
and challenging work due firstly to the existence of their two main levels of
parallelism, and then to the heterogeneity of the architectures being used as
their execution support. The first level parallelism is that one inter co-methods
constituting a hybrid method. The second level is the parallelism intra co-method
which can be exploited according to a data parallel, message passing or multi-
threading programming model. We concentrate here on the inter co-method
parallelism.



Towards a scheduling policy for hybrid methods on Grids 7

m 1 < mz m 2< m3
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Fig.1. A hybrid computation using ¢ = 3 co-methods to compute an eigenpair

(A™,u™) of the matrix A. The co-method with the subspace size m; and the ini-
tial guess v* is denoted by co-method(ms,v"). HR and SR represent the hybrid and
simple restarts.

Hybrid methods are well adapted for Grid computing. Different parallel com-
ponents are just to be distributed to different resources. Nevertheless, the inter-
component communications are asynchronous and difficult to be represented in
a workflow model. Moreover, convergence detection introduces the necessity of
interruption barriers between components. We will extend the workflow pro-
gramming model to allow such asynchronous algorithms based, for example,
on POP-C++ programming model [10]. Moreover, the components have to be
simultaneously executed in order to collaborate. We exemplify this scheduling
problem in the next subsection.

3.3 Scheduling hybrid methods: a basic example

Let us consider the same example described in Table 1. We suppose now to
have three components which have to collaborate. Each component will use all
available nodes on the allocated resource to maximize intra-parallelism work
and therefore, to minimize iteration duration. We assume that the library Lg is
needed in order to run this collaborative work; all resources (R1, Re and R3) are
thus admissible for running the components.

In a collaborative work, we have, as described in the cost model, simultaneity
relations expressing the need to make all components running at the same time.
In this example, those relations are C7 ~ C5 and Cy ~ Cj.

A possible schedule for this hybrid method can be done as described in Table
4.

The metascheduler has relaxed the constraints of simultaneous starting time
and proposes to wait until time 7 for taking benefit of the low cost period of
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|comp|resource| #proc|#start|#end| cost |
C1 Ry 12 6 15 13000
Co Ry 4 7 15 | 480
Cs R3 8 6 15 {2000
Table 4. Example of schedules of co-methods in hybrid methods

Ry. C7 and C5 could begin a bit earlier without collaborating with C5 at first.
Maybe the use of only two co-methods during 1 time unit at first is not profitable.
However, it is possible to set another schedule with all co-methods starting at
time 7.

In the next section, we describe a programming environment well adapted to
develop such hybrid methods on the Grid.

4 A candidate programming environment for developing
hybrid methods on the Grid: POP-C++

4.1 Overview

The POP-C++ programming environment has been built to provide Grid pro-
gramming facilities which greatly ease the development of parallel applications
on the Grid. Figure 2 presents the layers of the POP-C++ architecture. The ar-
chitecture supports the Grid-enabled application development at different levels,
from the programming language for writing applications to the runtime system
for executing applications on the Grid.

POP-C++ programming

(prog ing model, I; and piler)
o . "
£ POP-C++ service
=
€
2
+ POP-C++ POP-C++ ) ) Other Customizable
¥ services for services for POPCus services| | customizable service
Q Globus XtremWeb 9 services i
a
] Globus Toolkit XtremWeb Standalone Other toolkits
a POP-Ci+

Infrastructure services

Fig. 2. The layered architecture of POP-C++4 system

The POP-C++ runtime system consists of the infrastructure service layer
managed by some Grid toolkits (e.g. Globus Toolkit or Unicore), the POP-C++
service layer to interface with the Grid infrastructures, and the POP-C++ essen-
tial service abstractions layer that provides a well defined abstract interface for
the programming layer to access low-level services such as the resource discov-
ery, the resource reservation or the object execution. The resource discovery and
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reservation can be implemented using our proposed scheduling policy. Details of
the POP-C++ runtime are described in [9].

POP-C++ programming, on top of the architecture, is the most impor-
tant layer that provides necessary supports for developing Grid-enabled object-
oriented applications based on the parallel object model.

4.2 POP-C++4 programming model

The original parallel object model used in POP-C++ is the combination of pow-
erful features of object-oriented programming and of high-level distributed pro-
gramming capabilities. The model is based on the simple idea that objects are
suitable structures to encapsulate and to distribute heterogeneous data and com-
puting elements over the Grid. Programmers can guide the resource allocation
for each object by describing their high-level resource requirements through the
object description. The object creation process, supported by the POP-C++ run-
time system, is transparent to programmers. Both inter-object and intra-object
parallelism are supported through various original method invocation semantics.
We intend to exploit POP-C++ objects and their descriptions to define compo-
nents of hybrid methods and their timing constraints. Inter-object communica-
tions will be exploited for asynchronous inter co-methods communications.

The POP-C++ programming language extends C++ to support the paral-
lel object model with just few new keywords for parallel object class declara-
tions. Details of POP-C++ programming model are described in [8,10]. With
POP-C++, writing a Grid-enabled application becomes as simple as writing a
sequential C++ application.

4.3 Parallel objects to capture components

One difficulty to develop and to deploy the component-based workflow model
on the proposed scheduling system is the way to integrate resource require-
ments into each component. POP-C++ can help resolve this difficulty through
its object description that allows programmers to describe their high level re-
source requirements such as the number of CPUs, the computing performance,
the network bandwidth, etc. Although components can be implemented using
any programming language, they are, in essence, very similar to POP-C++ ob-
jects. Nevertheless, the advantage of POP-C++ components is the ability to
deduce all resource requirements of the components from their internal parallel
structures. The proposed scheduling approach is well adapted to components
written in POP-C++ but further study needs to be conducted in order to al-
low the POP-C++ compiler to automatically generate resources requirement of
components.

5 Conclusion

In this paper, we have presented the problematic of scheduling intelligently some
particular workflows on Grids. We have focus on a particular class of hybrid itera-
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tive methods, which present collaborative asynchronous relations between coarse
components. We have described a proposal for a generic cost model which can
be a basis for the negotiation between a user and a metascheduler. We have in-
vestigated the feasibility of using the object-oriented programming environment
POP-C++ for implementing and scheduling such hybrid methods on a compu-
tational Grid. Work is under way to implement and schedule an hybrid iterative
method using the cost and evaluation models described in this paper and the
programming environment POP-C++.
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