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Reconstructing biomolecular networks from time series mRNA or protein abundance
measurements is a central challenge in computational systems biology. The regulatory
processes behind cellular responses are coupled and nonlinear, leading to rich dynam-
ical behavior. One class of reconstruction algorithms uses regression and penalized
regression to impose sparseness on the solution, as requested biologically. Motivated
by the five-gene challenge in the Dialogue for Reverse Engineering Assessments and
Methods 2 (DREAM2) contest, we extend and test penalized regression schemes both
on data from simulations and real qPCR measurements. The methods showing best
performance are the Adaptive Ridge (AR) regression and a new extension thereof, in
which we impose a biological constraint to the reconstructed network. Specifically, we
request from the solutions that the outgoing links have the same regulatory sign, which
is a reasonable approximation for most prokaryotic transcriptional networks. In other
words, a given regulator must be either an activator or a repressor but not both. The
constraints can be implemented with quadratic programming, and we show that this
improves the reconstruction performance significantly. While linear models are not
sufficiently general to encompass most complex behaviors, they offer powerful tools for
network reconstruction, particularly for systems operating near a steady state. In par-
ticular, the optimization problems are well behaved and methodologies allow finding
global optima efficiently. Adding constraints reflecting biological circuit designs is one
of the most important aspects of network inference. We propose one such constraint,
namely the consistency in the signs of outgoing links, which will facilitate the inference
of transcriptional regulatory networks.
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Introduction

The recent acquired ability to perform large-
scale quantitative expression or activity mea-
surements in well-controlled biological systems
has opened the possibility that a system’s
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logic may be recovered using reverse engineer-
ing principles. An ambitious goal is to learn
causal relationships between proteins or genes
from systematic time-series data. For exam-
ple, we would like to learn from kinetic data
which are the direct targets of a transcription
factor or a protein kinase. While this seems
difficult presently for comprehensive whole-
genome networks, the present manuscript ex-
plores the possibility that it can be successful for
smaller networks, typically less than 50 genes.
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One class of experimental data used for
the reconstruction of genetic networks con-
sists of perturbation experiments through gene
knockout and gene suppression, or through en-
vironmental stress.1 A very broad spectrum of
models and algorithms has been applied to
the gene-network inference problem. Some of
them originate from the classical description of
biochemical reaction kinetics, such as mass ac-

tion kinetics, Michaelis–Menten type kinetics, or the
power law approximation.2 Other models abstract
from the biochemical details and deal with de-
pendencies, applying cluster analysis3 or using
purely graph-theoretical tools,4 or combine the
latter with conditional probability distributions
to describe these dependency structures.5

A statistical approach that was designed to
uncover the biochemical details of a network
is the correlation metric construction6 and its gener-
alization in terms of mutual information.7 In
the same flavor as the correlation metric con-
struction but abstracted from the biochemical
details are relevance networks and their related
algorithm ARACNE (Algorithm for the Recon-
struction of Accurate Cellular Networks).8 Both
methods estimate the pair-wise mutual infor-
mation between gene expression levels, whereas
the latter additionally applies the data pro-
cessing inequality to distinguish between di-
rect and indirect interactions. In general, meth-
ods based on a correlation analysis share the
property that they cannot infer the causal-
ity structure of the network, that is, they are
only able to infer a structure in terms of an
undirected graph. Other variants that infer
an undirected graph are Gaussian graphical
models. Graphical models are state-of-the-art
models for data analysis in computer science
and have been successfully applied to the in-
ference of regulatory networks.9 In the case of
Gaussian graphical models, it boils down to
estimating the covariance matrix and partial
correlation coefficients of the gene expression
levels. In contrast to the previous statistical
methods, Bayesian networks9 are able to in-
fer causality (or at least directionality), but
are restricted to the class of acyclic directed

graphs. Cycles such as regulatory feedback
loops have to be unrolled in time, reminiscent
of a technique applied to recursive neural net-
works. Such unrolled models are called dynamic

Bayesian networks and are widely applied nowa-
days (see Ref. 5 for a comparative study of dif-
ferent inference algorithms). A special member
of the class of dynamic Bayesian networks is the
Kalman filter. It has also been applied to the
inference of gene regulatory networks.10 An-
other model class for gene regulatory networks
includes deterministic Boolean and finite state
networks11 and their probabilistic generaliza-
tions.12 They are based on the observation that
synthetic gene networks have been shown to im-
plement different kinds of Boolean functions.

Motivated by biochemical reaction kinetics,
methods for reconstruction based on ordinary
differential equations have been proposed.13 In
particular, linear differential equations or ad-

ditive regulation models are frequently used.14,15

The assumption for these linear models is that
the applied perturbation to the regulatory net-
work is small such that the underlying nonlinear
differential equation can be linearized around
an operating point.16 The estimated Jacobian
matrix reflects the dependency structure and
can be associated with the adjacency matrix
of the graph of the biochemical network. Bio-
chemical data poses two main limitations to
reconstruction by ordinary least squares (OLS)
regression: they contain noise on both the con-
trol and the measured variables and they gen-
erally correspond to a sparse adjacency matrix.
Total least squares (TLS) and penalized regres-
sions were applied to address the problem of
noisy data matrices17 and inferred networks
that are overly connected and thus biologically
unrealistic.18,19 Reference 20 demonstrated the
equivalence of TLS and ridge regression (RR).
Further extension of RR is the adaptive ridge
regression (AR). AR balances the penalization
on each parameter in the model; it was shown
to produce estimates equivalent to the natu-
rally sparse L1-penalized regressions,21,22 and
a convenient expectation maximization im-
plementation has been proposed to solve AR
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using a hyperparameter to tune the global
model complexity.22

Interestingly, the majority (>60%) of tran-
scription factors listed in RegulonDB23 are ei-
ther activators or repressors, and less than 20%
of regulators are activators for some genes and
repressors for others. The remaining factors are
reported as activating or repressing depending
on the conditions. However, 68% of these were
inferred by sequence homology with humans.
Supported by these considerations, we intro-
duce biologically relevant constraints on the
signs of regulatory interactions. This is a key
property of our method that significantly im-
proves reconstruction accuracy.

Here, we extend and compare previous pe-
nalized regression algorithms (RR and AR) for
the reconstruction of genetic networks from
time-series data. We focus on linear models;
these are suited when the network operates
near steady state, providing a computationally
fast and powerful framework to dissect dynam-
ical properties of biological systems. We start
by defining ad hoc metrics for the accuracy
of reconstructed networks models, then we in-
troduce several levels of penalized regression
models (AR with sign constraints) applicable
to times-series data and evaluate these algo-
rithms both on artificial and biological network
models.

Results

Performance of Reconstruction
Algorithms for Randomly Generated

Linear Models

We tested the performance of the reconstruc-
tion algorithms using randomly generated lin-
ear systems with five genes and seven nonzero
off-diagonal elements (see Material and Meth-
ods, below). The connectivity matrix was fur-
ther constrained to reflect transcriptional regu-
lation in lower organisms, namely that a tran-
scription regulator is either an activator or a
repressor but not both. While there might be

FIGURE 1. Distributions of the relative Frobenius
norms for OLS (black), RR (red), and AR (green)
for a benchmark over 30 randomly generated five-
node networks. OLS performs the worst, and peaked
around one, leaving almost all the variance of the ma-
trix M unexplained. RR achieves better results than
OLS, with a tight peak around 0.75. On average
AR performs the best. The distribution relative to AR,
which peaked at 0.5, shows a large right shoulder
due to suboptimally inferred networks.

exceptions to this rule, the structural constraints
imposed are expected to improve model predic-
tions in most cases. In higher organisms, or in
the case of post-translational control, this rule
may be violated more frequently.

We measured performance using the Frobe-
nius norm of the error in the connectivity ma-
trix estimate (see Material and Methods). As
expected, OLS best fits the trajectories, but it is
unable to predict sparse connectivity matrices.
As result we observed large relative Frobenius
norms, often above 100% (Fig. 1). This is due
to prediction of links that are absent from the
starting matrix and reflects overfitting of the
data. RR behaves similarly to OLS, though the
penalization term helps reduce the matrix er-
ror so that it never exceeds 100% (Fig. 1). As
we move toward sparser regression schemes,
AR performs better than OLS and RR. The
tail with high residual variances is in part due
to violation of the sign constraint leading to
suboptimal solutions (Fig. 1). On average, for
each random M , one link inferred by AR does
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FIGURE 2. Boxplots of the distribution of the ab-
solute binary norms of the inferred networks from the
30 randomly generated five-node networks for the
four algorithms (OLS in black, RR in red, AR in green,
and ARS in blue). OLS and RR produce comparable
results in this metric, mainly due to the zero elements
of the real matrix M, corresponding to nonzero ele-
ments in the inferred matrix. AR performs better than
the previous two, though still containing several links
in excess and, on average, one exception to the sign
constraint every inferred matrix. ARS outperforms the
previous methods. The errors in the ARS-inferred ma-
trix are mainly due to weak links in excess.

not respect the sign rule. This motivated the
implementation of a sign-constrained adaptive
ridge regression (ARS). When tested against
OLS, RR, and AR, ARS shows increased per-
formance most notably in the binary norm (see
Material and Methods), which is most sensitive
to the correct network topology. As expected,
OLS and RR perform poorly in the binary
norm, mainly because no links are pruned. AR
obtains better results on average, though the
violation of the sign rule often causes strong
penalizations in the binary norm. ARS outper-
forms the other three methods, correctly infer-
ring on average 75% of the elements of the
matrix M (Fig. 2). The remaining 25% of er-
rors in the ARS are due to weak links with small
moduli, which do not contribute much to the
Frobenius norm (not shown).

Performance of Reconstruction
Algorithms for Two Nonlinear Biological

Networks

To test the reconstruction methods in a more
generic and biologically relevant setting, we im-
plemented two models taken from the litera-
ture. These models have been previously used
to asses reconstruction performances of other
methods and, in the case of the repressilator, the
parameter’s influence on stability was reported
allowing us to choose a meaningful range of
parameter values.

Four-Gene Network

We simulated trajectories in a four-gene net-
work used for benchmark16 for the equivalent
of a 6 h time-course with samplings at regular
intervals every 20 min. We tested the accuracy
of the reconstructions for increasing noise vari-
ance k. We assessed the goodness of the recon-
struction by using the binary norm (see Mate-
rial and Methods). The ARS method has not
been applied in this case since node 2 does not
respect the sign constraint (Fig. 3A). For small
noise levels (k = 0.1%) AR infers correctly 75%
of the links in the Jacobian. The performance of
AR, however, is affected by the size of the noise.
For k > 10% AR performs equally to OLS or
RR in terms of the ε-metric (Fig. 3A). OLS
and RR have a steady performance recovering
correctly 50% of the elements in the inferred
matrix. Moreover, OLS and RR are always bet-
ter than AR at fitting the trajectories, though
the difference decreases with increasing noise
levels (not shown). One reason the AR might
not perform optimally is that this small network
is not very sparse (connectivity is 10 links out of
16 possible).

The Repressilator Network

This three-gene oscillator24 poses a much
greater reconstruction problem, and we do not
a priori expect optimal reconstruction perfor-
mance. Namely, in the oscillator regime, the
limit-cycle dynamics is truly nonlinear and
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FIGURE 3. Reconstruction performances of in silico data of two dynamical systems. Within
brackets the percentage of correctly inferred elements according to the binary norm. With
the exception of the real network, the thickness of the arrows is proportional to the relative
modulus of the corresponding elements within the Jacobian; green indicates induction, and red
repression. (A) Four-gene network. Real and inferred networks from trajectories. As expected,
the results of OLS and RR are affected by overconnectivity. AR, in contrast, captures most of
the interactions in the network. (B) Repressilator. Nodes 1, 3, and 5 represent the mRNA of
the three genes; nodes 2, 4, and 6 represent the regulators encoded by the mRNAs. The
nonlinear dynamics of the system causes poor performances in the case of OLS, RR, and AR.
ARS, thanks to the sign constraints, correctly emphasizes mRNA translation. Repression by
saturation of promoters seems not to be identified.

thus our model does not provide an accurate
approximation. Even in the damped regime an-
alyzed below, the repressor functions have hill
coefficient of 2, hardly approximated by lin-
ear functions. Moreover, promoter saturation
is not captured by linear functions. It is nev-
ertheless interesting to see how the proposed
reconstruction procedure performs outside its
strict range of applicability.

We simulated the trajectories for mRNA and
protein levels in the repressilator model (see
Material and Methods) and added noise as
in the previous cases. AR, OLS, and RR did
not perform well, inferring overconnected net-
works with less than 40% of the correct ele-
ments (Fig. 3B). ARS, in contrast, suggested
a sparse solution and pointed out the trans-
lation of protein from the respective mRNA
as the strongest links in the inferred network
(Fig. 3B). As speculated, saturation effects, such
as promoter saturation by the repressor reduc-
ing the mRNA expression, were not properly
captured.

DREAM2 Five-Gene Contest

As part of the Dialogue for Reverse
Engineering Assessments and Methods 2
(DREAM2) contest, we sought to reconstruct
the five-gene network for which qPCR time-
series data were provided in the form of two
independent experiments. To impose consis-
tency in the reconstructed model from the two
time series, we chose to regress the two experi-
ments simultaneously. To our disappointment,
we found high residuals in the fits of the tempo-
ral trajectories, leaving ∼50% of the variance
unexplained, even in the normally overly ac-
curate OLS methods. Moreover, it could be
that the near–steady state prerequisite and lin-
earity of the model are invalid approximations
as pointed out for the repressilator in oscilla-
tor regime. Nonetheless, we think that impor-
tant features of the network have been captured
and shared by the four algorithms. The most
evident is the strong induction of gene A (node
1) by gene C (node 3), followed by the parallel



Parisi et al.: Network Inference with Regulatory Constraints 119

FIGURE 4. Reconstruction by the four algorithms
of the DREAM2 five-gene network from qPCR mea-
surement. The common features are induction by
gene A (node 1) on its neighbors E and B (nodes
5 and 2) and the induction of gene A (node 1) by
gene C (node 3) with a negative feedback from A
(node 1) to C (node 3).

induction of genes B (node 2) and E (node 5)
by gene A. Repression of gene C by gene A,
likely to act as a feedback mechanism, also has
a strong signature in all the inferred networks
(Fig. 4).

Discussion

Biochemical networks constitute a formi-
dable algorithmic challenge for many recon-
struction methods. In this paper we compared
and extended previous penalized regression
algorithms for RR and for AR for the recon-
struction of genetic networks from time-series
data. Despite many caveats already discussed,
linear regression models have the advantage of
being computationally tractable: OLS and RR
optimization problems (even constrained) are
well posed and convex, so that global optima
can be found in reasonable time. In contrast,
the global convergence of AR and ARS is not

always guaranteed.22 It may be that this is one
of the reasons for the long tails in the relative
residual variance of the AR reconstructed net-
works, and several initial conditions should be
tested. Though convergence to a global mini-
mum may not be always guaranteed, we have
shown the benefits of AR in the reconstruc-
tion of biological networks. In contrast to OLS
and RR, AR naturally provides sparse solutions
without the need for a posteriori thresholds: the
balancing of costs for each parameter allows
one to strongly penalize some parameters while
releasing the selective pressure on the more sig-
nificant ones. Moreover the specific implemen-
tation using the hyperparameter λ22 to tune
the sparseness of the inferred Jacobian makes it
suitable for cross-validation methods. One as-
pect of the methodology that could potentially
lead more accurate reconstructions concerns
the sparseness condition in the continuous to
discrete time representations of dynamical sys-
tems as discussed in the Material and Methods
section.

Imposing biological constraints is often in-
voked in the context of data modeling and in-
tegration. We proposed to enforce the sign of
the outgoing regulatory links to be consistent
for a given gene. We thus proposed an exten-
sion of AR, termed ARS, which implements
the sign coherence in the regulatory activity of
each node. For small networks, we can enumer-
ate and scan all possible combinations of con-
straints, while minimizing the same regression
functions. In the benchmark, ARS has proven
to be more accurate than the other three meth-
ods in identifying the correct links. Unfortu-
nately, the current implementation is affected
by a long execution time, suggesting further
development of iterative heuristic methods to
bypass the brute force scanning of all possible
sign combinations.

The four algorithms have been applied to
the reconstruction of dynamical systems from
in silico–generated data. The complexity of in-
teractions achievable with the differential equa-
tions describing these systems is beyond the ca-
pabilities of linear models, yet an interesting
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number of features have been correctly identi-
fied. In the four-gene network presented by Ref.
16, AR inferred correctly 75% of the links, miss-
ing two out of the four activating interactions.
Interestingly, wrong direct feedback repressions
(from node 1 and 2 to node 4) were added
to the two activating links, maybe a mecha-
nism by which our proposed linear model re-
interpreted saturation of node 4. However, in
the case of the repressilator, none of the three
algorithms, OLS, RR, and AR, managed to in-
fer more than 40% of the real network correctly.
ARS, the extension of AR implementing sign
constraints, inferred a sparse network, correctly
identifying mRNA translations. Yet repression
acting via saturation was not captured, and ex-
tra links were proposed by all methods to cope
with the high nonlinearity of the underlying
model. Further extensions, such as the imple-
mentation of sigmoidal transfer functions, will
be needed to overcome these current limita-
tions, but the associated nonlinear optimiza-
tion problems will be highly challenging. Over-
all, ARS proved outstanding when compared
to OLS and RR in inferring the topology of
randomly generated dynamical systems, mak-
ing it a promising tool to aid the network re-
construction and interpretation of time-series
measurements.

Material and Methods

Model

The N dimensional dynamical state X (t ) =
(X 1(t ), ..., X N (t )) is assumed to obey the follow-
ing linear dynamical system:

d X
d t

= MX + B

Yt = X t + ηt (1)

where the second equation represents the ef-
fect of the measurement in terms of equidistant
sampling and acquisition error. The noise is
taken to be uncorrelated Gaussian white noise
with variance σ2. Intrinsic cellular noise aver-
ages out in population measurement such as
those from qPCR, which is what we are in-

terested in. In other words it is well justified
to neglect dynamical noise propagation. The
linear model is well suited for perturbations
off a steady state (see discussion about exten-
sions of the model). As for every continuous-
time linear dynamics an equivalent discrete-
time model can be found, we can assume the
following model for our sampled data

X t+1 = M̃X t + B̃

Yt = X t + ηt (2)

where M̃ and B̃ need to be estimated. To solve
for the unknowns we switch to vector notation
using the Kronecker and vec operations:

Z = v e c (Y )

A = (
X T ⊗ IN , 1T ⊗ IN

)

β = (
v e c (M̃ ), B̃

)
(3)

which allows to write the system as

Z = A β + ε, where Z = Z (Y ), A = A (Y ),

β = β(M̃ , B̃ ).

Dimension of Y is N × T, and A is (N × T ) ×
(N 2 + N ), where T is the number of time points
in the series. The noise in Y affects both the
data Z and the design matrix A. Thus, in the-
ory, TLS regression would seem appropriate;
however, an important result states that when
total least square is combined with penalized
regression, the estimation is equivalent to the
ordinarily penalized regression.20 Therefore we
will proceed as if the noise ηt acts on Z and not
on A.

Penalized Regressions

The following regressions were performed.
The objective functions S are given for each
case.

• (OLS) Ordinary least squares S (β) =
||Z − A β||2

• (RR) Ridge regression S (β) = ||Z −
A β||2 + λ||β||2

• (AR) Adaptive ridge regression S (β) =
||Z − A β||2 + ∑

i λi β
2
i ,

1
N 2

∑
i

1
λi

= 1
λ

,
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where N is the number of columns in
the Jacobian, λ is a hyperparameter
tuning the global sparseness, and the
λi’s are tuned adaptively following the
expectation-maximization algorithm pro-
posed in Ref. 22. In this scheme the
parameters are updated iteratively: at
each step s the optimal parameters λs

i
of the Bayes prior are estimated from
β

(s−1)
i and then the posterior is maxi-

mized to compute β
(s )
i . Coefficients βi ’s

whose associated λi diverges during this
procedure are pruned leading to sparse
solutions. The method was shown to lead
to solutions that are equivalent to the L1
penalized regression or Lasso.21 Seeding
is done using OLS, as suggested in
Ref. 22.

• (ARS) Adaptive ridge with sign constraints
regression implements the same minimiza-
tion as in the AR, but further imposes the
constraint that nondiagonal elements have
the same sign in any given column: S (β) =
||Z − A β||2 + ∑

i λi β
2
i ,

1
N 2

∑
i

1
λi

= 1
λ
,

subject to τj βi > 0, j = 1...N , i �= 1 +
(j − 1)(N + 1), τj ∈ {−1; 1} Here we
implement an exhaustive approach: we
use quadratic programming to compute
the regression for each 2N sign combina-
tion. The retained ARS solution is the
one showing the smallest cross-validation
error. However, it is possible to extend
the formulation of the sign constraints
to allow unsigned columns: in this case
τj ∈ {−1; 0; 1}; the 3N sign combinations
of this latter formulation make the ex-
haustive search computationally intensive
for larger systems.

Sparseness and the
Correspondence between Discrete

and Continuous Dynamics

With the above method of penalized regres-
sion, we favor coefficient vectors βi with small
norm. In particular, for the case of AR and
ARS, we impose sparseness on the solution. As

the solution vector corresponds to the discrete-
time gene connectivity matrix M̃ , this sparsity
constraint appears to be plausible. But what is
the relation between the sparseness of M̃ and
the sparseness of the continuous-time matrix
M? To clarify this one has to develop the cor-
respondence between a continuous-time linear
system and its discrete-time counterpart. For
the system (1) we can solve for the time evolu-
tion as

X (t + �t ) = exp(M�t )

exp(Mt )X (0) − M−1B ,

which allows us to define the recursion
X (t + �t ) = exp(M�t )X (t )

+(exp(M�t ) − 1)M−1B ,

such that we find the exact correspondence
M̃ = exp(M�t ) and B̃ = (exp(M�t ) − 1)
M−1B . Thus, sparseness on M̃ does not nec-
essarily lead to sparseness in M = log(M̃ )/�t .
Nevertheless, the rationale of our above
approach to penalize the norm of M̃ is
twofold. First, with penalizing the norm of the
continuous-time matrix M , one would leave
the realm of linear regression, as the penalty
term in the cost function is not a quadratic
function in the coefficient vector βi anymore.
Thus, for the resulting optimization problem
issues such as nonuniqueness of the solution
and local minima would come into play.
Second, linearization of the correspondence
between the continuous and discrete world by
performing a first-order approximation of the
above matrix logarithm gives

M ≈ M ∗ = (M̃ − I )/�t . (4)

The relation exactly represents the forward
Euler method, a frequently applied method for
numerical integration of differential equations
leading to a discrete system of the form

X t+1 = (I + �t M ∗)X t + B̃

Yt = X t + ηt .

Evidently from (4), one can see that impos-
ing sparseness on M̃ also implies sparseness
of the continuous-time system matrix M . The
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Euler method gives a good approximation if the
time constants of the continuous dynamics are
large compared to the sampling time of data
acquisition.

Cross Validation

For the RR, AR, and ARS methods, the op-
timal hyperparameter λ is determined with v -
fold cross validation.

The full set of time points is split into training
and testing sets such that the fraction of points
in the test set equals v /T . The training set is
used to infer the model (M∗,B∗).

Given that time points appear both in Z and
A due to the regression structure (3), we retain
all instances of a time point from Z and A.
The test error is calculated as the total residual
variance in the time trajectories. Resampling
of the training and test sets is repeated multiple
times, and the median of all testing error is
defined as the cross-validation error.

The optimal penalizing hyperparameter is
the one associated with the smallest cross-
validation error.

Throughout the manuscript we used a 5-fold
cross validation with 500 resamplings. Once the
optimal cross-validation parameter λ is found
we retrain the model on the full set of time
points.

Assessing the Accuracy
of the Reconstruction

We consider two error measures for the ac-
curacy of the Jacobian M∗.

The first is the relative Frobenius norm
FM∗ = ‖M − M ∗‖2

/‖M‖2 where M is the real
and M∗ the reconstructed matrix. This mea-
sure represents the relative amount of vari-
ance of the matrix M captured by the inferred
Jacobian.

The second metric, termed binary norm,
reads εM∗ = ∑

ij

δij , with

δij =
{

0 if sign(Mij ) = sign(M ∗
ij )

1 if sign(Mij ) �= sign(M ∗
ij )

This metric reflects strictly the topology of
the network rather than magnitudes of links.

Random Networks

Random matrices and vectors are gener-
ated as follows. The N dimensional intercept
vector B̃ is sampled from a uniform distri-
bution [0,1]. The matrix M̃ is designed to
have negative elements along the diagonal and
a predefined number of nonzero off-diagonal
elements drawn from a uniform [0,1] distribu-
tion, such as seven elements for the networks in
Figures 1 and 2. The sign along each column
is fixed, excluding the diagonal. This reflects
the biological requirement that, in the majority
of cases, transcription regulators in lower or-
ganisms act consistently as either activators or
repressors, but not both.

We further impose some regularity con-
straints on the stability of the model: M̃ is
considered suitable if the eigenvalues of M̃ lie
within the complex unit circle. For each suit-
able pair (M̃ ,B̃ ), trajectories are generated ac-
cording to the recursion rule (2). To reflect the
experimental situation, 20 time steps are used,
and the spacing is chosen such that the slowest
decay mode reaches 0.1% of its steady states
after the 20 time points. This ensures that we
cover the transient parts of the trajectories that
contain the information about the dynamics.

Gaussian white noise σ2 is added to the tra-
jectories before reconstructing the model. The
noise variance σ2 is set to be a fraction k of
the total variance var(X t ), typically we use 5 or
10%.

Four-Gene Network by Sontag
and Repressilator Models

The four-gene network reconstructed in
Figure 3A was taken from Ref. 16 using the
original parameters: Vs

1 = 1, A14 = 4, Ka
14 =

1.6, n14 = 2, KI
12 = 0.5, n12 = 1, Vs

2 = 0.7,
A24 = 4, Ka

24 = 1.6, n24 = 2, Vs
3 = 0.6, A32 =

5, Ka
32 = 1.5, n32 = 2, KI

31 = 0.7, n31 = 1,
Vs

4 = 0.8, A43 = 2, Ka
43 = 0.15, n43 = 2,
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Vd
1 = 40, Kd

1 = 30, Vd
2 = 100, Kd

2 = 60, Vd
3

= 30, Kd
3 = 10, Vd

4 = 100, Kd
4 = 50. Initial

conditions were set to zero for each gene.
Trajectories were simulated in the inter-

val t ∈ [0, 20] and discretized to provide 20
equally spaced time points.

The repressilator model was taken from
Ref. 24 with asymmetric parameters n = 2,
bj = {5;4;3}, aj = {8;5;4}, a0j = {0.1;0.5;1}
and initial conditions corresponding to 10 pro-
teins of each gene and no mRNA. These pa-
rameter choices generate damped oscillations
converging to a stable node. The trajecto-
ries contained 20 time points spanning two
oscillations.

DREAM2 Data

We merged the two time-course qPCR mea-
surements provided by the DREAM2 stacking
the respective vectors Z and the design matri-
ces A columnwise. The regression structure (3)
does not require time continuity between adja-
cent elements in the vector Z, thus merging is
possible without creating artifacts.

The data were fit in natural units, that is,
absolute expression values where used as the
X (t) variable.
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