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A~SPQC#-RF power amplifiers of wlrelers communitatlon systems 
are usually driven deep into &sir nonlinear region to obtaln a higher 
efliciency. The price paid for the increased eficiency is the distortion 
of the transmission signal caused by the inherent nonllnesrity ab the 
amplifier. To fulRu a given spectral mask for the transmission signal 
and to avoid an unacceptable high bit-error rak, tbe ampUBer must 
be linearized. One of the most powerful and efticient methods is &ltd 
baseband predistortion. The predistorter must be operated on a sampling 
Prequency which Is sutliciently high to be able to compensate the OUG 
off-band spectral components caused by the amplifier. Also for syslem- 
level slmlilations of communication systems, amplifier behavtor models 
(high sampMng rate) are used to estimate h e  generated distortion. It is 
well known that nonlinear system Identification can be accomplisbed on 
the Nyquist-rate regarding the input signal bandwidth, but however for 
several applications, systems operating on the output signal Nyquist-rate 
are required. In this paper we show how such systems can be obtained 
by a multi-dimensional kernel interpolation without the drawbacks of a 
high condition number lor the kernel estimation and the demand for an 
expensive high sampling rate ARC. 

1. INTRODUCTION 

To operate high power transmitters of RF communication systems 
with a higher efficlency, the final amplifier output-stages are usually 
driven deeply in their nonlinear region (approximate inverse rela- 
tionship between power amplifier efficiency and Linearity). The price 
paid for a higher efficiency is that the inherent nonlinearity of the 
RF power amplifier causes in-band distortion which degrades the 
bit error performance. I t  also causes spectral regrowth which leads 
to adjacent channel interference. Newer modulation formats such 
as WCDMA or OFDM are especially vulnerable to nonlinearities 
due to their high peak to average power ratio. In order to comply 
with spectral masks imposed by regulatory bodies and to reduce 
the bit error rate. the RF power amplifier will be linearized. The 
most powerful and efficient linearization technique is digtal baseband 
predistortion [I]-[3]. Fig. 1 depicts a simplified block diagram of a 
communication Transmitter. The digital baseband predistorter distorts 
the input signal by a nonlinear operator which is ideally the inverse 
nonlinearity of the RF power amplifier to obtain an almost overall 
linear response up lo the saturation point. To compensate the out-off- 
band spectral components caused by the amplifier nonlinearity, the 
predistorter has to be operated on a sufficient high sampling frequency 
w. which is usually N-times higher than the transmission signal 
bandwidth. The factor N denotes the highest order of the amplifier 
nonlinearity. Because the nonlinear behavior of the amplifier is in 
general unknown we apply a feedback path in Fig. 1 in order to 
identify either the amplifier and compute the inverse (predistorterl 
or to identify immediately the predistorter [4]-[6]. It is well known 
that the identification process can be accomplished on a sampling 
frequency which is just twice the input signal bandwidth [7]. However 
in both schemes, the predistorter is running on the high sampling 
frequency w3 (see Fig. 1) to generate the out-off-band spectral 
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Fig. 1. 
baseband predlstortlon for the lmanzation of the RF powa amp1ifier. 

Block hagram of a wueless communicabon transmitter with dlgltal 

components required for the nonlinear compensation. The samphg 
frequency over twice the input signal bandwidth also plays a crucial 
role for the behavior modeling of physical RF power amplifiers. These 
models are usually used for efficient system-level simulations o f  the 
overall transmitter in the discrete-time baseband domain. To cover all 
out-off-band spectral components in the behavior model, the sampling 
frequency w s  must also be N-times higher than the'transmission 
signal bandwidth (without predistortion), 

11. BASEBAND MODELING OF NONLINEAR PASSBAND SYSTEMS 

In system-level simulations, e.g. communication transmtters as 
depicted in Fig. I .  nodlinear behavioral models are often employed 
to predict the generawd distortion (inter-modulation and spectral 
regrowth) caused by the inherent nonlinearities in  physical devices 
without the full computational complexity of transistor based Circuit- 
level simulations [2]. Nonlinear passband systems like RF power 
amplifiers can be modeled by a tandem connection of a dynamic 
nonlinear system and a linear passband filter as depicted in Fig. 2. 
The real passband signal i ( t ) . =  I?(t)l cos(w.4 + @ o ( t ) ) ,  where wc 
is the carrier frequency, $0 i s  the phase, and 151 is the amplitude, 
is fed to the nonlinear dynamic system described by the nonlinear 
system operator H to obtain the signal [SI 

N 

~ ( t )  = H[x(t)l = u,(t) 
n = l  

m m  

u,(t) = J . . . / h,(r1,. . . ,Tn) fJ r(t - T i )  dTi, ' (1) 
i = I  0 0  

where h, denotes the nth-order time-domain Volterra kemel. n e  
output signal is filtered by a linear 1st-zonal filter (real passband 
filter) [9], [lo] described by the linear operator F to suppress the 
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RF Amplifier PRssbnnd Filter unwanted spectral components located around the multiples of the 
carrier frequency wc (see Wg. 3). Therefore the output signal become 

N 

dt) = FH I4t)j = F bn(t)ll (2) 
n= 1 

which contains only the spectral components of interest near the 
carrier frequency wc. If wc > B(2N-1) .  where 2B is the bandwidth 
of the bandpass signal r(l), the complex baseband Volterra system 

i = l  i=k+? 

The sign& 5(t) ,  5 ( t )  and the kemels L ~ + I  are the cor- 
responding baseband and baseband-equivalent quantities IlO]. The 
symbol * in (3) denotes complex conjugation. The baseband signals 
%(t)  and g ( t )  are sampled with a sampling frequency wa 2 2NB,  
which is at least N-times higher than the input-signal bandwidth 
to receive the full out-off-band spectrum without any aliasing (see 
Fig. 3). T h e  output signal of the discrete-time nonlinear baseband 
model i n  Fig. 2 

L + 1  2 k + l  

. i=l 1=k+2 

is compared with c(n) to create the error signal e(n)  which is min- 
imized (MMSEf with respect to the discretetime baseband Voltem 
kernels v in (4). 'Ihe nonlinear model in (4) is the most general. which 
also includes the common simpler forms like Wiener, Hammerstein, 
Parallel Wiener and models which are described by purely static 
nodineaities e.g. M A M -  and AMPManversion [2], [3], [12], 
'Ihe components within the dashed-line box in Fig. 2 are usually 
not explicitly used e.g. in a system as depicted in Fig. 1 because. 
the discrete-time baseband signals  at^ provided by the baseband 
processor itself. With the structure depicted in Fig. 2 usually two 
major dimculties arises. The h t  is the demand for a high sampling 
rate Analog to, Digital Converter (ADC) which is expensive and 
high jmwer consuming. The second is the oversampling of the input 
signal i (n )  by N. which leads to an non persistent excitation. This 
re.sults in  very large condition numbers and tberefore to inaccurate 
Voltem kemel estimation if no retaliatory ictions like regularization 
or truncated singulac value decomposition (TSVD) are accomplished 

" 
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111. BASEBAND MODELING OF NONLINEAR PASSBAND SYSTEMS 
BASED ON VOLTERRA KERNEL INTERPOLATION 

To overcome the difficulties mentioned in the last chapter, we 
identify the RF power amplifier on a sampling rate w./N = 2B 
which satisfies the Nyquist t h m m  just for the band-limited (fB) 
input signal %(b) [7]. Therefore the sampled output signal f (nN) 
in Fig. 4 beceme a l i ad  and will not anymore an equivalent repre- 
sentation of the continuous-time signal 5(t) .  However we are able 
to identify the Volterra kernels of the nonlinear amplifier in Fig. 4 
with.the.input-signal bandwidth in a unique way if tbe sampling 
rate satisfies the Nyquist theorem regarding the'input dgnd %(t)  [7]. 

Down- 
Converter 

Fig. 2. Equivalent disaek-tim baseband mDdel generator Vi?] for h e  
continuous-time nonlinear passband system "posed  of H[z] and F[u] for 
a sampling kquency wd which is at least twice the output signal bandwidth. 

For this reason the output signal g(n) of the discrete-time model in 
Fig. 4 is in the ideal case (zero variance for the kemel esbmation) 
identical to the sampled aliased output-signal G(nhr). But for some 
applications e.g. diigtal predisrortion or power amplifier modeling it 
is of fundamental importance to have a discrete-time system which is 
able to generate a non aliased output-signal as $(n) in Fig. 2 which 
contains the required out-off-band spectral components. Because it is 
not possible to calculate such a signal from the aliased signal $(?) 
in Fig. 4 we investigate the frequency-domain representation of the 
output-signal of the nonlinear discrete-time model V in Fig. 2 in more 
detail. For this reason we consider the individual contribufions to the 
time-domain signal j (n)  in (4) for k = 0, ,.., [ N / 2 1  - 1. If we span 
these signals in 2k $- 1 discrete-time variables we obtain 

L2k+i L Z k + l  

Gsk+l(nr,* 1 . , T L Z L + I )  = ... c V2*+1Ih,~ . . , l Z k t l )  
11=0 l z k + i = o  

k+1 2 b i l  
. q n i - r i )  n e'(% -1 i ) .  (5 )  
,=1 k l r4 -2  

To transform (5) to the frequency-domain, we apply a (2k + 1)- 
dimensional discrete Fourier transform to (3, which yields the multi- 
dimensional frequency-domain signals 

?2k+I(Wl,. . . I W 2 k + l )  = v 2 k + l ( W l , .  . . , (4'2h-tl) 

which are periodic with 2n in all frequency variables WI, . . . , WZL+~. 
7he frequency-domain signals X and V are the Fourier transforms of 
the input signals and the he-domain Voltem kernels respeCtiveIy 
To calculate the (2k t ljth-order frequency-domain output signal. 
we apply an inverse Fourier transform to (6) which yields with some 
mathematical manipulations 1141 - -  

From (7) we recognize that the (2k + 1)th-order frequency-domain 
output signal contribution of the Voltem system V in Fig+ 2 is 
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Fig. 3. 
the differeni orders of the amplifier nonlinearity up lo N = 3. 

Frequency-domain anplifier output-signals with contributicma from 

calculated by a kind of Zk-fold convolution of the band-limited multi- 
dimensional frequency-domain signal in  (6). This process causes the 
desired spectral regrowth which is also present in the continuous-time 
amplifier output signal $ ( t ) .  But it is important to note that we know 
from [7] that the system is uniquely defined by the Volterra kernels 
within the input signal bandwidth,-becau-se the kernels outside are 
masked by the band-limited input signals X in (6). For this reason the 
frequency-domain Volierra kernels ofChe models in Fig. 2 and Fig. 4 
satisfies VZ,+I(WI;.. ,w2a+1) V2k+l(Nwt,-- .  , N w z w i )  for 
all k’s within the input-signal bandwidth of f s / N  . Therefore we can 
change the frequency-scaling of the Volterra kemels vm+i identified 
on the low rab in Fig. 4 With a factor of hr by a simple multi- 
dimensional =-padding. The unwanted spectral copies caused by 
the zero-padding are F s k e d  (interpolation) by the band-limited 
high-rate input signal X ( w ) .  This process is depicted in Fig. 5 
for a tw~dimensional kemel for N = 2, which was chosen for a 
convenient graphical representation although we do not have even- 
order kernels in  passband systems considered here. The shaded areas 
in  Fig. 5 represents the non-2ero values of the frequency-domain 
kernels. Ihe  multi-dimensional zero-padding is accomplished in the 
tim domain by replacing a l l  unit-sample delays in the discrete- 
time Volterra system V in Fig. 4 by N-sample delays. Therefore 
the new recalculated multi-dimensional Volterra kernels in Fig. 4 are 
expressed by 

where zi denotes the .%-domain frequency variables for i = 
1,. . . ,2k  + 1. With the recalculated kernels in  (8). we are able to 
amstruct a,new Volterra model (see~Fig. 4) which can be used 
in fig. 2 (V 4 V) to generste the discrete-time output-signal g(n) 

. with the desired out-off-band spectral components. It is important 
that the recalculation of the low-rate identified kemels with the setup 
in Fig. 4 do not require any additional computational complexity. We 
only need som additional unit-sample delays (memory) which is in 
genera1 not relevant because of its low implementation cost. 

RI1 Amplifier 

I 

I I .  
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IPI 
Fig. 4. Equiialent disaete-tune basebard model generator v[Z(n)] for the 
conlinuouktuw nonlmem passband system composed o€ H[s] and Flu] for 
a sampling frequency % which h at last twice the input signal bandwidth. 

Iv. SIMULATION RESULTS 

To validate the equivalence of the discrete-time nonlinear Voltem 
operators V[*(n)] and * [5(n)]  developed in the last chapter, we s i m  
ulate the two different etups depicted in  Fig. 2 and Fig. 4. For the RF 
amplifier we employ a device which generates negligible small high- 
order distortions (N = 3) to obtain illustrative frequency-domain 
result which are depicted in  Fig. 6. The amplifier will be excited with 
a band-hted  (fIOMHz) white Gaussian noise-input sigh1 which 
generates an out-off-band distortion up to 30MHz+ The frequency- 
domain amplifier output signal from V[j.(n)] resulting from the high- 
me identified kemels and the output signal V[Z(n)l which results 
from the low-rate identified and interpolated (multi-&mensional zere 
padding) kemels are depicted in Fig. 6. These frequency-domain 
signals are almost identical as we have expected from the theoretical 
derivations shown in Sec. tI1 (for a convenient representation only the 
magnitude is depicted here). The small difference which is caused by 
the nonzero variance (depends on the condition number depicted in 
Fig. 7) of the estimation process is depicted as a relative e m f  in the 
lower part of Fig. 6. Because the model output signal in (4) is linear 
in the parameters, the unknown kemels can be estimated e.g. with 
standard linear-least-squares. 

v. CONCLUSION 

Although nonlinear systems can be identified on a sampling rate 
whch is just twice the input sign4 bandwidth, for some applications, 
nonhear systems sampled on a rate which is t w i c ~  the output signal 
bandwidth are necessary. One application is a digital predistorter 
which precedes the nontinear amplifier Lo distort the amplifier input 
signal to obtain an almost overall linear response up to the saturation 
point. ?he digital predistorter must be able to generate out-off-band 
spectral components to compensate the spectral regrowth caused by 
the ampLifier nonlinearity. Such high-rate models are also required for 
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Fig. 5 .  T w o - d i ~ i o n a !  =+padding and spectral masking by the high- 
rate input-signal X ( u l ) X ( u z )  for a two-dimensional Volterra kernel. The 
shaded areas illustrates the non-zero frequency-domain kernels 
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Fig. 6. Frequency-domain input and output signals from ?(n), V[%(n)] and 
v[i(n)]~ The relative error depicts the output signal difference caused by the 
Volterra kemel estimation. 

system-level simulations of a whole communication system to pre&ct 
the generated distortion without the full computational complexity 
of a transistor-based circuit simulation. One method to construct 
such high-rate models i s  to identify a complex baseband system 
(predistorter, amplifier model) on a sampling frequency which fulfill 
the Nyquist theorem regarding the output signal bandwidth. One of 
the inherent problems with this method is the bad conditioned data 
matrix (large condition number) which leads to inaccurate kernel 
estimations (high variance). Another problem is the demand for a 
high sampling rate ADC which is expensive. To overcome these 
difficulties, we employ a novel method based on a multi-dimensional 
zero-padding of low-rate identified Volterm kernels. We have shown 
that this procedure requires no additional computational complexity. 
We only have to replace the unit-sample ‘delays in the Volterra filter 

1 
1 -  

0‘ 
0 0.2 . 0.4 0.6 0.8 

Inverse oversampling ratio 2 B/w, 
Fig. 7. ?he condition nhber, defined as the ratio of the biggest and the 
smallest singular value. determines the estimation accuracy. T h i s  number is 
small if the excitation.signa1 become white. 

(predistorter, amplifier model) by N-sample delays. This increased 
demand for memory is usually not relevant becauqe of its low 
implementation cost. 
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