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Abstract— In this work we propose a novel computer fovea
model based on hexagonal-type Cellular Neural Networks
(hCNN). The hCNN represents a new image processing ar-
chitecture that is motivated by the overwhelming evidence for
hexagonal image processing in biological systems. The necessary
new coupling templates and basic hCNN image operators are
introduced. The fovea model includes the biological mechanisms
of the photoreceptors, the horizontal cells, the ganglions, the
bipolar cells, and their cooperation. Thus the model describes
the signal processing from the optical stimulation at retina
to the output of the ganglion cells. Different building blocks
of the model turned out to be useful for practical image
enhancement algorithms. Two such applications are considered
in this work, namely the image sharpness improvement and the
color constancy algorithm.

I. INTRODUCTION

The retina is a highly structured complex network of neu-
rons. Hence, to analyze and to model its behavior is a highly
challenging task. There has been a big research effort to
understand the mechanisms in the retina in the last decades.
In [1], [2] the information processing procedures in the retina
both in space and time domain have been investigated. Based
on this results a Gabor filtering simulator which is inspired
by the biological behaviors of the retina has been proposed
in [3]. The parallel processing structure of the retina and its
implementation in terms of Cellular Neural Networks (CNN)
is discussed in [4]. The investigations suggest that there are
some kind of visual information enhancement algorithms
present in the human vision system. Based on these previous
results our work focuses on the modeling and simulation of
the fovea based on hexagonal-type Cellular Neural Networks
(hCNN). The fovea is a small spot at the retina located
approximately on the optical axis and is responsible for the
acuity of the human vision.

There are five types of neurons distributed in five layers in
retina [5]. The photoreceptors are in the outer nuclear layer,
the horizontal cells, the amacrine cells and the bipolar cells
are in the inner nuclear layer, and the ganglions cells are
in the ganglion layer. The outer plexiform layer contains
the synapse connections between the photoreceptors, the
horizontal cells and the bipolar cells. The inner plexiform
layer contains the synapse connections between the bipolar
cells, the amacrine cells and the ganglion cells.
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Fig. 1. Impulse responses of two different ganglion cells; for the center-
green-on/surround-red-off ganglion (left) and the center-yellow-on/surround-
blue-off ganglion (right).

In the human vision system, photoreceptors can be clas-
sified into four types, namely the L-, M-, S-cone cells and
the rod cells. Those kind of photoreceptors react to different
wavelengths of the light. The rod cells can sense luminance
information, and the L-, M-, and S-cone cell can detect the
color information. It it is already known that those different
kinds of photoreceptors co-work together and send the spikes
to the ganglions via the bipolar cells and the horizontal
cells [5]. Usually, one ganglion cell is activated by a set
of photoreceptors consisting of more than one type. The
differences in the set of photoreceptors result in a variation of
the ganglion cells. The two major types of ganglion cells are
called the center-on/surround-off and the center-off/surround-
on ganglions.

In Fig. 1 the impulse response of a center-surround gan-
glion cell for two different colors is shown. The center of
the group of the photoreceptors reacts to the stimulation
in the different manner as the surround. Usually, that can
be classified as red-green (RG) ganglions, blue-yellow (BY)
ganglions, and black-white (BW) ganglions.

The early vision represents the set of first stage infor-
mation processing mechanisms of the human vision system.
Those mechanisms are operated in parallel across the visual
field and are believed to be used for detecting the most
basic visual features [5]. According to [6], the human vision
system includes two fundamental features. The first one can
be described in terms of a low-pass filtering operation across
the visual field. In general, the result of the low-pass filtering
represents the average intensity of a specific local area. This
feature is referred to as the first order feature. The second
feature is the difference between light intensities that project
onto the retina. According to some investigations [5], [6], the
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Fig. 2.  Biological structure of the photoreceptor cells in the fovea of
a mammalian, supporting the proposed hexagonal-type Cellular Neural
Network.

boundary detection operation in the human vision system is
based on this feature and is related to the zero crossing of
the Laplacian of two Gaussians (LoG). Sometimes the result
of this operation is called the second order feature.

The goal of this work is to model the Receptive Fields
(RFs) of the cells in the fovea. From the point of view of
the signal processing, a RF can be described as a finite
impulse response spatial filter [1], [2]. Motivated by the
biological evidence of hexagonal image processing structure
in biological systems (confer to Fig. 2) and the efficient
parallel processing architecture of the CNN we deploy the
new hCNN to realize these spatial filters. In addition the work
shows how image enhancement algorithms can be derived
from the fovea model.

The work is organized as follows. Section Il briefly
reviews the CNN framework and introduces the novel bio-
inspired hexagonal-type CNN and proceeds with the defini-
tion of standard image operators for this architecture. The
new computer fovea model and its submodels are discussed
in section Il1. Simulation results and two image enhancement
algorithms based in the fovea model are presented in section
1V, while section V draws the conclusions.

I1. CELLULAR NEURAL NETWORKS FOR HEXAGONAL
IMAGE PROCESSING

A CNN [7], [8] has already been proven to be a very
powerful image processing kernel. It represents an alternative
to a fully connected neural network and has evolved into
a new paradigm for this type of array processors. The
dynamic equation of a translation invariant planar CNN
C: u(t,i,j) — y(t,4,7) is given by

kJEN (i,5)
+ > B(i—k,j—lult,kl)+1,
kJ1eN (i,7)
1
where
. 1 . .
y(t,l,]):§(|I(t,’l,7_])+1|—|$(t,l,j)—1|) (2)

A. Hexagonal-type Cellular Neural Networks

In (1) the Moore neighborhood for the coupling is as-
sumed. A neighborhood of size one means that each cell
is connected to its eight neighboring cells. Besides the
change in the neighborhood size one can also change the
lattice structure of the CNN. One possible structure is a six-
neighborhood structure such as the hexagonal-type structure
[9]. A hexagonal-type Cellular Neural Network (hCNN) H :
u(t, ) — y(t, «) can be described by

B(t,a) = —x(t,a)+ Y Ala—)y(t,7)
YEN (a)

Y Bla—ulty) + 1,
YEN (@)

®)

where « and ~ are now linear indices of the planar hexagonal
lattice. The same output function (2) as for the rectangular-
type structure is used. We introduce the following mathemat-
ical symbols to present the templates of the hCNN

as a2

A = <a4 ap ai > (4)
as ae
b3 bo

B= <b4 by by > , 5)
bs  be

where A and B is the feedback and control templates,
respectively. Note that the indices in the templates are the
same as in Middletons Hexagonal Image Processing (HIP)
[10]. Subsequently, we will make use of the following
notation. Assuming zero initial conditions a CNN or hCNN
operator is defined by its feedback and control template as
well as its bias. Thus, the definitions of specific operators
read C : {A, B, I} and H : {A, B, I}, respectively.

B. Stable Central Linear Systems and their Inverses

If we consider the CNN as an image processor, then
many linear properties can be analyzed. For example, the
states located in the non-saturated region. In [11] a thorough
analysis of the central linear CNN and its application to
image processing is given. The same analysis can be done for
the hCNN. Assume all the cells operate in the linear region.
That is, |x(t,«)| < 1 for all «, then the output equation (2)
reduces to y(¢, @) = (¢, ). Thus, (3) can be simplified to

B(t,a) = —z(t,0)+ Y Ala—7)x(t,7)
) VEN () ©)
+ Y Bla—yult,y) +1.

YEN (o)

Following [11] we absorb the first term of the right hand
side of (6) in the feedback template by introducing the
new linearized feedback and control templates a and b,
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respectively as
R 0 0
a=A+(0 -1 0
0 0 @)

Denoting the spatial convolution operator on a planar hexag-
onal lattice as "x”, equation (6) becomes

(t, o) = a(a) x z(t,a) + b(a) *x u(t,a) +1. (8)

Applying the spatial discrete hexagonal Fourier transform
[12] to (8) yields

X(t,w) = A(w) X (t,w) + Bw)U(t,w) + s(w)I, (9)
where capital letters represent the transforms of their lower
letter counterparts. Appropriate zero-padding is applied
where necessary. The variable w represents the linear index
of the hexagonal lattice in the transform domain. The set
of coupled differential equation in (8) decouples through
the application of the spatial transform. Thus for each fixed
frequency location wq, equation (9) is a linear first order
differential equation for the time-evolution of X (¢,wy). For
symmetric templates a and b (9) is real valued for all w.
Template symmetry will be assumed throughout the rest of
this work. The stability condition is then obviously A(w) < 0
for all w. For a constant input u(a) = u(0, ) = u(t, ) Ve
the asymptotic state of a stable system is then given by

X(w) = thlgo X(t,w) = Hw)U(w), (10)
with B
H) =~ 1)

Thus, the asymptotic output z(«) is the result of the appli-
cation of the spatial filter H(w) to the input image u(«).

C. CNN Image Operators
A Laplace-like operation of a CNN is obtained by

o -1 0 oo o
B=|-1 4 -1, A=]0 0 0| (12
0 -1 0 000

and I = 0. The zero-frequency component of the Fourier
transform of the control template B is zero. This fact
implies that the inversion of this operation will be quite
difficult. Thus, we add a small positive constant 2 to the
central element and define the subsequently used Laplace-
like operator C;. as

0 -1 0] 0o o0 o0
Ce:{d -1 4+¢ —1|/,]0 1 0],0 (13)
0 -1 0] |00 o0

For the HIP framework we introduce the corresponding
Laplace-like operator as

-1 -1 0 0
He <1 6 + €2 1>,<0 1 0>,0 . (19
-1 -1 0 0

The inversion of H,;. (and correspondingly for C;.) can be
obtained as

Aw) _ —AWw)
Bw)  —-Bw)’
where the last equation should indicate that the linearized
feedback template of the inverse operator H;l should be
chosen to be —B(w) to ensure the stability of the operator
H;;'. The linearized control template of #,.' should be

chosen to be —A(w). Thus, applying (7) the templates for
H;, ! are

0 0 -1 -1
H b <0 0 0>,<1 6 + € 1>,o . (16)
0 0 -1 -1

1

H Y w) =

(15)

Note that operator 7,_~ is the exact inverse of the operator
‘H;. defined in (14). The same inversion procedure can be
applied to the rectangular operator C;. of (13).

Another important image operator for a fovea model is the
Gaussian operator. A Gaussian-like operation is performed
by the rectangular CNN C, [13] with

0 1 o] [o 0o o
Con:X |1 =3=X% 1[,[0 X 0],0
0 1 of [0 0o o

, A7

where A2 is a small positive constant. The corresponding
hexagonal operator H, is defined by

1 1 0 0

Hgn : <1 -5 — )2 1>,<0 A2 0>,0 . (18)
1 1 0 0

Following the above presented inversion procedure the in-

verses of the Gaussian-like operators C,y and H,y read

0 0 0 0 1 0

Con :9 10 =A+1 0,1 —4-X% 1],0, (19)
0 0 0| |o 1 0
and
0 0 11
Hox <0 A +1 o>,<1 —6 — A2 1>,0 ,
0 0 1 1
(20)

respectively. Once again, note that the proposed operators
(19) and (20) are the exact inverses of the operators in (17)
and (18), respectively. This novel straightforward inversion
of CNN image operators has relevance in many other appli-
cation, e.g., the retinex algorithm [14] which can be modeled
as a cascade of a high pass filter and threshold operator and
the inverse of the first operator.

I1l. THE COMPUTER FOVEA MODEL

Since the retina is a highly structured network of the
neurons, it became a quite valuable research topic in the
fields of Human Computer Interaction. Many researchers
provided summaries of the retinal structure and the biological
evidences [15], [1], [2].
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Fig. 3.  Structure of the proposed computer fovea model.

The fovea locates on the center of the retina, and is
the region of highest visual acuity. The fovea is a 0.2 —
0.4 mm diameter rod-free area with very thin, densely packed
photoreceptors. The photoreceptors in the fovea are nearly
hexagonally arranged (see Fig. 2) [16], and the average of
cone spacing (csp) has been estimated to about 2.5 to 2.8 um.
It is the most important area in the retina. The fovea is
always directed towards whatever object one focuses on. In
the fovea there are almost exclusively cones at their highest
density. The structure of the proposed hCNN-based fovea
model is shown in Fig. 3. The fovea model is constructed
by a set of photoreceptors that are hexagonally arranged.
In Fig. 4 the signal processing system of each cell in the
fovea model is shown. In [3] is was suggested that because
there are direct synaptic connections between the bipolar
cells and the ganglion cells and only weak influence of
the amacrin cells, the model of the bipolar cells can be
incorporated into the model of the ganglion cells and the
amacrin cells can be neglected. However, it is already known
that the horizontal cells directly connect to the bipolar cells
and have no direct connection to the ganglion cells [1], [2],
[5]. Thus, we propose to keep the bipolar cells separated
from the ganglion cells and consider the ganglion cell as a
direct synaptic connection in our model.

A. Photoreceptors

For the sake of estimating the parameters of a fovea model,
a simplified version of the proposed model in Fig. 4 is
required and it is shown in Fig. 5. In the simplified version,
we assume the differences between L-, M-, and S-cone cells
are ignored, i.e., g = x’;. Meanwhile, since in this research,
the ganglion is considered as a direct synaptic connection,
we consider it as a all-pass filter.

The impulse response gr(i,j) of the photoreceptor can
be represented as a Difference of two Gaussians (DoG). In
the fovea, it can be described as a Gaussian function in the
most cases [1], [2], [3], [5] with the standard deviation o of
the Gaussian ranging from 1.5 to 12 (csp). In our approach,
the CNN-based Gaussian-like operator of (17) is used to
approximate the Gaussian filter

Corr(0(@)) = gr(a),

where \p indicates the diffusion level of the Gaussian-
like function. Now the question is how we set parameter
Ar such that the final state of the CNN approximates the
action of a Gaussian filter of predetermined o. To obtain the
corresponding values for Ar a Genetic Algorithm (GA) is

(21)

Bipolar

zr(@)

z(a)

5

Fig. 4. The proposed fovea model including the photoreceptor cells, the
horizontal cells, the bipolar cells and the ganglion cells.

Bipolar

z(a)

Fig. 5. The proposed simplified fovea model including the photoreceptor
cells, the horizontal cells and the bipolar cells.

used. The correspondence is summarized in Tab. I. Clearly,

o AR MSE

V2 | 05677 | 2.57 x 10~5

1.5 | 0.5360 | 2.85 x 10~°

12 | 0.0712 | 4.69 x 10~°
TABLE |

CORRESPONDING VALUE OF A FOR THE CNN-BASED APPROXIMATION
OF A GAUSSIAN FILTER WITH STANDARD DEVIATION 0.

the RFs of the photoreceptor is used to determine the average
intensity of a visual signal. In general, a photoreceptor acts
like a low-pass filters. The outputs of the filters are the so
called first order features.

B. The Overall Fovea Response

According to Fig. 5 the overall impulse response of the
simplified fovea model reads

hr(a) = hr(a) * (0(a) — bhy(a)).

Some physiological experiments indicated that the RF of the
fovea system shows a center-surround characteristic. Even
more, in [3] is it suggested that the RF of the overall fovea
system can be modeled as the cascade of a Gaussian filter
with o and a Laplace filter. According to [5], in the best
lighting condition, the central part of RF is about 10 um (4
csp). Similarly in [3] it is suggested that the standard devi-
ation o of the Gaussian filter should be 2’3"’2” = V2 (csp).
A combination of the CNN-based Laplace-like operator H;
and the CNN-based Gaussian-like operator 7, can be used
to describe the overall system

hp = Hox(Hi(0())),

(22)

(23)
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Fig. 6. Radial symmetric impulse response of the hCNN model of the
horizontal cell with A\ = 0.536, A = 0.568, ¢ = 0.01 and b = 0.75.

where ¢ is a small nonzero value and X is obtained via the
GA.

C. The Horizontal Cells
Using (22) the impulse response of a horizontal cell /g ()
is given by

har(@) = 3 (5(0) — by (@) % h(0).

Applying the Gaussian model for the photoreceptor hr(«)
and (23) for the overall fovea model, the horizontal cells
can be estimated by (24). In terms of hCNN operator
approximation one obtains hy (o) ~ Hy(6(a)) with

(24)

1
Hy = —(1—H, oHgr o Hie),

51—y (25)

where ”o” denotes the composition of operators. Having
identified each impulse response of the simplified fovea
model, one can apply the filters to the two-input channel
model of Fig. 3. In this case the response of the overall
fovea model in terms of hCNN operators reads

y(a) = Hox(2(@)) = bHox (Hu (w(@))),

which represents the final model equation.

(26)

IV. SIMULATION RESULTS
A. The Biology-related Response and the Illumination

In Fig. 6 an impulse response of the horizontal cell in the
hCNN-based fovea model is shown. This can be compared
with the well known RF structure in Fig. 1. One specific
simulation result is shown in Fig. 7 where the input image
is combination of a black and a white strip. The graph
represents the intensity along the cross-section of the two
stripes. The behavior of this model is quite similar to that of
the human vision system (see Fig. 1). Another example of
the characteristics of the proposed hCNN fovea model for a
natural image are shown in Fig. 8, Fig. 9, Fig. 10 and Fig. 11.
In order to present the effect of the hexagonal lattice, the
resultion of these images is reduced. In accordance to Fig. 5

05
-1k
A45r
3l
2% 2 w0 w80 00 @ 140 0 8

«

Fig. 7. Cross-section of the output image of the hCNN fovea model for the
input image containing a black and a white stripe; note that the beavers of
this model are quite similar to that in the human vision system (see Fig. 1).

500 600 700 800 900 1000 1100

Fig. 8. Hexagonal input image to the proposed hCNN fovea model.

the input image Fig. 8 is passed through the photoreceptor
cells and the horizontal cells and results in the Fig. 9. The
overall response of the fovea (subtraction of a scaled version
of the above image from the output of the photoreceptor)
is shown in Fig. 10. Because the photoreceptor is just a
Gaussian filter (see (21)) its output it not shown here. In
addition the output of the rectification is given in Fig. 11.

B. Image Sharpness Improvement Algorithm

In the human vision system the second order feature
provides the related difference information between cells.
That is why the human vision system can identify the same
texture in different light conditions. Following this, in [17] a
sharpness improvement algorithm based on adaptive edge de-
tection is proposed using multiple Gaussian derivative filters.
Based on their idea, we can simply use the responses of the
hCNN fovea model to implement sharpness improvement.
For the luminance channel of CIE-L*a*b* the operation of
the impulse response

he(a) = 6(a)+v1hper, (@) Fynhren, (), L(a) =, (27)
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900 1000 1100

Fig. 9. Output of the cascade of the photoreceptor and the horizontal cells Fig. 12. Input image for the hCNN fovea model based sharpness
in response to the input given in Fig. 8. improvement algorithm.

"

500 600 700 800 900 1000 1100

Fig. 13. Result of the hCNN fovea model based sharpness improvement

Fig. 10. Output of the complete hCNN fovea model in accordance to the algorithm with the input image given in Fig. 12.

block diagram Fig. 4 in response to the input image given in Fig. 8.

yields a sharpness improved image, where ~1,...,7y, rep-
resent the adaptive weights and \q,..., \, are the different
scale parameters of the different fovea channels given by
their impulse responses hg x,. In Fig. 12 and Fig. 13 the
input and the output of sharpness improvement algorithm for
an sample image are shown, respectively.

C. Color Constancy Algorithm

According to the gray world hypothesis, the average color
of the world can be considered as gray [18], [19]. Based
on this assumption, the features of the photoreceptor can be
used to estimate the light shifting. Even more, we are able
to remove the light shifting by this model. The corrected
color channels () and b(c) of the inputs a(c) and b(ev),
respectively compute to

a) = fa(a(a) - Hg)\R (al(a)) + Ba
(@) = &(b(a) = Horp (bi()) + By

Fig. 11.  Output of the complete hCNN fovea model followed by the
rectification procedure in response to the input image given in Fig. 8.

(28)
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Original Colors

Fig. 14. Input image with a color shift (left) indicated in the color chromatic
diagram (right).

Original Colors,

Fig. 15. Corrected version of the image in Fig. 14 applying the hCNN-based
color constancy algorithm of (28) (left) and its color chromatic diagram
(right).

where (&, &) are scales parameters and (3, 3») corresponds
to the definition of gray. In some environments the color shift
of the input image can be quite extreme and the ranges of
the color space are restrained. In those cases the parameters
&, are required in order to restore the image. In Fig. 14
and Fig. 15 shows a color shifted input and its corrected
version applying the hCNN-based color constancy algorithm,
respectively.

V. CONCLUSIONS

In this paper we investigate the implementation of a fovea
model based in a hexagonal-type Cellular Neural Network.
Although, not all biological details of the mammalian fovea
are known at present we are able to roughly model the
behavior of the fovea and consequently find possible ap-
plications of the model for image enhancement algorithms.
The proposed overall fovea model includes models for the
photoreceptor cells, the horizontal cells and the bipolar cells.
Simulation result confirm the validity of the discussed model.
Image enhancement algorithms are deduced from the fovea
model, such as the sharpness improvement algorithm as well
as the color constancy algorithm.

The derivation of possible image processing applications
from biological mechansims in the retina is one of the
interests of our future research.
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