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Abstract—RF power amplifiers of wireless communication systems
are usually driven deep into their nonlinear region to obtain a higher
efficiency. The price paid for the increased efficiency is the distortion
of the transmissien signal caused by the inherent nonlinearity of the
amplifier. To fulfill a given spectral mask for the transmission sighal
and to avoid an unacceptable high bit-error rate, the amplifier must
be linearized. One of the most powerful and efficient methods is djgital
baseband predistortion. The predistorter must be operated on & sampling
frequency which is sufficiently high to be able to compensate the out-
off-band spectral components caused by the amplifier. Also for system-
level similations of communication systems, amplifier behavior models
(high sampling rate) are used to estimate the generated distortion. It is
well known that nonlinear system identification can be accomplished on
the Nyquist-rate regarding the input signal bandwidth, but however for
several applications, systems operating on the output signal Nyquist-rate
are required. In this paper we show how such systems can be obtained
by a multi-dimensional kernel interpolation without the drawbacks of a
high condition number for the kernel estimation and the demand for an
expensive high sampling rate ADC.

1. INTRODUCTION

“To operate high power transmitters of RF communication systems
with a higher efficiency, the final amplifier output-stages are usually
drven deeply in their nonlinear region (approximate inverse rela-
tionship between power amplifier efficiency and linearity). The price
paid for a higher efficiency is that the inherent nonlinearity of the
RF power amplifier causes in-band distortion which degrades the
bit error performance. 1t also causes spectral regrowth which leads
to adjacent channel interference. Newer modulation formats such
as WCDMA or OFDM are especially vulperable to nonlinearities
due to their high peak to average power ratio. In order to comply
with spectral masks imposed by regulatory bodies and to reduce
the bit ermror rate. the RF power amplifier will be linearized. The
most powerful and efficient linearization technique is digital baseband
predistortion [11-[3]. Fig. 1 depicts a simplified block diagram of a
comimunication ttansmitter. The digital baseband predistorter distorts
the input signal by a nonlinear operator which is ideally the inverse
nonlinearity of the RF power amplifier (o obtain an almost overall
linear response up to the saturation point. To compensate the out-off-
band spectral components caused by the amplifier nonlinearity, the
predistorter has to be operated on a sufficient high sampling frequency
w,s which is usually N-times higher than the transmission signal
bandwidth. The factor N denotes the highest order of the amplifier
nonlinearity. Because the nonlinear behavior of the amplifier is in
general unknown we apply a feedback path in Fig. 1 in order to
identify either the amplifier and compute the inverse (predistorter)
or to identify iﬁlmediately the predistorter [4]-[6]. It is well known
that the identification process can be accomplished on a sampling
frequency which is just twice the input signal bandwidth [7]. However
in both schemes, the predistorter is running on the high sampling
frequency w, (see Fig. 1) to generate the out-off-band spectral
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Fig. 1. Block diagram of a wireless communication transmitter with digital

baseband predistortion for the linearization of the RF power amplifier.

components required for the nonlinear compensation. The sampling
frequency over twice the input signal bandwidth also plays a crucial
role for the behavior modeling of physical RF power amplifiers. These
models are usually used for efficient system-level simulations of the
overall transmitter in the discrete-time baseband domain. To cover all
out-off-band spectral components in the behavior model, the sampling
frequency w, must also be N-times higher than the transmission
signal bandwidth (without predistortion),

[1. BASEBAND MODELING OF NONLINEAR PASSBAND SYSTEMS

In system-level simulations, e.g. communication transmtlers as
depicted in Fig. 1, nonlinear behavioral models are often employed
to predict the generated distortion (inter-modulation and spectral
regrowth) caused by the inherent nonlinearities in physical devices
without the full computational complexity of transistor based circuit-
level simulations [2]. Nonlincar passband systems like RF power
amplifiers can be modeled by a tandem connection of a dynamic
nonlinear system and a lincar passband filter as depicted in Fig. 2.
The real passband signal z(t).= |£(t)| cos{wet + ¢o(t)), where w.
is the carrier frequency, ¢o is the phase, and |Z| is the amplitude,
is fed to the nonlinear dynamic system described by the nonlinear
system operator H to obtain the signal [8] '

N
u(t) = Hz(t)] = 3 ua(t)
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where by denotes the nth-order time-domain Volterra kemel. The
output signal is filtered by a linear 1st-zonal filter (real passband
filter) [9], [10] described by the linear operator F to suppress the
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unwanted spectral components located around the multiples of the
carrier frequency w. (see Fig. 3). Thetefore the output signal become

y(t) = FH [=(t)]

N .
=3 Flun(t)l, 2
n=1
which contains only the spectral components of interest near the
carrier frequency we. If we > B(2N ~1), where 28 is the bandwidth
of the bandpass signal z(t), the complex baseband Volterra system
- {103, [11)

[Nj2]—1 ®© oo .
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exists. The signals £(t), §(t) and the kemels hgx 41 are the cor-
responding baseband and baseband-equivalent guantities {10]. The
symbol * in (3) denotes complex conjugation. The baseband signals
Z(t) and §(¢) are sampled with a sampling frequency w, > 2NB,
which is at least N-times higher than the input-signal bandwidth
to receive the full cut-off-band spectrum without any aliasing (see
Fig. 3). The ocutput signal of the discrete-time nonlinear baseband
model in Fig. 2

[N/21~1Laxp Lok
g =vigml= S Y - Y vl daian)
k=0 t1=0 Igg 41 =0
k+1 241
Hz(n—l) H "(n—I) (4)
t=k+2

is compared with §(n) to create the error mgnal e{n) which is min-
imized (MMSE) with respect to the discrete-time baseband Volterra
kernels v in (4). The nonlipear model in (4) is the most general, which
also includes the common simpler forms like Wiener, Hammerstein,
Parallel Wiener and models which are described by purely static
nonlinearities e.g. AM/AM- and AM/PM-conversion [2], [3], [12].
The components within the dashed-line box in Fig. 2 are usually
not explicitly used e.g. in a system as depicted in Fig, 1 because
- the discrete-time baseband signals are provided by the baseband
processor itself. With the structure depicted in Fig. 2 usually two
major difficulties arises. The first is the demand for a high sampling
rate Analog to Digital Coaverter (ADC) which is expensive and
high power consuming. The second is the oversampling of the input
signal £(n) by N, which leads to an non persistent excitation. This
results in very large condition numbers and therefore to inaccurate
Volterra kernel estimation if no retaliatory actions like regularization
or truncated singular value decomposition (ISVD) are accomplished
[13]).

III. BASEBAND MODELING OF NONLINEAR PASSBAND SYSTEMS
BASED ON VOLTERRA KERNEL INTERPOLATION

To overcome the difficulties mentioned in the last chapler, we
identify the RF power amplifier on a sampling ratz w,/N = 2B
which satisfies the Nyquist theorem just for the band-limited (+B)
input signal Z(t) {7]. Therefore the sampled output signal #(nN)
in Fig. 4 become aliased and will not anymore an equivalent repre-
sentation of the continuous-time signal §(t). However we are able
to identify the Volterra kernels of the nonlinear amplifier in Fig. 4
within-the. input-signal bandwidth in a unique way if the sampling
rate satisfies the Nyquist theorem regarding the input signal Z{t) [7].
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Fig. 2. Equivalent discrete-time baseband model generator V(I for the
continious-time nonlinear passband system composed of H[x| and Flu| for
a sampling frequency wy which is at least twice the outpat signal bandwidth.

-

For this reason the output signal (=) of the discrete-time model in
Fig. 4 is in the ideal case (zero variance for the kernel estirnation)
identical to the sampled aliased output-signal §(nN). But for some
applications e.g. digital predistortion or power amplifier modeling it
is of fundamental importance to have a discrete-time system which is
able to generate a non aliased output-signal as §(n}) in Fig. 2 which
contains the required out-ofi-band spectral components. Because it is
not possible to calculate such a signal from the aliased signal if(n)
in Fig. 4 we investigate the frequency-domain representation of the
output-signal of the nonlinear discrete-time model V in Fig. 2 in more -
detail. For this reason we consider the individual contributions to the
time-domain signal §(n) in (4) for k =0, ..., {N/2] ~ 1. If we span
these signals in 2k + 1 discrete-time variables we obtain

Lk Lok 4y .
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To transform (5) to the frequency-domain, we apply a (2k + 1)-
dimensional discrete Fourier transform to (%), which yields the multi-
dimensional frequency-domain signals :

Yaks1{wi, - oo wakg1) = Vaegr {wi,y -y wakq1)
k41 2k+1 -
Hx w) [ X (—wi), ©
i=k+2

which are periodic with 2« in all frequency variables w1, ..., w2k 1.
The frequency-domain signals X and V' are the Fourier transforms of
the input signals and the time-domain Volterra kernels respectively,
To calculate the (2k + 1)th-order frequency-domain output signal,
we apply an inverse Fourier transform to (6) which yields with some
mathematical manipulations {14]

1
rPToE / /qul(‘&' w1 — wa,
.,wgk)dwl ... duwgy. 7 @

From (7) we recognize that the (2k + 1)th-order frequency-domain
output signal contribution of the Volterra system V in Fig. 2 is

17'21=+1 (W) =

@2 = Wwa, ..
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Fig. 3. Frequency-domain amplifier output-signals with contributions from
the different ordets of the amplifier nonlinearity up to N = 3.

calcutated by a kind of 2k-fold convolation of the band-limited multi-
dimensional frequency-domain signal in (6). This process causes the
desired spectral regrowth which is also present in the continuous-time
amplifier output signal #(t). But it is important to note that we know
from [7] that the system is uniquely defined by the Volterra kernels
within the input signal bandwidth, because the kernels outside are
masked by the band-limited input 51gnals X in (6). For this reason the
frequency-domain Volterra kernels of the models in Fig. 2 and Fig. 4
satisfies %k+l(w1| ooo ,Lu‘z;H.[) =] V2k+] (NW1, cco ,anH) for
all k’s within the input-signal bandwidth of £ /N . Therefore we can
change the frequency-scaling of the Volterra kemels V2541 identified
on the low rate in Fig. 4 with a factor of N by a simple multi-
dimensional zero-padding. The unwanted spectral copies caused by
the zero-padding are masked (interpolation) by the band-limited
high-rate input signal X (w). This process is depicted in Fig. 5
for a two-dimensional kemei for N = 2, which was chosen for a
convenient graphical representation although we do not have even-
order kernels in passband systems considered here. The shaded areas
in Fig. 5 represents the non-zero values of the frequency-domain
kemels. The multi-dimensional zero-padding is accomplished in the
time domain by replacing all unit-sample delays in the discrete-
time Volterra system V in Fig. 4 by N-sample delays. Therefore
the new recalculated multi-dimensional Volterra kemels in Fig. 4 are
expressed by
Varp1(z;- -, z2ip1) = Vaen (2. .., zé\l’c+1) (&
where z; denoles the Z-domain frequency variables for ¢ =
., 2k + 1. With the recalculated kernels in (8), we are able to
construct a new Volterra model V (see Fig. 4) which can be used
" in Fig. 2 (V — V) to generate the discrete-time output-signal §(n)
. with the desired out-off-band spectral components. It is important
that the recalculation of the low-rate identified kemels with the setup
in Fig. 4 do not require any additional computational complexity. We
only need some additional unit-sample delays (memory) which is in
general not relevant because of its low implementation cost.
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Fig. 4. Equivalent discrete-time baseband model generator V[E(n)] for the
continuous-time nonlinear passband system composed of H[x] and Fluj for
a sampling frequency %# which is at least twice the input signal bandwidth.

IV. SIMULATION RESULTS

To validate the equivalence of the discrete-time nonlinear Volten’a
operators V[£(n)] and V[#{r}] developed in the last chapter, we sim-
ulate the two different setups depicted in Fig. 2 and Fig. 4. For the RF
amplifier we employ a device which generates negligible small high-
order distortions (N = 3) to obtain illustrative frequency-domain
result which are depicted in Fig. 6. The amplifier will be excited with
a band-limited (+10M Hz) white Gaussian noise input sighal which
generates an out-off-band distortion up to 30MHz. The frequency-
domain amplifier output signal from V|Z(n)] resulting from the high-
rate identified kernels and the output signal V[%(n)] which results
from the low-rate identified and interpolated (multi-dimensional zero-
padding) kernels are depicted in Fig. 6. These frequency-domain
signals are almost identical as we have expected from the theoretical
derivations shown in Sec. IIf (for a convenient representation only the
magnitude is depicted here). The small difference which is caused by
the nonzero variance (depends on the condition number depicted in
Fig. 7) of the estimation process is depicted as a relative error in the
lower part of Fig. 6. Because the model output signal in (4) is linear
in the parameters, the unknown kemnels can be estimated e.g. with
standard linear-least-squares.

V. CONCLUSION

Although nonlinear systems can be identified on a sampling rate
which s just twice the input signal bandwidth, for some applications.
nonlinear systems sampled on a rate which is twice the output signal
bandwidth are necessary. Ome application is a digital predistorter
which precedes the ponlinear amplifier to distort the amplifier input
signal to obtain an almost overall knear resporse up to the saturation
point. The digital predistorter must be able to generate out-off-band
spectral components to compensate the spectral regrowth caused by
the amplifier nonlinearity. Such high-rate models are also required for
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Fig. 5. Two-dimensional zero-padding and spectral masking by the high-
rate input-signal X {w1) X {wz) for a two-dimensional Volterra kemel. The
shaded areas illustrates the non-zero frequency-domain kemels
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Fig. 6. Frequency-domain input and output signals from z(n), ¥[z(n)] and
V[z(n)). The relative error depicts the output signal difference caused by the
Volterra kemet estimation.

system-level simulations of a whole communication system to predict
the generated distortion without the full computational complexity
of a transistor-based circuit simulation. One method to construct
such high-rate models is to identify a complex baseband system
(predistorter, amplifier model) on a sampling frequency which fulfili
the Nyquist theorem regarding the output signal bandwidth. One of
the inherent problems with this method is the bad conditioned data
matrix {large condition number) which leads to inaccurate kernel
estimations (high variance). Another problem is the demand for a
high sampling rate ADXC which is expensive. To overcome these
difficulties, we employ a novel method based on a multi-dimensiona}
zero-padding of low-rate identified Volterra kernels. We have shown
that this procedure requires no additional computational complexity.
We only have to replace the unit-sample ‘delays in the Volterra filter
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Fig. 7. The condition nimber, defined as the ratio of the biggest and the

smallest singular value, determines the estimation accuracy. This number is
small if the excitation signal become white.

(predistorter, amplifier modél) by . N-sample delays. This increased
demand for memory is usually not relevant because of its low
implementation cost.
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