
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Ingénieur en électronique et télécommunication de l'Université de Cauca, Colombie
et de nationalité colombienne

acceptée sur proposition du jury:

Lausanne, EPFL
2008

Prof. P. Thiran, président du jury
Prof. A. Wegmann , directeur de thèse

Prof. C. Atkinson, rapporteur
Prof. C. Petitpierre, rapporteur

Prof. Y. Pigneur, rapporteur

Visual Contracts (VCs) - Enriching Graphical
Systemic Models to Support Diagrammatic

Reasoning in System Design

José Diego de la Cruz Garcia

THÈSE NO 3972 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 7 décembre 2007

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Laboratoire de modélisation systémique

SECTION DES SYSTÈMES DE COMMUNICATION

Caminante, son tus huellas
el camino y nada más;

caminante, no hay camino,
se hace camino al andar.

—Antonio Machado

A todos aquellos que me enseñaron el camino correcto;
Pero también a aquellos que me mostraron

todo aquello que no debo hacer…

Con su ejemplo, me han ayudado a forjar el camino

A la memoria de mi padre

Mamita, espero que estés orgullosa

Abstract

Model-Driven Engineering (MDE) harbors the promise of developing software-based
systems with little or no coding. Instead of coding, it is envisioned that software engineers
build models that are automatically translated into code. The modeling notation of choice for
model-driven methods is the Unified Modeling Language (UML).
In UML, modelers are forced to separately model structure (class diagrams), behavior
(activity, sequence diagrams), state (statecharts), and integrity constraints (OCL). This
separation of models makes it difficult to understand the overall behavior of the resulting
system.

We propose a visual modeling notation, called visual contracts, for system specifications,
which incorporate the four aspects (i.e., behavioral, structural, state and constraints) in a
single diagram. From a UML point of view, this is a combination of an activity diagram, a
class diagram, a statechart, and OCL code. Proposing a unified, diagrammatic notation for
contracts requires advances in the following three dimensions: visual, formal and system-
centric.

We examine the current state of research in modeling notations for system specifications, in
contracts and in visual notations. We then describe the main contribution of the thesis, the
concept of Visual Contracts. Visual Contracts condense the four components of the
specification –i.e. behavior, structure, state, and constraints—in a compact form. Visual
Contracts contain all the elements required for a specification. Visual Contracts are based on
set theory. They are formalized in Alloy. As this is a complementary approach to traditional,
analytic specification techniques, we are able to express features that are difficult to express
using notations such as UML.
We consider that visual contracts, as a complement to UML, can be one of the aspects that
can help model-driven approaches to fulfill their promise.

Keywords:
systemic modeling, system specifications, contract modeling, visual specifications, UML,
enterprise architecture, formal methods

Version abrégée

L’Ingénierie dirigée par les modèles (IDM) promet de transformer le développement de
logiciels en s’affranchissant de la programmation. Dans la vision d’IDM la programmation
est remplacée par la construction de modèles qui sont ensuite traduits automatiquement en
programmes. La notation de choix pour IDM est le Unified Modeling Language (UML).
Aved UML les modélisateurs sont forcés de séparer la structure (diagramme de class), le
comportement (diagramme d’activité ou de séquence), l’état (diagramme d’état) et les
contraintes d’intégrité (OCL). Cette séparation rend difficile la compréhension du globale du
system.

Nous présentons une notation graphique, appelé contrat visuel, pour la spécification de
systèmes qui incorpore les quatre aspects susmentionnés (comportement, structure, état et
contraintes) dans un seul diagramme. Du point de vue d’UML, ceci revient à fusionner le
diagramme d’activité, le diagramme de classe, le diagramme d’état et le code OCL. Proposer
une notation graphique unifiée requiert des avancées dans les aspects suivants : l’aspect
graphique, l’aspect formel et l’aspect systémique.

Nous examinons l’état de la recherche dans les outils de modélisation pour les spécifications
de systèmes, dans les contrats, et dans les notations graphiques. Nous décrivons ensuite la
contribution principale de la thèse, le contrat visuel. Un contrat visuel condense les quatre
composants de la spécification, le comportement, la structure, l’état et les contraintes dans
une forme compacte. Un contrat visuel contient tous les éléments nécessaires pour une
spécification. Les contrats visuels sont basés sur la théorie ensemble. Ils sont formalisés en
Alloy. Etant complémentaires aux approches traditionnelles, analytiques pour la
spécification de systèmes, nous sommes capables d’exprimer des aspects difficiles à
exprimer avec des notations tels qu’UML.
Nous considérons que les contrats visuels, en tant que complément à UML, est un des
aspects qui peuvent aider à réaliser la promesse d’IDM.

Mot-clés :
modélisation systémique, spécification des systèmes, modélisation de contrats, spécification
visuelle, UML, architecture d’entreprise, méthodes formelles

Table of Contents

i

Table of Contents
Table of Contents .. i
Table of Figures .. iv
Table of Tables... vii
Acknowledgements ... ix

1 Introduction ... 1

1.1 The Problem ... 1
1.1.1 Requirements for the Modeling Notation... 2

1.2 Visual Contracts.. 2
1.3 Contributions .. 3
1.4 Outline of this Thesis.. 4

PART I – Contracts in Software Engineering, Visual Modeling and Systemic Modeling
.. 5
2 System Modeling in Software Engineering... 7

2.1 Unified Modeling Language (UML) .. 7
2.1.1 Advantages ... 9
2.1.2 Limitations ... 10

2.2 Object-Process Method (OPM) .. 11
2.2.1 Advantages ... 12
2.2.2 Limitations ... 13

2.3 Limitations in Current System Modeling ... 13
2.3.1 Incompleteness & Uncertainty ... 13
2.3.2 Compartmentalization .. 14
2.3.3 System and IT-System do not Interact ... 14
2.3.4 Modeling of Change... 15
2.3.5 Granularity ... 15
2.3.6 Context Modeling... 15
2.3.7 Analysis and Validation Required.. 16
2.3.8 Cognitive Constraints ... 16
2.3.9 Declarative Approach vs. Imperative Approach .. 17

2.4 Summary... 18
3 Software Contracts as Specification Artifacts ... 21

3.1 Terminology ... 21
3.1.1 System .. 21
3.1.2 Service.. 22
3.1.3 Contract .. 22
3.1.4 Interpretation of a Contract .. 22
3.1.5 Assertions: Preconditions and Postconditions.. 23
3.1.6 Assertions: Invariants ... 23
3.1.7 Configuration ... 24
3.1.8 Interface Contract ... 25
3.1.9 Usefulness of a Contract... 25

3.2 What is in a contract? ... 26
3.2.1 Historical Remarks ... 26
3.2.2 Operation Schemas... 27
3.2.3 Meyer’s “Design by Contract”, 1988 ... 28
3.2.4 Wirfs-Brock et al, 1990 .. 29
3.2.5 Fusion, 1994 ... 30

Table of Contents

ii

3.2.6 Catalysis, 1999 ... 31
3.2.7 Kobra, 2002.. 32
3.2.8 ANZAC, 2002 .. 33
3.2.9 Diagrammatic Approaches to Contracts... 34

3.3 Summary... 35
4 Creating Visual Models... 39

4.1 Problems for the Creation of a Notation for Modeling... 39
4.1.1 Choosing What to Represent.. 39
4.1.2 Choosing How to Represent... 41

4.2 Techniques for Reasoning with Diagrams.. 43
4.2.1 Visual Formalisms.. 44
4.2.2 Expressing Constraints Visually .. 44
4.2.3 Limitations ... 50
4.2.4 Discussion .. 54

PART II - Visual Contracts for System Modeling .. 57
5 Systemic Modeling of Systems ... 59

5.1 SEAM as a System Modeling Approach .. 59
5.1.1 Main Modeling Concepts ... 59

5.2 Modeling Heuristics.. 60
5.2.1 Definition of Context ... 60
5.2.2 System / Environment Complementarity ... 61
5.2.3 Behavior / State-Structure Complementarity ... 61
5.2.4 Whole / Composite Complementarity .. 63
5.2.5 System Identity = Myself ... 64
5.2.6 Discussion .. 65

5.3 Summary... 65
6 Visual Contracts .. 67

6.1 Semantics of Visual Contracts.. 67
6.2 Primitives for Visual Contracts... 68

6.2.1 Basic Elements ... 69
6.2.2 Behavioral Description... 71

6.3 Visual Contract ... 73
6.3.1 Execution of Visual Contracts.. 74

6.4 Discussion... 75
6.5 Summary... 77

7 Set-Associations in Detail ... 79
7.1 Algebra for Sets Associations... 79

7.1.1 Operations on Set-Associations.. 80
7.1.2 Set-Associations as Contexts of Existence... 80
7.1.3 Algebra of Contexts of Existence... 82
7.1.4 Set-Associations as Collections.. 83

7.2 Specifying Behaviors.. 84
7.2.1 Transactional vs. Non-Transactional.. 84

7.3 Design Heuristics and Patterns in Visual Contracts ... 85
7.4 Summary... 87

8 The Language for Visual Contracts... 89
8.1 Primitives for Building Visual Contracts.. 89
8.2 Rules and Guidelines for Building Visual Contracts.. 89

8.2.1 Basic Elements ... 89
8.2.2 Relational Elements.. 91

Table of Contents

iii

8.2.3 Behavioral Elements... 92
8.2.4 Temporal Elements... 92

8.3 Metamodel .. 92
8.3.1 Basic Elements ... 92
8.3.2 Relational Elements.. 93
8.3.3 Behavioral Elements... 95
8.3.4 Temporal Elements... 96
8.3.5 Complete Metamodel ... 98

8.4 Summary... 98
9 Translating the Visual Contracts to Alloy ... 99

9.1 Translating the Visual Contracts .. 99
9.1.1 Alloy Specification Language .. 100
9.1.2 Representation of Information Objects .. 100
9.1.3 Representing Time Statically ... 102
9.1.4 Representing Time in Operations that Change Collection Members Only 102
9.1.5 Representing Time in Operations that Change the State of the Objects......... 103
9.1.6 Representing Time for Execution of Sequential VCs 106
9.1.7 The VCML Representation .. 106
9.1.8 Results .. 107

9.2 Summary... 109

PART III – Praxis of Visual Contracts .. 111
10 Case Studies .. 113

10.1 Example: A User Login .. 114
10.2 Example: the Plane Boarding Control (PlaBoCo) System 116

10.2.1 Definition of Information Objects.. 116
10.2.2 Operations Init & CheckIn... 117
10.2.3 Operation Board... 118

10.3 VideoStore PORT(Point-Of-Rent Terminal).. 122
10.3.1 Successful Scenario.. 123
10.3.2 Non-Successful Scenarios.. 126

10.4 BookStore ... 129
10.5 Example: the Job Yellow Pages Website ... 132
10.6 Summary... 134

PART IV – Closing Thoughts ... 135
11 Conclusions ... 137

11.1 Limitations of Visual Contracts.. 138
11.2 Future Work.. 138

Bibliographical References ... 141

Table of Figures

iv

Table of Figures
Figure 1. A partial UML specification for action Board for a system that controls the

boarding of passengers to a plane.. 8
Figure 2. OPM diagram that represents a process that interacts with several objects 11
Figure 3. OPM final diagram with all information required for a complete system model.

From [DORI, D. 2002a], page 430 ... 12
Figure 4. The contract establishes the responsibilities of the elements participating in each

interaction. There is always a client and a server for a given service; the service must be
declared as available in the interface... 25

Figure 5. Use of contracts as a validation tool of the system model.................................... 26
Figure 6. 3-D box that specifies the way a reservation can be done using a library IT

system. It represents how users of the library can loan copies of books. From [Kent, S.
and Gil, J.] ... 35

Figure 7. Model vs. reality. Expanded version of figure 5, that makes explicit the impact of
modeling language in the validation process... 40

Figure 8. The connection between sentences and facts is provided by the semantics of the
language. Adapted from [RUSSELL, S. and NORVIG, P. 1995], page 158...................... 42

Figure 9. Example of a simple Petri Net.. 45
Figure 10. Static structure diagrams: UML class, E-R (Entity-Relationship) 46
Figure 11. Arrow diagrams integrate additional semantic information. The decorations add

some constraints over the functions and relationships (the arrows). From [DISKIN, Z.] p.
6. .. 48

Figure 12. Spider Diagrams, from [HOWSE, J., et al, STAPLETON, G., et al 2004] 49
Figure 13. Constraint Diagrams [GIL, J., et al 2001]... 50
Figure 14. a) Simple and symmetrical Venn diagram with four contours. b) The simple

symmetrical Venn diagram of five contours. c) Adelaide, a symmetrical Venn diagram
of seven contours [GIL, J.Y., et al 2000] ... 50

Figure 15. Use of regions in order to map complex configurations. The syntax of regions
(left) is simpler than semantics in Euler-Venn diagrams (right) [GIL, J.Y., et al], Page
126... 51

Figure 16. Intersecting contexts in Venn-Euler Diagrams using regions [GIL, J.Y., et al
2000], Page 126... 51

Figure 17. Node-link interpreted as a table. On the left, the relational approach, adopted by
E-R and class diagrams, where the observer has the whole knowledge. On the right, the
relativist, systemic approach we use. .. 52

Figure 18. UML object, activity, state, and class diagrams for (a) before and (b) after action
op1. The effect of change performed by operation op1 is not evident.......................... 52

Figure 19. Static structure diagrams: UML object diagrams (2 snapshots)......................... 53
Figure 20. The objects in the model track the real models in reality, and trace one part of

their properties and behavior ... 61
Figure 21. The action changes the state. This change can be seen as changes in the structure

(cardinalities) and state of the objects themselves... 62
Figure 22. Action A is an action as a whole, Actions A1, A2 and A3, plus the ordering

constraints constitute the action “as a composite”... 64
Figure 23. Lifecycle composition with actions.. 64
Figure 24. Symbol representing the identity of the system in SEAM 69
Figure 25. Representation of an Information Object or Property in SEAM........................ 69
Figure 26. Representation of a stateful Information Object. State information appears in

each of the attributes.. 69

Table of Figures

v

Figure 27. UML object diagram for 4 passengers and the state diagram for the class Person
... 70

Figure 28. Representation of 4 passengers (a) UML-like model with instance identifiers, (b)
SEAM-like representation using instance cardinalities + explicit IO state information,
c) SEAM-like representation with state information implicit on the set-association 70

Figure 29. Action changes cardinality of set-associations. On the left side the initial (a) and
final (b) conditions. In (c), SEAM notation for representing changes in cardinalities.. 72

Figure 30. Action changes state of instances in set-associations... 72
Figure 31. Action changes cardinality of both SAs for passenger lists. A transfer has been

made, meaning also a change of state of the respective instances of IO Person. 73
Figure 32. Annotated version of Visual Contract for action Board. Please refer to chapter 9

for a complete description of this illustration.. 74
Figure 33. A partial UML specification for action Board, equivalent to figure 32. 76
Figure 34. Making explicit the state information of instances belonging to a set-association.

The IO Person has two possible states. The two diagrams at the bottom illustrate the
implicit and explicit use of state information in set-associations 87

Figure 35. Basic elements in the Visual Contract metamodel ... 93
Figure 36. Relational elements in the metamodel of Visual Contracts. First partial view. . 94
Figure 37. Relational elements in the Visual Contract metamodel. Second partial view.... 95
Figure 38. Behavioral elements in the metamodel of Visual Contracts............................... 96
Figure 39. Complete Visual Contract metamodel.. 97
Figure 40. Strategy of translation from Visual Contracts to Alloy...................................... 99
Figure 41. Visual Contract symbol and Alloy specification for an Information Object.... 100
Figure 42. Extended notation for the Information Object, and Alloy equivalent for this

extended notation. State information is included .. 101
Figure 43. SEAM notation for property definitions in the specification of a system........ 101
Figure 44. The Visual Contract of action initAction and the corresponding Alloy code .. 103
Figure 45. Precondition for action actionC.. 104
Figure 46. Post-condition for action actionC... 104
Figure 47. Visual contract for action actionC. It illustrates the operators «select», «change»,

and «transfer». ... 105
Figure 48. Mapping between model and the corresponding XML schema....................... 107
Figure 49. Mapping between Visual Contract for action Board and the corresponding

VCML output. ... 108
Figure 50. Results of simulating the action Board in the Alloy analyzer. At Time0 the

passengers (Person0, Person1, and Person3) have already checked-in. At Time1 two of
them (Person0, Person1) effectively embark on the plane. Capacity of the plane is 3 108

Figure 51. Logging action after a first failed attempt .. 114
Figure 52. Logging action after a second failed attempt ... 114
Figure 53. Logging action after a third, final failed attempt.. 115
Figure 54. Logging action finished after three attempts. A response is generated. 115
Figure 55. Visual Contract for failed logging action ... 115
Figure 56. Visual Contract for successful logging action.. 116
Figure 57. Aggregate Visual Contract for successful & failed logging action 116
Figure 58. SEAM notation for data definitions for the PlaBoCo 117
Figure 59. The SEAM contract of Init: the cardinality of the passenger_List SA changes118
Figure 60. Precondition for action Board .. 119
Figure 61. Post condition of action Board ... 119
Figure 62. Visual Contract for action Board. It illustrates the «change» operator 120
Figure 63. SEAM notation for property definitions in the PlaBoCo specification............ 120

Table of Figures

vi

Figure 64. Complete translation example for action Init. From left to right: Visual Contract,
VCML, and Alloy model. The border lines indicate the correspondence among the
models of steps 2 and 3. .. 121

Figure 65. Visual Contract domain model... 122
Figure 66. Composite Visual Contract for a successful loan made using the PORT system

... 123
Figure 67. Visual Contract for action Create_OneLoan .. 123
Figure 68. Visual Contract for operation Check_OneMember.. 124
Figure 69. Visual Contract for operation Check_MultipleVideo 125
Figure 70. Resulting Visual Contract for the set of operators Create_OneLoan,

Check_OneMember, Check_MultipleVideo, and Commit ... 125
Figure 71. Composite Visual Contract for the PORT system, including error handling and

compensation measures ... 126
Figure 72. Visual Contract for operation Cancel_Create_OneLoan.................................. 127
Figure 73. Visual Contract for action Cancel_Check_OneMember 127
Figure 74. Visual Contract for operation Cancel_Check_MultipleVideo 128
Figure 75. Visual Contract for the composite action of figures 64 to 66........................... 128
Figure 76. Global Visual Contract for successful and unsuccessful scenarios of the PORT

system. It was extracted from figures 70 and 75 ... 129
Figure 77. SEAM notation for a sale operation. .. 129
Figure 78. SEAM notation for a sale operation, expanded with the domain models for each

working object... 130
Figure 79. Informal Visual Contract for the operation saleAction. Ad hoc operators are

used to link information objects that are exchanged. .. 130
Figure 80. Visual Contract for the operation saleAction. The transfer among the two

systems is shown explicitly ... 131
Figure 81. Visual Contract for the operation saleAction. The changes are local and the

transfer is done via connectors among the parameters that the systems exchange...... 131
Figure 82. Class diagram for JobYellowPages.. 132
Figure 83. First interpretation of class diagram in terms of Visual Contracts for

JobYellowPages .. 133
Figure 84. Set-theoretical ad hoc interpretation of set-associations of figure 75 133
Figure 85. Correct modeling of structural model of JobYellowPages using the Visual

Contracts notation.. 134

Table of Tables

vii

Table of Tables
Table 1. Classification of UML notations .. 9
Table 2. Comparison between UML and OPM.. 19
Table 3. Elements for description of contracts... 36
Table 4. Comparison of the different approaches for contractual specification................... 37
Table 5. A classification of visual formalisms based on the aspect they illustrate 44
Table 6. Comparison of different notations and their relative adequacy to representing

behavior and/or structure... 54
Table 7. Comparison of the different approaches for contractual specification................... 56
Table 8. Featuring the visual perception dimension of Visual Contracts............................. 76
Table 9. Logical operations of Set-Associations. Note that cardinality must be always zero

or positive (m ≥ n) ... 81
Table 10. Default behavior for deletion of set-associations that do not include actions. The

red dotted arrows represent the several deletion processes, the guards are named after
the highest context that is being deleted.. 82

Table 11. Default behavior for deletion of set-associations that include actions. The red
dotted arrows represent the several deletion processes, the guards are named after the
highest context that is being deleted.. 83

Table 12. SEAM notation elements required for Visual Contracts...................................... 90

viii

Acknowledgments

ix

Acknowledgements

I would like to express my sincere gratitude to all the people that contributed to the making
of this work.
First of all, I want to express my appreciation to Mme. Catherine Vinckenbosch and Mme.
Annette Jaccard for their support and their generosity. They made my stay in Switzerland
possible, and also assisted me at the personal level and also for the funding of my research
during all these years. I must also thank the professor Eduardo Sanchez, as he invited me to
Switzerland and made all this adventure viable.

I want to express my everlasting gratitude to my advisor, the Professor Alain Wegmann. He
gave me the wonderful opportunity to explore new ideas and new paradigms in the LAMS
(Laboratory of Systemic Modeling). I really appreciated sharing with him ideas about
systemic modeling and formal methods, and being able to propose solutions to the beautiful
problems that his methodology aims to resolve in the field of Enterprise Architecture.
I want to thank Dr. Gil Regev, my mentor and my support at the LAMS. Gil knew how to
convince me of finishing my Ph.D. I really appreciate all the time and projects we did
together, and especially having the possibility to use his systemic approach for problem
solving.
I want to thank my colleagues at the LAMS. I will miss the quality work, programming,
discussions and joint papers with Lam-Son Lê, and the incredible and intense discussions
with Irina Rychkova about semantics. When I started my research at LAMS, I had the
opportunity to share with Andrey Naumenko, Pavel Balabko, Otto Preiss and Guy
Genilloud; they are responsible for the foundations of the work that I have continued through
my research. Thank you all for your contribution, your support and the generous exchange of
ideas.

On the scientific side, I want to acknowledge the people that have contributed in different
forms to my work. First of all, I would like to thank Professors Thomas Baar and Collin
Atkinson for their continuous interest on my work. I would like to express my gratitude to
the visitors that accepted to give part of their time to nurture my theory: the Professors
Donald Gausse, Robert France Dirk Beyer, and Bran Selic, and Mr. Henry Peyret. I thank
the members of the jury, the Professors Claude Petitpierre and Yves Pigneur, for their time
and advice that helped me refine the ideas of this dissertation.
In a more personal register, I would like to thank Dr. Claudio Bruschini, Hassina Bounif, Dr.
Hector Restrepo, Walter Pineda, David Portabella, Dr. Fabio Porto, Dr. Eugenio Tamura,
and Professor Olivier Jolliet for their support and advice, as well as to Professors Jean-
Dominique Decotignie and Humbert Kirmann for their generosity; thanks to Lianick
Houmgny and Loïc Schulé for their practical contribution to my thesis, and to Mauro
Cherubini and Alessandro Fachini for their technical expertise. I want to express my
gratitude to my colleagues of Ensures Consulting, who supported me with generosity for the
end of my Ph.D.

I cannot say goodbye to the LAMS without remembering with affection its administrative
body. Thanks to Angela Devenoge, Danielle Alvarez, and more especially to France Faille
and to Holly Cogliati for their friendship and hard work. You make the work at LAMS a
delicious moment.

All my colleagues at EPFL during all these years of post-grade studies and research were a
wonderful source of ideas. In addition to them, I must show my gratitude to my ex-

Acknowledgments

x

colleagues in industry and especially to the Telematics Research Group of Universidad del
Cauca, who convinced me to quit Colombia for pursuing my dreams. The endless support of
my friends Daniel Ospina, Diego Acosta, Isabel Martínez, Ivan Hernandez, Ferney Rojas,
Carlos Plaza, Marta Montaño, Carlos and Luis Perdomo, has been essential during these
years.

The friendship of Brice Tsakam-Sotche, Paul and Martha Ostos-Briceño, Simon Keller,
Etienne and Janine Bueche, Luis and Josefa González, Angelina and Pietro Cireddu made
our life in Switzerland a nice experience. My gratitude to the members of the Association
ACIS, who are also my friends, and of the Association ColombiaVive, mis lanzas; they are
just too numerous to cite here; we worked together to make other people know the real
Colombian style: folklore, hard work and a positive way of thinking. Gracias muchachos.

I want to thank my family, in particular to my parents, Nelly García and José De la Cruz (┼),
who that taught me to be relentless and also to respect His rules of the game, at the same
time that they nurtured my intellect. I also want to thank my brother Carlos Andrés and my
sisters – Angélica y Sandra –, and their beautiful families, as well as to my family-in-law —
Isolina, Freddy, Fabián, Aidé— because they gave me the moral support required to endure
during these years. Los quiero a todos.

Finally, I want to say to mis duras, Claudia and Diana, thank you for your love and
comprehension. You accepted to live this adventure with me, to rebuild our lives, and to
explore new worlds. Thank you for your courageous decision, and for your support. Las
amo.

Gracias Señor por darme la vida, y esta vida en particular
Thank you, Lord, for my life

Chapter 1. Introduction

1 Introduction
Etre, c’est agir

Leibniz

Model-Driven Engineering (MDE) [MELLOR, S.J., et al 2003] harbors the promise of
developing software based systems with little or no coding. Instead of coding, it is
envisioned that software engineers build models that are automatically translated into code.
The modeling notation of choice for model-driven methods is the Unified Modeling
Language (UML) [OMG 2003].
In UML, modelers are forced to separately model structure (class diagrams), behavior
(activity, sequence diagrams), state (statecharts), and integrity constraints (OCL). This
separation of models makes it difficult to understand the overall behavior of the resulting
system. In this thesis, we present a visual notation for specifying system behavior via the
description of the resulting changes (of the structure and state) and the related integrity
constraints. From a UML point of view, our visual notation is a combination of an activity
diagram, a class diagram, a statechart, and OCL code.
In software engineering, the concept of contracts is useful for specifying operations done by
a system [MEYER, B. 1987, WIRFS-BROCK, R., et al 1990, COLEMAN, D., et al 1994,
D'SOUZA, D.F. and CAMERON WILLS, A. 1998, EVANS, A., et al 1998, HECKEL, R., et al
2001, BOTTONI, P., et al 2001, ATKINSON, C., et al 2002, SENDALL, S. and STROHMEIER, A.
2002]. Creating a contract requires determining what the initial conditions are, what the
expected resulting state of the system is, and what the externally visible behavior is.
Contracts are very useful as specification artifacts that condense the structure, the behavior,
the state and the constraints. Nonetheless, contracts in the Information System field
traditionally address the needs only at the programming level. We consider that for model-
driven approaches to fulfill their promise, contracts must be specified in the models.

1.1 The Problem
The models made in the early phases of a system lifecycle are characterized by their lack of
precision. These models are mainly diagrams complemented by some textual specification.
They capture the information about the system, are technology-free, but are difficult to
validate and verify1.
The current model approaches require that a) the models are simple enough, b) the models
are extensible and can be refined, in order to introduce more information or specialize the
system later in the process, and c) the models should be verifiable, in order to identify the
inconsistencies before going further in the modeling process. In summary, the models must
be simple but meaningful, and informal but with a strong mathematical basis; this is a very
complicated scenario.
Traditionally, the structure of the system is specified using one set of diagrams and
constraints; the behavior uses another set of diagrams and constraints; and the states of the
system are specified using yet another set. Constraints are expressed in sentential (textual)
form, and contracts are traditionally specified in a textual form, too.
Proposing a unified, diagrammatic notation for contracts requires advances in the following
dimensions:

1 The verification is the process of checking whether the system is correct or consistent. A consistent system model is one whose
properties respect the constraints of the system.

Chapter 1. Introduction

2

The visual dimension
The visual dimension (diagrammatic reasoning) enables the communication of additional
information, which is neither present nor evident in the more standard, textual models
[BARWISE, J., et al 2002, SHIN, S.-J. 1995]. Nevertheless, visual models are interpreted only
as visual aids, not as practical, fundamental modeling artifacts [WARE, C. 2004]. Prior work
has established the advantages of creating visual notations that have a formal basis [PEZZÈ,
M., et al 2000].
The formal methods dimension
By adding an underlying formal semantics to visual notations, we can improve the
comprehension of system behavior. The formal semantics guarantees that the system model
can be analyzed using logic and mathematics. As a consequence, we have to build visual
system models that have formal semantics.
Formalizing a visual notation, however, is not a simple task. Each element of the visual
notation must then correspond to a mathematical construction that can be analyzed by a tool.
In other words, a modeler can verify that the system model possesses a set of desired
properties and avoids a set of non-desired ones. This activity is known as “reasoning” about
the system [GLASGOW, J., et al].
System-centric dimension
In our approach, it is fundamental to establish the frontier of a system, and therefore to show
how the system interacts with other systems. Moreover, it is also important to create models
that make explicit that IT systems track the elements of the real world, in order to design the
solutions that permit this tracking to take place. In most of approaches, it is normally implicit
that the elements are at the same level of realization, as this simplifies the models. In
addition, we also seek to make the hierarchy of systems explicit. Most approaches consider
composition and refinement. We aim to complement these techniques with the fractal
modeling both of systems and of viewpoints from the inside and the outside of a specific
system.

1.1.1 Requirements for the Modeling Notation
From the above discussion, we conclude that in order to support the reasoning level required
by model-driven approaches, the modeling notation used for the system specification should
be:

• Graphical / Visual / Diagrammatic
• Compatible with formal methods
• System-centric

This notation might be used in order to create models of the system. Consequently, by
creating these models and refining them, the modeler should be able to ascertain if the
properties of the model correspond to the desired properties.

1.2 Visual Contracts
The definition of contract apparently fits the problem defined above. First, the contract is a
concept that is understood naturally for expressing the constraints that should be respected
by a correct interaction among actors. Second, it can express functional and non-functional
aspects. Larman [LARMAN, C. 1997] proposed the use contracts as specification artifacts.
RM-ODP [ISO/IEC 1996] also includes the concept of contract as a generic means to
describe the role of each part in an interaction.
The value of contracts as specification artifacts is two-fold:

• It makes explicit many of the design decisions that took place for an element to
be in the model. The statement of purpose for each piece of the model has as a

Chapter 1. Introduction

3

by-product “reasons” to include a certain module in the solution. Examples of
unreliability caused by “additional, however harmless” software components
include [BOWEN, J. 1996, JÉZÉQUEL, J.-M. and MEYER, B. 1997]. Furthermore,
the specification artifact should be self-explainable.

• It can help reduce the cost of the development of IT systems. Economies of scale
can be attained if the validation can be done as early as possible. This issue has
been addressed by the model-driven approaches. Until now, however, it has not
been possible to create models that are abstract enough and whose return on
investment is high.

The specific goal of our work is to create a visual modeling notation for system
specifications, which incorporates the four aspects (i.e., behavioral, structural, state and
constraints) in a single diagram. As it is a complementary approach to the traditional,
analytic one, we should be able to express features that are difficult to express using
notations such as UML.
Creating a visual modeling notation with the use of contracts means that:

• Our main description unit is the action or service performed by a system.
Consequently, our specification artifact is functional.

• We are able to describe the initial configuration of the system before the action
is performed, as well as the final configuration of the system.

• We are capable of describing the constraints that must be applied for this action
to take place.

Our work is partially based on the theories developed by our research group (SEAM –
Systemic Enterprise Architecture Methodology) [WEGMANN, A. 2003], and its systemic
ancestors, the General Systems Theory [WEINBERG, G. 2001] and the Living Systems
Theory [MILLER, J.G. 1995]. SEAM has the necessary infrastructure for modeling behavior
and structure. In this thesis, we expand on this and add the constraints.

1.3 Contributions
Visual Contracts condense the four components of the specification –i.e. structure, behavior,
state, and constraints—in a compact form. As they contain all the elements required for a
specification and are based on the set theory, Visual Contracts can be translated to formal
methods notations in order to be verified and, eventually, be validated [LAPLANTE, P.A., et
al 2001]. Visual Contracts can also be used as a complement to other modeling approaches
such as UML or OPM.
Furthermore, modeling the behavior of a system as a transformation of its structure and state
together –in the space delimited by the constraints affecting these transformations— results
in the explicit modeling of change (see chapter 5). Change is a basic aspect of systems, but it
is often difficult to understand and therefore to model. Modeling change in a compact, non-
mathematical but nevertheless explicit manner is a contribution to systems engineering at
large.
Finally, a fundamental issue is that modeling and specification techniques normally address
single-instance problems. However, many types of systems –including Information
Systems— are generally characterized by large data structures and multiple instances. Then,
it would seem that it is essential to extend the capabilities of current modeling techniques in
order to cope with multiple instances. One could argue that by mathematical induction, the
modelers should be able to understand what happens in multiple cases. However, this has not
been demonstrated. Furthermore, the techniques based on set theory cannot easily map to the

Chapter 1. Introduction

4

description techniques that deal with single instances. In this thesis, we propose a method for
diagrammatically modeling and reasoning about single and multiple instances (see chapters 6
and 7).
The contributions of this doctoral dissertation regarding SEAM are:

• Better understanding of relationships as description elements. This complements
the works of Genilloud [WEGMANN, A. and GENILLOUD, G. 2000] and Balabko
[BALABKO, P. 2005].

• Use of relationships as dynamic entities, in supplement to Balabko [BALABKO,
P. 2005] and Regev [REGEV, G. 2003].

• Comprehension of the quality-building attributes of relationships, continuing the
works presented by Preiss [PREISS, O. 2004] and Regev [REGEV, G. 2003]

• Some contributions to the ontology of SEAM, in complement to the works by
Naumenko [NAUMENKO, A. 2002] and Lê [LE, L.S., et al 2005].

• Finally, and more importantly, this work develops some insights into the
behavioral semantics, a subject that has also been studied mainly by Balako
[BALABKO, P. 2005] and partially by Naumenko [NAUMENKO, A. 2002].
Currently, the operational semantics is developed by the doctoral work of
Rychkova [WEGMANN, A., et al].

1.4 Outline of this Thesis
The structure of this thesis is as follows: In Part I, we study the current state of contracts as
specification artifacts and how to use them effectively in the analysis phase. In Part II, we
describe the main design heuristics and introduce the reader to the Visual Contracts. In Part
III, we validate our approach. In Part IV, we discuss the future work and present the
conclusions of this thesis.

5

PART I – Contracts in Software Engineering, Visual
Modeling and Systemic Modeling

In this part, we establish the foundations of our research work.

In chapter 2, we make an analysis of the problems present in current
approaches to system modeling. We study the requirements for specification
languages, we analyze how two system-modeling languages satisfy these
requirements and we identify the aspects that could be enhanced by an
alternative specification language.

In chapter 3, we study the various definitions of software contracts, discuss the
practical consequences of the use of contracts by system modelers, and we
synthesize a definition of contract that can be used as a specification artifact.

In chapter 4, we study the problems inherent to creating specification models
that use visual or diagrammatic notations. As a result, we identify some
elements that can be used to improve the expressive capacity of our notation
for system specification.

6

Chapter 2. System Modeling in Software Engineering

7

2 System Modeling in Software Engineering
Describing a system is a complex task and therefore it requires tools and techniques to
support the reasoning. In the case of Software Engineering, most modern approaches foster
the use of concrete models instead of the use of implementations2. These models are mostly
diagrams that should be combined in order to form a complete description.
The combination of models is required because most notations support only very specific
aspects of the description. This means that each model is a specific, specialized and concrete
model thus easier to deal with. As a consequence, there is the need to create various,
complementary models in order to have a more complete view of the system. In this way,
modern approaches aim to fulfill the conventional software doctrine, where the software
specifications must be [SHAW, M. 1996]:

• Sufficient and complete (say everything a user needs to know),
• Homogeneous (written in a single notation).
• Static (written once and frozen),
• Extensible.

In this chapter, we study UML, the one notation that has established itself as the reference in
this domain. UML is considered as the best-breed of notations, and therefore its force is
inescapable. Most works in the object-oriented domain, including those we study in chapter
3, can be considered as part of UML3.
Next, we study another notation and method that considers a different epistemological
approach to modeling: OPM. It is based on systemic principles, and the models are holistic.
By studying models from these two different approaches, we can assess how the attitude
towards system modeling has an effect on the quality of modeling of an IT system.
Finally, we characterize the weak zones of these approaches for creating a contractual
specification artifact. We analyze in particular how the notations take into account the
complexity of the final description4. From this analysis, the result is a series of points that we
take into account for the design of our own visual notation.

2.1 Unified Modeling Language (UML)
UML [OMG 2003] is the de facto standard of the industry in object-oriented analysis and
design. UML is one of the most popular graphical notations for modeling software (UML
takes its roots in software development), systems [OMG 2005b] and businesses[ERIKSSON,
H.-E., et al 2000]5.
UML consists of a set of diagrams that can be categorized into structure-related diagrams
(part I of [OMG 2003]) and behavior-related diagrams (part II of [OMG 2003])6.

2 Models are abstract but they “mimic” the implementation. Therefore, they are not concrete in the sense of materialization
rather in the sense of conceptualization. As a corollary, they are abstract when compared to implementation, but very concrete
when compared to some mathematical models.
3 For the sake of space, the use of UML is not illustrated here but extensive literature exists on the subject.
4 Nevertheless, we have to acknowledge that all modern notations take into account the complexity aspects and the integration
needs, and such best practices are integrated at the method level. In this comparison we focus on the final, deep conceptual
techniques for both of these approaches.
5 SysML, a UML version for system modeling is intended for generic system modeling. However, in this report we will discuss
UML only because it is more mature and it is the basis for the SysML effort.
6 The use case diagram is an exception as it describes structure and behavior, however, the use case diagram has some
limitations (e.g. diagram centered on one system) which limits its use as a general purpose diagram [WEGMANN, A. and
GENILLOUD, G. 2000].

Chapter 2. System Modeling in Software Engineering

8

UML was built by aggregating existing notations. However, harmonization among those
notations is still an issue [DINH-TRONG, T.T., et al 2006], which has profound consequences
as we explain next. The models are considered flexible because they are loosely coupled and
UML notations are mostly informal and visual. Therefore, no automatic inter-model
consistency checking can be made, even for simple systems.

Plane

a)

Person_1:PersonPerson_1:Person

f) g)

Activity diagram

Board: Sequence diagram

Snapshot diagram – After Board Snapshot diagram – Before Board

Person

b)

Class diagram

Plane

1

1..*

State diagram State diagram

Plane_1: Plane

Person_2:Person

Person_3:Person

reponse_OK: Response

Board

e)

User_1:User Plane_1:Plane Person_1:Person

Response
Ask_for_Board ()

Plane_1: Plane

Person_2:Person

Person_3:Person

time = after Boardtime = before Board

d)

notFull

full

[number of
person
 >=

capacity]

[crash]

class Plane

c)

offBoard

onBoard

[disembark_OK]

[board_OK]

[kill]

class Person

board_OK

passenger

BoardingITSystem

passenger_1

passenger_1

candidate_1 passenger_2

BoardingITSystem

BoardingITSystem

BoardingITSystem BoardingITSystem

1

1..*

checkedIn

Figure 1. A partial UML specification for action Board for a system that controls the boarding of passengers to

a plane

UML is a notation complemented by a rich set of methodological approaches that propose
ways to model systems. The UML community affirms that a) there is a clear separation
among notation and method, and b) that UML is only a notation and not a methodology.
However, the isolation between the notation and the method has never been complete
because many of the ontological and epistemological principles are implicit; as a result, the
way their models can be created and what they express is dependent on the notation –as we
discuss in chapter 4—.
Ad hoc methods for checking the consistency of the UML system specifications are very
complex. Besides, they are limited to a given set of diagrams at a time. These methods
require special techniques and tools, as well as the satisfaction of strict rules that guarantee
that a full-fledged model (near implementation) exists prior to consistency checking
[RICHTERS, M. and GOGOLLA, M. 1998, WARMER, J. and KLEPPE, A. 1999, LANO, K., et al
1999, BRUEL, J.-M., et al 2000, SENDALL, S. 2002]. Therefore, they cannot be used for early
analysis or design, when knowledge about the system is still incomplete.

Chapter 2. System Modeling in Software Engineering

9

Table 1. Classification of UML notations

Description Constraints
Structure Behavior Structure Behavior

class, (diagrammatic)
object, (diagrammatic)
component, (diagrammatic)
composite structure (diagrammatic)
package, (diagrammatic)
Deployment (diagrammatic)

activity, (diagrammatic)
communication, (diagrammatic)
interaction overview, (diagrammatic)
sequence, (diagrammatic)
state machine, (diagrammatic)
timing, (diagrammatic)
use case (diagrammatic)

OCL (sentential)
OCL (sentential)
OCL (sentential)
OCL (sentential)
OCL (sentential)
OCL (sentential)

OCL (sentential)
OCL (sentential)
OCL (sentential)
OCL (sentential)
OCL (sentential)
OCL (sentential)
N.A.

As can be seen in table 1, OCL is essential for explaining the interdependencies among the
various behavioral diagrams, among the various structural diagrams and also among the
behavioral and the structural diagrams. Nevertheless, OCL is sentential whereas the other
models are diagrammatic.
As discussed in chapter 3, several UML-based approaches support the notion of contract [
WIRFS-BROCK, R., et al 1990, MEYER, B. 1992, COLEMAN, D., et al 1994, D'SOUZA, D.F.
and CAMERON WILLS, A. 1998, ATKINSON, C., et al 2002]. Some researchers have
developed schemas and contracts for UML using OCL [EVANS, A., et al 1998, HECKEL, R.,
et al 2001, BOTTONI, P., et al 2001, SENDALL, S. and STROHMEIER, A. 2002]. However, this
notion of contract is still implementation-oriented, as it deals with the application of the
principles of substitution for reuse of classes of objects, and assist with the composition
problem of component-oriented design.
More recently, [LOHMANN, M., et al 2005] has proposed a graph-transformation technique
that enables the automatic generation of code in order to reinforce the compliance to the
system constraints (written in OCL). The resulting code ensures that the applications of the
IT system obey the constraints and business rules in execution time.

2.1.1 Advantages
The UML system specification is made up of a set of seven diagrams and one OCL
description. This guarantees the richness of the resulting specification, and leads us to
suppose that it covers all the aspects of the system specification. As a consequence, the work
can be divided among specialists of each kind of diagram.

• Imperative specification in the form of behavioral diagrams + OCL
• Declarative specification in the form of structural diagrams + OCL

Each diagram represents a different concern of the system. This makes the individual
diagrams more legible than if they were merged together. The OCL description is used to
add contextual information as discussed above.
Certain integrated approaches [BRUEL, J.-M., et al] combine the UML informal notations
with formal notations; the informal notations allow for writing incomplete specifications.
The integrated approaches consider not only the translation of each model but also the logic
that ties the various model diagrams together [BRUEL, J.-M. 1998]. Integrated approaches
and ad hoc methods continue, however, to be mostly manual processes [BRUEL, J.-M., et al].
Several initiatives have been established by the UML community in order to deal with the
“separation of concerns” required among analysis, design, and implementation phases (and
their corresponding models). This multimodal approach may provide more insights and lead
to better specifications of the systems [ARGAWAL, R. and SINHA 2003].

• Time, ordering, and multiplicity constraints are all well specified in UML ,
although sometimes this is scattered in several diagrams, patterns, and other
artifacts.

Chapter 2. System Modeling in Software Engineering

10

• In addition to the advantages of this notation, there is an extensive research on
the integration to UML of standard software engineering practices, such as
patterns, workflow systems, and interface design practices, among many others.

2.1.2 Limitations
As this modeling process builds the complete system specification in a single diagram
(where all the objects, states and processes are combined), it does not scale and the diagram
is unreadable.
OCL is used as a complement to the diagrams but is not fully integrated with them. OCL
adds yet one more artifact to interpret.
As a consequence, the overall specification cannot be easily understood as a whole. There
are no visible links between the elements represented in the different diagrams. In most
cases, it is the modeler who “glues” the diagrams together within his or her mind [DORI, D.
2002b].
We could argue that this assumption is still valid when applied to UML nowadays: “The
semantics of this kind of functional description is dynamically non-committing in that it
merely asserts that activities can be active, information can flow, and so on. It does not
contain information about what will happen, when it will happen, or why it will
happen”[HAREL, D. 1992].
As we demonstrate in [DE LA CRUZ, J.D., et al], seven UML diagrams are required to model
a single, partial scenario for a simple activity.
There is no consensus about the status and the use of OCL as the mechanism to specify
actions and their effects. For instance, the use of OCL is not recommended nor encouraged
by Kobra, given the difficulties they found: “Describing the effects of operation invocations
is not supported by the OCL, but should be describable using the Action Languages
currently under development for UML”[ATKINSON, C., et al 2002]. Among other works on
Action Languages proposed by the UML community, we must mention QVT and the
proposal for semantics of actions [MELLOR, S.J. 1999].
Even some researchers that work in the standardization committee of OCL propose to
change its name because “Object Constraint Language” does not reflect the fact that it is
used in a flexible form all over the diagrams7.
In what concerns the abstraction-level of the constructs, there are artifacts that are concept-
oriented and others that are implementation-oriented8, but the latter are extremely strong in
almost all specifications created with UML. For instance, a component is an implementation-
oriented component, which somehow contradicts the efforts of Fusion, Catalysis and Kobra
to use it as the basic building design element of models at all levels9.

7 [WARMER, J. AND KLEPPE, A. 1999] propose, for example, replacing “Object Constraint Language” with “Expression
Language”.
8 As a matter of fact, UML provides five types of actions. These actions can be modeled by message passing, namely: call,
return, send, create, destroy; unfortunately these primitives are always attached to the idea of a method invocation, which
corresponds to an method of an object-oriented class but not to an action in business terms.
9 The complexity of the resulting models in model-based approaches is such that it gave birth to a counter-movement: the
eXtreme Programming methods that aim to save time by dealing with the complexity directly at implementation level. Lately, a
mixed approach has become very popular: the Agile Methods, where notations such as UML are used sparingly and partially,
and a special project-management approach is required.

Chapter 2. System Modeling in Software Engineering

11

2.2 Object-Process Method (OPM)
The Object-Process Method (OPM) is a systemic approach to system modeling [DORI, D.].
This methodology of design is used to model systems and information systems. Unlike
UML, it considers all aspects of a system in a single frame.
OPM considers a system as a hierarchical entity. It is thus able to cope with incomplete
information on lower levels. This information can be added incrementally during the
specification of the system. OPM provides a graphical and a textual version of the notation
(OPD and OPL, respectively).
The notation elements of OPM are entities and links. An entity is a generalization of an
object, a process or a state. The objects and processes are the basic elements of a system.
Every object is in a state, and the states of an object change during the execution of a
process.
OPM is mostly process-centric. It represents each process as an individual entity. This
permits the creation of a unique model for the description of the structure and behavior of the
system.
OPM explicitly adapts concepts from object-oriented modeling and focuses on describing the
“fundamental structural relations”, where exhibition/characterization and
classification/instantiation are taken into account, as well as the more standard relations
(i.e., aggregation/participation, generalization/specialization).
The links connecting the entities can be built in a structural or procedural fashion.
Structural links express static relations of couples of items: for example, the aggregation or
the inheritance. The procedural links connect entities in order to describe the behavior of the
system: for instance, how a process transforms, uses or is influenced by the other entities in
the system. Then, the procedural links relate the process and the objects that are either:
consumed by, obtained from, or affected (effect) by the process, and being input or output
(consumed and obtained) as well as those required for a process to occur (agent when it is
human, instrument when it is not human).
Boolean objects are an extension of the procedural links as they indicate what procedure is
activated when a condition is true.
An object A that has attributes B and C is seen as an object A that “exhibit features B and
C”. It is also possible to indicate what objects and states are modified by processes, as shown
in figure 2. In this example the object ObjectA is an input, object ObjectC is an output of
process ProcessP; the object ObjectC is affected by ProcessP, as its sate changes from state
stateS1 to stateS2.

Figure 2. OPM diagram that represents a process that interacts with several objects

OPL is a textual language that covers completely the graphical counterpart, OPD. This
language tries to be as compatible with natural language as possible. It could be classified as
a form of precise English. This makes OPM multimodal, but not in the same way that UML
conceives it.
As all the other forms of semi-formalized natural languages, OPM models tend to become
voluminous for not-so-complex cases, whereas their precision is not guaranteed [EVANS, A.
ET AL 1999]. But, the use of this form of language makes it user-friendly and enables direct

Chapter 2. System Modeling in Software Engineering

12

verification of the models. The modeler can then validate the translation of the graphical
version (OPD) to a textual version (OPL).

2.2.1 Advantages
• OPM represents physical objects and informatical objects as separate entities.

He also represents state inside the object/class declaration.
• The complexity of OPM model is controlled via three techniques of

refinement/abstraction: zoom in/zoom out, unfolding/folding, and
ellipsing/displaying of state information. The zoom in shows how entities are
composed, what elements are visible at each level of zoom. The unfolding shows
the entities as the root of an oriented graph. The ellipsing occurs when a set of
elements is not displayed based on ad hoc criteria. These techniques are
supposed to enable the specifying and refining of the system under analysis in
any level of detail without losing the comprehension of the whole system.

• The systemic side of OPM becomes evident when talking about hard and soft
attributes and the emergency of features.

• The final diagrams include all the information about processes and objects that
participate. They are a generic way to express everything that is required for the
actions to happen, and what objects or features are affected. Figure 13 shows an
example of final diagram.

• The specialization mechanism is powerful, as it is more explicit about the
features that are taken into account or modified by the new sub-classes.

Figure 3. OPM final diagram with all information required for a complete system model. From [DORI, D.

2002a], page 430

Chapter 2. System Modeling in Software Engineering

13

2.2.2 Limitations
• As this modeling process represents elements from many different (UML)

diagrams in a single diagram, this diagram contains all the objects, states and
processes, and it does not scale as the diagram becomes unreadable.

• The quantity of information can be controlled via ellipsis.
• The instances are considered a sort of specialization of objects. This makes the

qualification of instances very heavy (see figure 3).
• As a consequence, the constraints are minimal and no multiplicity can be put

onto the diagram. Note that only single instances are modeled; there is no place
where a number of instances (more than one) of any kind of object are explicitly
processed. This can also be observed in figure 3, where a complete Automatic
Teller Machine is described.

• OPM diagrams, especially high-level ones, do not indicate what actions are
required in order to take place. The notion of causality is partially lost because
of this missing aspect. Furthermore, the notion of time is mentioned in chapter
12.2 of [DORI, D. 2002a], but we could not find any further elaboration of the
subject.

• There is no known support for formal verification. Even if the graphical system
description can be translated onto OPDL, a textual, semi-structured English
language, we do not know any formal analysis tool that can be applied directly
to descriptions made in OPM. The descriptions in OPD can also be translated
onto UML, but –as explained in section 2.1— UML cannot be analyzed.

• Reuse is not explicitly discussed.
• Finally, we may add that there is no clear integration of standard software

engineering practices, such as patterns, workflow systems, interface design
practices, among many others.

2.3 Limitations in Current System Modeling
In this section, we present the main points that we consider should be improved in order to
create a modeling notation that are systemic.

2.3.1 Incompleteness & Uncertainty
System modeling is particularly difficult as knowledge about the universe of discourse is
always incomplete. The current trend is to build total models, where everything is known,
but this is impractical for most realistic scenarios. As [SWOBODA, N. and ALLWEIN, G. 2002]
point out, there are objects with unknown states for certain attributes, and the modelers
ignore objects that may be there but that do not participate in a given interaction10.
We could argue that completeness is not realistic in the context of information systems
[RUSSELL, S. and NORVIG, P. 1995]. First, the models used in computer science are, in
general, not as sophisticated as the models one may achieve using the basic model theory.
Second, from the point of view of the formal specification of an information system, we
must admit that the specifications are incomplete during the analysis phase and that the
models should be able to deal with incomplete information [MONIN, J.-F. 2000].
In other words, the models cannot be complete because a) both complexity and
methodological constraints, and b) the models must leave room for posterior changes in
order to guarantee flexibility and adaptability. This means that the actions of the system must

10 Note that participation is a concept larger than an effective interaction. An object can participate in the form of a constraint
for an action, even if it does not interact directly with other objects.

Chapter 2. System Modeling in Software Engineering

14

respect a certain number of constraints, expressed with logic formulae, but leaving room for
a number of open options. These open options exist due to the incertitude and incomplete
knowledge about the systems and their surrounding environments.
The concept of hierarchy can also be applied as a modeling heuristic. This permits us to
isolate change and incompleteness. The notion of hierarchy is proposed by [PARNAS, D.L.
1972] and other researchers working on information hiding and modularization. [BROOKS, F.
1987, [WARD, P. 1985, YOURDON, E. 1988, [HATLEY, D., et al 1988] propose strict
structural, top-down approaches to system modeling, as also –in the domain of visual
notations— [HAREL, D. 1987] proposes a state-based hierarchical technique for modeling
very complex behaviors.

2.3.2 Compartmentalization
From a systemic modeling point of view, current modeling techniques hide, unfortunately,
the intimate relationship among behavior and state-structure:

• Behavior is defined in terms of observable behavior, in other words, the events
that are communicated through the interface of the system, both inputs and
outputs.

• State is defined in terms of the observable structural changes. The changes occur
as the result of sequences of events. When the sequences stop, the changes stop.
At that moment, the system is said to have a stable structure or to be in a
particular state.

• Structure is considered as a “static” state: that which seems not to change to an
observer on a given amount of time [WEINBERG, G. 2001].

As a consequence, behavior, state and structure are often modeled using separate models. In
other words, this systemic symbiosis is not reflected in the way the models are created;
behavior and state-structure are considered as isolated aspects of the specification, and
therefore they require a separate set of both models and constraints.
We consider this to be a reductionist approach that denies the importance of
interdependencies and constraints. Although this modeling principle minimizes the
complexity on the construction of models and fosters specialization, it simultaneously limits
the analysis of complexity of the model itself.

2.3.3 System and IT-System do not Interact
Current specifications methods often consider all the objects that are manipulated by the
system and by the IT system are the same. Although the specification of the system and the
specification of the IT system are models, this does not mean that whatever object is
expressed in one of the models can be immediately used in the other.
More specifically, in most cases:

• The IT system is part of a larger system, and it performs a series of processes in
interaction with the other parts of the same system.

• In order to achieve this interaction, the IT-system contains an interpretation of
the world, and as such, it must track real-world entities and actions that are
mapped in terms of its data structure and action structure, correspondingly.

• Therefore, the IT objects must be synchronized with the world objects.

We must find a solution to these three problems. This can be done by establishing a clear
frontier –as well as the links— between the system and its environment, and also by
applying the hierarchical approach to system modeling, as discussed in section 2.3.2.

Chapter 2. System Modeling in Software Engineering

15

2.3.4 Modeling of Change
In order to better understand what the system does, it should be clear how each system action
changes the system itself and its environment. We argue that modelers do not consider
modeling change because current methodologies do not provide mechanisms to combine
explicitly the structural and behavioral components of the system. This was the intention of,
for example, Use Cases [COCKBURN, A. 2001]; a Use Case is aimed to allow a quick
understanding of the role of the system in its environment because it represents all the
exchanges and changes due to their related actions; a Use Case is however sometimes so
complex, that it does not really fulfill its objective.
By contrast, change modeling has been already addressed by formal approaches such as
action semantics [MELLOR, S.J. ET AL, 1999, RUSSEL, S. AND NORVIG, P. 1995] and formal
languages such as Z [SPIVEY, M. 1990]. It is therefore possible that modeling change would
facilitate formalization.

2.3.5 Granularity11
Current modeling techniques consider different models for each level of abstraction of the
system. This means that different models are created for each phase and for each
instantiation of the system. In general, the conceptual models are simple, whereas
implementation models are extremely detailed and hard to follow. It is therefore difficult to
align the models, and track features, specially because some terms mean different things for
models in different levels of abstraction: a functional feature is understood as a use case at
the conceptual level, but it may translate to a set of calls to methods of various classes at
implementation level.
We should exploit the hierarchical nature of the system, instead of making large units of
specification – as done in OPM—. In other words, new knowledge and contextual
information should be introduced in each level of the hierarchy. This information can be
encoded in the form of interactions and viewpoints. Interactions can be used to model how
the systems interact, and viewpoints can be used to model how different observers perceive a
system via the interactions.

2.3.6 Context Modeling
The choices made to classify the diagrams as either structure-related or behavior-related
dramatically reduce the possibility to express the “interrelated conditions” in which model
elements exist; more specifically, this choice in categorization reduces the capability to
express context.
As explained in chapter 5, context modeling is essential. Context is defined in [MERRIAM-
WEBSTER] as “the set of interrelated conditions for one entity to exist”, and this is what is
pruned from the model when the information is scattered into many partial models.
The modeling of context has its limits on the system frontier. This means that this is more of
an introspective view, and the interactions with other external systems is not taken into
account.

11 Support for concurrency: Complex systems are inherently multitasking and multi-user, and the notations should fully
support this fact. Thread-safety is an issue in many domains, as well as the distributed nature of the system. Nonetheless, at the
specification level these issues should somehow be addressed by the specification notation.

Chapter 2. System Modeling in Software Engineering

16

2.3.7 Analysis and Validation Required
It is essential to build models that allow for the system to satisfy the expected properties.
This can only be done by verifying that the system is consistent, and by validating that the
system does what it is entitled to do [LAPLANTE, P.A., et al 2001].
 “Although the importance of testing and analyzing one-person algorithms has always
been acknowledged, the world of complex systems has long suffered from something of an
indifference to such needs… many past approaches to system development provided no
means for capturing behavior, being centered instead on the functional aspects and
dataflow. The approaches that did provide such means were informal, lacking the rigorous
semantics necessary for even beginning to analyze the dynamics. Hence, it was impossible
to predict in early states how the system would behave if constructed according to the
model… As a consequence, most computerized tools that flourished around such
methods…–CASE—…concentrated on providing mere graphic-edition capabilities,
sometimes accompanied by… facilities. Their proponents heralded the ability of these
tools to check model «consistency and completeness», which is really just a grand form of
syntax checking”[HAREL, D.].
The actual trend for model verification is to validate the well-formedness of the instances
(snapshots) of the system resulting from the execution of a scenario [ROYER, J-C 2004].
Lately there has been some work to create code that checks that the well-formedness
constraints are respected by the code in execution time [LOHMANN, M. ET AL 2005]. The first
approach is partial as not all models are taken into account and as generating snapshots is a
cumbersome and work-intensive task that requires very complex tools for very simple
systems; this makes this approach inappropriate for industrial practice. The last research line
is more practical but requires full-fledged systems or a complex strategy to control what has
to be checked during the development of the solution.
We want to work at the model level –as in the first approach—, but also have the possibility
to introduce probes in order to validate and verify (V&V) –as in the second approach—.
Given the level of abstraction, the flexibility for V&V and for making changes to the
specification should be increased.

2.3.8 Cognitive Constraints
The capacity of the human brain to retain and process information is limited. This has been
documented with studies such as [MILLER, G.A.]. This limitation raises several issues,
especially for evaluating the adequacy of the use of many partial models vs. the use of less,
more condensed models. As a matter of fact, this is a crucial cognitive frontier that
constitutes the main criteria in the construction of our notation.
First, it is clear that diagrams express much more information than text [LARKIN, J. and
SIMON, H.]. They are used in a number of domains to improve comprehension and
reasoning.
Secondly, several studies demonstrate that practitioners do not really use notations
presenting a high complexity. Instead of UML, practitioners use specific, ad hoc versions of
it, which requires less modeling elements[CHERUBINI, M., et al]. Even in environments
where people are relatively knowledgeable about UML, most practitioners specialize in only
one or two kinds of UML diagrams [ARGAWAL, R. and SINHA, A.P.]. Some researchers
criticize the use of rich notations such as those provided by UML, as this reduces its
usability [DORI, D. 2002b]: its inherent complexity obfuscates human understanding. In
other terms, this increases the amount of effort that the modeler invests in analyzing the
information in the model.
In addition, some works demonstrate that UML notations are not necessarily the best
notation to reason about each aspect of the system. For example, [IRANI, P.] demonstrates

Chapter 2. System Modeling in Software Engineering

17

that the Geo diagrams can replace class diagrams because they contribute to the
memorization of structural components, and have a more appealing physical appearance that
assists memorization. [SOWA, J.F. 1999] explains extensively several notations for
knowledge representation, and how they support reasoning.
Only very recently, a number of works study the way UML is used by practitioners, and how
the complexity of the language affects the way people use it.

2.3.9 Declarative Approach vs. Imperative Approach
[HAREL, D.] affirms that the special nature of reactive systems requires special specification
artifacts that allows modelers to analyze systems early in the software life cycle (SLC).
However, most information systems are as complex as the organizations they exist within,
hence the economies of scale justify the existence of approaches that address the early
validation.
In both approaches, one writes down a description of a problem or state of affairs, and then
uses the definition of the language to derive new consequences. In the case of a program
(imperative approach), the output is derived from the input and the program; in the case of a
declarative approach, answers are derived from descriptions of problems and facts about the
system.
What we need is a language that allows us to describe structure and behavior. As we see, in
the case of UML notations, behavioral ones are imperative whereas structure-related ones are
mostly declarative.

The first surprise was the so-called «predicate transformers» that I had chosen as
my vehicle provided a means to directly defining a relation between initial and final
state, without any reference to intermediate states as may occur during program
execution.

I was very grateful for that, as it affords a clear separation between two of the
programmer’s major concerns: the mathematical correctness concerns (viz. whether
the program defines the proper relation between initial and final state – and the
predicate transformers give us a formal tool for that investigation without bringing
computational processes into the picture) and the engineering concerns about
efficiency (of which it is now clear that they are only defined in relation to an
implementation)”[DIJKSTRA, E.W. 1976]

Because of the nature of the structure, it is rather difficult to think of an imperative language
that describe the structure. However, it is possible to write declaratively the specification for
behavior-related approaches. In summary, we should explore the declarative approach, in
order to shed some new light on this domain12.

“We might also be interested in reachability tests, which would determine whether—
when started in some given initial situation—the system can ever reach a situation
in which some specified condition becomes true. This condition can be made to
reflect desired or undesired situations Moreover, we could imagine the test’s being
set up to report on the first scenario it finds that leads to the specified condition, or
to report on all possible ones, producing the details of the scenarios themselves. We
thus arrive at the idea of exhaustive executions”[Harel, D.].

12 The imperative approach addresses calculability analysis, halting problems and other very interesting research issues. The
SEAM methodology also addresses these issues. As the imperative approach is more related to operational semantics, it is
partially covered by the work of Balabko [BALABKO, P. 2005], and currently complemented by Rychkova [WEGMANN, A., et
al].

Chapter 2. System Modeling in Software Engineering

18

Nonetheless, in order to succeed in our effort, we must answer to the very basic practical
question: Is the required technology already there? You can find the response to this in
chapter 6 (for the representation) and 9 (for the demonstration).

2.4 Summary
Software specifications should satisfy the four criteria presented in the introduction. From
the analysis briefly illustrated in this chapter, it is clear that the current state-of-the-art
notations do not fully comply with those requirements.
The principle of separation of concerns [DE WIN, B., et al 2002] affirms that each aspect of
the description must be treated individually. However, the interrelationships of the elements
of the specification are partially lost in the process. For instance, the changes made by the
system actions/services are made explicit by snapshots in UML; a class diagram, the state
diagrams for the classes concerned, and an interaction diagram are strictly required for
understanding the snapshots. But, to fully understand what happens, the modeler needs to
write and read OCL in addition to all the diagrams. As a consequence, the task of
understanding the goal the modeler wants to achieve with the action/service requires a large
effort [DORI, D. 2002b]
The expressive capacity of OPM models strongly suggests that the systemic approach for
system modeling is a promising alternative13. No additional sources of information are
required. The semantics are not formal and the approach is not scalable but each action is
described fully.
In table 2, we summarize some features of UML and OPM. In our systemic approach, we
consider important three aspects shown in the table:

• The modeling of multiple instances and collections
• The formalization of the approach, and the corresponding support for validation

and verification
• The explicit modeling of the system

It is clear from table 2 that these three aspects are not satisfied by these approaches. Hence,
these aspects must be addressed by our specification artifact.
.

13 An interesting realization that resulted from this study is the systemic base of UML foundations even if UML itself is not
systemic: Booch’s presentation of system modeling is highly systemic[BOOCH, G. ET AL 1998]; Rumbaugh proposes to integrate
aspects, such as state into structure [RUMBAUGH, J.R. ET AL 1991]; and Jacobson introduces Use Cases in order to have a better
understanding of interactions, and a distribution of responsibilities [JACOBSON, I. ET AL 1993].

Ch

ap
te

r 2
. S

ys
te

m
 M

od
eli

ng
 in

 S
of

tw
ar

e E
ng

in
ee

rin
g

19

Ta
bl

e
2.

 C
om

pa
ris

on
 b

et
w

ee
n

U
M

L
an

d
O

PM

N

ot
at

io
ns

 /
D

ia
gr

am
s

R
ep

re
se

n
ta

tio
n

of

go
al

s

Pr
oc

es
s/

be

ha
vi

or

of
 s

in
gl

e
in

st
an

ce

Pr
oc

es
s/

be

ha
vi

or
 o

f
m

ul
tip

le

in
st

an
ce

s

R
ep

re
se

nt
at

i
on

 o
f S

ta
te

an

d
Va

lu
e

R
ep

re
se

nt
a

tio
n

of

St
at

e
C

ha
ng

e

Lo
ca

l c
on

st
ra

in
ts

G

lo
ba

l
co

ns
tr

ai
nt

s
Fo

rm
al

i
za

tio
n

M
od

el

Va
lid

at
io

n
/

Ex
ec

ut
io

n

Ex
pl

ic
it

Sy
st

em

(B
or

de
r)

R
ep

re
se

nt
a

tio
n

 o
f

In
te

ra
ct

io
ns

M
ul

tip
le

di

ag
ra

m
s,

w

rit
te

n
ea

ch

in

a
di

ffe
re

nt
 n

ot
at

io
n

S

ta
te

in

st

at
e

di
ag

ra
m

s
S

ho
w

n
on

ly

in

st
at

e
di

ag
ra

m
s

P
re

-c
on

di
tio

ns
:

ca
n

be

ad
de

d
w

ith

O
C

L
to

ac

tio
n/

ac
tiv

ity

di
ag

ra
m

s

P
re

-c
on

di
tio

ns
:

ca
n

be

ad
de

d
w

ith

O
C

L
to

cl

us
te

rs

of

ac
tio

n/
ac

tiv
ity

di

ag
ra

m
s

C
on

si
st

en
c

y
am

on
g

m
od

el
s

is

no
t

gu
ar

an
te

ed

at
 s

em
an

tic

le
ve

l

Fo
r

se
ve

ra
l

di
ag

ra
m

s,

be
ca

us
e

of
 w

or
k

on
 e

ac
h

on
e

of

th
em

 N
o

S
om

e
no

ta
tio

ns
 a

re

hi
er

ar
ch

ic
al

O

nl
y

in

U
se

C

as
e

di
ag

ra
m

Fo
r

al
l

bu
t

cl
as

s
di

ag
ra

m
s

S
ta

tic

vi
ew

on

cl

as
s

di
ag

ra
m

s

Ta
ci

t
in

 i
nt

er
ac

tio
n,

ac

tiv
ity

an

d
ob

je
ct

di

ag
ra

m
s

It
ca

n
al

so

be

m
en

tio
ne

d
in

ot

he
r

di
ag

ra
m

s
vi

a
O

C
L

ex
pr

es
si

on
s

or

de
si

gn

co
m

m
en

ts

P
os

t
co

nd
iti

on
s:

 c
an

 b
e

ad
de

d
w

ith

O
C

L
to

ac

tio
n/

ac
tiv

ity

di
ag

ra
m

s

P
os

t
co

nd
iti

on
s:

ca

n
be

ad

de
d

w
ith

O

C
L

to

ac
tio

n/
ac

tiv
ity

di

ag
ra

m
s

M
an

y
ef

fo
rts

,
no

ta
tio

n-
by

-
no

ta
tio

n

Fo
r

se
ve

ra
l

cl
us

te
rs

of

di

ag
ra

m
s

E
xc

ha
ng

e
ba

rri
er

fo

r
m

es
sa

ge

pa
ss

in
g

(w
ith

pa

ra
m

et
er

s)

to
/fr

om

ac
to

rs

(e
nv

iro
nm

en
t)

In

in
te

ra
ct

io
n

di
ag

ra
m

s

C
om

pl
em

en
te

d
by

O

C
L

fo
r

co
ns

tra
in

ts
,

pr
e-

co
nd

iti
on

s
an

d
po

st

co
nd

iti
on

s

E
ac

h
U

se

C
as

e
di

ag
ra

m

m
ay

be

co

m
pl

em
en

te
d

by
 O

C
L

E
ac

h
in

st
an

ce

is

dr
aw

n
in

de
pe

nd
en

tly

in
:

ob
je

ct
,

in
te

ra
ct

io
n,

ac

tiv
ity

,
st

at
e…

Ta
ci

t
su

pp
or

t
in

ac

tiv
ity

di

ag
ra

m
s,

bu

t
of

te
n

in
di

ca
te

d
w

ith

O
C

L
ex

pr
es

si
on

s

O
fte

n
in

di
ca

te
d

vi
a

O
C

L
ex

pr
es

si
on

s

It
m

ay
 a

pp
ly

 t
o

si
ng

le

in
st

an
ce

s
on

ly

In
va

ria
nt

s:
 e

ith
er

 v
is

ib
le

 i
n

ea
ch

no

ta
tio

n,
 o

r
ca

n
be

 a
dd

ed
 w

ith

O
C

L
to

 a
ct

io
n/

ac
tiv

ity
 d

ia
gr

am
s

In
va

ria
nt

s:

vi
si

bl
e

in

ea
ch

no

ta
tio

n

M
an

y
ef

fo
rts

,
no

ta
tio

n
+

co
ns

tra
in

ts

in
 O

C
L

O
C

L
no

t
ve

ry

w
el

l i
nt

eg
ra

te
d

D
oe

s
no

t z
oo

m
 o

ut

P
ar

tia
lly

 in
 s

ta
te

,
cl

as
s,

an

d
ac

tiv
ity

 d
ia

gr
am

s

U
M

L
/

Sy
s-

M

L

O
C

L
m

ay

be

em
be

dd
ed

in

di

ag
ra

m
s

V
al

ue
s

de
pe

nd
 o

n
ty

pe
s

an
d

ar
e

su
pp

or
te

d,

bu
t

no

ty
pe

ch

ec
ki

ng

is

gu
ar

an
te

ed

N

o
su

pp
or

t f
or

 q
ua

lif
ie

rs
 --

 s
in

gl
e

in
st

an
ce

s
ex

ce
pt

 w
he

n
te

xt
 s

ay
s

so
m

et
hi

ng
 e

ls
e

N
o

su
pp

or
t

fo
r

qu
al

ifi
er

s

V
ia

sn

ap
sh

ot
s,

m

os
tly

 b
as

ed
 o

n
G

ra
ph

Tr

an
sf

or
m

at
io

n
(G

T)

C

an
 b

e
in

di
ca

te
d

vi
a

O
C

L
ex

pr
es

si
on

s

O
ne

di

ag
ra

m

w
rit

te
n

in
 O

P
D

B
ot

h
ar

e
su

pp
or

te
d

S
ho

w
n

as

co
ns

eq
ue

nc
es

 o
f

pr
oc

es
se

s

P
re

-c
on

di
tio

ns
:

sy

m
bo

ls

fo
r

re
qu

ire
d

ob
je

ct
s

an
d

re
qu

ire
d

st
at

es
 o

r v
al

ue
s

N

o.
 S

ys
te

m
 is

 im
pl

ic
it

O
ne

se

nt
en

tia
l

re
pr

es
en

ta
tio

n
w

rit
te

n
in

 O
P

L

Ye
s

N
ot

ex

pl
ic

itl
y

su
pp

or
te

d
V

al
ue

s
ar

e
m

or
e

ab
st

ra
ct

 th
an

 s
ta

te
s

It
m

ay
 a

pp
ly

 t
o

si
ng

le

in
st

an
ce

s
on

ly

P
os

t
co

nd
iti

on
s:

 s
ym

bo
l

sh
ow

s
af

fe
ct

ed

ob
je

ct
s

&

op
er

at
or

sh

ow
s

th
e

ki
nd

 o
f c

ha
ng

e

S
am

e
as

lo

ca
l

co
ns

tra
in

ts
,

be
ca

us
e

it
is

a

hi
er

ar
ch

ic
al

no

ta
tio

n

N
ot

 k
no

w
n

D
es

ig
ne

d
fo

r
co

rr
ec

t d
es

ig
n

A
ll

pa
rti

ci
pa

nt
s

ar
e

m
od

el
ed

 a
s

ob
je

ct
s

A
n

op
er

at
or

to

in

di
ca

te

pa
rti

ci
pa

tio
n

G
ra

ph
ic

al

an
d

se
nt

en
tia

l
re

pr
es

en
ta

tio
n

ar
e

eq
ui

va
le

nt

S

up
po

rt
fo

r
va

lu
e

as
si

gn
m

en
t

an
d

ch
ec

ki
ng

In
va

ria
nt

s:

m
os

tly

vi
su

al

as

st
ru

ct
ur

e
in

 th
e

di
ag

ra
m

A

ni
m

at
io

n
is

po

ss
ib

le

E
ve

ry
th

in
g

m
ak

es
 p

ar
t

of
 s

ys
te

m

A
n

op
er

at
or

to

in

di
ca

te

w
ha

t
ob

je
ct

 is
 a

ffe
ct

ed

by
 a

n
ac

tio
n

O
PM

N
o

su
pp

or
t f

or
 q

ua
lif

ie
rs

 --
 s

in
gl

e
in

st
an

ce
s

ex
ce

pt
 w

he
n

te
xt

 s
ay

s
so

m
et

hi
ng

 e
ls

e

D
oe

s
no

t
ex

pl
ic

itl
y

zo
om

 o
ut

Chapter 3. Software Contracts as Specification Artifacts

21

3 Software Contracts as Specification Artifacts
This chapter introduces the notion of contract in the software engineering field. The goal is
to understand the definitions, use and importance of software contracts

The contract-oriented approach splits the functionality into manageable chunks of behavior,
which are described formally by using logics. Since its introduction in the 1990s, the
contract has been a pervasive tool in the formalization effort that the software community
launched . The term contract was coined by Bertrand Meyer14 in [MEYER, B. 1988] in the
context of object-oriented programming, but the notion already existed several years before.
Larman [LARMAN, C. 1997] and RM-ODP [ISO/IEC 1996] motivated us to do this research.
Unlike the mainstream of contract-based approaches for computer programming, these two
proposals use contracts as specification artifacts. Other proposals studied in this chapter
address the use of contracts during the analysis and design phases of the software lifecycle
(SLC).
In this chapter we proceed as follows: First, we build a terminology from the most popular
kinds of contracts. More specifically, we adapt the original theory of contracts (mostly
related to implementation) in order to deal with conceptual modeling. Next, we study the
most well-known definitions of contracts, the problems they were intended to address, their
differences, and how they deal with different theoretical issues that are essential for a good
specification artifact. Finally, we synthesize a definition of contract that can be used
effectively as a specification artifact in the context of our methodology, SEAM [WEGMANN,
A. 2003].

3.1 Terminology
Contracts require the definition of a number of notions. These terms, explained below, are
specific for the conceptualization or analysis phase.

3.1.1 System
In RM-ODP, a system is described as: “Something of interest as a whole or comprised as
parts. Therefore, a system may be referred to as an entity” [ISO/IEC, et al 1998].
According to [WEINBERG, G. 1975] the observer is essential. The frontier of the system
(i.e. the criteria defining the “parts” that are inside and those that are outside) is part of an
interpretive view. As [REGEV, G. 2004] explains, a “set of parts” or system is not an
absolute property in the world because the same set of parts can mean something totally
different for another observer:

“We call observer the person making the judgment about which set is a system and
what elements belong to this set. In this view, the set itself is an interpretation of the
observer … Hence a system is a set of interrelated elements representing an entity in
the observed reality as defined by an observer.

The set that an observer defines as a system establishes the frontier that the observer
identifies between system and environment. The set of elements and their

14 The decision of Mr. Meyer to trademark the expression “Design-by-Contract” was not accepted by many researchers. This is
apparently one of the main reasons for the software development community to avoid using the term contract for many years.

Chapter 3. Software Contracts as Specification Artifacts

22

relationships constitute the system. All other aspects of the reality of the observer
she considers as being the environment of the system.” [REGEV, G. 2004]

In other words, an object is a system. Furthermore, we assume here that the system is
decomposed hierarchically, in a fractal fashion15.
In accordance with SEAM (please refer to section 5.1), we define working objects (i.e.
systems) and information objects (i.e. properties).

3.1.2 Service
In systems theory, a system is built or exists in order to satisfy a number of goals. These
goals are described in the context of the system and its environment. Accordingly, we can
affirm that a system can be described either by the actions it executes or by the services it
provides to its environment.
Thus, we define a service as the functionality that can be delivered by a system. It is
equivalent to an action, from the point of view of an external observer16.

3.1.3 Contract
The meaning of contract, after the Merriam-Webster Dictionary [MERRIAM-WEBSTER. 2005]
is:

Main Entry: 1con·tract

Function: noun

1 a : a binding agreement between two or more persons or parties; especially :
one legally enforceable b : a business arrangement for the supply of goods or
services at a fixed price <make parts on contract> c : the act of marriage or an
agreement to marry

2 : a document describing the terms of a contract

As our purpose is to find a contract notion that is compatible with conceptual models, the
contract concept in definitions 1.a and 2 fulfill our needs.
The definition 1.b deals more with Quality-of-Service (QoS) issues (e.g. performance,
availability); This does not make part of our study. Neither do marriages, thus definition 1.c
is also discarded.
In summary, we consider a contract as a specification artifact that describes –definition 2—
an even enforces –definition 1.a— the responsibilities of parties participating inr an
interaction or collaboration.

3.1.4 Interpretation of a Contract
The interpretation of the specification of a contract in programming is borrowed from the
theory of formal program validation.
Meyer explains this thoroughly in [MEYER, B. 1992]. The main principle is the use of a
correctness formula:

15 As a consequence, the terms object, system and sub-system will be used interchangeably in this report.
16 The original, implementation-oriented contracts refer to routines, operations, component operations and methods. In this
document, service is a general term to refer to these (late) terms. The current discussion on “software as a service” (SaaS) is
taking place nowadays and the use of the term service may be misleading to readers.

Chapter 3. Software Contracts as Specification Artifacts

23

 {P} A {Q} (1)

that means

“Any execution of A, starting in a state where P holds, will terminate in a state
where Q holds”,

being A one action or service, and P and Q two conditions or assertions. Each assertion (i.e. P
and Q) may be composed of various assertions bounded together by logical connectors17.
Correctness formulae (also called Hoare triples [HOARE, C.A.R. 1969]) are a mathematical
notation, not a programming construct; however, by the use of predicates (evaluation of
properties, which are logically equivalent to assertions or conditions18), a meaning may be
assigned to any piece of software, and its value of truth consequently computed.
Moreover, conditions are named according to their order of evaluation in the logical
expression: P is called a precondition, Q is a postcondition; the subset of conditions that are
common in P and Q are named invariants.

3.1.5 Assertions: Preconditions and Postconditions
Assertions are expressions involving some objects (the subjects), and stating properties that
these entities may satisfy at certain stages of system evolution –via the execution of
actions—. Mathematically, the closest notion is that of predicate and, syntactically, they are
simply Boolean expressions with a few extensions. Two main types can be identified:

• Precondition: a predicate that characterizes certain conditions under which
an action may be executed. It corresponds to P in equation 1.

• Postcondition: a predicate that must be true immediately following the
execution of action. It corresponds to Q in equation 1.

The motivation for including pre- and postconditions was to enable reasoning about the
correctness of the whole system action19. As we consider the specification as compositional,
then the correctness of the whole action specification can be interpreted as the combination
of the correctness of its parts.
It is also an abstraction mechanism that adds flexibility to the model process: “To this end,
pre- and postconditions offer a means to constrain the required behavior of an operation.
Furthermore, if the assertions are strong enough, they express everything that the caller
and the designer needs to know about the operation without disclosing how the operation
is or should be designed/implemented.” [SENDALL, S. 2002].

3.1.6 Assertions: Invariants
The invariants are predicates that must be true during the entire lifecycle of the object.
[MEYER, B.] explains the invariants in terms of social contracts as follows:

“Invariants have a clear interpretation in the contract metaphor. Human contracts
often contain references to general clauses or regulations that apply to all contracts
within a certain category; think of a city’s zoning regulations, which apply to all

17 The {P} A {Q} notation as used here denotes total correctness, which includes termination as well as conformance to
specification. (The property that a program will satisfy its specification if it terminates is known as partial correctness).
18 In this text, predicates, assertions and constraints are considered equivalent.
19 The precondition False is the strongest possible assertion, since it is never satisfied in any state. Any request to execute A
will be incorrect, and the fault lies not with the system responsible for A but with the requester — the “client” of the service —
since it did not observe the required precondition, for the good reason that it is impossible to observe it. In the same way, the
postcondition True is the strongest possible one.

Chapter 3. Software Contracts as Specification Artifacts

24

house-building contracts. Invariants play a similar role for software contracts: the
invariant of a class affects all the contracts between a routine of the class and a
client.”

The invariants have a larger scope that preconditions and postconditions. They are valid for
the whole system and not only for a specific system action.
Invariants may be implemented by enriching the preconditions and postconditions of all
actions in the system. The correctness expression of equation 1 can be modified for including
invariants. Thus, it becomes:

 {INV and Pre} A {INV and Post} (2)

This means: “any execution of action A, started in any state in which INV and Pre both
hold, will terminate in a state in which both INV and Post hold.”
Adding INV makes stronger both the precondition and the postcondition:

• In addition to the official precondition Pre, you may assume that the initial state
satisfies INV, restricting even further the set of cases that you must handle.

• In addition to your official postcondition Post, you must ensure that the final
state satisfies INV.

In fact, when the invariants are not isolated, repeated predicates appear in both extremes of
the specification (pre- and post-) making both the routine’s purpose fuzzy and the
specification clumsy. By isolating invariants, two portions of the specification are
differentiated:

• Individual action specification (pre- and postconditions)
• Life-time system specification (invariant).

In software engineering, most invariants used in actual programs could be seen as the safety
conditions (“nothing bad can happen”) while the other assertions are analogous to the
liveness conditions (“something good will eventually happen”) [LAPLANTE, P.A. and (ED.)
2001]. And, as [LAMPORT, L., et al 1989] demonstrate, any specification can be written
using safety and liveness conditions only.
In summary, the use of invariants is practical because they are conditions that must hold for
the system, become a default part of the specification of each and every action20.

3.1.7 Configuration
It is the expression of the global state of the system. A configuration is a snapshot: a global
description of the objects that exist in the system at a given point in time.
As each object can be in a state, and has relationships with other objects, the configuration
includes this information, too.
We define a correct system as one that behaves correctly, or more specifically, as a) a system
whose configurations in time correspond to configurations that comply with the constraints
of the system and with the description of service of the system towards its environment, and
b) a system whose actions are able to transform initial configurations (pre-conditions) to
final configurations (postconditions).

20 [CRNKOVIC, I. 2002] define invariants as the states which must remain valid during and after the execution of the operation.
However, this is not a precise definition given that –in spite of its name– the invariant does not need to be satisfied at all times.
Indeed, at some intermediate stages the invariant will not hold; this is fine as long as the procedure reestablishes the invariant
before terminating its execution. Some interesting research problems have their origin on this dichotomy. Further elucidation is
given in section 3.2.6.1.

Chapter 3. Software Contracts as Specification Artifacts

25

3.1.8 Interface Contract
An interface of a component can be defined as a specification of its access point

Szyperski – “Component Software”
Objects are structural modeling entities of the specification of a system. An object is a
system. Each system (set of objects) provides a set of services. In addition, each one of the
objects within this system provides a set of services. The services of an object are accessed
via the interface of the object (a method in programming terms). The object that provides the
service is known as the server, whereas the calling object is known as the client.

Client

Server

{Responsibilities:
Conditions for being served}

{Responsibilities:
Results after finishing service}

«uses»

Interface:
Services available from Server:
- Service1
- Service2
...
- ServiceN

Figure 4. The contract establishes the responsibilities of the elements participating in each interaction. There is

always a client and a server for a given service; the service must be declared as available in the interface

If the modeler wants to compose more complex services, she can specify interactions of the
objects that orchestrate the use of services of other objects. In this case, each object plays a
well-defined role and has a set of responsibilities.
Under these assumptions, the behavior of a system can be understood as the composition of
the services provided by those objects (that result in a change of the state of the objects, and
in consequence, of the global state of the system or configuration). Therefore, the resulting
state (the goal of the system) is achieved through the interactions of the objects via their
interfaces.
Therefore, in order to specify the behavior of the system, it is essential to describe how to
interact with an object. In other words, the modeler should be able to specify how the objects
interface to each other. We call this the interface contract. As we can see, interface
contracts are implicit in object-oriented programming languages and methods.

3.1.9 Usefulness of a Contract
If one implements, for instance, a programming language,

one will not prove that the implementation executes any correct program correctly;
one should be happy and content with the assertion that

no correct program will be processed incorrectly without warning.
Dijkstra—“A discipline of programming”

The goal of design-by-contract is to improve the reliability of the software: a system’s ability
to perform its job according to the specification (correctness) and to handle abnormal
situations (robustness) [ISE, MEYER, B. 1992]. This correctness is a necessary condition to
deploy reusable system/object specifications.
Therefore, from a neat and simple proposal, contracts grow into a systematic approach for
specifying and implementing system elements and their relations within a system. More
specifically, in software engineering, contracts constitute a framework for debugging, testing
and even for quality assurance [MITCHELL, R., et al 2002].

Chapter 3. Software Contracts as Specification Artifacts

26

Figure 5. Use of contracts as a validation tool of the system model

Figure 5 shows the way to use the Contracts as part of a validation workbench. The system
model corresponds to the implementation and is generally created using specification
languages (usually imperative-style) whereas the contract model corresponds to the
specification (generally of declarative-type).

3.2 What is in a contract?
Contracts are artifacts and, therefore, have a physical representation whose name and
composition varies throughout the suite of possibilities sampled in this chapter. We present
now a perspective of the historical development of the concept of contract in the software
engineering field. Our goal is to understand the different approximations to the concept, the
elements required to build a contract, and the way to create a contract from the composition
of those elements. This is by no means an exhaustive study.

3.2.1 Historical Remarks
It is important to note that the general ideas exposed in verification and design through
contracts were not originated by the Meyer’s proposal, but during the early phase of research
on program correctness, as noted by several authors such as [BLACK, P.E. 1998, GRIES, D.
1981].
Assigning meanings/predicates to programs. In 1967 Floyd created a method to assign
meaning to programs initially through the introduction of assertions to a directed graph
representation of a program [FLOYD, R.W. 1967]; Hoare developed Floyd’s idea of a
programming language for specification (Hoare’s logic), showing that the axiomatic
approach to language definition –in terms of how to prove a program correct, instead of how
to execute it– might lead to a simpler design [HOARE, C.A.R. 1969]. This is the core concept
in contracts, as seen in section 2.1.5.
This pioneering work was followed by the development of the concept of abstract data types
(ADTs) [HOARE, C.A.R. 1972, LISKOV, B., et al 1974, GUTTAG, J.V., et al 1978] and the
further development of proof techniques like [IGARASHI, S., et al 1975, GRIES, D., et al
1980]. Besides, various research groups worked heavily on programming methodologies, but
found it very difficult to prove correctness even on the simplest programs.
Weakest predicate. Dijkstra was the one to open the way to a more generic approach to the
formalization of programs. He proposed that it would be more productive to develop a
program and its proof together (correct by construction philosophy), and the use of the
termination condition for verifying [DIJKSTRA, E.W. 1976]. This replaced the “verification
afterward” orientation of Floyd and Hoare. The weakest predicate is a given postcondition,
which in this case is the strongest or more specific one. “Suppose we have a predicate Q

Chapter 3. Software Contracts as Specification Artifacts

27

and a command C, the expression wp(C,Q) denotes a predicate that describes the set of all
initial states from which executing C will lead to the termination in a state that satisfies
the postcondition Q” [GRUNDY, J. 1993]. Dijkstra also created a calculus (the guarded
command language) for the derivation of programs (program calculation) based on weakest
preconditions. His approach is a mix of formal and semiformal reasoning, and is categorized
as rigorous; the degree of informality makes tool support difficult. Dijkstra justified the
partial informality of the approach because of the “freedom offered by pen and
paper”[GRUNDY, J. 1993].

3.2.2 Operation Schemas
Parnas’ work on modularization and information hiding [PARNAS, D.L. 1972] allows
modelers to build a set of descriptions. The first one depicts the functional part of the system
(the operations), and the second one represents the control of those operations. The
operations are specified by schemas, artifacts that describe what constraints the action was
supposed to satisfy. This reduced the difficulties found during the design and
implementation of correctness proof. Nonetheless, applying Parna’s approach to any
nontrivial program remained a highly complex task.
Hence, the next step was the step-wise refinement21, a bottom-up approach that reduced the
complexity of dealing with the formality and abstractions and that maximized the product of
the effort. As an example, VDM [JONES, C.B. 1990] established a strategy where after
specification, the ADTs are replaced by concrete-data types (data reification) and then the
step-wise derivation of an implementation takes place through the operational
decomposition. The most interesting aspect is that any a given moment the target system is
partly implemented and partly specified. This is possible because VDM uses a three-valued
logic that allows for the notion of partial functions (because programs are rarely total).
“However, with the introduction of «undefined», the approach is more complicated than
the traditional «total function» model” [SENDALL, S. 2002].
During the same period, the formal specification language Z [SPIVEY, M. 1990] –based on
set theory and first-order logic– was also widely adopted. In this case the unit of
specification is the schema, which can be used to model both the static and dynamic
properties of systems. [SENDALL, S. 2002] states its limitations:

“A schema has only two parts: a declaration and a predicate part, which means that
preconditions and postconditions are intermingled in the predicate part of a schema for an
operation… Unfortunately, the schema notation does not distinguish the role played by
different schemas, for example, whether a schema represents an invariant or an operation”.

On the other hand, the approach is powerful as it supports composition (of various schemas
using schema-level operators such as hiding, disjunction, conjunction, negation and
composition) and incremental specification.
The wrap-up technique is an alternative approach: a formal language under the hood of a
semiformal, more manageable representation. The first to implement a solution of this type
was an axiomatic wrap-up for the programming language Pascal [HOARE, C.A.R., et al
1973]. Afterwards, the use of wrap-ups is popular because it is possible to guarantee the
coherence and semantics of different modeling languages in more or less general cases, see,
for example [PETERSON, J., UNION, I.T., pUML, RICHTERS, M., et al 1998]. By contrast,
[GRIES, D. 1981] demonstrates that axiomatizing a language that is not created with
axiomatization in mind requires a huge effort.

21 Decomposing the design process into a number of steps.

Chapter 3. Software Contracts as Specification Artifacts

28

At this point in time, Meyer identifies the need for a technique that introduces reliability
mechanisms naturally into the system [MEYER, B. 1988]:

“Surprisingly, few programming languages have included syntactical provision for
assertions; … The connection with object-oriented development introduced by the
[contract] was foreshadowed by the assertions of CLU22 which, however, are not
executable.”

3.2.3 Meyer’s “Design by Contract”, 1988
Meyer considers the routines as the starting point for building correct software and,
therefore, for his method “Design by Contract” (DBC) [MEYER, B. 1988]. His method can be
classified as a white-box approach for specification because all the details are observable.
Meyer even created a programming language –Eiffel–as a mechanism for dealing with the
declarative/imperative nature of the method. For Meyer the Eiffel language is the expression
of DBC and vice versa.
Eiffel is an object-oriented language where the classes are the base element of design, and
they contain the different routines or services for a given class; moreover, in DBC the
services are the reason for a class to exist. Each routine can be implemented as in any other
programming language (imperative or prescriptive part). In general, communications are
synchronous because the routines obey the call-type protocol: the sender waits for the event
to be received and an answer to be emitted. Events that are incoming to the system can cause
the system to both change its state and output events to its environment.
Note that in the analysis phase, Design by Contract (and all other types of contracts in this
chapter, except when indicated) assumes that all system operations occur instantaneously,
i.e., the event is communicated from the sender to the system and the corresponding
operation is executed all in zero-time.
Eiffel also provides primitives for the inclusion of assertions that permit establishing the
conditions (scenarios) under which the execution of routines are valid, and to depict the
obtained final conditions (scenarios) that hold after the execution of the routine. These are,
correspondingly, the pre- and postconditions and constitute the declarative part of the Eiffel
program. Finally, the third kind of assertions –known as invariants— can also be included.
A typical class specification is the following:
class ClassName feature
attribute declarations…
routine_name (argument declarations) is
require
Assertions - Preconditions
Do
… code goes here …
ensure
Assertions - Postconditions
rescue
… rescue code goes here …
[retry]
end – routine_name
…Other routine declarations…
invariant
Assertions
end – class ClassName

3.2.3.1 Exceptions
Through the chapter, we have explained how to use the contracts to specify the conditions

22 CLU is a programming language created by Barbara Liskov. Please refer to the substitution principle [LISKOV, B., et al].

Chapter 3. Software Contracts as Specification Artifacts

29

that hold for the normal, well-behaved cases. But what happens when an error is detected?
Meyer also proposes a robust approach to error-handling [MEYER, B. 1992]:
First of all, it’s not useful to test for errors for which there is no planned handling procedure.
By default, contracts do not guarantee any behavior when a violation occurs (either a
precondition is not true or the precondition cannot be reached)23.
DBC proponents suggest using exceptions in order to recover from an error. They cause
control to be passed to some exception handler, which is a portion of code able to attempt to
fix the error or to admit that it cannot do so. Raising the exception notifies the caller that the
method has failed. The most common error (a failure) occurs when the preconditions cannot
be satisfied, for example. There should be provisions on the client side to cope with this kind
of situation.
Eiffel provides, consequently, such an exception-handling mechanism as can be seen in the
section rescue of the preceding template.
If an exception occurs in a method, then the rescue code is executed. The rescue code should
try and fix the problem and retry execution of the entire method (when the retry instruction
is included as part of the rescue code).
If the rescue code does not retry the method, the Organized Panic strategy takes place: the
exception is passed up to the invoker of the currently executed routine, and so on, until either
a handler can successfully fix the problem or the first level of the calling sequence chain is
reached and the program dies (the “fix” being to abandon the program).
This constitutes a simple and robust exception handling mechanism that is able to deal with
run-time, dynamic, real-world situations. This approach is adopted by the mainstream of
object-oriented languages.

3.2.4 Wirfs-Brock et al, 1990
In their method the operation is the base concept for creating contracts. Operations
materialize the services provided by a system, that is to say, the set of its responsibilities
facing the users and the environment in general.
“Grouping responsibilities into contracts help us understand our design. We can use
contracts to reason about the services provided by a class” [WIRFS-BROCK, R., et al 1990];
we may add that this responsibility-centered reasoning process is expanded to other parts of
the methodology in order to understand the goals of each design decision and, finally, of the
system as a whole24. Responsibilities are mapped into classes directly.
A class can support one or more distinct contracts, and a contract corresponds to a cohesive
set of responsibilities such as performing some action or handing out some information. A
group of classes may actually provide a service (the notion of service is not clearly defined).
A specification for each class includes: a) its overall purpose, and b) its contracts and
responsibilities as well as all associated signatures.
First the responsibilities are established, then the contracts are created, and finally the
collaborations (implicit in the contract template below, clauses Server and Client). The
collaborations are designed in order to fulfill the contracts.
This form of contract takes into account the fact that every class may have several interfaces
to provide different sets of services to different client classes; this is beneficial and is clearly
grasped by Objectory and, hence, the UML language [BOOCH, G., et al 1998] and the
Rational Unified Process [KRUCHTEN, P. 2000, SCOTT, K. 2002].

23 In good design, this situation is not acceptable. Doing something not specified, or doing nothing cannot be considered robust
behaviors.
24 This argument will be retaken in the chapter 5, for establishing a new paradigm for contracts.

Chapter 3. Software Contracts as Specification Artifacts

30

Nonetheless, this aspect happens to be extremely tight in the way it is described on the
Wirfs-Brock contract. As can be seen, the clients are explicitly indicated and this binds them
statically from the beginning. This is an early decision that may affect the outcome of the
development process.
Natural language is the specification language of choice. The contracts follow this schema in
the first phase (named assigning collaborations to contracts):
Contract NumberOfContract: Text-Contract-Short-Description
Server: Name
Client: Name
Description: Text-Longer-Description

…Other contract declarations…

Once the collaborations are mapped, the specification of each class is made, including the
contracts though in a different manner:
Class: ClassName
Superclasses: Class
…
Contracts
Text-Contract-Short-Description
Text-Longer-Description
Routine1 (params) returns result
Uses ListOfClasses
Text-DescriptionOfRoutine1
… more routines here…

Text-Contract-Short-Description

… routines and more contracts…

This mapping to classes is also used in the other approaches explained below.
It is important to note that in this proposal, there is no mechanism for handling exceptions
explicitly and no communications scheme is mentioned.

3.2.5 Fusion, 1994
In Fusion the collaborations are the basis for establishing the contracts. As objects
collaborate in order to accomplish each of their responsibilities, these ones become contracts
between the objects that are clients on the collaboration and those who act as servers
[COLEMAN, D., et al 1994]. Like Wirfs-Brock, a Fusion class can also support one or more
distinct contracts.
Two differentiated phases, analysis and design, take place. In the first one, the system is
treated as a black-box; neither the classes inside the object model nor those ones inside the
system object model have methods (i.e., responsibilities) assigned to them, because
“analysis” classes describe concepts of the problem domain rather than software
components. Analysis places a particular emphasis on defining the system interface and the
information that is relevant to the system for the purposes of fulfilling requests from its
environment. These two aspects of the system are described by the object model and the
interface model.
Contracts are defined in the context of the interface model, which consists of the Operation
model and Life-cycle model. It defines the inputs and outputs of the system. The
communication is asynchronous, which means the sender does not wait for the event to be
received. Events that are incoming to the system can cause the system to both change its
state and output events to its environment. A pair consisting of an input event and the
corresponding effect is called a system operation.
The contracts are declarative and written in the form of Operation Model Schemas
accompanied by Life-cycle models; a schema is written in (structured) natural language, and
it defines the pre- and postconditions of a system operation, and the events that are output.

Chapter 3. Software Contracts as Specification Artifacts

31

By including event sending as part of the postcondition, it is possible to clearly state under
which circumstances events are output.
The general format for an Operation Schema is the following [COLEMAN, D., et al 1994]:
Operation: Name
Description: Text
Reads: supplied Item1, Item2,…
Changes: new Items
Sends: ListOfEvents
Assumes: Assertions - Preconditions
Result: Assertions – Postconditions

 …Other operation declarations…

The Assumes and Result clauses are analogous to the pre- and postcondition clauses,
respectively. The word supplied implies that the Item in question is passed as a parameter
while new reveals the Item is created during the operation.
This is the first of the methods studied in this chapter where the state becomes important in
terms of delivering a service. As a consequence part of “functionality” of the contract is
displaced to other models and thereby enriched by these other models resulting in a stronger
set of conditions (pre- and postconditions).
There’s no exception handling mechanism but the authors consider it necessary. As a matter
of fact, the authors mention the use of Eiffel and the assert macro or the try/catch
mechanisms of C++ in order to implement it.

3.2.6 Catalysis, 1999
The Catalysis approach is a component-oriented development method. It offers a very rich
set of features for modeling component-based and object-oriented systems. Catalysis
integrates many of the favorable features of both Fusion [COLEMAN, D., et al 1994] and
Syntropy [COOK, S. and DANIELS, J. 1994], particularly Syntropy’s use of OCL for
describing pre- and postconditions on operations [SENDALL, S.]
Catalysis defines three levels of modeling25:

• problem domain or business – captures the relevant concepts for the
environment of the system and for the stakeholders of the system;

• component specification – captures the external behavior that the component
should exhibit;

• Component implementation – captures the internal workings of the component.

Actions are the basic modeling elements in Catalysis. However, collaboration as the
minimum relevant modeling unit. Collaborations consist of combinations of actions that
accomplishes some goal; by contrast, Use Cases are sets of sequences of actions whose
descriptions transport also the corresponding sequencing information [CATALYSIS 2002].
Contracts appear in the context of Behavior Modeling and of Interaction Modeling, and
describe Actions of the system or one of its components. Actions can be decomposed into
subordinate actions, or composed to form a super ordinate action. An action represents work
performed by one or more entities, which is described by an action specification, generally
using pre- and postconditions written in OCL26. Catalysis defines two main kinds of actions:
localized or joint actions, according to whether it has one or many participants. More
precisely, Catalysis prefers to call joint actions to the multi-party collaborations, and

25 In general, Business modelling is not considered specifiable but loosely describable for the most part of authors. This will be
discussed in chapter 5.
26 OCL is a specification language. Refer to chapter 2 for further information.

Chapter 3. Software Contracts as Specification Artifacts

32

localized actions to the interface declaration of the services provided by a particular
component.
It is also possible to state as part of a postcondition that another action is invoked either
synchronously or asynchronously, and the invocation takes the form of the sending of a
message.
Unlike the previous approaches, an action may take up some undetermined period of time.
Because of that, some actions are quite interesting not only for what they have achieved after
they have finished but for what they do while they are in operation. This is discussed
further in section 3.2.6.1.
In order to create their behavior models for object types, Catalysis takes all the elements
from previous approaches and provides a form of contract that is capable of dealing with
concurrent actions:
Action: name :: (parameter1: Type 1, parameter2: Type2)
 : ResultType
Pre: Assertions - Preconditions
Post: Assertions - Postconditions
Rely: Assertions (for concurrent or interleaved actions)
Guarantee: Assertions (to be maintained as true during actions
 executed concurrently with others)
Inv: Condition (applies for every action in the model)
Inv effect: Assertions (applies to all actions conforming to
 signature, pre and rely conditions)

3.2.6.1 Rely and Guarantee-Conditions
Taking a more focused view of the effect of operations on the state of a system, it is possible
for a system to have operations that change the state of the system concurrently and even at
the same time27. Furthermore, it is possible that operations access common resources of the
system. If such operations were to execute in parallel, then interference problems could arise
and the classical sequential program theory does not apply anymore; in these cases, pre- and
postconditions cannot ensure correctness.
Rely- and guarantee-conditions allow one to cope with the specification of concurrent
operations that share resources and may have overlapping executions. In two logical parts:
The assumptions consist of the precondition and rely-condition, and the commitments
consist of the guarantee-condition and postcondition.
This point was first examined in section 3.1.6, but now some features are added: “The
meaning of the assumption/commitment specification is the following: if all activities
other than the one executing the corresponding operation observe the rely-condition
during the execution of the operation and the precondition holds initially (the
assumptions), then the operation will terminate in a state that satisfies the postcondition
and the guarantee-condition will have been held by the operation throughout its execution
(the commitments).” [SENDALL, S. 2002]
Any change to the system state by any other operation over the period of execution is
supposed to satisfy the rely-condition, while any change to the system state by the operation
must satisfy the guarantee-condition. If this is not the case, nothing can be stated about the
results of the operation.

3.2.7 Kobra, 2002
This is a component-oriented development method, specifically of “Kobra components” or
Komponents. In this case the contracts are considered in the phase of the Komponent
specification.
The basic goal of Komponent specification is to create a set of models that collectively

27 This concurrency phenomenon may also happen because the actions have a long lifetime.

Chapter 3. Software Contracts as Specification Artifacts

33

describe the externally visible properties of a Komponent. In the UML an interface
represents a set of operations, but a Komponent specification also includes information about
the behavior of the Komponent, the logical effects of its offered operations and its
expectations about the Komponents that surround it (that are in its environment)
[ATKINSON, C., et al 2002].
The specification therefore defines the requirements that the realization of the Komponent
must satisfy, like in Catalysis. A Komponent’s specification represents the contract between
the Komponent and its clients and servers28. A Komponent specification may contain up to
six distinct artifacts where only the Behavioral Model and the Functional Model are in the
scope of our interest. The two are considered as primary artifacts within Kobra and
correspond roughly to the models that specify the properties of a system in OMT
[RUMBAUGH, J.R., et al 1991] and Fusion [COLEMAN, D., et al 1994].
The Functional Model describes the externally visible effects of the operations supplied by
the Komponent. It consists of a set of operations specifications, one for each operation,
constructed using the template shown below.
Name : OperationName
Constraints: Text-properties
Receives : Information input
Returns: Information output
Sends: Events or operation invocations
Reads: Externally visible information accessed by the operation
Changes: Externally visible information changed by the operation
Rules: rules
Assumes: weakest precondition
Result: strongest post-condition

Several remarks about this description:
• The Constraints field contains an informal description of the operation

effects, both for normal and exceptional executions.
• The basic goal of the Result clause is to provide a declarative description of

the operation in terms of its effects.
• The precondition and post-condition (in the last two clauses) are to be written in

some undefined language, depending on the criticality of the application, i.e.
from free-style text to fully formal languages.

• The assumes item introduces weakest precondition, introduced in section 3.2.1.

Finally, notice that the rules clause may hide some of the functionality of the contract, which
in the other schemas would certainly appear exclusively in the sections for preconditions,
postconditions and invariants.

3.2.8 ANZAC, 2002
Anzac [SENDALL, S. 2002] deals with contracts and defines a methodology for specifying
reactive systems in terms of these contracts. The basic modeling element is the Use Case,
which is made up of interactions; contracts are created to fulfill them.
The Anzac methodology defines both a Stakeholders Contract and a Design Contract. We
are interested only on this second kind of contract.
A Design contract is an Operation model which is an operation schema complemented by a
Protocol model. It clearly defines the interface between the system and its environment, and
would provide a basis for validating the system’s role in that environment by making sure
that each constraint that it places on the design of the system is aligned with –and traceable

28 Actually, this is true for all kinds of specifications. The contract mentioned here is more of a conceptual one.

Chapter 3. Software Contracts as Specification Artifacts

34

to— the (system-related) goals of the various parties that have a vested interest in the
software application29.
The Operation model describes each operation via a collection of Operation Schemas. This
is a clear heritage from Fusion [COLEMAN, D., et al 1994]. The Protocol Model for a system
is analogous to the Life-cycle model of Fusion, too, and serves as a filter for the sequences
and scenarios in which a given message can be processed.
Operation: SystemTypeName::OperationName (ParameterList)
 : ReturnType;
Description: Text-Description
Notes: Text-Notes
Use Cases: UseCaseName1::{Step1, Step2…} +
 UseCaseName2::{Step1, Step2…} + … ;
Scope: ClassOrAssociationName;
Messages: Message1, Message2, …
 {MessageN Throws ExceptionMessagesN}, … ;
New: ListOfObjects
Aliases: ExpressionSubstitutionDeclarations
Pre: Assertions - Preconditions
Post: Assertions - Postconditions

The several new items found in this schema are explained briefly next:
• The Use Cases clause declares all use cases (1 or more) that have a

(traceability) relationship with this operation.
• The Scope clause declares all those classes and associations from the Concept

Model that define the name space of the operation.
• ExceptionMessages defines the exceptions that are thrown by the call

denoted by the message preceding the Throws keyword.
• The New clause provides a declaration of all those names in an Operation

Schema that refer to new objects or (new) messages. All names declared in this
clause are local to the schema.

• The Aliases clause provides a declaration of all those names in an Operation
Schema that refer to expression-substitutions. Everything declared in this clause
is local to the schema. An expression-substitution is similar to a macro.

Additionally, Anzac proposes the use of the Rely expression, which has some similarities to
rely-conditions, because they both define “during” invariants. In contrast to rely-conditions,
rely expressions are used within the Post clause and they have scope over only a subset of
the operation’s effects. Another difference is that a rely-expression has a fail predicate that is
asserted if the condition that is relied upon can not be held during the period the service is
being carried out.

3.2.9 Diagrammatic Approaches to Contracts
The precise UML group proposes the 3-D Box as an extension of Constraint diagrams for
specifying actions [KENT, S. and GIL, J.]. Constraint diagrams –presented in chapter 4—
permit modeling propositions by using diagrams that are based on the Venn-Euler-Pierce
basic diagrams for sets.
A 3-D contract is shown in figure 6. It is composed of a pre-condition (top diagram) and a
postcondition (bottom diagram). The notation for the constraints (on the left) is based on the
basic diagrams for representing sets (please refer to section 4.2.2.3). Some additional
information, using a UML-like notation is given on the right side of the diagram.

29 These parties are commonly referred to as the stakeholders of the system.

Chapter 3. Software Contracts as Specification Artifacts

35

Figure 6. 3-D box that specifies the way a reservation can be done using a library IT system. It represents how

users of the library can loan copies of books. From [Kent, S. and Gil, J.]

Figure 6 shows the example of a library reservation system. The figure describes the rules
for making a new loan, and what happens to pending loan requests. It is clear in this figure
that the notation presents scalability problems (see section 4.2.3) and uses ad hoc notations
that are not compatible with UML.

3.3 Summary
Contracts are used in many methodologies as a powerful tool for specification during the
analysis and design phases, even if almost always this is not recognized explicitly30. Their
importance is synthesized in the Law of Excluded Miracles: “if we don’t state what a
module should do, there is little likelihood that it will do it” [GRIES, D. 1981]. As it happens
in social contracts, “the specification of the obligations and benefits afforded to both, the
client and supplier in an interaction” [ILLINGWORTH, V., et al 1996].
In this chapter we showed that contracts are useful to state clearly what the system can do,
without looking at the performance, the optimality of the distribution, and other issues. Even
if a contract can serve to describe structural and behavioral aspects [MITCHELL, R., et al], we
focused on it as a mechanism for producing “systems without bugs” [ISE 2001, MEYER, B.
1997]. Similar to contracts in object-oriented programming, software contracts can help
avoid errors that are process-related and conceptual [IEEE 1993] [BEIZER, B. 1990].
A contract describes the net effect of an action or service Contracts are written in the form of
predicates (declarative style) that allow for thinking more clearly in terms of the problem
domain. As a consequence, by not stating the precise solution, the modeler can defer the
decision of how to implement the actual system.
Contracts let the modeler focus on the problem. Contracts are, however, not straightforward;
the declarative style represents a formidable intellectual problem: by nature, people tend to
pick up a concrete solution and optimize it, instead of constraining a space of possible design
solutions [GLASER, H.ET AL 2001, JACKSON, D., ET AL 2000] as is required by the declarative
style of specification.

30 One reason for this is the fact the term “contract” was coined and later trademarked by Bertrand Meyer.

Chapter 3. Software Contracts as Specification Artifacts

36

In theory, contracts have shown their capacity for specifying the interfaces in a complete
manner. “In practice, it is amazing to see how far just stating what a module should do
goes towards helping to ensure that it does it” [MEYER, B. 1997]. An interface specifies the
semantics of the access points to the services provided by a software object/component.
In this chapter we demonstrate that, in practice, contracts also describe part of the internal
behavior of the system. This makes them more meaningful as specification artifacts.
It is difficult to study the different forms of contracts without regarding thoroughly the
details of each methodology. A summary of their common elements is shown in table 3.

Table 3. Elements for description of contracts

Elements Reserved word Interpretation
The Operation clause declares the signature of the
operation.

N.A. Action

The Description clause provides a concise natural
language description of the purpose and effects of the
operation.

N.A.

N.A.

The Precondition clause presents the required
scenario that enables the execution of the service.

Pre
Rules
Inv

Constraints

The Postcondition clause presents the obtained
scenario after the execution of the service.

Post
Result
Changes
New
Inv

Constraints

The Messages clause declares the possible
messages that can be output with the execution of the
operation. This clause declares the type of messages
that can be sent by the operation together with their
destinations, i.e. the receiving actor classes.

Receives
Sends
Returns
Messages

Communication
–
 Input/Output

The ExceptionHandling mechanism indicates what
should happen in the event of the non-compliance
with invariants

 Rules
Returns
Messages

N.A.

We demonstrated that the notion of contract in the software engineering field is pervasive. It
has evolved recently, but the roots can be traced to the beginning of the domain, under
different forms, degrees and notations. As a taxonomy for contracts in the software
engineering field has not yet been made, we propose a historical categorization.
Table 4 is a synoptic comparison of the expressive capabilities of the different types of
contracts studied in this chapter 31. It is clear from Table 4 that the techniques studied in this
chapter use contracts that do not integrate the different aspects of change, and formalization
is not supported. Hence, these aspects must be addressed by our specification notation and
artifact.
Moreover, we have identified several specific challenges that our notation should also
address:

• Contracts are textual. A visual approach is required.
• Contracts not only describe the behavior on the interface of the system, but also

describe part of the internal behavior of such system. The signature-based
approach must be complemented by primitives that enable the description of
internal behavior.

• Contracts should be used in a hierarchical fashion, not making differences
among services at the system level and at the level of its composite systems.

31 The elements cited in the operation prerequisites and operation effects are the labels that appear in each of the contract
templates.

Ch

ap
te

r 3
. S

of
tw

ar
e C

on
tr

ac
ts

 a
s S

pe
cif

ica
tio

n
A

rt
ifa

ct
s

37

Ta
bl

e
4.

 C
om

pa
ris

on
 o

f t
he

 d
iff

er
en

t a
pp

ro
ac

he
s f

or
 c

on
tra

ct
ua

l s
pe

ci
fic

at
io

n

Fr

am
e

Ap
pl

ic
ab

le
 to

C

or
re

sp
on

ds

to

O
pe

ra
tio

n
pr

er
eq

ui
si

te
s

O
pe

ra
tio

n
ef

fe
ct

s
C

om
m

un
ic

at
io

n
Ex

ce
pt

io
n

ha
nd

lin
g

C
on

cu
rr

en
t

ac
tio

ns

Ty
pe

 o
f

C
on

te
xt

ua
l

in
fo

rm
at

io
n

Sp
ec

ifi
ca

tio
n

la
ng

ua
ge

 M
od

el
in

g
of

Sy

st
em

ic

C
ha

ng
e

D
es

ig
n

by

co
nt

ra
ct

(1

98
8)

O
bj

ec
t-

or
ie

nt
ed

pr

og
ra

m
m

i
ng

R
ou

tin
es

in

pr

og
ra

m
s

C
la

ss

m
et

ho
ds

,
fu

nc
tio

ns

P
re

In

v
P

os
t

In
v

S
yn

ch
ro

no
us

,
ca

ll-
ty

pe

pr
ot

oc
ol

Ye

s
N

o
N

o
E

iff
el

 N
o

W
irf

s-
B

ro
ck

(1

99
0)

O
bj

ec
t-

or
ie

nt
ed

A

na
ly

si
s

an
d

D
es

ig
n

S
ys

te
m

 s
er

vi
ce

 C

ol
la

bo
ra

tio
n

 C
la

ss
 c

on
tra

ct
s

 A
na

ly
si

s-
ph

as
e:

a

gr
ou

p
of

 c
la

ss
es

 c
an

pr

ov
id

e
a

se
rv

ic
e

 C
la

ss
 s

up
po

rt
on

e
or

m

or
e

co
nt

ra
ct

s

P
re

In

v
 C

lie
nt

-s
er

ve
r

st
at

ic

bi
nd

in
g

P
os

t
In

v
N

o
N

o
N

o
C

lie
nt

-s
er

ve
r

st
at

ic
 b

in
di

ng

N
at

ur
al

 la
ng

ua
ge

 N
o

Fu
si

on

(1
99

4)

O
bj

ec
t-

or
ie

nt
ed

A

na
ly

si
s

an
d

D
es

ig
n

C
ol

la
bo

ra
tio

n
In

te
rfa

ce

m
od

el

=
op

er
at

io
n

sc
he

m
a

A
ss

um
es

R

ea
ds

(in

pu
t)

R
es

ul
t

C
ha

ng
es

S

en
ds

A

sy
nc

hr
on

ou
s

N
o

N
o

Li
fe

cy
cl

e
m

od
el

co

m
pl

em
en

ts

S
tru

ct
ur

ed
 n

at
ur

al

la
ng

ua
ge

 N
o

C
at

al
ys

is

(1
99

9)

U
M

L
 C

om
po

ne
nt

-o
rie

nt
ed

Lo
ca

liz
ed

 a
ct

io
ns

:
 Jo

in
t a

ct
io

ns

S
er

vi
ce

s
pr

ov
id

ed
 b

y
a

si
ng

le
 c

om
po

ne
nt

 S

er
vi

ce
s

pr
ov

id
ed

 b
y

m
ul

tip
ar

ty

co
lla

bo
ra

tio
ns

P
re

In

v
R

el
y

G
ua

ra
nt

ee

P
os

t
In

v
In

v
ef

fe
ct

S
yn

ch
ro

no
us

&

 A
sy

nc
hr

on
ou

s
N

o
Ye

s
M

ay

be
,

vi
a

as
se

rti
on

s
O

C
L

 N
o

K
ob

ra

(2
00

2)

U
M

L
 C

om
po

ne
nt

-o
rie

nt
ed

K
om

po
ne

nt
 in

te
rfa

ce

C
om

po
ne

nt

Fu
nc

tio
na

l
m

od
el

–

be
ha

vi
or

:

A
ss

um
es

R

ec
ei

ve
s

R
ea

ds

R
ul

es

R
es

ul
t

C
ha

ng
es

S

en
ds

R

et
ur

ns

S
yn

ch
ro

no
us

&

 A
sy

nc
hr

on
ou

s
N

o
M

ay

be

w
ith

ru

le
s

E
xp

ec
ta

tio
ns

ab

ou
t

K
om

po
ne

nt
s

th
at

su

rro
un

d
it

In
fo

rm
al

to

D

ec
la

ra
tiv

e
la

ng
ua

ge
 (

m
ay

 b
e

O
C

L)

 N
o

An
za

c
(2

00
2)

U
M

L
 R

ea
ct

iv
e

sy
st

em
s

U
se

 C
as

e
D

es
ig

n
co

nt
ra

ct

(o
pe

ra
tio

n
sc

he
m

a
+

pr
ot

oc
ol

 m
od

el
)

P
re

M

es
sa

ge
s

P
os

t
M

es
sa

ge
s

N
ew

S
yn

ch
ro

no
us

&

 A
sy

nc
hr

on
ou

s
N

o
Ye

s
N

o
O

C
L

 N
o

Chapter 4. Creating Visual Models

39

4 Creating Visual Models
There are no correct or incorrect models.

Models are more or less useful.
Martin Fowler, Analysis Patterns: Reusable Object Models

As seen in Chapter 3, software contracts are mostly textual specification artifacts. Our goal is
to allow modelers to create visual representations of systems, in order to deal with
complexity. Therefore, we need to create a visual model that corresponds to a software
contract.
Our main source of inspiration is the work of Shin [SHIN, S.-J.], who demonstrated recently
that formal visual notations can be built and used effectively to support reasoning.
In this chapter, we study the main aspects that should be considered in order to create
adequate visual representations. As this is a broad area of research, we limit ourselves to the
related works made in the computer science field. Moreover, we constraint the scope of our
research to the specific needs of SEAM: a visual specification artifact that can be used to
reason about systems, from a systemic perspective. At the end of the chapter we identify the
requirements of our notation for describing systems in terms of systemic actions.

4.1 Problems for the Creation of a Notation for Modeling
In order to create an adequate visual notation we need to address three issues:

• How do we create models that enable reasoning? In other words, what is the
language required to express, in order to support the reasoning process.

• What are the expected results from analysis/reasoning? In other words, what is
the modeler supposed to obtain from this reasoning process?

• How do we make the analysis of these models automatic? Making the models
compatible with formal languages allows us to use tools, as well as
diagrammatic reasoning. Therefore, the resulting diagrammatic notation should
not only support direct reasoning but also automatic or semi-automatic analysis.

This chapter addresses specifically the question a and lays a foundation for question b 32.
Figure 3 illustrates the whole process of modeling: from conceptualization to analysis. This
figure also makes evident the reasons for creating a new modeling notation. [AGRAWAL, A.
2003] affirms that the steps to develop a language include the definition of its syntax,
visualization, semantics and algorithms for execution. In order to satisfy these needs, first we
study what the model theory offers us, and how reasoning can be done using these models.
Later, we study the state-of-the-art of visual notations for system modeling. Finally, we
identify some limitations and patterns from these notations that are points to improve with
our specification artifact.

4.1.1 Choosing What to Represent
The problem of how to choose what to represent is studied by the domain known as
knowledge representation [RUSSELL, S., et al 1995]. The two fundamental questions to
answer concern the representation itself:

• What entities should the modeler describe?
• What can the modeler say about these entities?

32 Question b will be complemented in chapters 7 and 9. Question c will be answered in chapter 8.

Chapter 4. Creating Visual Models

40

In the case of SEAM, previous works already attempted to answer these issues. The first
question was already covered by the works of Naumenko [NAUMENKO, A. 2002], Lê[LE,
L.S., et al 2005] and Wegmann[WEGMANN, A., et al 2005]. They defined the kinds of model
that should be built in SEAM, the entities that should be modeled in each one of those
models, and how to go through the different levels of the hierarchy. This definition of the
ontology takes into account all the different aspects (namely, categories, measures,
composite objects; time, space and change; event and processes; physical objects).
The second question was addressed by the work of Preiss [PREISS, O. 2004] and
Regev[REGEV, G., et al 2003]. Preiss defined what the primary and secondary properties of a
system are, how to define the quality of such a system (in terms of quality attributes), and
complemented the ontology in what concerns measures. Regev defined a method that
permits the modeler to describe how and whether the quality attributes really enable the
satisfaction of system goals.

Figure 7. Model vs. reality. Expanded version of figure 5, that makes explicit the impact of modeling language

in the validation process

4.1.1.1 Representation and Reasoning
In its original form, the model theory enable reasoning about system properties [HODGES,
W. 1993]. The model theory explains that the models allow the designer to understand how
the system is interpreted. There are essentially two manners to specify a system that can be
used complementarily [MONIN, J.-F. 2000]:

• representing a system by describing its properties;
• Creating a model of the system by using a set of pre-built definitions.

In both cases it is evident that models are only representations of reality (actually, of the
knowledge an observer has of that reality) that we build in order to be able to reason about
the reality itself. Concretely, elements of the model have properties. These properties are
expressed via logic axioms, and the models are built using operations on sets of elements.
What we assert about the elements –what properties are true— is expressed via facts. This is
illustrated in figure 3.

Chapter 4. Creating Visual Models

41

Facts are part of the world but their representations are not. As shown in figure 3, the
representation of facts must be encoded in some way that can be represented in our
specification of the system. We cannot put the world inside a real specification, so all
reasoning mechanisms must operate on representations of facts, rather than on the facts
themselves.
Once again, we must be clear about the real nature of this reasoning process: a model is not
the reality. Therefore, it is important to understand the relationship among logical
consequence and semantic consequence. The logical consequence is a result of the
reasoning/transforming process only – that may remain completely syntactic—, and may be
inadequate for reality. This means that an observer does not necessarily see (i.e. interpret) the
result of some logical consequence, as it does not relate to the properties that she is capable
of perceiving. On the other hand, the semantic consequence deals with the connection to the
reality, and the fact that what should be interpreted from a set of predicates should also be
true in the real world.
Therefore, in a certain situation –described also with predicates—such properties can be
examined. This description of a specific situation is called a configuration (please see
definition in section 3.1.7). Proper reasoning should ensure that the new configurations
represent facts that actually follow from the facts that the old configurations represent. As we
already said before, it is important to distinguish between facts and their representations.
Because sentences are configurations of parts of the system, reasoning must be a process of
constructing new physical configurations from old ones.

4.1.2 Choosing How to Represent
As shown in figure 3, there is a difference among the real system and its model. At least two
processes appear before the one commits to the other: a feature-extraction process and a
translation process. The first process serves to filter out the features that are not taken into
account for the reasoning process. The latter process depends on the expressiveness capacity
of the modeling language; this capacity restraints the way the solution is developed, as
demonstrate by the quality problems [DIJKSTRA, E.W. 1976, WIRTH, N. 1995].
A logic or knowledge representation language is defined by [RUSSELL, S. and NORVIG, P.
1995]:

• The syntax of a language describes the possible configuration that can constitute
sentences.

• The semantics determines the facts in the world to which the sentences refer.
And with semantics, we can say that when a particular configuration (syntactical
construction) exists within a system, the system believes the corresponding
sentence.

• The proof theory—a set of rules for deducing the entailments of a set of
sentences. The right side of figure 4 illustrates this deductive process, where a
sentence can be entailed or deduced from a set of sentences that map a set of
facts.

The goal of such a representation is to express knowledge in computer-tractable form in
order to be analyzable [SOWA, J.F. 1999] by computer tools or to build systems that can
perform well.
SEAM is built using first-order logic (FOL). First-order logic makes a stronger set of
ontological commitments. The main one is that the world consists of objects, that is, things
with individual identities and properties that distinguish them from other objects. Among
these objects, various relations hold. Some of these relations are functions—relations in
which there is only one value for a given input.

Chapter 4. Creating Visual Models

42

In order to deal with many problems in the “naïve” version of the set theory, Russell
introduced the notion of types in order to avoid that the predicates and the elements could be
used in a free way, leading to inconsistent models. According to our definition above of
semantic consequence, the inconsistent models include configurations that cannot exist
because they do not comply with the expected behavior of the actual system.

4.1.2.1 Cognitive Reasoning: Soundness vs. Intelligibility
A second problem with representation is the expression of the expected behavior. The
modeling language also determines this aspect, as explained in figure 3. The reasoning
process as such, can be separated into a series of complex propositions.

Figure 8. The connection between sentences and facts is provided by the semantics of the language. Adapted

from [RUSSELL, S. and NORVIG, P. 1995], page 158.

According to [BUTCHER, K.R., et al 2004], there are three levels of reasoning: understanding
each proposition (or paraphrases), the connection among propositions (i.e. elaborations) and
from these to the context (i.e. monitoring statements), and making inferences (both from the
propositions and from the connections of this propositions). Inferences are classified as path
inferences, nonpath inferences and integration inferences. Because of the focus on the
soundness of logical notations, only the first aspect is strongly integrated into formal
notations. Sometimes the third aspect is also assimilated.
It seems that a more integrated approach is required. Current formalized diagrammatic
notations are difficult to grasp by the practitioners and students, and are often replaced by
notations whose format and expressive capacity allow putting together larger amounts of
information [CHERUBINI, M., et al 2007]. Unfortunately, these notations are ad hoc. We can
say that such forms of representation support the second type of reasoning and the
corresponding inferring process; these notations permit creating shared knowledge quickly
and efficiently.
As a result, our notation should improve intelligibility, not by reducing the complexity of
what is represented, but by integrating more information in order to support direct
diagrammatic (visual) reasoning.

4.1.2.2 Support for Perceptual (Visual) Reasoning

“Les diagrammes sont essentiels pour la modélisation systémique”
(Diagrams are essential to systemic modeling)

Durand – La systémique

The preceding numeral raised an interesting issue: strict attachment to formal translations is
not successful on creating notations that are easy to handle. However, ad hoc notations,
created for rapid exchange of information, are able to encode complete sets of knowledge.
This happens because –and despite— of the lack of a formalized approach. If we reason on
the contrary, we should value the visual dimension of the notation as important as the formal
dimension.

Chapter 4. Creating Visual Models

43

[LARKIN, J., et al 1987] showed first that visual notations add a local indexing advantage
over the sentential and tabular notations. [CHENG, P.C.-H. 2004] found that the real
advantage is the recognition of paths, and of applicable rules leading to solution planning.
This is apparently due to the structure of the representations: “the design of effective
representational systems to support problem solving and learning… a good representation
should use location indexing as a means to coordinate information that will be needed to
problem solving”.
This phenomenon is adopted in diagrammatical approaches in the form of the principle of
immediacy, defined in the works of [AKKOK, N. 2004] and [SWOBODA, N. and ALLWEIN, G.
2002]. In Swoboda’s version, this principle establishes that there is a logics of observation,
how immediate the information of a property related to it is represented in a diagram. On the
other hand, Akko’s version is more related to the distance among different sources of
information, about the amount of information that can be indexed locally because of the
nature of the diagrammatic representation. In both cases, the works address the
description/design of complex, homogeneous systems.
On the other hand, the modeling of heterogeneous systems (considering more than one type
of properties: state, communication, actions, etc) is very complex. There is always a tradeoff
among localization problem and information stacking problem. “Reasoning practices and
decision making often require information from many different sources… there are many
advantages to reasoning with the diagrams themselves, as opposed to re-expressing the
information content of the diagram in sentential form and reasoning in an abstract
sentential language” [SWOBODA, N. and ALLWEIN, G. 2002].
In the domain of information visualization, several principles and laws guide the design of
notations and interfaces used for representing information visually. One of the most
important frameworks is known as the “Gestalt Laws”, created after the works of the Gestalt
school of psychology [AUDI, R. 1999]. The main laws proposed in this framework are:
proximity, similarity, connectedness, continuity, symmetry, closure, relative size and figure
and ground [GLASER, H., et al]. Further discussion of these laws and how the notation
satisfies them appears in chapter 6.
Another aspect that is of interest to us is the representation of change that we also study. It is
used mainly for the representation of flows and also in the case of integral and differential
calculus [WARE, C.]

4.2 Techniques for Reasoning with Diagrams
“It is common to consider them (the diagrammatic approaches) as an auxiliary means
valuable for heuristic consideration whereas to be precise and implementable schemas

should be converted into ordinary linear (string) specifications based on the well-
established notions of term and formula.”

Diskin -- [DISKIN, Z. 1995]

In this section we introduce a series of works of Information Systems field that explore the
utilization of visual specifications against the more traditional ones, namely, sentential and
tabular.
The actual trends in software development show that graphical notations are more popular
than sentential ones (i.e., textual or mathematical). However, diagrams are in general
considered as good intuitive, informal aids to increase the understanding of the system rather
than as formal models of the same system [BRUEL, J.-M., et al 2000, DISKIN, Z. 1995, SHIN,
S.-J. 1995]

Chapter 4. Creating Visual Models

44

4.2.1 Visual Formalisms
As we said in section 3.1.1.1, the techniques of formal specification are sometimes called
specification by properties or specification by models. Most formal methods or languages are
sentential or textual. They associate a strict semantics to a language, in order to make it
mathematically sound. A detailed study on the different families of notations can be found in
[GERVAIS, F. 2004]. As they are the most popular and more developed type of
representation, their influence is paramount for the creation process of our graphical
language.
A second, intermediate form of specification is the tabular form, where the elements of the
specification (behaviors, structural elements, logical rules) are arrange into tables [PARNAS,
D.L., et al 1998, SHIMOJIMA, A. 2002]. Being a two-dimensional form of representation,
tables exhibit already several of the advantages of diagrammatic notations (e.g. local
indexing, contextual indexing) [LARKIN, J., et al 1987]. Therefore, the tabular form is a nice
compromise among a very formal approach and a diagrammatic one.
On the other hand, diagrams are to understand, describe, document, and other human-related
processes, but not necessarily related to some formal method. “Node-link diagrams” or
“Boxes plus arrows” is the standard approach [WARE, C. 2004] with differences in
semantics. This was demonstrated by empirical studies such as [CHERUBINI, M., et al 2007].
Shin [SHIN, S.-J. 1995] and Hammer [HAMMER, E. 1995] demonstrated that diagrammatic
approaches can be formalized. They laid out the foundations of a new domain. They
demonstrated that diagrams can have the same logical status as sentential systems. This gave
birth to a broad field of research known as Diagrammatic Reasoning (DR).

4.2.2 Expressing Constraints Visually
There is a rich literature on the construction of diagrammatic formalized languages (i.e.,
notations whose semantics are formal33, at least in part). The motivation for the formalization
effort is explained in [EVANS, A., et al 1998, PUML 2002]. We can identify two main trends
in the development of formalized diagrammatic notations: graph- based, and non-graph-
based. This categorization takes into account only the nature of the underlying theory.

Table 5. A classification of visual formalisms based on the aspect they illustrate

 Structure Behavior
Reactive SA/RT – structural part

Observability CCS, CSP, Pi-Calculus

Causality: Petri nets, Statecharts, SDL

Information Systems
Entity-Relationship

UML: Class + object + deployment diagrams

UML: Activity + sequence + interaction diagrams

BPMN, Structured Analysis, IDEF0/SADT,

[BARESI, L., et al 2005] presents an approach to create automatic interpretation for
diagrammatic notations, and includes a rigorous and more generic state-of-the art on this
domain. As [WINTERSTEIN, D., et al 2004] shows, the use of diagrammatic logic can even
support reasoning processes about very complex large mathematical problems. [JARRATT, T.,
et al 2004] studies the use of visual notations for product modeling in a complex design,
multi-variable, multi-actor process.
4.2.2.1 Reasoning with Graph-based Notations for Behavior Modeling
The graph-based notations are all those based on the use of the mathematical notion of
graph. A graph is defined as a structure consisting of nodes and links [WARE, C. 2004]. It

33 The formal methods and notations are introduced in section Error! Reference source not found.

Chapter 4. Creating Visual Models

45

can be considered as the graphical expression of a process algebra automaton. The diagrams
are generally drawn in the form of a directed graph, made of a set of nodes and of a set of
transitions, which form the vertices and arcs respectively. Graphs show status/actions and
transitions that form a sequence. There is one starting node and one or more terminating
nodes (one per branch of operation). Because of the explosion of connections and nodes for
complex systems, a large graph is not easy to tackle without sophisticated tools.
We can affirm that graph-based representations are the most popular and natural approach.
The most important example of graph- based formalized notations is the Petri net and its
derivatives (e.g. Colored Petri Nets—CPN, High-level Timed Petri nets—HLTPN, among
many others). Petri nets are a pervasive tool in many domains, particularly for
modeling/simulating problems that can be translated to sets automatons, agents, protocols,
industrial processes and business processes, among others. Other examples of graph-based
formalized notations are Flowcharts, Structured Analysis (SA) [WARD, P. 1985, YOURDON,
E. 1988], [HATLEY, D., et al 1988], and SADT/IDEF0 [MARCA, D.A., et al 1988], Diskin’s
Sketches [DISKIN, Z., et al 1998],.

• In the case of flowcharts, the nodes are the actions of the system, and the arcs
denote the sequence of actions. This is the less complex and less formalized
approach in this series.

• Petri Net are a more mathematical or formal approach. In Petri Nets the nodes
are called places, and the links are called triggered transitions. In statecharts, the
nodes are the either the states the system can be on, or the branching operators
(condition, fork, join), and the arcs are the state transitions, which include not
only triggers but enabling conditions.

• The workflow notations, notably YAWL and BPMN, inherit from Petri Net and
from Structured Analysis.

• More formal notations are related to process algebra. In other words, they are not
graphical. These notations are used to create models of extended
communicating finite state machines such as CCS[MILNER, R. 1980, 1989],
CSP[HOARE, C.A.R. 1985] and π-calculus [MILNER, R. 1999].

• Lately, in a special, new generation of workflow systems, we find BPMN [BMI-
DTF 2007].

Figure 9. Example of a simple Petri Net

Types of Analysis
In this case, the constraints are: ordering of nodes, starting and terminating nodes, enabled
transitions, events that fire transitions, capacity of each node (to store tokens).
As we can see, the works on this area are used mostly as notations for describing both
process execution, and system state evolution. Because of the control-oriented nature of
these notations, the most important types of analysis done here is the:

• Navigation of the sequence of activities in order to validate its consistency and
the lack of dead branches such as it is done for [AALST, W.M.P.V.D., et al 2003,
PETERSON, J. 1981].

Chapter 4. Creating Visual Models

46

• navigating the definitions of the hierarchy of inheritance of a single statechart
[JIN, Y., et al 2004] or scalechart [BOSWORTH, R. 2004] in order to verify the
consistency of such hierarchy.

• simulating the behavior of multiple instances, in order to verify the
synchronization mechanisms for accessing shared resources [DAVID, R., et al
1997].

In all these cases, the internal actions, and states, are not actually covered but the reasoning
is done in terms of the coverage of the set of nodes, and the convenience on the arrangement
of transitions in order to satisfy this goal. No transition should carry the system to a state
where it is not able to make any further transitions but when in a terminating node. On the
other hand, no state should remain uncovered (not executed) if it is actually useful. As most
practical systems contain very complex automata, an automatic analyzer is normally
required.
Domains of Interest
Most of graph notations address the needs of modeling either reactive/concurrent or
workflow/network-type systems. In some cases concurrency is allowed, and the analysis may
therefore also include issues about resource usage: safety and liveness conditions. This
happens because when automata communicate and interact, complex behaviors appear. The
most common issues of analysis are, thus, mutual exclusion (no two instances of a process
may access the same resource instance at the same time), serial access for all instances (for a
given resource instance, we should guarantee that the instances of a process are serviced
sequentially), and fairness (no instance can starve for a resource, it should be given access at
a certain moment).
4.2.2.2 Reasoning with Graph-based Notations for Structural Modeling
We selected FOL as the expression mechanism. However, one of the problems of the pure
formal methods is that they are type-less in practice [MONIN, J.-F. 2000], which means that a
large number of constraints cannot be actually enforced. Although this is not critical for
behavior-oriented notations, it is for structural modeling. We consider that there is still the
need to invest some effort on the domain of structural modeling in order to integrate the use
of the class and object types.
On the information systems (data) track, there are many works on modeling the structure of
the information processed by a system, also known as domain models. As Diskin says:
“there is a long-time tradition of using two dimensional graphical images (we will call
them schemas) for presentation of data. In artificial intelligence (AI) it is connected with
the concept of semantic network. In the database area (DB) the tradition is usually
formulated under the name of entity-relationship (ER) data model...”

Figure 10. Static structure diagrams: UML class, E-R (Entity-Relationship)

Chapter 4. Creating Visual Models

47

We can identify two big groups of notations, those that represent sets and those who do not.
On the set-oriented track, the most important of these works are those related with Entity-
Relationship Diagrams [CHEN, P. 1976], Class Diagrams [OMG 2005c], and dataflow
specifications [YOURDON, E. 1988]. These notations are normally supported by a relational
algebra or some other approach that permits working on the entities that make up the data.

Association Represented by the Static Structure
Structural diagrams such as E-R (Entity-Relationship) diagrams and UML class diagrams
represent the elements that remain constant in the evolution of the structure34.
E-R and UML structural diagrams as defined as showing the “static structure of the system”.
On the other hand, the behavioral diagrams show the dynamic part of the system. The
constraints are used to declaring the semantics of an element of the UML specification; in
practice, constraints are used to tie together structure and behavior and specify in a detailed
manner what a well-formed system is.
UML Class diagrams consist of classes, relationships and associations. A UML relationship
is defined as “an abstract concept that specifies some kind of relationship between two
elements” [OMG]. Relationships and associations are very complex primitives that allow
declaring all sorts of properties and interrelationships among classes such as inheritance,
specialization, abstraction, and dependency, among others. An association “declares that
there can be links between instances of the associated types” [OMG]. Classes correspond to
object-oriented types.
An association is a named link connected to two or more classes. It transports much of
information about the instances of the intervening classes: roles of each, limit on
cardinalities for each, direction/ navigability, aggregation/composition, constraints for
each, and many others.
However, the elements just mentioned above are only invariants or constraints that should be
respected. Therefore, even if they are true for all actions done by the system, they are not
useful for specifying an action performs concretely.
Types of Analysis
We identify three lines of work:

• navigating the structure of the classes that constitute the information system
specification (either for domain, analysis or design), in order to verify properties
on the relationships among data entities [BRUEL, J.-M., et al 2000, LISKOV, B.,
et al, WARMER, J., et al 1999]

• combining/separating entities in a flow [WARD, P. 1985, YOURDON, E. 1988,
Hatley, 1988 #240].

• navigating the definitions of the hierarchy of inheritance of a single class in
order to verify the consistency of such hierarchy[LISKOV, B. and WING, J.M.
1993, ROYER, J.-C. 2004].

There are a few works on this area that try to overcome the difficulties enumerated by
[SHIMOJIMA, A. 2004]35. There is notably the work of Diskin on arrow-based notations
[DISKIN, Z. 1995] to support more precise conceptual modeling.

34 In this discussion, we will only address UML structural diagrams. The reader is invited to do the analogy for E-R diagrams
35 Shimojima makes a long presentation of different problems .For the sake of space, we do not include them here.

Chapter 4. Creating Visual Models

48

Figure 11. Arrow diagrams integrate additional semantic information. The decorations add some constraints

over the functions and relationships (the arrows). From [DISKIN, Z.] p. 6.

Diskin was the first to demonstrate that E-R diagrams are perfectible by adding more
graphical information. His approach uses arrows and applies to conceptual (static) modeling
and is based on Category Theory. The solution is to provide schemas with an underlying
graph-based logic so that graphical images themselves can be regarded as formal
specifications.
The Diskin approach is called arrow thinking [DISKIN, Z. and KADISH, B. 1998] that
contrasts to usual thinking in terms of sets and elements, and actually it constitutes the
essence of category theory. The sketch logic is a logics of assertions about sets and
functions. It deals well with the problem of heterogeneous view integration.
There exist other efforts on more complex and concrete problems such as software
architecture. For example, in [OMMERING, R.C.V., et al 2001], they present a graph language
to visualize design structure. They consider that an architecture is the specification of a
design, where a design is an abstraction (or structure) of an implementation. This is an order
of magnitude more complex than the approaches mentioned above. We can say analysis of
architecture of systems is the final goal of this domain and, for the moment, it is very
restricted because of the limitations on the underlying formalisms.
4.2.2.3 Reasoning with non-graph-based Notations for Structural Modeling
In the non-graph-based we can distinguish two main lines of approach: a) those oriented to
support directly the set theory, and b) those based on the use of ideograms. The first one has
a solid mathematical base whereas the latter is based on a more non-structured
picture/drawing based approach that is near the domain of the modeler. Examples of
formalized notations for set theory are the Venn diagrams, the Pierce diagrams, and the Euler
diagrams. Most of ideogram-based notations are ad hoc, unstructured by definition but
reusing a set of elements and techniques from the established approaches. However they are
considered to be useful for interacting and reasoning in real, industrial contexts[CHERUBINI,
M., et al 2007].
Diagrams in this family are normally used for navigating the structure of the classes that
constitute the information system specification (either for domain, analysis or design), in
order to verify properties on the relationships among data entities.
There are three basic diagrams for representing set theory: Venn, Euler and Venn Pierce
diagrams [BARWISE, J. and ETCHEMENDY, J. 2002, PUML 2002, SHIN, S.-J. 1995]. Euler
diagram is a set-oriented topological representation where the modeler can represent
subsets, disjoint set and set intersection. The crossing or the lack of it is the basic visual
operator for doing this. Venn diagram adds shading to express the empty set. This avoids
the ambiguity present when only the crossing of boundary sets is used. Venn-Pierce
diagram adds existential operators in order to indicate the non-emptiness, disjointness, and
other properties of the sets and among sets.
These three notations were severely limited and their use as formal logical tools was limited
to the very introduction of set-theory at school level. The fundamental problem with
notations is that their syntax and semantics are intertwined deeply; this issue was solved in
1994 by Shin [SHIN, S.-J. 1995]. In order to solve this limitation, Shin found that a correct
diagrammatic representation should have two levels of syntax: concrete (or token, the
physical representation of a diagram) and abstract (or type syntax, the semantically important

Chapter 4. Creating Visual Models

49

spatial relations between syntactic elements). She demonstrated that diagrams can have the
same logical status as sentential systems. This gave birth to a broad field of research known
as Diagrammatic Reasoning (DR).
[SHIN, S.-J.] built two logical notations –the Venn-Pierce diagrams I and II—that corrected
the problem in notations from Euler, Venn and Pierce. Venn-II is composed of an underlying
Venn diagram, and of a monadic language Lo used to write the constraints or x-sequences.
These x-sequences can be used to visually specify properties about the quantification of the
sets. She demonstrated that the expressive power of her language Lo is equivalent to a
textual FOL.
After Shin’s breakthrough, a number of proposals of enhanced diagrams started to emerge;
namely, Euler-Venn, Spider, Constraints, and others. Spider diagrams [HOWSE, J., et al
2001, STAPLETON, G., et al 2004], Constraint diagrams [FISH, A., et al 2005, GIL, J., et al
2001] and Contract boxes[GIL, J., et al 1998, KENT, S., et al 1998]. They all adapt the Venn-
Pierce diagrams of Shin for representing constraints of object-oriented analysis models of IT
systems (mainly class diagrams and object diagrams [BOOCH, G., et al 1998, OMG 2005c]),
and by correcting the two main limitations of Shin’s approach: the pure monadic nature of
the language and the lack of constants and function symbols.
The Euler/Venn diagrams are also based on Euler diagrams but are similar to Venn-II. These
diagrams introduce the use of constant sequences [STAPLETON, G., et al 2004] that add
specific-instance information.

Figure 12. Spider Diagrams, from [HOWSE, J., et al, STAPLETON, G., et al 2004]

The Spider Diagrams permit describing the existence of elements[HOWSE, J., et al,
STAPLETON, G., et al 2004]. Spider diagrams are also based on Euler diagrams but use
graphical symbols to denote the existence of elements. By allowing lower and upper bounds
on the cardinality of sets, spider diagrams are more expressive than Venn-II diagrams. The
language ESD is a monadic predicate language that extends Lo. An example is shown in
figure 12.
The definition of the elements of a spider diagram is the following:

“A contour is a simple closed plane curve. Each contour is labeled. A boundary rectangle
properly contains all contours. The boundary rectangle is not a contour and is not labeled.
A basic region is the bounded are of the plane enclosed by a contour or the boundary
rectangle. A region is defined recursively as follows: any basic region is a region; if r1 and
r2 are regions then the union, intersection and difference of r1 and r2 are regions provided
these are non-empty. A zone is a region having no other region contained within it. A region

Chapter 4. Creating Visual Models

50

is shaded if each of its component zones is shaded. A spider is a tree whose nodes (called
legs) are straight lines. A spider touches a zone if one of its feet appears in that region. A
spider is said inhabit the region which is the union of the zones it touches. This union is
called the habitat of the spider.”[STAPLETON, G., et al 2004]

Figure 13. Constraint Diagrams [GIL, J., et al 2001]

Constraint diagrams [GIL, J., et al 2001] are an extension of spider diagrams. The objects in
spiders diagrams are oval contours (representing sets that overlap or intersect), points
(representing members of sets) and spiders (linked points representing relationships) and
quantifiers. Only points and spiders are quantified. Quantifier type is handled by drawing
points in different ways: “point” for “there is at least one point”, “star” = “for all”.
Quantifier ordering problems are dealt with by labeling quantifiers with numbers. No
generalization/specialization is supported as all conditions must be made explicit but for set
membership.

4.2.3 Limitations
4.2.3.1 The Common Critical Problem: Scalability
In the case of notations based on the set theory, although they are popular because they are
used as a didactic tool to introduce mathematical notions to children, their use is restricted
mostly to this domain. This is because the use of these notations consume large amounts of
space both for a) more than a few instances and b) a small number of sets (showing more
than five overlapping sets in an Euler diagram is a tough topological problem, as shown in
figure 14). Other examples can be found in [COMBINATORICS 2007]

Figure 14. a) Simple and symmetrical Venn diagram with four contours. b) The simple symmetrical Venn
diagram of five contours. c) Adelaide, a symmetrical Venn diagram of seven contours [GIL, J.Y., et al 2000]

This problem was partially addressed by the spider diagrams and the constraint diagrams by
showing the relations between sets and their elements/objects [GIL, J., et al]. This can be
seen from the concept of region; this notion simplifies the notation for overlapping sets, as
shown in figure 15.

Chapter 4. Creating Visual Models

51

Figure 15. Use of regions in order to map complex configurations. The syntax of regions (left) is simpler than

semantics in Euler-Venn diagrams (right) [GIL, J.Y., et al], Page 126.

A concrete example is shown in figure 16. It expresses that “for all x in (B-A)”, the
relational image of x under g is A, and there is a y in (A-B) whose relational image under f
is an element of C. The dashed contour labeled X denotes the set obtained by “projecting” the
set A onto the context (D–B).

Figure 16. Intersecting contexts in Venn-Euler Diagrams using regions [GIL, J.Y., et al 2000], Page 126.

The use of color in spider diagrams is found to be cumbersome; at least one author found
that when using color for the quantifier type this severely limits the way in which color can
be used elsewhere in the diagram [WINTERSTEIN, D., et al 2004]. Thus, instead of solving a
problem for expressing constraints, it becomes a highly complex topological problem.
On the other hand, As [PRICE, S. 2004] suggests that “if attention focus is facilitated and
guided then the consequences of the amount of perceptually available information may be
counterbalanced in terms of detrimental effects on learning.”.

4.2.3.2 Node-link as stereotype

Any customer can have a car painted any color that he wants as long as it is black
Henry Ford

Containment is a fundamental contextual relationship among entities. It can define structural
but also behavioral binding among the contained entities and the container one. Most
diagrammatic and visual notations use it. Nevertheless, the use is so common that the default
semantics is not analyzed extensively, at least not in a way we are able to find in the
bibliographical research.
The default technique for containment is based on the use of closed curves (especially for set
theory and for automata) and closed rectangles (for structural notations, including E-R and
most UML structural diagrams). Closure is essential for representation as it enables
symbolizing contours and regions in diagrams, as shown in [TUFTE, E.R. 1997, WARE, C.
2004].
Figure 17 illustrates the problem. On the left side, figure 17.a, we can see how the set theory
uses closed curves around dot elements. Next to that representation, the UML class diagram
represents the mapping of the function via an association. Finally, the resulting
representation in terms of pairs (relations in set theory) is shown as a table.

Chapter 4. Creating Visual Models

52

Figure 17. Node-link interpreted as a table. On the left, the relational approach, adopted by E-R and class

diagrams, where the observer has the whole knowledge. On the right, the relativist, systemic approach we use.

The arrow-based notation and the tabular representation make both evident that an
omniscient observer/modeler is present. However, in our systemic approach we need to
model the world in a relativistic way, one where we model the object’s viewpoint. This is
illustrated in figure 17.b.

4.2.3.3 Snapshot as the Way to Represent Structural Changes due to

Behavior
The languages that support operational semantics like CCS, CSP and Pi-calculus allow you
to model stackable data structures, storing and retrieving data in a sequential or random way.
This kind of representation has a major inconvenient: it focuses on the data-structure
representation, and on the basic algorithmic problems. However, for a generalized approach,
the chosen data-structure should not weigh more than the actual domain modeling.
To give an intuition of structural change, let us model a system that has one instance of
Person at the beginning (@pre) of an action op1; at the end (@post) of the same action, the
system has two instances of Person. Figure 18 shows a UML simplified model to represent
this scenario using a class diagram, a use case diagram, an activity diagram, and a statechart.
The figure 18.a of corresponds to the pre-condition (@pre) whereas figure 18.b corresponds
to the post-condition (@post).

op1

a)

:Person

State diagram

offBoard

onBoard[disembark]

[embark]

class Person

Snapshot@pre Activity diagram

Person

Class diagram

Aircraft

1

1..*
candidate

1

1..*

passenger

BoardingITSystem op1

b)

:Person

State diagram

offBoard

onBoard[disembark]

[embark]

class Person

Snapshot@post Activity diagram

Person

Class diagram

Aircraft

1

1..*
candidate

1

1..*

passenger

BoardingITSystem

Figure 18. UML object, activity, state, and class diagrams for (a) before and (b) after action op1. The effect of

change performed by operation op1 is not evident

Note that no change is noticeable among both sides of figure 18. This is because most of the
information transported by the UML associations is static. This means that the class diagram
remains unchanged. Because behavioral diagrams are not structural, they do not reflect the
changes in information content. However, from the description of the scenario, some
information should change in time. UML object diagrams are useful to express static
snapshots. Nevertheless, as illustrated in sections 6.2 and 6.3, it is up to the modeler to add
the causal information among snapshots, making them not very useful as specification
artifacts.

Chapter 4. Creating Visual Models

53

y1:ClassB

Snapshot diagram – @ time t1Snapshot diagram – @ time t0
SYSTEM

z:ClassC <<Input>>

x:ClassA

y2: ClassB

y3: ClassB

y1:ClassB

s:ClassD <<Output>>

x:ClassA

y2: ClassB

y3: ClassB

time = t1time = t0

SYSTEM

Figure 19. Static structure diagrams: UML object diagrams (2 snapshots)

Figure 19 shows the object diagrams that represent the expected structural changes.
However, object diagrams themselves do not make explicit neither what has changed nor
why the change takes place. It is necessary to relate figure 19 to the diagrams in figure 18 in
order to understand the latter. Isolated diagrams do not express everything that is required.

4.2.3.4 Representing Change Diagrammatically
As [WINTERSTEIN, D., et al] puts it: “Diagrams in textbooks are necessarily static…
diagrammatic reasoning on computers need not be just a straight conversion of
diagrammatic reasoning on paper”. However, he proposes to work on animation of
diagrams for representing and reasoning about temporal relations. We choose to deal with
the same problem in a different way.
Several works, such as [BIENVENIDO, J.F., et al, NARAYANAN, N.H., et al] deal with the
problem of representing behavior by creating a mental image of the execution of actions over
elements. [BOGACZ, S., et al] even suggests that forecasting in complex systems such as the
weather changes is done by animating static spatial information, however this requires a
great deal of effort.
As [PRICE, S. 2004] demonstrates, the animation of (static) diagrams does not always fulfill
the expected results. The additive way of displaying information, where an additional
component of information is exposed at the same time as the previous, is less confusing that
the substitute one, where a currently displayed section becomes masked again when a new
component is displayed. This means that the snapshots are not necessarily the best way to
show evolution of a system as it is done in UML.
As for problems with animation, [WINTERSTEIN, D., et al 2004] asserts that “its main
drawback is that it is not suited to being printed,… except as cumbersome comic strips
where the simplicity of the representation is lost”, a logical consequence of what we said
concerning the additive nature of this way of representation, and of losing the local indexing
mechanisms.
The levels of complexity of a temporal representation like the one just presented also has a
negative effect on observers, if we interpret the Price’s work correctly. This work suggests
that the amount of perceptually available information is problematic for comprehension, due
to resulting reduction in focus of attention.
Understanding and making appropriate information links is often more problematic with the
substitute animation than with the additive animation [PRICE, S. 2004]. The substitute
animation resulted in clearly segregated sections.

“Animation may show dynamic changes more explicitly but without specific reference to
linked aspects this makes integration difficult and adds to the memory load needed to
remember information across representations”

After [THOMAS, L., et al] the human being that is successful in diagrammatical reasoning
uses as strategy that goes from the static model to the dynamic one. It analyses the static
model of a system, and the connections among elements; then, she integrates the

Chapter 4. Creating Visual Models

54

 information, hypothesize lines of action, “and finally construct a dynamic mental model by
mental animation”. Our notation should then support and facilitate part of this information
integration process.

4.2.4 Discussion
Visual representation is a rich, complex and broad domain of study. Nevertheless, research in
visual representation of formal approaches (including contracts) is an area yet to develop
[GLASGOW, J., et al]. For example, [COX, R., et al 2004] shows that very popular visual
approaches such as set diagrams, and networks are particularly poorly understood by
computer science students, with very high rates of misclassification and misnaming: a totally
unexpected result. This is confirmed directly by [CHERUBINI, M., et al 2007]. Other works
such as [ARGAWAL, R. and SINHA, A.P. 2003] strongly suggest that there is a
misunderstanding about the real mechanisms used by modelers to integrate information from
system models.
One part of the problem is the lack of formalism in current notations: Having a better logical
support may resolve the problem. Even formalized notations such as Petri Nets allow the
modeler to freely link predicates among diagrams. This suggests that contextual-aware
models may avoid this kind of problem
However, as noted by [SHIMOJIMA, A. 2004], the creation of a visual notation that supports
reasoning about a logical domain has several limitations:

• Similarity on the problem domain vs. problem-solving power, which requires
expressive generality;

• Expressive richness vs. expressive flexibility, which means that the graphics are
good at expressing conjunctive information but not at expressing disjunctive
information.

• Finally, graphics limit abstraction, which enables inference processing.

[ARGAWAL, R. and SINHA, A.P. 2003] and [COX, R., et al 2004] show that the class diagrams
are particularly well understood and used in the arsenal of diagrammatic tools. The simple
predicates, even in the form of tables are also very easily understood. This, lead us to create
a non-pure diagrammatic system, known as a heterogeneous system in the Diagrammatic
Reasoning community. The work on pure diagrammatic approaches, such as Hammer’s and
Shin’s prove that sound and complete notations can be built, but also that the resulting
notations are too difficult to use. Regarding usability, [WINTERSTEIN, D., et al 2004] states:
“By extending diagram systems on purely logical criterion without considering ease-of-use
issues, the final systems lost the very qualities that make diagrams attractive”.
Some notations, such as Petri Nets, resolved the problem of typing by exploiting visual
dimensions such as the color. Other notations, such as E-R diagrams and Arrow diagrams are
extremely specialized, enabling the creation of first-order logic (FOL) specifications via
concise graphical schemas of equal logical rigor yet more evident and observable, thus
taking advantage of the power of representation. Nonetheless, there are also tradeoffs: the
Petri Nets are not intended to show instances of data, and the structural diagrams cannot
easily cope with values.
One interesting point is that visual representations for relationship dynamics, or behavior, are
almost non-existent. Pi-Calculus partially solves the problem, but because of its operational
nature, it cannot be considered as a possible solution for our declarative specification artifact.
Table 6 resumes very succinctly certain features of each diagrammatic family and ranks their
support for reasoning.

Chapter 4. Creating Visual Models

55

Table 6. Comparison of different notations and their relative adequacy to representing behavior and/or structure

 Graph-based Set theory Ideogram
Goal simulate the behavior of the

automata
Finding inconsistencies among
types, hierarchy of types or
combination of dataflows

used to reason about a system or
situation

Logics a form of operational semantics Set theory,
Relational algebra/tables

Ad hoc

Formatting very structured, sequential
descriptions

Very structured, relational
description

Substratum

Expressive capacity properties can be described as
automata or as typed automata36

Properties can be put on types and
on relations among them

make evident the relationships
among the elements

Usability Easier to understand than process
algebra

Easy to understand some notation features (e.g.,
elements, colors, caps) that make
more relevant one or several of the
items on the diagram

Typical use scenario Addresses specialists Addresses non-specialists Use & throw-away

Format Node-link Node-link Mainly node-link

Our research work does not analyze the cognitive dimension, but we identified the elements
that are essential in order to define the design criteria for our notation.
Table 7 summarizes the expressive capacities of the notations as specification artifacts. The
graphical approaches studied in this chapter present some limitations to represent the three
aspects in the shadowed columns, namely:

• The integration of static and dynamic aspects, in order to represent change
• The expression of constraints, including pre-conditions and post-conditions
• The capacity to represent multiple instances and collections

Our visual notation should then be designed to avoid these limitations, because these aspects
are fundamental for representing the elements necessary to build contracts.

36 The Colored Petri nets (CPN) represent different types with different colors. For more information, please refer to [DAVID, R.
and ALLA, H.H. 1997]

Ta
bl

e
7.

 C
om

pa
ris

on
 o

f t
he

 d
iff

er
en

t a
pp

ro
ac

he
s f

or
 c

on
tra

ct
ua

l s
pe

ci
fic

at
io

n

U
nd

er
ly

in
g

th
eo

ry

(s
up

po
rt

s
m

ac
hi

ne

re
as

on
in

g)

Ea
sy

 to
 u

se

St
at

ic

D
yn

am
ic

In

te
gr

at
io

n
St

at
ic

/
D

yn
am

ic

Pr
e-

 &

Po
st

-
co

nd
iti

on

Su
pp

or
ts

M

ul
tip

le

In
st

an
ce

s

D
at

a
M

ap
pi

ng

W
he

n
to

 u
se

C

om
pr

eh
en

si
bl

e
(s

up
po

rt
s

hu
m

an

re
as

on
in

g

An
al

yz
ab

le

(s
up

po
rt

s
al

go
rit

hm
ic

re

as
on

in
g)

G
ra

ph

ba
se

d
P

ro
ce

ss
 a

lg
eb

ra

Ye
s,

 w
he

n
ea

ch

in
st

an
ce

of

th

e
pr

oc
es

s
pr

es
en

ts

sa
m

e
be

ha
vi

or

 Ye
s

w
he

n
no

t
re

qu
ire

d
m

uc
h

da
ta

 in
fo

rm
at

io
n

O
nl

y
fo

r
C

ol
or

ed

P
et

ri
N

et
s

C
au

sa
lit

y
 O

bs
er

va
bi

lit
y

 N
o

 N
o

 Ye
s,

 b
ut

 o
nl

y
in

th

e
fo

rm

of

to
ke

ns
.

To
ke

ns

ca
n

be

ty
pe

d
w

he
n

co
lo

r
is

us

ed
.

N
o

N
o

co
m

pl
ex

da

ta

de
pe

nd
en

ci
es

 W

he
n

m
od

el
 d

oe
s

no
t

re
qu

ire
d

co
m

pl
ex

st

ru
ct

ur
al

ru

le
s,

 n
ot

 e
ve

n
fo

r
in

te
gr

ity

Ye
s

fo
r

da
ta

flo
w

 a
nd

w

or
kf

lo
w

re

pr
es

en
ta

tio
ns

Ye
s

fo
r

cr
ea

tin
g

op
er

at
io

na
l t

ra
ce

s
th

at

ca
n

be

us
ed

to

va

lid
at

e
op

er
at

io
na

l
pr

op
er

tie
s.

E

nt
ity

-
R

el
at

io
ns

hi
p

D
ia

gr
am

Ye
s,

ev

en

fo
r

co
m

pl
ex

da

ta

ty
pe

s
an

d
da

ta

de
pe

nd
en

ci
es

Ye
s

N
o.

O

nl
y

in
va

ria
nt

s
ar

e
re

pr
es

en
te

d

 N
o

 N
o

 Ye
s,

bu

t
on

ly

as
 in

va
ria

nt
s

or

lim
its

.
R

ic
h

ty
pi

ng

in
fo

rm
at

io
n

Y
es

.
Th

is
 i

s
its

m

ai
n

pu
rp

os
e

W
he

n
co

m
pl

ex

da
ta

ty

pe
s

ar
e

re
qu

ire
d

 W
he

n
co

m
pl

ex

da
ta

 d
ep

en
de

nc
ie

s
ar

e
re

qu
ire

d,

in
cl

ud
in

g
in

te
gr

ity

ru
le

s

Ye
s

Ye
s,

 f
or

 h
ie

ra
rc

hy
 o

f
ty

pe
s

an
d

st
at

ic

va
lid

at
io

n
of

in

te
gr

ity

ru
le

s
(a

s
it

do
es

 n
ot

in

cl
ud

e
dy

na
m

ic
s

as
pe

ct
s)

Se
t-

th
eo

ry
-

ba
se

d

S
et

 th
eo

ry

Fo
r

re
du

ce
d

nu
m

be
r

of

in
st

an
ce

s
 Fo

r
da

ta

ty
pe

s
w

ith

lo
w

co

m
pl

ex
ity

Ye
s

N
o

 N
o

 N
o

Ye
s,

bu

t
on

ly

w
ith

ba

si
c

ex
is

te
nt

ia
l

op
er

at
or

s
w

ith
in

th

e
se

t.
N

o
ty

pi
ng

is

po

ss
ib

le

M
ay

 b
e

Fo
r

pr
ob

le
m

s
w

ith

lo
w

le

ve
ls

of

co

m
pl

ex
ity

 Fo

r
illu

st
ra

tin
g

si
m

pl
e

re
la

tio
ns

hi
ps

Ye
s

fo
r

sm
al

l
ex

am
pl

es

N
ot

fo

r
sy

st
em

s
m

od
el

in
g.

 Ye

s
fo

r
hi

gh
ly

m

at
he

m
at

ic
al

,
ab

st
ra

ct
 p

ro
bl

em
s

S

pi
de

r
/

C
on

st
ra

in
t

di
ag

ra
m

s

 N
o

 Ye
s,

in

th

e
fo

rm
 o

f
a

3-
D

co

nt
ra

ct

 Ye
s,

bu

t
on

ly

w
ith

ba

si
c

ex
is

te
nt

ia
l

op
er

at
or

s.

Ty
pi

ng

is

po
ss

ib
le

Id
eo

gr
am

-b
as

ed

A
d

ho
c

Ye
s.

 It
 is

 a
d

ho
c

Ye
s.

 I
t

is

ad
 h

oc

Ye
s.

It

is

ad

ho
c

 N
o

 A
d

ho
c

 A
d

ho
c

Ye
s.

It

is

ad

ho
c

W
he

n
a

sh
ar

ed

un
de

rs
ta

nd
in

g
is

re

qu
ire

d

Ye
s.

 It
 is

 a
d

ho
c

N
ot

 a
t a

ll

57

PART II - Visual Contracts for System Modeling
In this part, we introduce the Visual Contracts and illustrate their use as
specification artifacts.

In Chapter 5 we get acquainted with SEAM and discuss the modeling of
context. We identify several heuristics that we use to build the notation for
Visual Contracts.

In Chapter 6, we introduce Visual Contracts and illustrate their basic syntax
and semantics. We introduce the elements of the notation and explain how to
interpret a Visual Contract, and how to compose a specification.

In Chapter 7, we illustrate the semantics and pragmatics of Visual Contracts.
We explain set-associations in detail, including the operators, algebra of
collections, and how to interpret the context of existence.

In Chapter 8 we explain in detail the notation for Visual Contracts. We present
the primitives of the notation, the well-formedness rules of Visual Contracts,
and the metamodel of Visual Contracts.

In Chapter 9 we explain how to translate Visual Contracts to Alloy, and how to
perform the verification and validation of our specifications.

It is necessary to study not only parts and processes in isolation, but also to solve the decisive
problems found in organization and order unifying them, resulting from dynamic interaction of parts,

and making the behavior of the parts different when studied in isolation or within the whole...

Ludwig von Bertalanffy –
General System Theory: Foundations, Development, Applications

58

Chapter 5. Systemic Modeling of Systems

59

5 Systemic Modeling of Systems
Current approaches to system modeling do not allow us to create specifications that are
systemic in the way SEAM conceives it. It is then required that we develop a better
comprehension of the systemic approach of SEAM, in order to establish clearly how to
develop systemic contracts.
This chapter elaborates on a number of heuristics that we discovered and used during this
research work. We first address the need for modeling the context in each of the system
models. Then we introduce SEAM, the methodology of our group. Once the scope is set up,
we present the heuristics and describe how they satisfy our needs, as well as their
implications.

5.1 SEAM as a System Modeling Approach
SEAM is based on both the Reference Model of Open Distributed Processing (RM-ODP)
and the theory of living systems [MILLER, J.G. 1995]. Our modeling ontology is inspired by
the ISO/ITU standard RM-ODP [ISO/IEC 1995-1996] that defines how to model systems. A
formal description of RM-ODP our group developed is available in [WEGMANN, A., et al
2001]; a longer version is [NAUMENKO, A. 2002].
We define the model elements system and environment37. The “system” can be defined as a
whole (i.e. only its externally visible functionality is described) or as a composite (i.e. its
composition is described). One cannot design a system of interest (SoI) without taking into
consideration the immediate “environment” that interacts with it. The “supra-system” of the
SoI is “the next higher system in which the SoI is a component. The immediate environment
is the supra-system minus the SoI itself” [MILLER, J.G. 1995].
A system is described as a hierarchy of organizational and functional levels. If a system is
represented as a whole at a given organizational level, then it is represented, at the next
organizational level, as a composite (i.e. showing its sub-systems). The “organizational
level hierarchy” is useful to capture system components (e.g. an IT system made of software
components). The “functional level hierarchy” captures different levels of detail in the
functionality of the systems. For example, an action might be described as a whole in one
level of functionality and as a composite in the next. All these concepts are informally
defined in [WEGMANN, A., et al 2005] and formally in [LE, L.S. and WEGMANN, A. 2005].
At each level, the system can be described either as whole, an extended finite state machine
(EFSM) that communicates with the environment of the system, or as composite, a set of
extended finite state machines that communicate with each other (the initial EFSM is
decomposed) and with environment of the system.

5.1.1 Main Modeling Concepts
Our ontology defines two kinds of objects: Working Objects (WO) and Information
Objects (IO). Information Objects are the internal representation of real-world objects
(working objects) and constitute the information viewpoint. Information objects describe
information that the system has about itself and about its environment. The system’s
information is modeled with the “state” of information objects. The set of properties of a

37 In RM-ODP, the term “system” designates an entity in the universe of discourse and not a model element in the
model. For the sake of simplicity, in this paper, we consider that the term “system” designates the representation of a “system”
in the model. So “system” is a model element. This paper does not address any issues related to the universe of discourse.

Chapter 5. Systemic Modeling of Systems

60

system and their interrelationships make up the information specification (IS) of the system.
System functionality is described with “information objects” and “actions”.

Our work addresses specifically the need to create functional specifications for the
information viewpoint.

For a given functional level in the hierarchy, the state machines work in parallel, and several
occurrences of the same state machine may concurrently exist. These state machines are
Extended Finite State Machines (EFSM). Each EFSM work either on information it knows
(information objects or properties), or in collaboration with concrete real subsystem
(working objects).
The finite machine is extended in the sense that local variables for each machine may hold
details about the history of the machine; each state may require inputs (events, data) as well
as produce outputs (events, states). Also branching is allowed on state transitions for
splitting into several sequences of actions. The modeling is based on the use of the process
concept that is mapped onto systemic actions, which can be local or joint.

5.2 Modeling Heuristics

5.2.1 Definition of Context
We base our work on the Merriam-Webster [2005] definition of context

Main Entry: 1con·text

Function: noun

Etymology: Middle English, weaving together of words, from Latin contextus
connection of words, coherence, from contexere to weave together, from com- +
texere to weave

1 : the parts of a discourse that surround a word or passage and can throw light
on its meaning

2 : the interrelated conditions in which something exists or occurs :
ENVIRONMENT, SETTING <the historical context of the war>

We take the second definition, and we apply it to system and system models. Our goal is the
representation of contextual information in graphical system specifications. As a
consequence, in this chapter we elaborate an interpretation of both: what “something” is and
what the “interrelated conditions” are when this definition is applied to graphical system
specifications.
The term “something” can be replaced by the concepts defined in our modeling ontology
[LE, L.S., et al 2005, WEGMANN, A., et al 2005]. We therefore need to show the
“interrelated conditions” (in terms of system, environment, information object, action, state)
in which the system, environment, information object, action, state exist. Our main focus in
this research work is system specification. Hence, we mainly analyze the relationships
between the concepts: system, information objects, states and actions. We briefly mention
the relation between the system and its environment but this is the topic of future work.
The most obvious “interrelated condition”, as stated in the Merriam-Webster definition, is
between the system and its information objects and actions. All actions and information
objects are within a system. In the notation, the information objects and the actions should be

Chapter 5. Systemic Modeling of Systems

61

surrounded by a rectangle that represents the system to which they belong (as shown in
Figure 20 for the Information Object X of S).
The previous contextual definition is what most methods and notations support and focus on,
as we have already discussed in previous chapters.
In this section, we present some of these modeling principles and their impact on the
notation.

5.2.2 System / Environment Complementarity
Specifying a system fundamentally involves describing two distinct domains: the real world
and the world built in the model.

Figure 20. The objects in the model track the real models in reality, and trace one part of their properties and

behavior

Hence, one “interrelated condition” is the relation between the system and its environment.
A system has information about itself and about its environment. For example, in the video
store example, the PORT has some information about the physical video that exists in its
environment. So, one of the “interrelated conditions” in which an information object exists is
the relation between the information object itself (belonging to a system of interest) and what
it represents (in the environment of the system of interest).
In Figure 20, T represents the supra-system of S and X shown in the left part of T is in the
immediate environment of the system S. The information object X in S represents the
knowledge of S about X in T. This is represented by the <<trace>> relationship. A value
of 1 as cardinality of the relationship shows that there is one instance of X in the real world T
that is mirrored by an instance of X in the system S. A more systematic analysis of the
relationship between a system and its environment is part of our future research.
We capture the necessity to relate actions, information objects and states to a system in
which they exist and the necessity to relate a system to its environment as the “system /
environment complementarity principle”.

5.2.3 Behavior / State-Structure Complementarity
An action changes the state of one or more information objects. Quite often the action’s
identifier makes implicitly references to the information objects that change state. For
example, the modeler can guess that an action rent in a video store refers to a video and
a renter because she knows the meaning of the word rent. With this knowledge, the modeler
can guess the relationship between the elements in the diagrams (e.g. in UML, the action rent
is shown in an activity diagram whereas the video concept is shown in a class diagram). This
is not sufficient as the concepts used can be defined in multiple ways. For example, it is
unclear if the rent is related to some payment or not. We can eliminate this ambiguity by
making explicit, in one diagram, the “interrelated conditions” between the actions and the
information objects involved in the actions. So, one of the “interrelated conditions” in
which an action exists is the set of information objects that are modified by the action.
This relation between actions and information objects can be further developed. When a
modeler represents an action, implicitly she is referring to a change of state of information
objects. Vice-versa, when a modeler represents the change of state of information objects,
she is referring to an action. This is known as the state/behavior duality. This duality leads

Chapter 5. Systemic Modeling of Systems

62

the modeler to often consider that modeling either the action or the state change is sufficient
to specify the system. We claim that, if we want to make the context explicit, we need to
model both. So, the “interrelated conditions” in which an action exists include the states
(before and after the action) of the information objects involved in the action. Vice-versa, the
state is related to the actions that consumes them or modifies them.
Figure 21 represents an action A that modifies the state of the information object X and
created the object Y. The arrow between the states S1 and S2 illustrates the state transition
resulting from the execution of A. To show the relation between the actions and their effects,
we need a way to relate them. This is done via the change of cardinalities, and the change of
state of such instances: there are conditions that trigger some processing, and processing
changes the state of information objects. In this case, the presence of one instance of ParA in
the context of action A is interpreted as the eventA; as a consequence, one instance of X is
processed: when the condition eventA is fired up, all the clauses that include it are
triggered; one instance of X goes from state S1 to state S2, changing the corresponding
cardinalities. A more detailed explanation is made in section 5.2.3.3.

Figure 21. The action changes the state. This change can be seen as changes in the structure (cardinalities) and

state of the objects themselves.

5.2.3.1 Contexts of Existence
Everything exists in a context, and is relation to that context. That context is normally
described in terms of an omniscient observer. Nevertheless, in systems thinking [LE
MOIGNE, J.-L. 1993] there are two principles that are incorporated into our approach: the
teleological principle and the interaction-based view of the world. The teleological
principle asserts that there is always a purpose for entities we model; the interaction-based
view of the world indicates that entities should interact. By splicing those two principles, we
can say that it is essential to model entities in a relativistic way, because an entity can only
fulfill its goal when it is related to or “known by” other entities (in the case of data entities)
or “affects” other entities (in the case of action entities). It is also essential to model the
lifecycle and scope of the objects, such as it is already implicit in our hierarchical approach.
Therefore, we adopt a modeling view from the perspective of each object in the context of
the interactions where it participates.
The context of existence of an entity defines the context where the entity “lives”. In other
words, the spatial context defines:
For a data item:

• Where it exists
• Where the actions can create/ delete it
• More importantly, where the actions can read it/modify it.

For an action item:

• Where its impact is observable
• Its inputs
• Its outputs
• What conditions trigger it (state, inputs)

Chapter 5. Systemic Modeling of Systems

63

It is clear that there is, once again, a dichotomy data/action that cannot be resolved using
standard specification techniques.
5.2.3.2 Behavior as the Context of Existence of Objects
Some information objects live in the context of actions. We call this the context of existence
of an information object. In figure 21 we see that action A is the context of existence of all
the information objects shown. This means that none of the represented information objects
survives after the action A. In Chapter 6, we see how we can represent that an information
object can potentially exist during the whole lifecycle of a system.
As can be seen in figure 21, the local changes and the creation of subsets of objects all take
place in actions. If the action is aborted, such changes do not take place.
5.2.3.3 Communication as the Context of Existence of Objects
We also define a special kind of information object: the parameters. Parameters are
necessary to represent the communication through the boundary of the system or through
action boundaries. The stereotype can be «Par In» or «Par Out» depending on whether it is
an input or an output parameter.
This is done by an identifier (eventA in Figure 21), that designates all changes. It is also
necessary to represent what triggers the action’s execution (and how the action enables
system exchanges with its environment). This is done by special information objects that act
as parameters. The stereotype <<par in>> indicates that the information object is an input
parameter for the system (<<par out>> would indicate an output parameter). In Figure 21,
the fact that parA enters the system via Param (an input parameter) triggers the state change
of X (rounded arrow from S1 to S2) and the creation of Y (shown by the multiplicity change
#0 #1). All the changes are marked by eventA. One of the labels is underlined and this
highlights what triggers the changes. We can see in Figure 21 that a UML class diagram, a
UML activity diagram and a UML state diagram can be merged together.

5.2.4 Whole / Composite Complementarity
In systemic modeling, the modeling elements (e.g. system, action, information object) can be
interpreted as whole or as composite. A modeling element as whole appears as monolithic
and its internal structure is hidden for the modeler. A model element as composite exposes to
the modeler the component elements and the way they are related. The whole is defined as
the result of the composition of its components. The composition of the components can be
understood as we know what the whole is. So, as system theory shows [LE MOIGNE, J.-L.
1993, WEINBERG, G. and WEINBERG, D. 2001], whole and composite are both necessary as
they define the context of each other: the whole is part of the “interrelated conditions” of
existence of the composite (and vice-versa).
In other words, it is because we can recognize the whole that we can see the components and
vice-versa. For example, in a video store IT System, the action Rent can be understood
because we implicitly know that such action includes getting information about the renter
and getting information about the videos to be rented. Vice-versa, it is because we know
the component actions GetRenter and GetVideos that we can imagine the existence of the
composite action Rent. However, our goal is to make explicit the implicit information that is
hidden in the diagrams.
In figure 22, we apply this principle to the action A. Action A as whole (the bubble on the
top) is equivalent to A as composite, composed of the actions A1, A2, A3 and of the
constraints of execution between them. The special association symbol –made up of three
lines— between A as whole and A as composite makes this equivalence relation explicit. In
other words, A as whole can be substituted by A as composite. Some standard approaches in

Chapter 5. Systemic Modeling of Systems

64

process algebra like Petri Nets[PETERSON, J. 1981], CSP[HOARE, C.A.R. 1985], and
CCS[MILNER, R. 1989] also support this way of modeling.

Figure 22. Action A is an action as a whole, Actions A1, A2 and A3, plus the ordering constraints constitute the

action “as a composite”

5.2.5 System Identity = Myself
We can reason about systems because we can see how actions change the instances.
Therefore, it is fundamental to model the lifecycles of the instances (to understand which
instances exist and when). A context of existence of an instance is the temporal frame within
which an instance or a set of instances exist.
For instance, in figure 22, the action A as whole and the action A as composite define two
functional levels in the functional level hierarchy. One interesting question is: what action is
at the top of the functional hierarchy of a system of interest? In other words, what is the
action in a system which includes all the actions the system does? This is the action that
corresponds to the system lifecycle. This lifecycle action captures the behavioral context in
which all other actions exist. The lifecycle action starts when the system is created and ends
when the system is dismissed (i.e. the action lasts from system “cradle to grave”). The
system’s lifecycle action is at the top of the functional hierarchy. The added-value to model
the lifecycle is, first, to force the modeler to think on how the system is created and how it is
phased out. This can highlight critical issues in terms of system initialization or information
retrieval at system phase-out. A second added value is the creation of a hierarchical approach
by default; this explained as the whole/composite complementarity).
In figure 23 we can see that the lifecycle of the system S is equivalent to the set of all the
actions that the system can execute (A, B, C and their execution constraints). Each action can
be further refined. For example, action B is decomposed into actions B1, B2, B3 together
with their execution constraints. Nevertheless, in figures 22 and 23 we use the simplest
execution constraint among the actions. This is important to note as real cases include more
complex constraints such as loops, partial order, etc.

Figure 23. Lifecycle composition with actions

The same complementarity whole / composite of actions shown in figures 22 and 23 can be
found on information objects. However, presenting this is out of the scope of this discussion.

Chapter 5. Systemic Modeling of Systems

65

We capture the necessity to relate whole and composite as the “whole / composite
complementarity principle”.

5.2.6 Discussion
These principles permit the inclusion of contextual information in a graphical system
specification. Contextual information has to do with the “interrelated conditions” in which
model elements exist. Through our systemic approach, we showed that any system has a
lifecycle, made up of actions that change the state of the information objects that exist in the
system. These information objects represent information about a system of interest and about
its environment. The relations between all these model elements need to be explicit if we
want to model explicitly the context
We showed in our discussion that the actions and the information objects are bound to the
lifecycle of the object in which they exist. So, instead of a universal ontology principle, we
rely on the “lifecycle epistemological principle” that we define as “all actions and
information objects exist in specific lifecycles (of systems and actions/information objects)”.
To accept the contextual relations between the model elements requires being less strict in
applying the Occam’s razor principle [SPADE, P.V. 2006]. We still aim to limit the number of
concepts we use in the theory (for example in our method, we have 6 main concepts: system,
environment, action, information object and state). However, we should not limit the
analysis of the relationships between them to only the relations between information objects
or relations between actions (as, for example, normally done in UML). We should keep the
possibility to represent all relationships between actions, information objects and state. In
other words: we claim that the Occam’s razor should not be applied because it eliminates the
contextual information.

5.3 Summary
This chapter addressed the graphical representation of contexts in visual system
specification. We showed that the two epistemological principles (universal ontology and
Occam’s razor principle) can explain the way we currently structure graphical specifications.
We believe that if we adopt the lifecycle epistemological principle (instead of the universal
ontology principle) and if we do not eliminate the contextual relationships, we can obtain
system specifications that exhibit the “interrelated conditions in which the model elements
exist”.
In other words, we can have system specifications that make the contextual information
explicit. It is worth highlighting that the Merriam-Webster definition of context can be easily
interpreted from a systemic standpoint.
In practice, we identified four modeling principles that need to be adopted to model the
contexts:

• System / environment complementarity
• Action / information object & state complementarity
• Whole / composite complementarity
• System identity and lifecycle

Unlike the analytical approach, the assumptions are that a) the modeler is not an omniscient
observer, and b) systems are not always synchronized with the environment. This means not
only that we should model different perspectives for each observer, but also that the
exchange on the frontier of the system is a multimodal (real object vs. information object)
active (not default and automatic) process.
The principles mentioned above allows us to integrate relativistic views of the system to the
description of the action, establish the frontier between the system and its environment –in

Chapter 5. Systemic Modeling of Systems

66

order to map the system’s knowledge of its environment—, and make explicit the lifecycle
of all things that exist in the system.
With these principles, we showed how system states (configurations) can be graphically
specified in the context of actions. This requires the modeler to make explicit the relations of
the given action to the information objects it modifies and its relations to the parameters that
enter and leave the system.

Chapter 6. Visual Contracts

67

6 Visual Contracts
Successful systems development in the future will revolve around visual representations

David Harel – “Biting the Silver Bullet”

As seen in Chapter 2, current system modeling techniques carefully avoid the dichotomy
among behavior and structure, defining different primitives for the one or the other and
obtaining completely independent models.
In this chapter, we deal specifically with how to introduce elements of Diagrammatic
Reasoning[GLASGOW, J., et al 1995] in the form of contracts that serve to describe actions
and that also support reasoning (about single actions and about compositions of actions). In
this chapter we introduce the notion of visual contract (VC). First, we address our need to
specify systemic actions via the use of contracts. Second, we present our diagrammatic
language. Finally, we explain briefly the composition and use of VCs.
By using these models the designer can establish the state of the system after a series of
actions are executed, she can also synthesize new, equivalent models from the originals. This
requires the creation of a logical background (rules, primitives and semantics) for the visual
notation that guarantees that the models are correct individually, as well as consistent with
each other. The modeler should then be able to create a functional model.

6.1 Semantics of Visual Contracts
In SEAM, we model the behavior together with the state of the systems.
The SEAM language can be defined as a triple:

 L = < A, Ord, Obj> (3)

such that A is the set of processes/actions, Ord is the set of sequence/ordering constraints and
Obj is the set of objects. Actions can be classified as local (internal) or as joint (interactive).
In order to create a contract for an action, we must see an action as a predicate transformer:

 { P } A { Q } (4)

This equation indicates that there is a set of predicates for the initial conditions (P) that will
guarantee that the final state (Q) is reached [HOARE, C.A.R. 1969].
Now, in order to represent the state of the system, normally we should represent the state of
all objects. This is what makes UML object diagrams cumbersome. Instead, e can represent
the sets of objects –as it is done in formal approaches like Z— and reduce the size of the
representation for most cases; this is shown in section 6.2. This is done through the concept
of set-association; this represents the instance information either by the cardinality
(intensional form) or by explicit identification of the actual instances (extensional form).
Subsequently, the global system state SSX is the sum of the state of all set associations
(SAall), as expressed by equations 5 and 6.

 SSX ≡ SAal (5)

 SAall = (SA1, SA2, …, SAm) (6)

Then the actions operate on objects, whose values identify a state in the system.
As an action is a predicate transformer, the notion of change is implicit. We introduce the
unary and binary operators for «change» (∆ and , respectively). They symbolize the
change of state due to an action. Hence, from equation 4:

Chapter 6. Visual Contracts

68

 ∆ ASSX ≡ { AP } { AQ } (7)

If we introduce labels @pre and @post to distinguish the state before the action starts from
the state after the action ends, we obtain:

 P ≡ SSX @pre (8)

 Q ≡ SSX @post (9)

 ∆ ASSX ≡ { ASSX @pre } { ASSX @post } (10)

This is seemingly equivalent to a diagrammatic form of Dijkstra’s notion of predicate
transformer [DIJKSTRA, E.W. 1976]. As SAs capture instance information, actions change
the state of SAs.
As here we represent sets, we can also describe: operations/relationships on sets, and
contexts of existence. As an example of an operation of sets, we may transfer one or more IO
instances from one SA to another. CSA is the cardinality information of the set-association,
and SIO is the state information of the instances in the set-association. Hence, we can express
the change for specific instances of IOs and SAs as:

 ∆ACSA m = { ACSA m @pre } { ACSA m @post } (11)

 ∆ASIO m = { ASIO m @pre } { ASIO m @post } (12)

As we are able to express diagrammatically the static state of a set-association, we can now
integrate the notion of change of state. The modifications to the state of SAs can also be
represented through the binary operator «change» (). This operator introduces the notion
of time onto the diagrams because there is a “before the action” (@pre) and an “after the
action” (@post), as in equation 10.
A set as a context of existence means that an instance that belongs to it can be referenced
but cannot exist in two different contexts. This is a consistency rule that is not normally
reinforced by UML.
In summary, we are able to represent the changes of cardinality (∆actionACSA) and of state
(∆actionASIO). Then, the SEAM language in equation 6 can be redefined as a duple:

 L = < Avc, Ord> (13)

such that Avc is the set of actions described as visual contracts, and Ord is the set of
sequence/ordering constraints.
Below we will discuss the basic elements of the notation we created to reflect this semantics.
In Table 12, in Chapter 8, we present a synoptic table of the syntax for visual contracts.

6.2 Primitives for Visual Contracts
In our approach, we model the behavior together with the state of the systems. Our modeling
ontology is based on RM-ODP [ISO/IEC and ITU-T 1998] and on our formalization of it
[LE, L.S. and WEGMANN, A. 2005, NAUMENKO, A. 2002].
A system is modeled as a RM-ODP object that we call working object. Working objects can
be specified as wholes or as composites. The difference between view “as whole” and view
“as composite” is essential. A working object “as whole” is described atomically. Only the
externally visible behavior is described using a model-based description [SCHÄTZ, B., et al
2002]. A working object “as composite” is described as a set of component working objects
that collaborate together. It represents the construction of the working object. In visual
contracts, we consider only working objects “as wholes”.

Chapter 6. Visual Contracts

69

Working objects as wholes are described in terms of information objects, set associations and
localized actions. The information objects define the possible states of the concepts
necessary to describe the working object. The set associations define instances of these
concepts (together with their state). The localized actions change the state of the concept
instances.

6.2.1 Basic Elements
Myself
As all instances exist in a context, there is a “first context” for each system. It is the model
element Myself. This element represents the “root” of all behavioral and conceptual
information describing the system. The double nature of this model element is represented
by a symbol that combines an IO and an action (overlapping of the rectangle and the oval).

Myself

Figure 24. Symbol representing the identity of the system in SEAM

Properties = Information Objects
An Information Object (IO for short) captures the type (N) of each concept necessary to
describe the observed system. For example, Figure 25 represents the IO Person. The IO
Person captures the information of a person in the real world. The attribute Id is necessary
to distinguish instances from each other. Note that an IO is similar to a UML class without
methods.

Person
Id
Atbut1
atribute2

Figure 25. Representation of an Information Object or Property in SEAM

State
In addition to the type (N), an IO also captures the possible states of the IO (SSIO). For
example, Figure 26 represents the IO Person using the notation I propose. The attribute
Boarded captures the state of a Person in relation with the Plane she wants to board.
Thus, N is Person, SSIO is Boarded={offBoard, onBoard}. We also include the
attribute Id necessary to distinguish instances from each other.
Multiple orthogonal states are also possible. If we wanted to describe a second set of states,
it is necessary only to add an attribute to the description of the IO in figure 26. For instance,
if the SSIO is civilStatus={single, married, divorced, widow}, it is required
only to add a civilStatus attribute with the 4 possible states. Afterwards, we might be
able to describe instances of Person that are divorced and onboard.
Moreover, hierarchical statecharts can also be used when describing more complex
configurations.

Person

offBoard onBoard

Id

Boarded

Figure 26. Representation of a stateful Information Object. State information appears in each of the attributes.

Set-Associations

Chapter 6. Visual Contracts

70

Relationships between information objects are represented as set-associations (SA). The
purpose of set-associations is to capture information about instances. The instances of the
IOs exist only in the context of SAs38.

Irina: Person
HK007
:Aircraft

passenger1

Angela: Person
passenger2

Gil: Person
passenger3

Lam-Son: Personpassenger4

Object diagram State diagram

offBoard

onBoard[disembark]

[embark]

class Person

Figure 27. UML object diagram for 4 passengers and the state diagram for the class Person

We can give an intuitive feeling of our approach, with a UML [OMG] example (Figure 27)
representing 4 people (Irina, Angela, Gil and Lam-Son) who are on the list of
passengers of an aircraft. As the state diagram shows, the Person can be either onBoard or
offBoard, hence two lists are required. This is an implicit requirement of the problem that
is not visible in the UML specification (figure 25).
In UML, it is not clear how to instantiate the state information of objects. However, we just
saw that we must include state information in order to differentiate the lists of passengers–
one for offBoard (at the dock), and another for onBoard (already on the plane)–. Two of
the options to represent the instance (object + state) information in one diagram are shown in
Figure 28.

Figure 28. Representation of 4 passengers (a) UML-like model with instance identifiers, (b) SEAM-like

representation using instance cardinalities + explicit IO state information, c) SEAM-like representation with state
information implicit on the set-association

Set-associations (SA) capture information about these instances. As set-associations relate
IOs, it means that these instances exist within a context. For example a set-association
between a Plane and a Person can represent a person that is either offBoard or onBoard.
This is illustrated in Figure 28. For practical reasons, we avoid identifying the single
instances (extensional form, like in the object diagrams of UML), and we use instead
cardinality (CSA) and state information (SIO) of the set of instances. We call this the
intensional form.
As illustrated in Figure, 28 a SA requires a name (passenger_List), a referring instance (#1),
a set of referred instances (#4) and, optionally, a state (offBoard).
We claim that, when reasoning with graphical models, our minds use instances implicitly.
This is supported by several approaches such as [LIEBERMAN, H. 1986].

Action/Service

38 As explained in section 5.2, this approach is based on a relative observer, one whose reference system is the type itself and
not an omniscient observer , that sees all the instances at the same time. This means that we can only model the instances of the
type the object may know.

Chapter 6. Visual Contracts

71

The formal definition can be found in section 3.1, and a mathematical description in section
6.2.
The most important aspect of actions in terms of specifications, is the fact that they are
required in order for the system to change its state.

Parameter
A special Information Object that is normally exchanged among the system and its
environment. A parameter permits the communication of the system, as explained in sections
5.2.2.3 and 6.1.

Binding strength
The binding strength permits specifying whether a set-association “contains” real instances
of objects or only references to them. In other words, by using the binding strength, the
model can determine some characteristics of the lifecycle of the objects in that set-
association:

• When the set-association contains real instances, then their lifecycle is
dependent on the lifecycle of the set-association. This is known as tight binding.

• On the contrary, when the set-association contains only references to actual
object instances, there is no lifecycle dependency. This is known as loose
binding.

We use a filled- and a hollow-diamond, respectively, on the side of the containing IO.

Intersection
It represents the intersection set created by two set-associations.
An intersection can be total or partial, depending whether the intersection includes all the
elements of any of the intersection set-associations. Total intersections are represented by a
full (black) squares, whereas partial intersections are drawn as hollow (white) squares.

6.2.2 Behavioral Description
Instantaneous cardinality
The cardinality of a configuration (snapshot) of the system is temporary. It is represented as
a common cardinality, preceded by a “#” sign.
It is different from the (standard) cardinality as it is a time-dependent attribute. In contrast,
the (standard) cardinality is time-independent and constitutes an invariant for the system.

Cardinality or State Change
Our set-associations evolve over time by changing their states. We distinguish three main
classes of SAs:

• IO-IO: as described until now, it makes explicit relationships between IOs.
• Action-IO: makes explicit pre- and post-conditions. It allows for describing

instances that exist only during an action.
• SA-SA: equivalent to a simple relation algebra among SAs (sets).

Chapter 6. Visual Contracts

72

Board

Person

Board

Person

#1
c)a)

Board

Person

#2
b)

#1 -> #2

onBoard onBoard onBoard
Figure 29. Action changes cardinality of set-associations. On the left side the initial (a) and final (b) conditions.

In (c), SEAM notation for representing changes in cardinalities

As now we consider a single action as a unit of specification of the system, state transitions
become possible. Initially, the SA selected includes one instance of IO Person that is
offBoard. At the end, this same person is onBoard. Figure 29 summarizes this state
change using the «change» operator () for cardinalities and figure 31 adds a «transfer»
operator (curved, wide arrow) between lists.

Board

Person

Board

Person offBoard

c)a)
Board

Person onBoard

b)

offBoard ->
onBoard

#1 #1 #1

Figure 30. Action changes state of instances in set-associations

As a corollary, what is shown as not changing in a visual contract of an action is, then,
considered to remain unchanged for that specific action.

Guard
A predicate associated to some set-association or operation on a set-association that makes
part of a larger expression.
The guards trigger or fire whenever the corresponding predicate holds true. When a guard is
fired up, the truth value of the expression must be recomputed. This is explained in detailed
in section 6.4.1.

Select
Most operations on objects require a way of expressing that:

• an element belongs to a collection,
• an element of the collection can be retrieved by using one or different ways
• the kind of collection is still open to discussion

This is partially satisfied by model-based languages, like Z, where you can say simply that p
belongs to a set P. Nevertheless, the fact that an element p belongs to a set P does not mean
that the element p is in a collection P. The definition of set is very mathematical, and then p
can be in several sets P, Q, R that are not collections but elements that from the strict point of
view of logics, share a property. For example, p is in collection P, p is of type Q, but p is also
in state s1, which means it belongs to the set R (the set of all elements of type R that are in
state s1). The collection P is a mechanical construction, whereas Q and R are logical sets. Of
course, for p to become part of collection P, there are some logical criteria that are to be
taken into account.
It is clear then that the current approaches do not take into account the type of the element as
we should when thinking from an information viewpoint: several attributes of the element p
might be used to retrieve it, even if they are not the criteria that were used for it to become
part of collection P.

Transfer

Chapter 6. Visual Contracts

73

The transfer is an operator that expresses the change of state of instances, which has as ay
consequence the change on the membership of the instances. Therefore, more than an actual
transfer of instances, it is a form of interpretation.
The transfer is shown in the form of cardinalities for the set-associations, and as a causality
arrow in the diagram. This causality arrow explains the immediate cardinalities of the linked
SAs change: the direction of change, the nature of the transfer –partial or total, i.e. hollow
circle or full circle, correspondingly—.
For instance, if we retake the example shown in the definition of Set Associations above, we
obtain:

Figure 31. Action changes cardinality of both SAs for passenger lists. A transfer has been made, meaning also a

change of state of the respective instances of IO Person.

Instance Creation
Instance creation represents the appearance of a new instance within the system. This is
normally represented by a “new” symbol. By using a special set-association, we can
represent the creation of several objects of the same type. Besides, the set-association also
indicates which is the context (action) responsible for the creation of those objects.

Computation
The computation of values is particularly problematic. It is represented by the computation
primitive. David Harel affirms [HAREL, D.] that the algorithmic operations on variables and
data structures cannot be completely translated in an economic forma to a visual counterpart.
From our experience using this notation, we fully agree with him. In this case, the
computation symbol should be linked to an algorithmic, sentential description of the
computation or transformation that should be performed.

6.3 Visual Contract
A visual contract (VC) is a specification artifact that shows, in a visual fashion:

• the net effect of an action: what changes take place
• what conditions are required in order for an action to be executed

More formally, we define Visual Contract (VC) as the visual model that represents both the
pre- and the post-conditions for an action, and that makes explicit the changes from the pre
to the post state [DE LA CRUZ, J.D., et al 2006b].
A VC is created using the notation and semantics presented in the preceding sections of this
chapter. The visual contract defines the required parameters that fire different postconditions;
this will be explained in the section related to the execution.
A Visual Contract can also be decomposed onto pre- and post-condition diagrams. However,
the causality links are lost in the process. This will be better explained in chapter 8.

Chapter 6. Visual Contracts

74

Figure 32 shows an annotated version of a visual contract; it is the equivalent of the UML
version in figure 33.

The main advantage is that only the elements required to intervene, either as pre- or as
postconditions, are modeled. All other elements -- those that have not been affected by the
action being modeled-- do not have to be included in the diagram.

Board

Id_Person
<<Par In>>

[#1] -> #0valid

Valid = one (Persoin.id
== Id_Person)

BoardingITSystem

[# *] -> # (*+1)
capacity

Flight

Myself

offBoard_passenger_List

[#1]

Person

onBoard offBoard

id

[# *] -> # (*-1)

onBoard_passenger_List

selected

Response
<<Par Out>>

[#0] -> #1
Greetings_Response

[notFull]

notFull = onBoard_passenger_List.cardinality < Flight.capacity

Boarded

«Select»
Operator

«Change»
Operator

Guard for
«Transfer»
Operator

Resulting Subset Of
«Select» Operator

Guarded
«Transfer»
Operator

<<corresponds>>

«corresponds»
 Operator

Figure 32. Annotated version of Visual Contract for action Board. Please refer to chapter 9 for a complete

description of this illustration

Note that by defining Visual Contract as the specification of a specific action, this implies
that some mechanism must be found to indicate:

• The constraints that should always be respected (the state and structural features
that should never change). This can be done using a VC for invariants that we
call the VC domain model.

• The situations that should be avoided. This can be done with Visual Anti-
Contracts that are equivalent to misuse cases [REGEV, G., ET AL 2004].

Therefore, a complete system specification is made up of:

• A Visual Contract domain model that explains the general scenario for the
system (the static structure)

• A set of Visual Contracts for the operations that explains how actions will be
achieved, what their prerequisites and their effects on the system and on the
environment are.

• Tentatively, a set of Visual Anti-Contracts that describe the scenarios to avoid

6.3.1 Execution of Visual Contracts
Actions take place in order to change the system state.

The core of model execution is the ability to carry out a single step of the system’s dynamic operation,
with all consequences taken into account

David Harel – Biting the Silver Bullet, 1992

A system or working object can perform a series of actions. Actions modify the state of
information objects39. The system is sensitive to events that happen in the environment and
to internal events. When an event is raised, the virtual machine should perform some pattern
matching on the conditions associated to input and output parameters. The default strategy is

39 Note that the information objects and the actions can be further considered as whole or as composite.

Chapter 6. Visual Contracts

75

greedy, which means that the longest chain of events that could be associated to a visual
contract is the one that should be consumed.
A condition is said to be fired when the associated predicate holds true. Instead of invoking
actions, we consider that the actions are automatically triggered when the preconditions of
the Visual Contract have been fired. This all depends on the transactional nature of the action
under scrutiny (more on this on section 7.4). Nonetheless, the default mode is transactional,
which means that all preconditions of a VC should be fired in order for it to perform the
action.
As in Anzac [SENDALL, S. 2002], this theory can be explained mainly for reactive software
systems, i.e. systems that interact with their environments over time in an organized manner,
where stimuli arrive in an endless and perhaps unexpected order. The correct treatment of
these stimuli means that a reactive system must “know” whether it is in an appropriate
situation in order to serve the requests and notifications that are implied by the stimuli.
In this particular case, the basic execution form is a non-deterministic automaton, with the
implicit idea of a virtual machine. Most specifically, time is divided onto discrete steps.
During a step of the execution, the environment can generate external events, change the
truth values of conditions (this is known as firing), and update variables and other data
elements. Consequently, the status of the system is changed. This can be expressed either
declaratively via a single VC, or via a composition of multiple VCs. “Given the current
status and the changes made by the environment, calculating the effect of a step usually
involves complicated algorithmic procedures, which are derived from, and reflect, those
semantics” [HAREL, D. 1992]
In this way, we can compose complex automata to model systems. However, it is important
to understand the differences between internal and external operation of a visual contract and
how to bind VCs together.

6.4 Discussion
The originality of the approach is to capture instance information exclusively on the set
associations.
The general trend is to draw them in separate diagrams and consider only static information.
In our approach, we focus on change dynamics.
The system’s behavior we just described actually corresponds to the changes in the number
and state of its internal objects. The results of those changes are communicated to the
environment (i.e., result objects). This visible part is what we interpret as behavior.
We focus on interactions among objects of systemic actions as the specification units of
description. They contain enough business information to illustrate the purpose of the
modeling process at each level during the modeling and its refinement. Catalysis [D'SOUZA,
D.F. and CAMERON WILLS, A. 1998] inspired us on this regard. The refinement of actions in
Catalysis is seamless throughout the whole development process. Unfortunately, Catalysis
does not go far enough in elaborating how joint actions should be described at the problem
domain or business level. Apparently, they considered that pre- and post-conditions are
inadequate for capturing the complexities and subtleties of a group of business interactions.
We demonstrate that by the use of a modified syntax, we can create Visual Contracts that
fulfill this requirement.

Chapter 6. Visual Contracts

76

Plane

a)

Person_1:PersonPerson_1:Person

f) g)

Activity diagram

Board: Sequence diagram

Snapshot diagram – After Board Snapshot diagram – Before Board

Person

b)

Class diagram

Plane

1

1..*

State diagram State diagram

Plane_1: Plane

Person_2:Person

Person_3:Person

reponse_OK: Response

Board

e)

User_1:User Plane_1:Plane Person_1:Person

Response
Ask_for_Board ()

Plane_1: Plane

Person_2:Person

Person_3:Person

time = after Boardtime = before Board

d)

notFull

full

[number of
person
 >=

capacity]

[crash]

class Plane

c)

offBoard

onBoard

[disembark_OK]

[board_OK]

[kill]

class Person

board_OK

passenger

BoardingITSystem

passenger_1

passenger_1

candidate_1 passenger_2

BoardingITSystem

BoardingITSystem

BoardingITSystem BoardingITSystem

1

1..*

checkedIn

Figure 33. A partial UML specification for action Board, equivalent to figure 32.

A comparison can be made among Visual Contracts and an equivalent model created with
UML. Figure 33 is a very simplified version of a UML model equivalent to the VC in figure
32. Although we will not explain in detail the differences, we must point to two main issues:

• 7+1 diagrams, using 5+1 notations were required by the UML model. This is a
complex model, made up of different base models, as suggested in chapter 2.

• The UML sets and associations are all joint by default; if disjoint sets or
associations exists, the OCL construction {disjoint} must be used to indicate this
fact. In Visual Contracts, disjoint sets are default, but joint sets and partially
joint sets can be easily specified via the intersections of set-associations.

Regarding how visual contracts satisfy the Gestalt laws we discussed in section 4.1.2.2, we
present in table 8 the main points of our approach.

Table 8. Featuring the visual perception dimension of Visual Contracts

GESTALT LAW How Visual Contracts address this law

PROXIMITY Elements that describe action structure, typing, communication, constraints, structural change, etc. are grouped together.
This is related to the concept of immediacy [AKKOK, N. 2004, SOWA, J.F. 1999]

SIMILARITY Colors are used to separate moments in time for static, 2-body version of the visual contracts.
We also use a minimum number of symbols, in order for the modeler to perceive similarity.

CONNECTEDNESS Association posses a strong semantics, creating the notion of context of existence. This implies that connections in the model
change, just as they do in real systems.
Changes are also identified through lines whenever possible (transfer, corresponds, parameters).
All elements are connected. The presence of an unconnected element is the sign of an anomaly.

CONTINUITY Basic formats have been used (rectangles, ovals, straight lines, and oriented arcs)
SYMMETRY The elements are normally arranged symmetrically around the central discussion element, the action:

Parameters (In on the left vs., Out on the right)
Corresponds (the initial entity or set vs. the final one)
Complementary states, whenever possible

CLOSURE “A closed contour tends to be seen as an object”: We do not agree with this popular point of view.
However, the closure is not avoided. It was replaced by an arrow-based notation. In addition, the border of the system is a
rectangle.
The symbol used as container for the set-associations (the filled circle) also represents the notion of container by itself.

RELATIVE SIZE N.A. As instances are not shown as elements/dots within a closed curve/shape but as elements in a line
This is what makes our notation more scalable

MOTION PERCEPTION Correspondence problem [WARE, C. 2004] solved by explicit selection and transfer of concerned instances.
Animation techniques cannot be used in standard formats of specifications
Arrows are used for indicating change (unary and binary).

Chapter 6. Visual Contracts

77

6.5 Summary
In this chapter we introduced the Visual Contracts. This new concept emerged because we
developed a visual notation for modeling change in systemic actions. This notation required
a number of modeling concepts. A very important one is the instantaneous cardinality,
because it facilitates the representation of changes in the configuration of systems. In this
way, we obtain a compact, intensional model.
In order to define visual contracts, we extend the traditional interpretation of the association
and we integrate diagrams that are usually considered as separate. We define the concept of
set associations that capture the existence of instances of concepts in a given context. The
instances “live” in the association end. We use these set-associations to relate information
objects (our term for concepts) to information objects, but also actions to information
objects. To represent the pre- and the post-condition on a single diagram, we define a new
graphical symbol to express the change of cardinality or state.
The notation presented in this chapter will be used to create visual contracts that can be
composed and refined. Such notation might be also translated to formal expressions.

78

Chapter 7. Set-Associations in Detail

79

7 Set-Associations in Detail
In this chapter we study the details of the semantics and of the pragmatics of our Visual
Contracts.
First, we get acquainted with the algebra of set-associations. This is the most powerful but
most complex concept in our approach. Here, we clarify to a certain extent the semantics of
our notation. Then, we explain the algebra of contexts of existence, in order to understand
the modeling of the lifecycle of objects in a system.
In section 7.2 we discuss briefly some considerations that are important for specifying
behaviors. This discussion is complemented by the study of patterns found in Section 7.3.

7.1 Algebra for Sets Associations
In order to use the collection as our unit of specification, we must be able to fulfill the
expressive capacity of the set theory. For two collections A and B, we should be able to
express, a minimum number of sets, after Sowa [SOWA, J.F.], p. 100:

• Membership / belongs to
• Subset , Empty set, Disjoint sets, Equal sets
• Union, Intersection
• Universal set, Absolute complement
• Relative complement
• Different types of collections: Bags, sets and sequential lists

As explained in chapter 6, our approach supports integrated semantics. In consequence, it
deals directly with the collections that change over time. This is not possible in UML
because:

• Collections are defined explicitly in UML only for OCL; the class diagram can
represent collections but no manipulation is possible, because the behavior
cannot be modeled in this diagram.

• Class diagrams support collections implicitly, but the implicit semantics imply a
default case. Types/classes in UML represent implicitly all the instances and the
instances are implicitly joint, however this is not clear in the standard [BOOCH,
G., et al].

• Multiple instances might be on the associations, but the UML semantics do not
clearly support this kind of modeling. Practitioners usually use this modeling
shorthand: one class for representing the set and another class for representing
the elements of the set. We used this notation for a long time during this
research, but we chose a more strict policy based on a set-oriented notation.

Even if this is not developed in this report, it is important to note that a number of basic set
operations are supported unlike UML: memberOf, equal, empty set. As the representation of
collections (sets, sequences, and bags) is implicit in set-associations, we can actually define
operations in sets. Set-associations also represent the observer viewpoint, thus enriching the
semantics with additional information. Finally, it is also possible to describe properties of
objects via the SAs, in the form of P(x).
On the other hand, unlike sagital representation and Diskin and Z, we do not deal directly
with the nature of the relation itself (total and partial functions; bijective, injective and
surjective functions, etc.).

Chapter 7. Set-Associations in Detail

80

7.1.1 Operations on Set-Associations
The set-associations represent sets. In this section, we give details about the operators on set-
associations that correspond to logical operations among sets.
Because the operands are the lines that symbolize the set-associations, we can call this an
algebra of lines. This algebra is equivalent to a subset of a relational algebra. We illustrate
this concept via the following example:
Let us suppose that our system considers one Aircraft and one Company who has workers
who might board the Aircraft. Let us say that the Aircraft has a number of instances of
Person that are passenger, whereas the Company has a number of instances of Person
that are workers. These SAs are represented here by passenger_List and
worker_List, respectively.
Table 9 resumes the possible scenarios and the way we can use the algebra of set-
associations to represent these scenarios.
It is important to remember that cardinality of all set-associations must always be positive, as
it corresponds to a number of instances. Therefore, any decrease or similar operation must
always respect this rule.

7.1.2 Set-Associations as Contexts of Existence
As discussed in chapter 5, the notion of context of existence allows modeling the lifecycle of
objects (systems). This is fundamental for modeling implicitly what is normally known as
“referential integrity rules”. As a byproduct, we can use this concept to avoid the problems
related to inconsistency of the models.
Unlike the composition techniques found in UML and other approaches, the context of
existence is not only structural but can also tie actions with objects, and actions with other
actions. For instance, we can model dependencies among actions and data, making explicit
the temporal scope of certain objects; in this case, the instances exist only for the duration of
the action (e.g. local variables, temporary variables, etc.). This kind of description cannot be
built using standard specification techniques.
As described in chapter 5, modeling a context requires defining first the type that acts as a
context, and the type that corresponds to the objects that live in that context. A heuristic that
can assist the modeler is to consider that the referred side of the set-association is made up of
the instances existing in the SA; in other words, when the SA disappears, the instances
themselves will disappear too. The context end or referencing side corresponds to an object
of the type, and whose lifecycle is the maximum span of time of the lifecycle of the set-
association itself. When the object disappears, all the SAs that have as context such an object
will disappear, too.
Another aspect of the modeling that can be enhanced via the use of set-associations is to
differentiate the references to the instances from the actual instances themselves. This is
normally done using an UML relationship <<pointsTo>> among the objects and/or classes.
However syntactically correct in UML, it has no semantic content. Therefore, the modeler
cannot validate the behavior of the system. In our case, different symbols are used to
represent actual instances and references. The actual instances can exist in one context only,
but can be referenced from many other contexts. In this way, an “owner” is clearly
identified, and the modeler can guarantee the referential integrity of the system.
There are several issues that can now be addressed:

• We must differentiate the type that acts as a context from the one that
corresponds to the objects that live in that context. The referred side of the set-
association is made up of the instances existing in the SA. If the SA disappears,
the instances themselves will disappear too.

Chapter 7. Set-Associations in Detail

81

Table 9. Logical operations of Set-Associations. Note that cardinality must be always zero or positive (m ≥ n)

Algebra
operator

Graphical equivalent Description

A set

Sets are disjoint by default
0..20 elements of type Person are known by each aircraft

Empty set

Sets are disjoint by default
O. elements of type Person are known by each aircraft

Two disjoint
sets

Total:
All m person know by aircraft are also known by company

Intersection of
sets

Partial:
Only n elements among the m known by Aircraft and n
person known by Company.

Two joint sets

Total:
From the total m Person known by both Aircrafts, n Person
belongs to the list of one of the Aircraft s and (m-n) Person to
the other.

Subset

Total:
From the total m Person known by a single Aircraft, n Person
belongs to one list of the Aircraft and (m-n) Person to the
other list of the same Aircraft.

Total:
From the m Person known by the Company, the Aircraft and
the Company share a total of n Person.

Subset

Total:
From the total m Person known by a single Aircraft, n Person
belongs to one list of the Aircraft and (m-n) Person to the
other list of the same Aircraft.
The Company and the Aircraft share a total of n Person.

Absolutely
defined
Finite set

Total:
From a total of t Person considered for the system
description, m person know by aircraft are also known by
company
Note that (m<t)

Inclusion of
Sets

Partial:
Only n elements among the m known by Aircraft and n
person known by family.
Note that (m < t) && (n < t)

Addition of
sets

Total:
From a total of t instances of Person, m belong to the first
Aircraft, n to the second, and the remainder work for the
Company

Chapter 7. Set-Associations in Detail

82

Table 10. Default behavior for deletion of set-associations that do not include actions. The red dotted arrows
represent the several deletion processes, the guards are named after the highest context that is being deleted.

Deletion Scenario How to write this scenario using the VC semantics

• Our semantics for the context of existence is similar to UML

composition/aggregation, so we will use the UML notation (black/hollow
diamond).

• If there is no purpose, i.e. the entities is not known by other entities or does not
interact in the context of an action, the entity should not be modeled. The
context of existence makes clear why the entity exists.

• In a given level of granularity, there is no purpose on modeling an entity,
because it is too fine-grained or too coarse for its effects to be perceived in that
level. In this case, the modeling of the entity should also be avoided (omitted).

7.1.3 Algebra of Contexts of Existence
We have already said that all SAs constitute the context where instances actually exist. This
adds a temporal frame for reasoning about the system and, in particular, what happens when
an object is deleted. We consider two cases: either the actual instances in their SAs are
deleted too (tight binding) or they are only references and the actual instances are not deleted
(loose binding). We use a filled- and a hollow-diamond, respectively, on the side of the
containing IO.

Chapter 7. Set-Associations in Detail

83

Table 11. Default behavior for deletion of set-associations that include actions. The red dotted arrows represent
the several deletion processes, the guards are named after the highest context that is being deleted.

Deletion Scenario How to write this scenario using the VC semantics

#1 -> 0

B

#m -> 0

some_List

intersection

Φ

[Delete_A]

A

Φ
[Delete_A]

Φ
[Delete_A]

A_System

another_List

#1 -> 0

#1 -> 0

Φ
[Delete_A]

Myself

Action
#1->0

#1->0 Φ
[Delete_A]

Unlike the UML primitives for composition (association, aggregation, composition), but now
the modeler can also reason about actions and instance references in the same way (and not
only real instances of objects).
Because addition of context and determining what remains is easily found from the
operations on set-associations (preceding section), we will focus on the more difficult issue
of determining what will disappear from a context. Table 10 shows the default semantics for
deleting contexts of existence in the structural dimension.
Reasoning about contexts for actions when deletion occurs is also a difficult issue. Table 11
shows the default semantics for deleting contexts of existence. When the modeler requires a
different behavior for one or more of the sub-contexts, he can specify it via the compensation
measures (see section 7.3).

7.1.4 Set-Associations as Collections
In section 6.2.2.1 we differentiated the sets in our set-associations from the collections.
Nonetheless, collections are fundamental to system specification. Moreover, collections are
implicit in our approach, because the set-associations contain sets in the set-theoretic sense.
Therefore, it is necessary to provide primitives to our set-associations that allow the modeler
to express ordering preferences and the possibility to count with repeated instances.
For the sake of usability of our notation, the nature of the collection is specified in the name
of each Set-Association, as the closing term that comes after an underscore symbol. To be
precise, the set is named “_Set”, the bag is named “_Bag”, and the sequences use the
particles “_List”, “_Seq”, and “_Vector”.

Chapter 7. Set-Associations in Detail

84

In addition to this, the ordered sequence elements can use the link element in order to
indicate causality among events. For example, an element A followed by an element B is
written A ∩B, where A and B are power sets of objects of the same type.

7.2 Specifying Behaviors
Visual Contracts are a declarative approach. This means that you can bind tightly the
preconditions to post-conditions or not.
As seen in chapter 2, the basic contractual model behavior makes no concession about
postcondition if some precondition does not hold true. This is the default approach of design
by contract [MEYER, B. 1988].
The loose binding approach occurs during the refinement, when the nature of an action is no
longer atomic. In this case, atomicity is at the level of the sub-actions. This also happens for
long-running transactions, as the action can be canceled long enough after the beginning,
when some state changes have already taken place [D'SOUZA, D.F. and CAMERON WILLS, A.
1998]. Nevertheless, by studying single actions as not-transactional, some robustness
features can be added: all scenarios –especially bad behaviors— should be taken into
account. This allows the modeler to design behaviors for conditions not present in normal,
well-behaved scenarios. The modeler can also specify that tracing messages are generated.

7.2.1 Transactional vs. Non-Transactional
As we just explained, single actions will be transactional by nature, whereas composite
actions are not-transactional for the same reason.
When one predicate is false, the transactional action will fail and rollback completely. In
other words, the system can come back to the initial state before the action started executing,
thus cancelling the effects of all the actions that were executed. Specifically, in the case of
transactional actions, if all preconditions are fired, the whole set of postconditions is
automatically true and everything is done. If at least one precondition does not hold true,
everything is cancelled. However, here we produce an error message for every case, either
successful or not.
On the other hand, In the case of non-transactional actions, each predicate is evaluated
independently because the clauses are fired individually. In other words, whenever any one
of the single preconditions is fired, the corresponding enabled postconditions can be
evaluated. If a previously fired condition is disabled, the corresponding postconditions
should follow the same treatment. Hence, compensation measures should be introduced in
the design. These compensations measures are executed when the corresponding exception
condition happens. This is illustrated in section 10.3 by a complete case study.
It’s important to note that rely-/guarantee-conditions (explained in chapter 2) apply to the
whole execution period of an operation. In some situations, a constraint that spans the whole
operation may be too strong. In order to clarify the difference, please read carefully this
modified example (original version in [D'SOUZA, D.F. and CAMERON WILLS, A. 1998])
where the supply levels of a product must always be greater than zero (guarantee clause)
while the enterprise continues to be in business (rely clause):
Action: (retailer, wholesaler)::supplyForYear (amount: Money,
 from: Date, to: Date)

Pre: from < to
Rely: wholesaler.inBusiness
Post: wholesaler.income += amount
 And
 Retailer.outgoings += amount
Guarantee: retailer.stock->size < 10 and (from:today < to) ⇒ Retailer.orders[source=wholesaler]->size>0

Chapter 7. Set-Associations in Detail

85

The fact that the wholesaler is still in business (wholesaler.inbusiness = true) is
not affected by the operation. However, the retailer.stock is affected by this
operation.
Dealing with transactional and non-transactional (composite) actions will be illustrated in the
case study of section 10.4.

7.3 Design Heuristics and Patterns in Visual Contracts
Visual artifacts are considered to help discover patterns and relationships. The use of Visual
Contracts has allowed us to identify a first subset of heuristics and patterns that can be useful
for specifying different kinds of systems.
Because this research work did not elaborate in a more advanced and formalized approach to
patterns, we present them here as a basis for future work.
The instantaneous cardinality is either zero or a positive integer.

Multiple instances
The different notations we studied in chapters 2, 3 and 4 do not explicitly deal with the fact
that the information is actually stored and has to be retrieved lately.
In general, the approach follows the dataflow diagram way (a simple question of the type: is
element x there? or, is there any element y that has as value v?) where it is not clear that the
information has been accumulating for a time. For instance, a few works [HATLEY, D. and
IMTIAZ, P. 1988, WARD, P. 1985] made explicit the fact that there are information storage
places in the system. The colored Petri Nets [DAVID, R. and ALLA, H.H. 1997] also allow the
description of systems that can have multiple instances of elements of a type X in a given
place of the network; however, this does not literally mean that they are on the same
collection. Moreover, that way of specifying systems does not make explicit the need of IT
systems to synchronize with the real world.
The languages that support operational semantics like CCS, CSP and Pi-calculus allow you
to model stackable data structures, storing and retrieving data in a sequential or random way.
But this approach is a) not general enough when compared to model-based notations like Z
or VDM where there is just an indication of the set where the element belongs to; b)
execution-oriented, which means that we have already chosen the kind of collection we need
(set, bag, or sequence) and that the search criteria is already established.
Because one of our sources of inspiration was Z, we created set-associations as a means to
represent collections of instances. We can therefore support the whole CRUD lifecycle on
those collections.
Besides, the input parameters can be used to represent complex patterns of sequences of
events. This is because of the greedy nature of the pattern-matching algorithm, as explained
in section 6.3.1.

Interaction fully informed
One of our design heuristics is that the system should always give result (a response); in this
way, the users of the system will always receive a notification of success / failure for each of
the actions of the system.
This is a best practice for the design of user interfaces that is useful for the creation of
applications that behave correctly.

Subset selection /creation
Try to express all the operations in terms of sets. For most practical cases, the actions can be
easily expressed in this way. Use subsets in order to be more specific. This will reduce the
intricacy of both the clause predicates and of the expressions required to express such
conditions.

Chapter 7. Set-Associations in Detail

86

Transformation
The operations that cannot be expressed as an operation of sets are usually transformations.
The transformations can be simple state-changes (that can be represented using sets and
subsets) or more convoluted, algorithmic approaches. For the first case, use the set-
associations and the state information. For the latter, use the compute operation directly on
the instances (subset) involved.

Decouple Validation Criteria
It is difficult to integrate new information regarding the specific criteria for each type of
validation that is done in a system. For instance, it is not easy to add some business rule that
should be applied for some or all system actions, or some integrity policy rule that must be
respected by the system structure.
More specifically, it is not easy to incorporate rules that deal with meta-information. In other
words, if there is some particular criteria for defining what is a valid information (e.g., a
demand for social assistance has to comply to a set of criteria, a purchase has to be of less
than a maximal amount if it can be approved by a certain role), it is not possible to state this
clearly in the models.
The most general approach is to say indicate a state valid for the information object or
parameter. Whenever required, a more concrete description can be developed. It is usually a
select operator that permits checking that –for instance— an id exists already in a certain
register (list) or that it is not yet registered.

Capacity – Empty / Full
Visual Contracts make explicit the fact that modelers deal with real systems and real objects,
and that the corresponding representations should obey physical laws. The capacity problems
usually have an impact over the (logical) controllers of the system being developed.
Include all the physical limitations, such as containment, and foresee what happens whenever
such limits are surpassed. Compensation/error handling actions should be conceived in order
to cope with such situations.

Staircase breakdown of behavior: Dealing with exceptions
Composite behavior will result in a very structured, staircase-like composition of Visual
Contracts. The staircase exploits the concept of symmetry and minimizes the number of steps
(actions or Visual Contracts) to develop.
This pattern is illustrated in the example of section 10.3.

Containers -> State implicit
As shown in figure 40, a useful shorthand is to make the state explicit in the set-association
naming scheme. The upper part of the figure indicates that the IO Person can be either
offBoard or onBoard.
The first example of the transfer operation is done in the standard way. This occupies a bit
more of space. The example at the bottom of figure 34 uses the explicit state naming. It
occupies less space, without any loss in the quantity of information that it carries.
Therefore, the use of state information explicitly in the name helps diminishing the
complexity of the diagrams and augments usability.

Chapter 7. Set-Associations in Detail

87

Figure 34. Making explicit the state information of instances belonging to a set-association. The IO Person has
two possible states. The two diagrams at the bottom illustrate the implicit and explicit use of state information in

set-associations

7.4 Summary
In this chapter we introduced the operators that can be applied to set-associations. These
operators allowed us to present and explain the algebra of set-associations and the contexts
of existence.
The algebra of set-associations is useful to describe complex scenarios. As the set-
associations correspond to collections, we can now represent operations among collections in
a declarative form. We illustrated some of the main operations for sets and demonstrated that
our visual notation is more scalable than the set-theory.
The contexts of existence allow the modeler to establish containment relationships. We
consider its semantics are stronger than the ones used for describing structural properties (i.e.
E-R diagrams, class diagrams) since some of the referential integrity constraints are included
by default in our approach. This will be better illustrated in the study case of Section 10.5.
Finally, we studied the pragmatics of the language. The pragmatics is related to the
interpretation of valid language constructions. In particular, we explained:

• How the semantics of transactional actions is different from the composition
semantics that are traditional in non-transactional actions.

• Some patterns and heuristics that we have found during the specification of the
study cases.

88

Chapter 8. The Language for Visual Contracts

89

8 The Language for Visual Contracts
In this chapter we present the details of the language we created for writing Visual Contracts.
We introduced the foundations of our specification language in Chapter 5, the notation in
Chapter 6, and explained in depth the fundamental notion of set-association in Chapter 7.
In this chapter we explain the details of the language and how to build well-formed Visual
Contracts. We explain in detail its primitives and some of its rules and guidelines. Next, we
describe the metamodel of our language for Visual Contracts.
By following the rules the designer can build “correct” Visual Contracts that can then be
validated. This validation can be either manual or automatic. The manual validation is visual,
and is made directly by the designer. The automatic validation requires an additional phase
of translation to a first-order language named Alloy. As this language does not support the
entire set of primitives of our notation for Visual Contracts, some guidelines indicate the
primitives that are not supported.
The metamodel is used for transforming a Visual Contract to its Alloy equivalent. The
metamodel is explained in this chapter, but the translation strategy is explained in Chapter 9.

8.1 Primitives for Building Visual Contracts
Table 12 presents the complete set of primitives of the language. The details about the
primitives can be found in the right column. The theoretical aspects are explained in section
6.2 and 6.3.
It is important to note that in the table we propose two alternatives for the symbol “action”:
a) the normal view (white-box), that shows the internals of the Visual Contract, and b) the
external (black-box) view that is used in order to compose a larger action from composite
actions. The black-box view is explained in the study case of section 10.3.

8.2 Rules and Guidelines for Building Visual Contracts
In this section, we list the rules and guidelines that make Visual Contracts well-formed and
verifiable. The sub-sections correspond to the groups listed in Table 12, namely: basic
elements, relational elements, behavioral elements, and temporal elements.

8.2.1 Basic Elements
- A Visual Contract corresponds to a single action in a single system
- The system is represented by one instance of Myself, surrounded by a box with the

name of the system.
- Myself is the anchor for the representation of the contract. All the cardinalities and

relational algebra are computed from the reference to the system (the symbol
Myself).

- If more than one Myself appears, it corresponds to the same system
- The default action if the VC is a normal (white-box) action. An expandable (black-

box) action is indicated by a stereotyped action <<+>>.
- When representing a sequence/combination of VCs, each action is normally shown

as an expandable action.
- An Information Object represents a type.
- Every Information Object has a default identifier attribute (id).

Chapter 8. The Language for Visual Contracts

90

Table 12. SEAM notation elements required for Visual Contracts

Basic elements

Modeling element Symbol Short definition

Myself MyselfMyself

It represents the system (computational object). It is the default context of existence
of instances of all other IOs inside the system. See section 5.2.5

Information Object
(IO)

Generic_IO

attrib1
attrib2

id

It is used for modeling the information of the objects in the environment of the
system (working object). It stores the state of the observed object. It may have
attributes, each one with one or more different states.

State

Value or set of values that are either directly observable or that constraint the
behavior of an IO. States are often stored in the attributes of the IO

Action / Service

Specifies the effects of system’s reactions to a set of events for a given system
state: { P } X { Q }.. Option b is the external (black-box) view of the VC for the action.

Parameters
<<Par In>> <<Par Out>>

b)a)

They represent events in the environment of a system(working object) and, more
specifically, the objects exchanged with the system. The parameters are actually
special information object used to communicate (Input or Output) either through the
boundary of the system or among action boundaries.
a) Notation for input parameters, b) notation for output parameters

Relational description

Modeling element Symbol Short definition
Set-association
(SA)

Relationships between information objects (or between actions and information
objects). Equivalent to a set of instances of the referred IO as seen from the
referring IO

Binding strength

A SA constitutes the context where instances actually exist. This adds a temporal
frame for reasoning about the system and, in particular, what happens when an
object is deleted. We consider two cases: either the actual instances in their SAs
are deleted too (tight binding) or they are only references and the actual instances
are not deleted (loose binding).

Intersection

Operator added information. It indicates whether the relational operator that
operates on the SA is applied to either a) a subset (partial) or b) all instances
(complete). We can also represent none, by using an X instead of the square.

Behavioral description

Modeling element Symbol Short definition

Instantaneous
Cardinality

Instantaneous number of instances that compose a set-association(SA). It can be a
given integer value, including zero, but also a range of numbers. It can never be
less than zero (0)

Cardinality or
State change

 It indicates an initial and final cardinalities of an SA, normally affected in the context
of an action

Guard [condition] The associated operator (change, transfer, creation, computation, attribute value
change, time wait or delay) is effective when the condition predicate holds true

Select

It indicates the criteria used to create a subset from a pre-existing set-association. It
provides contextual information for modeler but also used during execution to select
subsets from an original set. It is drawn as a box containing a predicate, linking the
source and target SAs

Transfer

It transfers a subset of instances when the guard predicate holds. It is frequently
part of the change performed by actions. How complete the transfer is can be
determined by looking to the intersection on the source side

Instance Creation
An instance of IO is created by using one or more of these operators. The sources
for an instance are all the parameters or other IOs that will be used to create it.

Computation Compute
function

Special transfer + creation operator. The instance(s) on the source side will create
a number of instance(s) on the target side after a computation is done on the
source IOs. The name of the function is indicated in the bubble.

Attribute value
change

When a specific value of one or more IOs is changed, this operator links the new
value (the source IO or parameter) and the target instances.

Temporal description

Modeling element Symbol Short definition
Lifecycle

In order to better illustrate the structural/behavioral nature of myself, the three
parallel lines show the fact that actions will be composed in order to create the
whole lifecycle of the working object.

Time delay

The action will not be executed unless the time-related guard is true.
It can be used to show a minimum or maximum time of wait before executing the
action. The time is relative to the beginning of the action but when otherwise
specified.

Time wait

[Δt >= xx] The time wait is a general guard that will prevent execution of other guards before
the guard is true. It is a relative time within the context of the action, which indicates
a maximum time.

Corresponds

It links causally-related information object instances (set-associations). Most
general case is to link a number of results are obtained from a corresponding inputs

- The number of instances of a specific Information Object can be constrained. The

amount of instances must be indicated in one of the corners of the IO symbol. In

Chapter 8. The Language for Visual Contracts

91

this case, the sum of all the Set-Associations that refer to this IO must be less or
equal to the constrain value.

- The default constraint value for the instances of an Information Value is
undetermined.

- An Information Object can appear more than once in a Visual Contract. This is
normally done to differentiate IOs that have different constraint values.

- If an Information Object appears in the default (unconstrained) way two or more
times in a Visual Contract, the modeler is describing the same set or collection of
instances with all of them.

- The constraints cannot be mapped to the Alloy representation of Visual Contracts,
therefore, it does not appear in the metamodel.

8.2.2 Relational Elements
- A VC shows the effect of the action on the configuration
- The configuration can be described in terms of the Set-Associations. This way of

expressing the context is known as expanded.
- A Set-Association represents a collection of instances either of Information Objects

or of Actions.
- The number of instances is represented by the instantaneous cardinality (the operator

#).
- Cardinality is always positive. As the cardinality applies to real sets, it must be an

integer and cannot be negative. The modeler should verify that formulas and
dynamic cardinalities give valid results.

- SAs can be either static (no change for a certain Visual Contract) or dynamic (the
opposite of static).

- A Set-Association is unidirectional. It has a referring or owner (observer) end and a
referred end. The referring side is indicated with a small circle.

- The referring side of the Set-Association can be either the system (Myself), a type
(IO) or an action (Action).

- The basic configuration is one system whose Information Objects have only SAs
tied exclusively to the system (Myself). In this case, all instances of different types
exist only in the system. This kind of Set-Association is called SAMyself, and can
be either dynamic or static.

- A more complex configuration is one system whose Information Objects are linked
not only to the system (Myself) but also to other Information Objects. A Set-
Association linking two Information Objects is called SAIO, and can be either
dynamic or static.

- A Set-Association can only have one referring side. Only one IO can appear on the
referring end.

- A Set-Association can be linked to one or more referred objects of the same type
(Inforrmation Object). A SA referring to a single IO represents a single collection. A
SA that forks represents a set that is split in different subsets; the IO a the end of a
SA must be the same type (IO) .

- A Set-Association represents a collection of instances either of Information Objects
in a certain state. In this case, the state information must be included in the IO, and
the SA points to it directly, going through the border of the IO symbol..

- A Visual Contract can specify an undetermined number of instances of a specific
Information Object.

- As two collections can intersect, hence two Set-Associations can also intersect, This
is represented via the intersection symbol.

- An intersection represents the subset of two intersecting collections.

Chapter 8. The Language for Visual Contracts

92

- When more than two collections intersect, use more than one intersection symbol.
- An intersection can be either partial or complete. In the metamodel this is

represented via the symbols CompleteInter and NCompleteInter, respectively.
- An intersection can be either static or dynamic. In the metamodel this is represented

via the symbols NormalIntersection and TransferIntersection, respectively.

8.2.3 Behavioral Elements
- An action can receive parameters. Each parameter is known as an IOParameter in the

metamodel.
- The instances of a given IOParameter exist in a SA. This SA is called SAPar. A

SAPar can be either static (no change for a certain Visual Contract) or dynamic (the
opposite of static).

- A transfer can link two Set-Associations, two intersections, or one intersection and
one SA.

- A transfer is enabled only when the associatied predicate is true. No predicate in a
Visual Contract should be emply.

- A default value of false is assigned to every predicate in a Visual Contract.
Therefore, all transfers are disabled by default.

- A transfer that is done automatically by default can be indicated via a predicate of
value true.

- A dynamic intersection is mandatorily the source of a transfer; in this case, the
intersection is created with the sole goal of creating a subset that should change its
state or go to a different collection.

8.2.4 Temporal Elements
- The temporal elements cannot be mapped to Alloy in the current state of our

formalization strategy. Ttherefore, the temporal elements are strictly graphical and
can only be used as documentation for the modeler.

8.3 Metamodel
[LAPLANTE, P.A. and (ED.) 2001] defines metamodel as a type graph with additional
constraints. The constraints are the rules used to build models. A metamodel is an explicit
model of the constructs and rules needed to build specific models within a domain of interest
[OMG].
We will build our metamodel using a lightweight version of the Meta-Object Facility
language (MOF) [OMG]. Therefore, fundamental types such as Integers and Strings are
already supported.

8.3.1 Basic Elements
The basic elements are (see Table 12) the following: Myself, information objects, state,
action, and parameters. Figure 35 shows these elements in the metamodel.

Chapter 8. The Language for Visual Contracts

93

Figure 35. Basic elements in the Visual Contract metamodel

An InformationObject may have a number of attributes. The two mandatory attributes
are the Name and the unique identification number, Id. The identification number is required
to distinguish instances (Instances are introduced in section A2.2).
InformationObjects can also be characterized by a state space. This space is made up of
several possible states. A state has a name. Each instance is in a state that can be
different from the state of the other instances.
Another basic element is the action. An action has a name. Actions can change the
global state of the system, but expressing this change requires the notion of set associations
(see section A2.2).
For the sake of simplicity, parameters are introduced later, in section A2.3; analogously, we
explain transactional
The last basic element is the identity of an instance of the system, Myself. As the notion of
containment and the relationships have not been introduced, the system remains isolated in
figure 78.

8.3.2 Relational Elements
Once we have described the main types (the information objects), it is possible to describe
instances of those types. This is normally done in another level of the hierarchy of
metamodels.
Because there is only one instance of the system (represented by Myself), we can create
collections of elements that exist in this context. The Set Association represents a container
of collection of elements. This notion allows us to fuse instances on the same level of the
types.
Set Associations are named using the particle Sa at the beginning. There are collections of
elements that either belong to the system itself (SaMyself), to the communication between
the system and its environment (SaPar), other ones that are created from other Set
Associations during the evolution of the system via actions (SaVar), and –finally—
collections of information objects related to actions (SaIO). These elements are shown in
figures 36 and 37.

Chapter 8. The Language for Visual Contracts

94

Figure 36. Relational elements in the metamodel of Visual Contracts. First partial view.

These collections of elements (set associations) can either remain constant with time –at least
in the context of one action—or change. This is why set associations are specialized onto
StaticAssociation and DynamicAssociation.
Because of their expressive importance, cardinalities are explicitly represented in the
metamodel in the set associations StaticAssociation and DynamicAssociation,
respectively StaticCardinality and DynamicCardinality. The latter will be
introduced in section A2.3 as it belongs to the behavioral description.
Set associations have two ends: the owner of referring element, and the referred elements or
collection. The referring element is the “observer”. It “knows” a number of elements on the
other end. These elements are then bound to the referring object. The nature of this binding
(Bind) may be either strict containment (Tight) or just a reference to elements that belong
to other collection (Reference) having another owner. An element can be in only one tight
collection, but referred by many others. This is illustrated in figure 37.
As we discussed in section 6.3, a number of relational operations may take place. In general,
these operations give birth to new collections of elements. This is done via intersections
from pre-existing collections; these intersections can cover the whole collection
(NcompleteInter) or a part of it (NNotCompleteInter). An extreme case is the empty
intersection, that allows creating empty collection but it is of limited importance and is not
shown in the metamodel. Every intersection is linked to a predicate that can be
evaluated. The predicate is a sentence or logical expression that makes reference to the
elements of the model. Sentences can be as complex as the model itself, and we will not
elaborate on them further.
Note that all collections that correspond to the evolution of the system (SaVars) include at
least one intersection.

Chapter 8. The Language for Visual Contracts

95

Figure 37. Relational elements in the Visual Contract metamodel. Second partial view

8.3.3 Behavioral Elements
Actions happen in a time lapse. There are at least two identifiable time-points: before the
action takes place and after the action takes place. Therefore, including the notion of time
allows us to represent the dynamics of the system. Take into account that a Visual Contract
explains the effects of one single action.
The state of the system is the configuration of the system: a number of instances of
information object, in other words, cardinalities. A change of the state corresponds, thus, to a
change of the configuration (i.e. a change in cardinalities). This is shown in the upper left
corner of figure 38, where DynamicCardinality is represented.
The pragmatics of or modeling language should prescribe that a decrease in one set
association requires an increase in another set association (but when the elements are being
deleted from the system). This symmetric exchange is symbolized by the Transfer
operator. The transfer can be either complete (TcompleteIntersection) or partial
(TNotcompleteIntersection), just like intersections (see section A2.2). Empty
transfers occur only when the associated predicate does not hold true, which means
failure of the action.
Actions can be transactional or not (NonTransactional). When one predicate is
false, the transactional action will fail and rollback completely, coming back to the initial
state before the action started executing. In the case of non-transactional actions, each
predicate is evaluated independently, and an inconsistent state may be reached.
Parameters are symbolized by the IOParameters. Parameters are special IOs that are used
to communicate with the environment. They can be used for input (ParIn) or output
(ParOut) and belong to the context of the action (via SaParStatic or SaParDynamic).
Parameters trigger and condition the execution of actions. The select operator is used to
create sub-collections of elements. It takes on input parameter (IOparameter) and applies a
predicate that indicates how to create the sub-collection from the target collection.
The creation of new instances can be done via the InstanceCreation. It normally takes
one input parameter (IOParameter, acting as source), that will be associated to a new
kind of collection (CreatedSA). The net effect of the creation process is that there is some
new collection at the end.

Chapter 8. The Language for Visual Contracts

96

SetAssociation

ParOutParIn

IOParameter

DynamicAssociation

Integer

Action

Myself

SaMyself
Dynamic

SaIO
Static

SaIO
Dynamic

Attributes

InformationObject

State

Name

ReferenceTight

Bind

SaMyself
Static

1
1

1

1

1

1

1

1 1

0..*

1 1 1

11
1

1 1

1

SaParStatic

SaPar
Dynamic

SaVar
Static

SaVar
Dynamic

Dynamic
Cardinality

1
1

1

1

1

1

1

1

NormalIntersection

11

Intersection

TransferIntersection

1

Predicate

1

1

Ncomplete
Inter

NNotComplete
Inter

1

1

11

Transfer

Sentence

Tcomplete
Inter

TNotComplete
Inter

1

1

Generation

11

Transfer Computation

source target

Compute
Function

1

source target

Transactional Non-
Transactional

Transfer
Intersection

Normal
Intersection

IOParameter

Static
Association

SaParStatic

SaMyself
Static

SaIO
Static

SaVar
Static

DynamicAssociation SaIO
Dynamic

SaPar
Dynamic

SaMyself
Dynamic

SaVar
Dynamic

Static
Cardinality

1

Integer

1

Name

Name

CreatedSA

1 1

InstanceCreation

target

source

1

1..*1 1

Select

1

Predicate
target

1
source

1

guard

1

1

1

1 1

1

1

1

1

1

1 1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

0..*

id

1

1

1

1

Figure 38. Behavioral elements in the metamodel of Visual Contracts.

8.3.4 Temporal Elements
Three temporal elements exist: lifecycle, time delay and time wait.
The Lifecycle is the context of existence of elements, and has been already discussed in
section A2.2. TimeDelay and TimeWait are attached to actions and set associations,
respectively. They include a TimeExpression that is evaluated in execution time. The
logical expression can use absolute or relative time. However, this is still a subject of
research and will not be discussed further in this thesis.

Ch

ap
te

r 8
. T

he
 L

an
gu

ag
e f

or
 V

isu
al

 C
on

tr
ac

ts

97

Fi

gu
re

 3
9.

 C
om

pl
et

e
V

is
ua

l C
on

tra
ct

 m
et

am
od

el

Chapter 8. The Language for Visual Contracts

98

8.3.5 Complete Metamodel
The resulting metamodel is shown in figure 39.

8.4 Summary
In this chapter, we explained the primitives of the notation for Visual Contracts and a set of
rules to use them correctly in a Visual Contract.
We introduced the most important rules for the construction of Visual Contracts. These rules
are essential to guarantee that the use of each primitive in the specification is consistent. As a
result, the well-formedness of the Visual Contract should be easier to achieve.
Moreover, we explained the practical aspects of the automatic validation of certain rules. We
identified the conflicting points for the translation to Alloy as well as some primitives that
are not checkable using the Alloy Analyzer.
Finally, we presented the complete metamodel for Visual Contracts. The metamodel is the
foundation for the tool that translates Visual Contracts to Alloy; this tool is presented in
Chapter 9.

Chapter 9. Translating the Visual Contracts to Alloy

99

9 Translating the Visual Contracts to Alloy
Strictly speaking, we should not discuss whether software elements are correct, but whether they are

consistent with their specifications. This discussion will continue to use the well-accepted term
“correctness”, but we should always remember that the question of correctness does not apply to

software elements; it applies to pairs made of a software element and a specification
Bertrand Meyer – Object Oriented Construction of Systems

Our goal is to propose a notation and demonstrate the correctness of the systems built using
the Visual Contracts. In this chapter we present the process used for translating Visual
Contracts to the Alloy language. As the specifications written in Alloy can be analyzed, we
can verify and validate our Visual Contracts.
Our approach is ad hoc. We formalize the notation for Visual Contracts (see the Chapter 6),
by including some of the semantic subtleties discussed in Chapter 7.
The structure of the chapter is as follows: First, we introduce the general formalization
approach. Next, we introduce Alloy language. Later, we show how to translate the main
elements of our notation, and of simple examples of Visual Contracts; in particular, we
explain how the notion of time is mapped to the Alloy specification. Finally, as the language
of Visual Contracts is compositional—the meaning of a sentence is a function of the
meaning of its parts— we explain our technique to compose behavior using a sequence of
Visual Contracts.

9.1 Translating the Visual Contracts
Visual Contracts are built using a graphical, set-oriented notation for modeling systems.
Given its set-oriented nature, we should be able to translate it to a model-based specification
language such as Z, VDM, B or Alloy.

Figure 40. Strategy of translation from Visual Contracts to Alloy

Figure 40 illustrates the process: first, we defined a Visual Contract. Second, this visual
contract should somehow be mapped onto a XML file (the output of a CAD tool)40. Next, a
XML parser applies some transformation rules in order to extract the information contained
in the VCML files for generating formal specifications written in Alloy. Finally the formal
specifications are used to verify and validate the generated models.
Our goal is to achieve the translation from Visual Contracts to Alloy. The first, manual
approach to this translation, as well as the fully detailed translation technique is documented
in [DE LA CRUZ, J.D., et al 2006a, DE LA CRUZ, J.D., et al 2006b, DE LA CRUZ, J.D., et al

40 This language is known as VCML. It is presented in Section 7.3.

Chapter 9. Translating the Visual Contracts to Alloy

100

2005]. In this chapter we explain the generalized approach that enables the automatic
translation.

9.1.1 Alloy Specification Language
The target language is Alloy, based on first-order logic. Alloy is a modeling language very
similar to Z, but that enhances on the user-friendly and on the capabilities of the analysis.
Alloy is targeted at the creation of micro-models of software systems that can then be
automatically checked for correctness [JACKSON, D.].
A system specification in Alloy is composed of the following parts:

• signatures (keyword “sig”): declares types, sets and relations among types
• facts: global constraints, invariant properties
• functions: parameterized constraints
• assertions: theorems to check, concerning system properties
• commands: run function and/or check assertion

The signatures and facts describe the structural and invariant properties of the system. The
functions describe the dynamics of the system. The model-checking is done by “executing”
the functions and assertions found in the commands section.
The commands section specifies not only the functions and assertions but also determines the
size of the search space. As Alloy is a lightweight formal language, the specifications written
in Alloy should be verified in a small state-space and then the modeler should deepen the
exploration incrementally by establishing larger search spaces. We have adopted that
approach for our work.
Alcoa, the Alloy Analyzer tool [JACKSON, D. 2002] has been used successfully for
performing automatic verification of software specifications and of protocols for distributed
systems. The Alloy analyzer is built on a SAT prover. Technically, it is a model finder
because it uses the SAT prover in order to perform an exhaustive search of configurations for
a given size of the search space. As a result, it can generate instances of models that
correspond to a specification (and hence, check that the specification has no inconsistency).
Whenever one of the constraints of the specification is violated by one of the configurations,
in the search space the system specification is considered inconsistent. In this case, the tool
generates the corresponding configuration (a counter-example of the model) that can be used
by the modeler to diagnose and correct the specification.

9.1.2 Representation of Information Objects
An Information Object (IO for short) is the equivalent to a property of the system. It captures
the type of the possible states of the observed system. An information object is characterized
by a name (N) and a set of possible states (SSIO), as shown for a hypothetic IO TypeA in
Figure 41.

Figure 41. Visual Contract symbol and Alloy specification for an Information Object

An Information Object corresponds to a signature (sig) in Alloy. Inside the IO signature,
you can specify its attributes. In this case, TypeA has three attributes.
We must include state information in order to differentiate the instances of typeA – one for
state1 and another for state2–. We must then specify two possible values for attribute
attrib3. These values are the states of this attribute. In order to create the state space in Alloy,

Chapter 9. Translating the Visual Contracts to Alloy

101

we build a generic state (attrib3StateSpace) and inherit from this state (state1,
state2). This two values of state are not exclusive. Note that we use the signature to
specify state, too.
In our case, the IO TypeB now contains state information: Two of the options to represent
the instance (object + state) information can be represented in one single diagram are shown
in Figure 42. As there are potentially many other state values in the state space of the system
(inheriting from attrib3StateSpace), we must specify clearly in the Alloy that we are only
interested in the instances that are in one of the two states (state1, state2) via the invariant of
the IO TypeB. The invariant is enclosed by the second set of brackets, and says that attrib3
can be either in state1 or state2.

TypeB

state1 state2attrib3

sig attrib3StateSpace {}
one sig state1 extends attrib3StateSpace {}
one sig state2 extends attrib3StateSpace {}

sig TypeB
{ id: Int, attrib3: one attrib3StateSpace }
{ attrib3 in (state1 + state2) }

Figure 42. Extended notation for the Information Object, and Alloy equivalent for this extended notation. State
information is included

Now we are able to differentiate the collections of instances of objet of type TypeB in each
state. Remember that the IOs represent the “casts” however the instances themselves exist
only in the SAs, drawn as unidirectional lines. All instances exist in a context, as shown in
figure 43. The system itself has to be made explicit –via the Myself IO—as instantiating
objects requires that a system exists, and that the description takes place in the context of this
system. In more practical terms, set-associations must always be drawn in order to establish
how many instances of each IO are present. Hence, in figure 43, two collections exist in the
context of this simple IT system (SA linking Myself and the IO TypeB). Multiple instances
of TypeB may exist in the context of each collection TypeB_List.
A set-association is represented in Alloy as a relation. A relation is a special kind of attribute
whose cardinality is variable. In this case, state1_roleTypeB_List. As the collection is of
type set (indicated by the “_List” suffix), no single object can be repeated in the list. This is
the situation for all represented set-associations; therefore, we specify a global invariant
(uniqueId).
Note that we have included an attribute capacity. Because almost all modeled systems
are physical systems, we should model the fact that these lists must limited by some
capacity. This is reflected in the invariant that limits the number of instances of IO TypeB.

one sig Myself {
capacity: Int,
state1List: set TypeB,
state2List: set TypeB

} {
int capacity > 0
all p: TypeB | p in state1List => p.state = state1
all p: TypeB | p in state2List => p.state = state2
int capacity >= #state1List + #state2List
no p: TypeB | p in state1List and p in state2List }

fact uniqueId{
all p,q: Person | p != q => p.id != q.id }

SystemX

*

Myself

TypeB

state1 state2

id

*
state2_roleTypeB_List

state1_roleTypeB_List

attrib3

Figure 43. SEAM notation for property definitions in the specification of a system

In the Alloy specification, we can see that the signature Myself contains its own attributes as
well as the relations that correspond to the set-associations. Because of the principle of
exclusion, the instances of TypeB that are in one state cannot be on the other simultaneously.
As a consequence, in order to guarantee the consistency of the system, each set association

Chapter 9. Translating the Visual Contracts to Alloy

102

must contain only elements in the corresponding state. This constraint is mapped in Alloy as
the first of the two invariants of the signature Myself.

9.1.3 Representing Time Statically
The Visual Contract representation, shown in figure 43, can be read as follows: in the system
(i.e. Myself), there is the knowledge of two TypeB_List that can contain multiple
instances of TypeB each; one is for the instances that are in state1 and the other for those
in state2. In summary, this diagram takes the structural invariants just like UML class
diagrams [BOOCH, G., et al] and entity-relationship diagrams [CHEN, P.].
The Alloy equivalent is the following:
module models/moduleX
open util/ordering[Time]

module models/boarding
open util/ordering[Time]
sig Time { }
sig TypeB {
id: Int
}

fact uniqueId{
all p,q: TypeB | p != q => p.id != q.id
}

one sig Myself {

capacity: Int,
state1_roleTypeB_List: set TypeB -> Time,
state2_roleTypeB_List: set TypeB -> Time

} {
int capacity > 0

 all t: Time | int capacity >= # state1_roleTypeB_List.t + # state2_roleTypeB_List.t

 all t: Time | no p: Person | p in state1_roleTypeB_List.t and p in state1_roleTypeB_List.t
}

The temporal constraints consist of a projection of IO instances in the time dimension. This
allows us to retrieve the information in vectorial form via the relational operators in Alloy.
The Alloy can be read as follows: a set of ordered time points are defined (sig Time); a set
of instances of TypeB are defined (sig TypeB) with a unique identifier (fact uniqueID).
We define also 2 lists or set-associations: state1_roleTypeB_List and
state2_roleTypeB_List. These lists include a relation between an object of TypeB and a
time point (necessary to simulate the execution sequence).
Invariants do not depend on time, so the should not vary in the time vector. Some invariants
are defined in the system: the capacity is never exceeded, and no instance of TypeB can be
in both lists at the same time. Note that there is no extension in time for the invariant
regarding the capacity.

9.1.4 Representing Time in Operations that Change Collection
Members Only

An action is required for changes to take place. Some immediate cardinality must change as
the result of state change or new instance creation (Transfer).
The introduction of actions means that there is at least two points in time to analyze: a point
in time before (precondition) and a point in time after the action (postcondition).
Figure 44 shows the SEAM visual contract for operation Init. It states that the number of
Person in state1_roleTypeB_List is set to zero, so it goes from some initial value (any,

Chapter 9. Translating the Visual Contracts to Alloy

103

symbolized by the character ‘*’) to 0. In the practice, this means that all the instances of
TypeB linked to this TypeB_List are deleted.

initAction

SystemX

[# *] --> #0

Myself

TypeB

state1 state2

id

*

state2_roleTypeB_List

state1_roleTypeB_List

attrib3

// Init needs only one time point
pred initAction(a: one Myself, post: Time)
{

no a.state1_roleTypeB_List.post
}

capacity

Figure 44. The Visual Contract of action initAction and the corresponding Alloy code

As shown in figure 44, the action is equivalent to an Alloy predicate (pred). Inside the prd
initAction we specify that no elements exist in the SA state1_roleTypeB_List at tiem post.
This point if time is a parameter of the predicate. The other one is the system (Myself).

9.1.5 Representing Time in Operations that Change the State of
the Objects

Many of the actions that take place in Information Systems can be described as composed of
two phases:

• Selecting some information
• Transforming that information

In most basic cases, the transformation is just a change of state of one or more instances. In
order to do so, the first phase, is a simple selection of instances. Among many other, some
ways of selecting instances are:

• Deselecting some information
• Input/receive selection information
• Apply select information
• Preserve the selected instance information
• Transforming that information
• Take selected instances information
• Change state of each instance to new state
• Confirm change via a message

Chapter 9. Translating the Visual Contracts to Alloy

104

actionC

Id_TypeB
<<Par In>>

#1

valid

Valid = one (TypeB.id
== Id_TypeB)

SystemX

*
Myself

state2_roleTypeB_List

TypeB

state1 state2

id

*

state1_roleTypeB_List

attrib3

capacity

Figure 45. Precondition for action actionC

Response
<<Par Out>>

#1

some_ResponseactionC

SystemX

* -> # (*+1)

Myself
state2_roleTypeB_List

TypeB

state1 state2

id

* -> # (*-1)

state1_roleTypeB_List

attrib3

capacity

Figure 46. Post-condition for action actionC

As a consequence, the whole visual contract can be created by merging the pre and post
conditions (Figure 45 and 46), as shown in Figure 47. Here we make explicit the changes
and the instances involved, in order to avoid misunderstandings.
In this case, the specification of the action ActionC has two parameters: the target system
(Myself), the identifier of the object to be processed (pid), and two points in time (pre, post).
The Alloy code corresponding to figure 47 is:
pred ActionC(pid: Int, a: one Myself, pre, post: Time) {
pre != post
// pre-condition
 one p: TypeB | pid = p.id and
 p in a.state1_roleTypeB _List.pre and

// post-condition
 one p: TypeB | pid = p.id and
 a. state2_roleTypeB _List.post = a. state2_roleTypeB _List.pre + p and
 a. state1_roleTypeB _List.post = a. state1_roleTypeB _List.pre - p
}

The Alloy code can be read as following: the pre condition is that the Id of the TypeB who
wants to Board is in the state1_roleTypeB_List. The post condition is that the Id is
now in the state2_roleTypeB _List and is no longer in the
state1_roleTypeB_List.

Chapter 9. Translating the Visual Contracts to Alloy

105

actionC

Id_TypeB
<<Par In>>

[#1] -> #0

valid

Valid = one TypeB.id
== Id_TypeB)

SystemX

[# *] -> # (*+1)
Myself

state2_roleTypeB_List

TypeB

state1 state2

id

[# *] -> # (*-1)

state1_roleTypeB_List

selected

Response
<<Par Out>>[#0] -> #1

some_Response

[aCondit
ion]

aCondition = state1_roleTypeB_List.cardinality < Myself.capacity

attrib3

capacity

Figure 47. Visual contract for action actionC. It illustrates the operators «select», «change», and «transfer».

The visual contract for actionC is shown in figure 47. The intermediate processing is kept
in the final contract in order to make the changes more understandable. Note that the
constraint regarding the aircraft capacity has become a guard for a transfer of instances. The
corresponding Alloy code is the following:
open util/ordering[Time]
sig Time { }
sig IdTypeB {}
sig attrib3StateSpace {}
one sig State2 extends attrib3StateSpace {}
one sig State1 extends attrib3StateSpace {}
sig TypeB {
 id: Int, state: attrib3StateSpace one -> Time
} { all t: Time | state.t in (State2 + State1) }
fact uniqueID { all p, q: TypeB | p != q => p.id != q.id
 all p: TypeB | all a: Myself | p.id != a.capacity }
one sig Myself { capacity: Int,
 state2_roleTypeB_List: set TypeB -> Time, state1_roleTypeB_List: set TypeB -> Time}
{ int capacity > 0
 all t: Time | all p: TypeB | p in state2_roleTypeB_List.t => p.state.t = State2
 all t: Time | all p: TypeB | p in state1_roleTypeB_List.t => p.state.t = State1
 all t : Time | int capacity >= #state2_roleTypeB_List.t + #state1_roleTypeB_List.t
 all t: Time | no p: TypeB | p in state2_roleTypeB_List.t and p in state1_roleTypeB_List.t
 all t: Time | all p: TypeB | p !in state2_roleTypeB_List.t => p in state1_roleTypeB_List.t }
pred ActionC (ps: set IdTypeB, a: one Myself, pre, post: Time) {
 pre != post
 // pre-condition
 all pid : ps | one p: TypeB | p.id = pid and p in a.state1_roleTypeB_List.pre
 // post-condition
 some psl: set TypeB | all pid: ps | one p: psl | p.id = pid and
 // state2 list increased
 a.state2_roleTypeB_List.post = a.state2_roleTypeB_List.pre + psl and
 // state1 list decreased
 a.state1_roleTypeB_List.post + psl = a.state1_roleTypeB_List.pre
}

This model can now be analyzed by the Alloy Analyzer tool [JACKSON, D. 2002]. The
modeler should then select one action or one property to be verified (we call this a scenario).
This requires writing some content in the commands section of the Alloy specification –at
the end of the specification—as explained in section 9.1.1. The following are two examples
of scenarios that can be tested in the specification shown above:

run ActionC for 7 but 2 attrib3StateSpace // Execute ActionC and verify the system is consistent in a search space

check uniqueID for 7 but 2 attrib3StateSpace // Verify this property is not violated in this search space

A scenario can be more complex. It is possible, for example, to:

Chapter 9. Translating the Visual Contracts to Alloy

106

• verify a sequence of several actions,
• verify a number of several properties simultaneously, or
• check that the system presents certain properties during the evolution (the

execution of the actions). This scenario is a mix of the two preceding ones.

When a sequence of actions is specified, it must be clear what are the inputs and outputs. In
particular, the modeler should determine what outputs from one action become the inputs of
another action. The Alloy Analyzer connects all the unconnected inputs to object instances in
the search space (undeterministic choice); these objects must only be of the same type
(information object). This guarantees the robustness of the system.
By executing scenarios that reflect the way we expect your system to behave, the modeler is
able to verify that it will indeed do so –long before final implementation—. It should be
emphasized that scenarios can be rerun at any time in the development effort, as long as the
portion of interest is syntactically legal.

9.1.6 Representing Time for Execution of Sequential VCs
The manual strategy and the original approach to translation targeted individual actions.
However, for a practical MDE approach to be feasible, the translating tool should be able to
compose a series of actions of the system under study. Interesting behaviors are seldom
composed of a single type of actions. Furthermore, the composition can take many forms; in
order to deal with complex compositions the notation must provide some operational
semantics (e.g. partial order, total order, workflow patterns, etc.). This is not the focus of this
research work, so we support only the basic AND and OR operators for sequences.
It is not possible to write an Alloy equivalent of the Visual Contract for a series of actions
without introducing the notion of time. Alloy creates and explores the tree of states that are
possible from the specification. Time enables differentiating the model instances before and
after the action executes, and can be modeled as an ordered vector. Figure 10 shows the code
modified for including time.
The approach is the following: a series of actions requires sharing points in time. This share
points correspond to some instant between the end of one (or some) action(s), and the start of
the following one(s). Then, the modeler can describe the actions and the nature of the
sequence, and demonstrate that such a sequence produces a system instance that is still valid.
As the elements required for the specification of the system are all the same (IOs, SAs,
actions, Myself), the changes remain at the level of cardinalities, as explained in chapter 6.
However, some additional runtime parameters have to be configured by the modeler because
the nature of the validation tests cannot be automatically determined by the translation
algorithm. Examples of parameters to configure are: size of the search space (number of
instances per type), sequencing of actions, kinds of properties (properties or functions) to
validate.
The Alloy Analyzer tool analyzes a state space specified by the modeler as a scenario. This
allows the modeler to find inconsistencies in the model in the specified search space.

9.1.7 The VCML Representation
We have created a XML version of the Visual Contracts that we call Visual Contract
Modeling Language (VCML). We created the VCML schema from the metamodel presented
in section 8.3.
The general mapping strategy from the graphical form of Visual Contracts and its
counterpart written in VCML is straightforward, as illustrated in figure 48. It represents a set
association, its attributes and part of the hierarchy of types.

Chapter 9. Translating the Visual Contracts to Alloy

107

The Metamodel

The XML-Schema

The Metamodel

The XML-Schema
Figure 48. Mapping between model and the corresponding XML schema

A concrete translation to XML is shown in figure 49. It represents the Visual Contract for
action Board (from the study case Passenger Control Boarding System, chapter 9) to XML.
This Visual Contract requires the use of information objects, set associations, myself,
parameters, states, and relational operators select and transfer. The translation of the transfer
operator is shown with the arrows.

9.1.8 Results
We built a Java application that parses the contracts written in VCML, validates them, and
then generates the Alloy model. This model is then fed to the Alloy Analyzer. As we did not
build a front-end capturing tool for the notation, we simulated the generation of the VCML
from the VC diagrams.
The Alloy Analyzer explores the constrained state space of instances for each object as
indicated in the commands section of the Alloy model and execute the sequence. The Alloy
Analyzer tells if any inconsistency with facts and assertions is found in this state space.
After the exploration of the state space, the Alloy analyzer can confirm whether the system
model is consistent or not. It can then be executed, in order to be validated by a stakeholder.
An example of a short execution (with only 2 points in time) is illustrated in figure 50. The
modeler or any other stakeholder can then validate the behavior of the system, if the
behavior represented via these snapshots satisfies her needs.

Chapter 9. Translating the Visual Contracts to Alloy

108

Figure 49. Mapping between Visual Contract for action Board and the corresponding VCML output.

Figure 50. Results of simulating the action Board in the Alloy analyzer. At Time0 the passengers (Person0,

Person1, and Person3) have already checked-in. At Time1 two of them (Person0, Person1) effectively embark on
the plane. Capacity of the plane is 3

Chapter 9. Translating the Visual Contracts to Alloy

109

9.2 Summary
We developed a translation strategy, a translation tool and a set of heuristics in order to
verify and validate systems specified with Visual Contracts in constrained search spaces.
The strategy to achieve the translation from Visual Contracts to Alloy was successful for
several case studies. The semantics of our visual contracts is precisely defined in the first-
order language Alloy[JACKSON, D. 2002]. The tools that support Alloy also make possible
the illustration of what the service specification represents. This is done by generating
instance models that are compatible with the system specification (verification). As a
consequence, the model can be more useful because the modeler can see what the
specification means, hence she can make sure that the system specification corresponds to
their needs (validation). In addition, the validation takes place at a high level of abstraction.
Our tool currently treats only a subset of the elements used in Visual Contracts; it satisfies
most of the needs of the case studies (see chapter 9). The tool we developed to translate
Visual Contracts to Alloy uses the metamodel presented in Chapter 8 in order to guarantee
the extensibility and flexibility of the solution.

110

111

PART III – Praxis of Visual Contracts
In this part, we apply the Visual Contracts to concrete cases, and discuss
further the three dimensions of the notation (syntax, semantics and pragmatics)
from the viewpoint of a practitioner.

In Chapter 10 we present a set of case studies. Each example illustrates
different aspects of our approach.

112

Chapter 10. Case Studies

113

10 Case Studies
“A good knowledge representation language should combine the advantages of natural languages

and formal languages. It should be expressive and concise so that we can say everything we need to
say succinctly. It should be unambiguous and independent of context, so that we say today will still be

interpretable tomorrow. And it should be effective in the sense that there should be an inference
procedure that can make new inferences from sentences in our language… however, it is also

important not to get too concerned with the specifics of logical notation… The main thing to keep
hold of is how a precise, formal language can represent knowledge, and how mechanical procedures
can operate on expressions in the language to perform reasoning. The fundamental concepts remain

the same no matter what language is being used to represent the knowledge.”
Russell & Norvig – Artificial Intelligence [RUSSELL, S. and NORVIG, P. 1995]

In this chapter we illustrate the use of Visual Contracts via a set of examples of system
specifications. These examples illustrate the use of Visual Contracts –from their design to
formal reasoning— in different domains.
The first example, the specification of a “User login” module, introduces:

• The use of instantaneous cardinality in set-associations.
• The basic reasoning that can be done with set-associations.

The second example, the “Plan Boarding Control System”, shows in detail:

• The specification of a system whose behavior is composed by three actions.
• The concrete semantics of Visual Contracts. As the Visual Contracts are

accompanied by the corresponding translation in Alloy language.

The third case study, the specification of an IT system for a video rental company, illustrates:

• The composition of actions (and of Visual Contracts).
• The successful scenarios (for each action) and the resulting Visual Contracts.
• The unsuccessful scenarios (for each action) and the corresponding Visual

Contracts.
• The composition of actions (and of the corresponding Visual Contracts) for both

successful and unsuccessful scenarios.
• The simplicity of the specification of compensation measures as a counter-

contract of the action.

The fourth example, the “Bookstore”, shows:

• The way to apply the Visual Contracts to a system specification that is not
exclusively IT-based.

• The composition of actions (and of Visual Contracts).
• The way to illustrate how different systems collaborate and exchange

information.

The final case study, the “Job Yellow Pages Website”, allows us to

• illustrate the more fundamental aspects of set-associations.
• demonstrate the differences among contexts of existence (i.e. reference and

concrete instances).

We consider that the diversity in the selection of the study cases give us confidence about the
pertinence of our approach for system specification.

Chapter 10. Case Studies

114

10.1 Example: A User Login
Set-associations are a fundamental notion for the creation of Visual Contracts. They are
explained in detail in Chapter 7. Set-associations are declarative specifications of collections
and of their relationships.
The most powerful feature of specifications written using Visual Contracts is that its
declarative semantics avoids the need for loops and other forms of flow control that are
required in operational semantics. This example will illustrate how to reason about loops and
disjunctive loops for system modeling.
This example consists of a simple login action. The user must enter a valid Id. The user has a
maximum of 3 attempts to succeed entering a valid Id.
We will first show the case where the user will fail logging in:

• after the first failed attempt, the system will not generate any definitive response.
In this case, one instance of Id_Person that is nonValid is represented. This is
shown in fig. 51.

• a default “try again” response may be sent to the user. This has not been
represented in figure 51 because it was not specified.

Login

LoginSystem Myself

Id_Person <<Par_In>>

valid nonValid
0

1

Response <<Par_Out>>

Accept Reject

#0#0

Figure 51. Logging action after a first failed attempt

• After the second failed attempt, the system will not generate any definitive
response either. In this case, two instances of Id_Person that are nonValid
are represented. This is shown in figure 52.

Login

LoginSystem Myself

Id_Person <<Par_In>>

valid nonValid
0

2

Response <<Par_Out>>

Accept Reject

#0#0

Figure 52. Logging action after a second failed attempt

• After the third failed attempt, the system will arrive to the situation described in
figure 53.

Chapter 10. Case Studies

115

Login

LoginSystem Myself

Id_Person <<Par_In>>

valid nonValid
0

3

Response <<Par_Out>>

Accept Reject

#0#0

Figure 53. Logging action after a third, final failed attempt

• Next, the action will finish by generating one instance of Response of type
Reject. This is shown in figure 54.

Login

LoginSystem Myself

Id_Person <<Par_In>>

valid nonValid
0

3

Response <<Par_Out>>

Accept Reject

#1#0

Figure 54. Logging action finished after three attempts. A response is generated.

In summary, the previous situations will produce the Visual Contract shown in figure 55.
The conditions on both input parameters will be fired, and this will trigger the LogIn action.
The KO predicate will then hold true. On the postcondition side, the clauses that contain the
KO predicate will then fire. In this case, this means that the output parameter Response of
type Reject will be given off.

Login

LoginSystem Myself

Id_Person <<Par_In>>

valid nonValid
[# 0:KO]

[# 3:KO]

Response <<Par_Out>>

Accept Reject

[KO:#0->#1]

Figure 55. Visual Contract for failed logging action

Let us consider now the scenario case where the user will succeed logging in:
• After the first successful attempt, the action will count one instance of

Id_Person that is Valid. If the action has not received more than 2 failed
attempts, the successful attempt will make the OK predicate true and the action
will be triggered. This will fire the clauses containing OK on the Visual Contract.
In this case, the definitive Response Accept will be obtained. This is shown in
fig. 56.

Chapter 10. Case Studies

116

Login

LoginSystem

[#1:OK]

Myself

Id_Person <<Par_In>>

valid nonValid
[# 0..2:OK]

[OK:#0->#1]

Response <<Par_Out>>

Accept Reject

Figure 56. Visual Contract for successful logging action

By merging together the VCs for the failed and successful logging attempts, we produce the
Visual Contract in figure 57.

Login

LoginSystem

[#1:OK]

Myself

Id_Person <<Par_In>>

valid nonValid
[# 0..2:OK]

[# 0:KO]

[# 3:KO]

[OK:#0->#1]

Response <<Par_Out>>

Accept Reject

[KO:#0->#1]

Figure 57. Aggregate Visual Contract for successful & failed logging action

As Dijkstra illustrates in [DIJKSTRA, E.W. 1976], loops are actually abstractions for a process
that has been repeated for different instances.
This way of specifying the actions let the modeler room to later add details. The
identification for a user (Id_Person) can be simple (e.g. a simple word, a magnetic card, a
barcode, a digital certificate, the fingerprint, among many others) or composite (e.g. a
combination of username and password, or any combination of the simple Ids we mentioned
above).
Besides, the criteria for validation are also decoupled from the specification model. The
model can then introduce rules for validation that can be as complex as required, without
introducing complexity onto the Visual Contract specification.

10.2 Example: the Plane Boarding Control (PlaBoCo) System
This example illustrates the complete modeling and validation procedure for an IT system, as
shown in figure 56. We explain the complete process of going from the specification of the
invariants of the system, of the Visual Contracts for the services (actions) it renders, to the
final translation to Alloy that makes possible to verify and validate the models.
First we introduce the necessary information objects (Section 10.2.1). We then define the
operations Init and CheckIn (Section 10.2.2) and then Board (Section 10.2.3). The behavior
of the system in abnormal conditions is not shown in this paper.
For each Visual Contract that we present, we define the Alloy equivalent. Alloy is a light
weight specification language that we use to define the semantics of our notation.

10.2.1 Definition of Information Objects
For sake of simplicity, the system PlaBoCo knows one Plane only. In our representation,
shown in figure 58, can be read as follows: in the system (i.e. Myself), there is the
knowledge of one Plane with a capacity. This Plane has two passenger_List that can

Chapter 10. Case Studies

117

contain multiple passengers each; one is for the passengers that have checked-in
(offBoard) and the other one for the ones that have effectively boarded the Plane
(onBoard).

PlaBoCo

*

capacity

Plane

Myself

offBoard_passenger_List

#1

Person

onBoard offBoard

id

*

onBoard_passenger_List

Boarded

Figure 58. SEAM notation for data definitions for the PlaBoCo

The Alloy equivalent is the following:
module models/boarding
open util/ordering[Time]

module models/boarding
open util/ordering[Time]
sig Time { }
sig Person {
id: Int
}

fact uniqueId{
all p,q: Person | p != q => p.id != q.id
}

one sig Plane {
capacity: Int,
onboard_passenger_List:
set Person -> Time,
offboard_passenger_List:
set Person -> Time
} {
int capacity > 0
 all t: Time | int capacity >= #onboard_passenger_List.t + #offboard_passenger_List.t

 all t: Time | no p: Person | p in onboard_passenger_List.t and p in offboard_passenger_List.t
}

The Alloy can be read as follows: a set of ordered time points are defined (sig Time); a set
of Person are defined (sig Person) with a unique identifier (fact uniqueID). We define
also a Plane which has a capacity and 2 lists: onboard_Passenger_List and
offBoard_Passenger_List. These lists include a relation between a person and a time
point (necessary to simulate the execution sequence). Some invariants are defined in the
plane: the capacity is never exceeded, and nobody can be in both lists at the same time.

10.2.2 Operations Init & CheckIn
Figure 59 shows the SEAM visual contract for operation Init. It states that the number of
Person in both passenger_List (offBoard, onBoard) is set to zero.

Chapter 10. Case Studies

118

Init

PlaBoCo

* --> #0

capacity

Plane

Myself

#1

Person

onBoard offBoard

id

* --> #0
offBoard_passenger_List

onBoard_passenger_List

Boarded

Figure 59. The SEAM contract of Init: the cardinality of the passenger_List SA changes

The cardinality of each set-association that links passenger_List to Person goes from
some initial value (any, symbolized by the character ‘*’) to 0. In the practice, this means that
all the instances of Person linked to either the offBoard_passenger_List or to
onBoard_passenger_List are erased.
The action checkIn, not presented in this paper, assigns instances of Person to the
offBoard_passenger_List.

10.2.3 Operation Board
The specification of action Board is the following: “The plane preconditions are: a) an input
parameter represents the identifier of the person that desires to go on board, b) this person
has already checked-in, and c) the number of people onboard has not reached the maximum
capacity of the plane. The post condition is that the person is now onboard. In addition, the
system emits a message confirming the entry of the person into the plane”.
Before creating the Visual Contract for action Board, we illustrate the action by making two
snapshots: one before and one after the operation Board. The situation would be as shown in
figures 60 and Figure 61, respectively.
In the precondition, there is originally an instance of Id_Person that is considered as valid.
The valid condition is defined by a constraint in the diagram: the Id_Person should
correspond to the id of only one Person that has already checked-in (she is in the
offBoard_ passenger_List).
During the action Board, the parameter Id_Person is validated and the corresponding
instance of Person in the offBoard_passenger_List is referenced by the action via the
SA selected.
In the post condition, Figure 61, the selected instance of Person will be transferred to the
onBoard_passenger_List; the number of instances of IO Person that are on the
onBoard_passenger_List shall increment by one (supposedly the one that has been
admitted in the precondition); the cardinality change in the corresponding set-association
symbolizes this. Simultaneously, the offBoard_passenger_List is decremented by one.
Finally, a response message is emitted, indicating the success of the operation (represented
by the set-association Greetings_Response).

Chapter 10. Case Studies

119

Board

Id_Person
<<Par In>>

#1

valid

Valid = one (Persoin.id
== Id_Person)

PlaBoCo

*

capacity

Plane

Myself

offBoard_passenger_List

#1

Person

onBoard offBoard

id

*

onBoard_passenger_List

Boarded

Figure 60. Precondition for action Board

Response
<<Par Out>>

#1

Greetings_ResponseBoard

PlaBoCo

* -> # (*+1)

capacity

Plane

Myself

offBoard_passenger_List

#1

Person

onBoard offBoard

id

* -> # (*-1)

onBoard_passenger_List

Boarded

Figure 61. Post condition of action Board

As a consequence, the whole visual contract can be created by merging the pre and post
conditions (Figures 60 and 61), as shown in Figure 62. Here we make explicit the changes
and the instances involved, in order to avoid misunderstandings.
The instance of the offBoard_passenger_List that corresponds to the Id_Person is
represented by the SA selected, that exists in the context of action Board. Remark that this
temporary information does appear neither in the pre nor in the post condition.
Notice also that the constraint regarding the Plane capacity has become a guard for a
transfer of the instance selected of IO Person from offBoard_passenger_List onto the
onBoard_passenger_List. This happens because in our visual contracts, conditions can
only be expressed in relations with an action, and cannot be taken just as structural axioms,
as it is done in the Alloy specification.
The Figure 62 illustrates the evolution of state of the IT system during the contract
execution. It is the result of the execution of the Alloy code presented below. It shows a
scenario where the plane has two people (Person0, Person1) in the
offBoard_passenger_List before the action execution (at time Time0). One passenger
(Person1) actually boards the plane, as can be seen in the nodes that represent the state after
the action execution (at time Time1). The person Person0 has changed to the
onBoard_passenger_List.
The Alloy code corresponding to figure 62 is:
pred Board(pid: Int, a: one Plane, pre, post: Time) {
pre != post
// pre-condition
 one p: Person | pid = p.id and
 p in a.offboard_passenger_List.pre and
// post-condition
 one p: Person | pid = p.id and
 a.onboard_passenger_List.post = a.onboard_passenger_List.pre + p and
 a.offboard_passenger_List.post = a.offboard_passenger_List.pre - p
}

Chapter 10. Case Studies

120

The Alloy code can be read as following: the pre condition is that the Id of the Person who
wants to Board is in the offBoard_passenger_List. The post condition is that the Id is
now in the onBoard_passenger_List and is no longer in the
offBoard_passenger_List.

Board

Id_Person
<<Par In>>

#1 -> #0

valid

Valid = one (Persoin.id
== Id_Person)

PlaBoCo

* -> # (*+1)

capacity

Plane

Myself

offBoard_passenger_List

#1

Person

onBoard offBoard

id

* -> # (*-1)

onBoard_passenger_List

selected

Response
<<Par Out>>#0 -> #1

Greetings_Response

[notFull]

notFull = onBoard_passenger_List.cardinality < Aircraft.capacity

Boarded

Figure 62. Visual Contract for action Board. It illustrates the «change» operator

Now we are able to differentiate the lists of passengers: one for onBoard, and another for
offBoard ones. IOs represent the “casts” however the instances themselves exist only in the
SAs, drawn as unidirectional lines. All instances exist in a context, as shown in figure 63.
The system itself has to be made explicit –via the Myself IO—because set-associations
must always be drawn in order to establish how many instances of each IO are present. Thus,
one y exist in the context of this simple IT system (SA linking Myself and Plane IOs has
cardinality #1); 2 Person (passenger) lists exist in the context of a single Plane (i.e.
onBoard_passenger_List and offBoard_passenger_List). Multiple Persons may
exist in the context of each Passenger_List. As a Plane is a physical system, we should
reason by taking into consideration the fact these lists must limited by the capacity of each
Plane. We have simplified the problem for sake of clarity.

one sig Plane {
capacity: Int,
onboardList: set Person,
offboardList: set Person

} {
int capacity > 0
all p: Person | p in onboardList => p.state = OnBoard
all p: Person | p in offboardList => p.state = OffBoard
int capacity >= #onboardList + #offboardList
no p: Person | p in onboardList and p in offboardList }

PlaBoco

*
capacity

Plane

Myself

#1

Person

onBoard offBoard

id

*
offBoard_passenger_List

onBoard_passenger_List

Boarded

Figure 63. SEAM notation for property definitions in the PlaBoCo specification

The summary of the complete process, from specification to validation, is illustrated in
figure 64. Step 1 is the generation of the Visual Contracts, which will be processed –in step
2— in the form of VCML, to generate the Alloy model that will be finally verified and
validated in step 3. We included borders in steps 2 and 3 of Figure 64 that are useful to find
the correspondence among the VCML model and the Alloy model. This correspondence is,
however, non-linear and some details of the translation are due to consistency rules or rules
about collections. Understanding the whole translation process can be understood only from
a detailed study of the primitives (explained in Chapter 6), the operators (explained in
Chapter 7), and the rules (explained in Chapter 8) of Visual Contracts.

Chapter 10. Case Studies

121

Figure 64. Complete translation example for action Init. From left to right: Visual Contract, VCML, and Alloy

model. The border lines indicate the correspondence among the models of steps 2 and 3.

Chapter 10. Case Studies

122

10.3 VideoStore PORT(Point-Of-Rent Terminal)
This example illustrates the use of composite actions in specifications. From the definition in
section 7.2, composite descriptions are non-transactional. This means that compensation
measures should be designed. We will also develop a whole VC in order to compare the two
approaches and asses their complexity and usability.
The PORT system will be used by a store that rents videos. Our customer wants us to specify
the new information system terminal (PORT), that will allow automate the renting process.
A brief description of the system is the following:
A (valid) user can use the PORT in order to rent one or more (valid) videos. Once the
complete list of (valid) videos is entered into the PORT, the user can either confirm (commit)
or cancel the rental operation.
A number of assumptions are done, namely:

• A user is a member, and it has therefore an identification as a member
• Each video also has a video identification signature, and it is normally accessible

to users.
• Each loan corresponds to one renting operation made by a single user. However,

a user may loan several videos in a single loan, and also make several loans (of
several videos each) in a series.

Loan

Video

free

committedonLoad

memberList

PORT

taken

Myself

id

id

Member
Id
nr_Loans

committedLoan_List

free_Video_List

currentVideo

currentMember

taken_Video_List

#1

#*

#*

#*

#*

#* #*

LIMIT_nr_Loans

Figure 65. Visual Contract domain model

From the point of view of the domain model, the PORT system can be understood as a series
of lists: one for the members, two for the videos, and one for the loans. The members can be
either active or inactive (suspended, out-of-the-country, etc.). The videos can be available
(on-the-shelf) or unavailable (taken by a member during the rental operation, or may be in
maintenance). The loans are active (either already done—committed—or in the process of
renting –onLoad—) or archived (loans done in the past, stored for legal reasons or for
creating statistics). These different sub-types and states and the corresponding lists are
shown in the domain model (figure 65).

Chapter 10. Case Studies

123

Note that some fields have been added to the IOs Myself and Member. As we want to
guarantee a faire use of videos, a rule will be introduced in the system in order to limit the
number of videos rented per member at any given point of time. This fact is reflected by the
constant LIMIT_nr_loans in Myself, whereas the current amount of videos rented by a
Member is represented as nr_Loans.

10.3.1 Successful Scenario
In this section we will explain what happens when the process finishes successfully. Figure
66 represents the composite behavior of this scenario. Each action in the diagram
corresponds to a Visual Contract, as explained in section 6.3.1. Note the difference among
information objects that are perceived internally and those that are exchanged with the user
(environment).

Figure 66. Composite Visual Contract for a successful loan made using the PORT system

Loan Creation
The creation of a loan is implicit in this composite action. Therefore, it is not shown in figure
66. It is a simple action but one that establishes the context that subsequent actions will use.
On the other hand, a single Create_OneLoan action is not meaningful by itself. Figure 67
illustrates action Create_OneLoan.

Figure 67. Visual Contract for action Create_OneLoan

Chapter 10. Case Studies

124

Validation of Member
Now we can proceed to validate member information via the Check_OneMember action,
shown in figure 68. In this case, the system looks for Member_Id in the list of members
Member_List. If it is found –true in this case, because we analyze the successful case—then
the loan currentLoan will create a reference to this member (currentMember).
The creation of a reference is essential, as it introduces the semantics consequences that are
appropriate for this kind of binding. In this case, the deletion of the loan currentLoan will
not force the system to delete the corresponding member currentMember.
Once the member has been validated, the PORT will emit the corresponding message Msg.
Validation of Videos
Now we can proceed to validate video information via the Check_MultipleVideo action,
shown as the Visual Contract of figure 61. In this case, the system looks for each Video_Id
in the list of free videos freeVideo_List. If it is found –again true, because we analyze
the successful case—then the loan will create a reference to each of the free videos. The
PORT will then change their state to taken, in order to avoid any collision problem with other
users attempting to rent the same videos.

Figure 68. Visual Contract for operation Check_OneMember

The creation of a reference to each video is essential, as it introduces the semantics
consequences that are appropriate for this kind of binding. In this case, the deletion of the
Loan currentLoan will not force the system to delete the corresponding videos in the list
currentVideo_List.
Once the whole list of videos has been validated, the PORT will emit the corresponding
message Msg.

Committing the preceding actions
The commit action is a simple pattern (explained in Section 7.3). It is useful for
confirming/cancelling the action that is taking place. For the sake of space, we will not
include it in this description. However, the commit pattern is often not displayed isolated but
in the context of the action itself, in order to be meaningful.

Visual Contract as a Whole vs. Visual Contract as a Composite
The summary of the actions in figure 66 can also be shown in the form of a Visual Contract.
Figure 69 shows the summarized VC that was obtained from the fusion of figure 67 to 68
(plus the commit pattern).

Chapter 10. Case Studies

125

Figure 69. Visual Contract for operation Check_MultipleVideo

It is clear that this is a declarative artifact that contrasts with the operational model of figure
66.

Figure 70. Resulting Visual Contract for the set of operators Create_OneLoan, Check_OneMember,

Check_MultipleVideo, and Commit

Chapter 10. Case Studies

126

10.3.2 Non-Successful Scenarios
Figure 71 presents the composition of Visual Contracts required to deal with the different
non-successful scenarios. Note that the symmetry is very natural, according to our design
goals for the notation. This will help in dealing with the complexity of the task.
The event Env.Cancel corresponds to the input of canceling events from the environment.

Figure 71. Composite Visual Contract for the PORT system, including error handling and compensation

measures

Canceling Loan Creation
The cancellation of the creation of a loan is the simplest canceling operation. It only erases
the reference to the currentLoan, as shown in figure 72. This is the only compensation
measure that generates a message, as it will always execute as the last action in the sequence
(see figure 71).

Chapter 10. Case Studies

127

Figure 72. Visual Contract for operation Cancel_Create_OneLoan

Cancel Validation of Member
In the case of the operation Cancel_Check_OneMember, shown in figure 73, the system
erases the member currentMember from the loan currentLoan. This corresponds to the
semantic consequences that are appropriate for this kind of binding.

Figure 73. Visual Contract for action Cancel_Check_OneMember

Cancel Validation of Videos
If the cancel action takes place after the video information has been validated then the
operation Cancel_Check_MultipleVideo must be executed. This canceling action is
shown in the Visual Contract of figure 66. In this case, the system takes each Video_Id in
the list currentVideo_List and put its back in the list of free videos freeVideo_List.
This will make the videos available once again for other members, minimizing collisions and
unnecessary locking problems with other users attempting to rent the same videos.

Chapter 10. Case Studies

128

Figure 74. Visual Contract for operation Cancel_Check_MultipleVideo

Canceling the Commit of the Preceding Actions
Because the commit action is committing, it cannot include a cancel event. It is, thus,
omitted from this description.
The contract that summarizes the various, specific cancel actions is the following:

Figure 75. Visual Contract for the composite action of figures 64 to 66

If we splice all the different scenarios, according to the ordering semantics of figure 63, we
obtain the VC in fig. 76.

Chapter 10. Case Studies

129

Figure 76. Global Visual Contract for successful and unsuccessful scenarios of the PORT system. It was

extracted from figures 70 and 75

Note that the canceling action executed at last (Cancel_Create_OneLoan) is responsible
for emitting the sole message Msg.

10.4 BookStore
This example illustrates the use of the Visual Contract notation in the broader context of
SEAM methodology. Our goal is to demonstrate that the Visual Contracts can address the
needs of the SEAM models for businesses and organizations.
The figure 77 shows the Bookstore and its customer collaborating in order to achieve a
joint action SaleAction. Bookstore and Customer are working objects. Working
objects represent physical system, as compared to information objects, that model
information about the properties of the system. The roles aSeller and aBuyer are typical
of supply chains. Actually, these roles will be distributed along the supply chain, and every
supplier (aSeller) is also a customer (aBuyer) of the preceding link on the chain.

Figure 77. SEAM notation for a sale operation.

The details of the information objects required to collaborate in the saleAction required
are shown in figure 78.

Chapter 10. Case Studies

130

Figure 78. SEAM notation for a sale operation, expanded with the domain models for each working object

This configuration corresponds to the Alloy model shown below:
module bookstoremarket
open util/ordering[Time]

sig Time {}
sig String {}

sig Book {
 id: String,
 price: Int
}

fact uniqueID {
 all b: Book | int (b.price) > 0
 all b1, b2 : Book | b1 != b2 <=> b1.id != b2.id
}

lone sig BookStore {
 catalog: Book set -> Time,
 cash: Int one -> Time
}

lone sig Buyer {
 book: Book lone -> Time,
 money: Int one -> Time }

In order to make more explicit the way the joint action SaleAction takes place, it is
important to establish the preconditions and postconditions. As a first step in that direction,
we develop the informal Visual Contract displayed in figure 79.

Figure 79. Informal Visual Contract for the operation saleAction. Ad hoc operators are used to link information

objects that are exchanged.

In order to formalize the notation, we introduce two transfer operators, as shown in the figure
80. The accompanying clauses contain the predicates that should be satisfied in order for this
contract to succeed.

Chapter 10. Case Studies

131

Figure 80. Visual Contract for the operation saleAction. The transfer among the two systems is shown explicitly

As the action saleAction is still seen as a single action, the contract is apparently
simplified. However, the expression of the states (pre- and postconditions) are more
complex. The Alloy model can be written as follows:

pred saleAction (b: one Book, store: one BookStore, buyer: one Buyer, pre, post: Time) {
 // invariant
 post = next(pre)

 // pre-condition
 no buyer.book.pre
 b in store.catalog.pre
 #store.catalog.pre > 1
 int buyer.money.pre >= int b.price
 int store.cash.pre >= 0

 //post-condition
 b = buyer.book.post
 store.catalog.pre = store.catalog.post + b
 int (buyer.money.post) = int (buyer.money.pre) - int (b.price)
 int (store.cash.post) = int (store.cash.pre) + int (b.price)
}

Let us now describe the role of each one of the working objects in the context of the
saleAction. In order to proceed, the Visual contract for each one of the working objects is
developed. This minimizes the complexity of the predicates that describe the system while
augmenting a bit the complexity of the composition. The resulting VCs are shown in the
figure 81. The dotted lines represent the causality among messages.

Figure 81. Visual Contract for the operation saleAction. The changes are local and the transfer is done via

connectors among the parameters that the systems exchange.

In this case, the Alloy Model is the following:
pred sellAction (b: one Book, store: one BookStore,
 buyer_book: Book lone -> Time, buyer_money: Int one -> Time, pre, post: Time) {
 // invariant
 post = next(pre)

Chapter 10. Case Studies

132

 // pre-condition
 no buyer_book.pre
 b in store.catalog.pre
 #store.catalog.pre > 1
 int buyer_money.pre >= int b.price
 int store.cash.pre >= 0

 //post-condition
 b = buyer_book.post
 store.catalog.pre = store.catalog.post + b
 int (buyer_money.post) = int (buyer_money.pre) - int (b.price)
 int (store.cash.post) = int (store.cash.pre) + int (b.price)
}

pred buyAction (b: one Book, store_catalog: Book set -> Time, store_cash: Int one -> Time,
 buyer: one Buyer, pre, post: Time) {
 // invariant
 post = next(pre)

 // pre-condition
 no buyer.book.pre
 b in store_catalog.pre
 #store_catalog.pre > 1
 int buyer.money.pre >= int b.price
 int store_cash.pre >= 0

 //post-condition
 b = buyer.book.post
 store_catalog.pre = store_catalog.post + b
 int (buyer.money.post) = int (buyer.money.pre) - int (b.price)
 int (store_cash.post) = int (store_cash.pre) + int (b.price)
}

10.5 Example: the Job Yellow Pages Website
This example has been extracted from [WEGMANN, A. 1998]. The main concept is a job
search website, where users introduce information about candidates and about job postings.
On one hand, the system presents the most appropriate candidates for a job posting that a
company introduces. On the other hand, the system displays to candidates the job postings
that better match their profile.
We do not discuss the details of how the system works (the actions or services the system
delivers). In this case, our goal is to show how the conceptual modeling of the system can be
improved easily by introducing the semantics of the notation of Visual Contracts.
A first draft of the system domain model made with UML gives us the class diagram shown
in figure 82.

Figure 82. Class diagram for JobYellowPages

If we do a literal translation to the notation of Visual Contracts, we obtain:

Chapter 10. Case Studies

133

Figure 83. First interpretation of class diagram in terms of Visual Contracts for JobYellowPages

As matching are successful only when the skills possessed by the candidates fits in the skills
required by the job posting, we can use an ad hoc representation for the sets, as follows:

Figure 84. Set-theoretical ad hoc interpretation of set-associations of figure 75

Here, the condition that must be satisfied is:

 Ssx ∩ Sc ∩ Sj ≠ 0 (14)

where:
- Sc: all the skills that the candidate possesses
- Sj: all the skills that the job description requires
- Ssk: all the skills that the system might possibly know

However, in this particular case, it is clear that all the skills that the candidate possesses but
the system does not know are not useful for doing a job-candidate match; the same can be
said about the job description skills. Therefore, it is required that all the skills are known by
the system. In other words,

 Sw ⊆ Ssx ∧ Sj ⊆ Ssx (15)

is true, making equation 14 automatically true. Besides, this equation makes other sets
appearing in figure 76 irrelevant. In other words,

 Ssx ∩ Sc ∩ Sj ≡ Ssx ∩ Sc ∩ Sj ≡ Ssx ∩ Sc ∩ Sj ≡ {} (16)

Note that this information cannot be easily extracted from the class diagram in Fig. 74. It
could eventually be added via a note or another diagram where this constraint can be added,
but it is not immediately available to the modeler, and this may generate mistakes.
Furthermore, in the UML class diagram semantics are rather loose, For instance, we may
consider that the skills are erased from the system whenever the candidate or the job
description are erased. By making explicit that the owner of the description is neither the
candidate nor the job description, we ensure that the system will not arrive to inconsistent
states, where referential integrity rules are violated.

Chapter 10. Case Studies

134

We apply here the design heuristics for visual contracts (see Section 7.3), and differentiate
the actual instances from the references to those instances. This makes the owner explicit.
The final domain model created using Visual Contract notation is shown in figure 85.

JobYellowPages Myself

JobPosting

Skill

Candidate 1..*
1..*

0..* 0..*

Figure 85. Correct modeling of structural model of JobYellowPages using the Visual Contracts notation

Now the modeler should be able to proceed to the specification of the actions.

10.6 Summary
In this chapter we demonstrated –in a practical fashion—how Visual Contracts are a tool that
allows for specifying systems and validating them, even from the very first drafts. In each
case, we were able to express a design and to take advantage of the formal reasoning that the
semantics of Visual Contracts provide to modelers.
The diversity of the study cases allowed us to illustrate many aspects of the syntax and
semantics in practice. We also used several heuristics and patterns. In addition, in two cases
we went through the complete process –from conception to validation and verification—
using the strategy presented in chapter 8.
The application of Visual Contracts for modeling systems that range from software systems
to organizations and supply chains, illustrate the potential impact of this specification
artifact.
With the examples, we demonstrated that the Visual Contract can be used in different
domains, for IT and non-IT systems, or just as a reasoning tool to better understand the
problem at hand.

135

PART IV – Closing Thoughts

136

Chapter 11. Conclusions

137

11 Conclusions
In this thesis we sought to improve the state of the art of modeling system specifications, in
particular in IT systems. We that current methods propose diagrammatic and textual
specification artifacts, and that the composition of these specification artifacts permits
creating models of complex systems. However, the most popular of these methods (i.e.
UML) separates the different aspects of the specification (i.e. behavior, structure, state and
constraints) into different diagrams, making it difficult for modelers to build a holistic
understanding of the system.

We proposed a specification artifact called visual contract that exhibits the following main
features:

• Graphical / Visual / Diagrammatic
• Compatible with formal methods
• System-centric

The notation was formalized using Alloy and it enables the verification of system
specifications. We see this as a necessary component for MDE.
Visual contracts are partially based on the theories developed by Prof. Wegmann’s group
and embodied in the Systemic Enterprise Architecture Methodology (SEAM) [WEGMANN,
A. 2003]. SEAM is itself based on General Systems Thinking [WEINBERG, G. 2001]and the
Living Systems Theory [MILLER, J.G. 1995].
The specific goal of our work is to create system specifications that describe in a visual way
the four aspects (i.e., structural, behavioral –including communication and synchronization
aspects—, and constraints) on a single diagram. This is a complementary approach to the
traditional, analytic one, and we are able to express features that are very complex using
notations like UML.
One of the goals we had was to create a comprehensible notation for the specification
artifact. By using a minimum of elements, and by creating a way to represent instances and
collections of instances in a compact form, we are able to express Visual Contracts for the
actions of a system.
Accordingly, by being able to specify how the collections of instances change via the
executions of the actions of a system, we are able to model the structural changes that
happen in the system. This is a meaningful result, as cardinalities are normally used in
specifications only as restrictions in the form of invariants. In this case, we can use
cardinalities to show the dynamics of the system: how the system is built, and how it evolves
through the time.
This modeling of change is also explicit. The causality is represented via the change and
transfer operators. The change operator indicates where the change takes place: the
collection (set-association), and the nature of the change—i.e. creation, change of state,
deletion—, whereas the transfer operator makes explicit the causality —origin, destination
and enabling condition— of that cardinality change.
The notation for Visual Contracts facilitates the task of the modeler when compared to the
direct use of formal methods. Its visual notation avoids the burden of building high-level
logical constructions to specify systems; the inherent complexity of such construction has
been pointed out as the main limitation for a wider adoption of the formal methods. In
addition, the possibility to perform verifications of the system specification without requiring
a full-fledged model is also a major contribution of the approach.

Chapter 11. Conclusions

138

11.1 Limitations of Visual Contracts
The use of Visual Contracts for rule-based systems, potentially with many branches of
behavior is not recommended. The select operator supports the use of complex rules, but the
verification is not possible, because Alloy does not support any longer the instantiation as
the first version did. This means that it is not possible to model accurately the behavior of
such systems. If the rules do not map at the inside of the Visual Contract but at the
composition level, this requires special operational semantics what we do not provide in this
research work.
The modeling of information objects can deal with potentially highly-complex objects.
Nevertheless, the modeling of objects with many attributes is not encouraged, because of the
complexity of the resulting models. This is a common issue in diagrammatic approaches, as
seen in Chapter 4.
The modeling of numerical values is not directly supported. Should the modeler need
numerical values, she has to use the basic integer type. It is the only one currently supported
by the model-checking algorithms for Alloy. The use of special types is discouraged as the
ordering relationships have to be established, and this will make the specification complex
and cumbersome to maintain.
The modeling of pure computation, as discussed in Chapter 6, is more efficient with
algorithms. No graphical counterpart can compete against the efficiency of algorithms.

11.2 Future Work
We have explored the initial path to the creation of an alternate representation using a matrix
to represent a system. The elements of the matrix would be the cardinalities, and some non-
linear operators, analogous to the Karnaugh’s maps used for Boolean logic.
The matrix representation would enable a block-oriented representation of the actions of the
system. This would permit representing contracts in the form of blocks that are similar to
transfer functions. This could eventually lead to a new ways of representing information
systems, for example.
Another aspect that can be further developed is the semantics for the composition of
behavior. Composition requires the creation of operational semantics that complement our
declarative approach.
As Visual Contracts illustrate what is possible, we consider the specification of Anti-
contracts might be a useful artifact to build more complete specifications. Anti-contracts are
particularly interesting as a complement to VCs for building rule-based systems.
The representation of time is limited to the connection of actions. However, by incorporating
model checkers that permit instantiation of the time points, the implementation of a modal
logic would be feasible. As explained in the metamodel (Chapter 7), the temporal elements
of the notation would allow the introduction of delayed processing and of temporal triggers.
As discussed in 11.1, the lack of an instantiation mechanism in Alloy precludes this
possibility. Nonetheless, this is an interesting feature to have for many scenarios.
The usability of the notation has not been demonstrated. This requires the application of
Visual Contracts to more complex study cases, plus the creation of some tool support,
because currently the Visual Contracts are drawn using minimal computer support.
Finally, it could be interesting to integrate more formal aspects such as the nature of the
relation itself, in the set-associations (total and partial functions; bijective, injective and
surjective functions, etc.), and analyze the usefulness of adding this kinds of constraints.

139

140

Bibliographical references

141

Bibliographical References

[IEEE 1993] IEEE Standard Dictionary of Computer Terms. New Jersey: IEEE Press, 1993.
[AALST, W.M.P.V.D., et al 2003] Aalst, W. M. P. v. d., Hofstede, A. H. M. t., Kiepuszewski, B., and

Barros, A. P., "Workflow Patterns," Distributed and Parallel Databases, vol. 14(1), pp. 5-51, 2003.
[AGG 2006] AGG, "The Attributed Graph Grammar System: A Development Environment for Attributed

Graph Transformation Systems". Accessed in 29 Juin,2007. I. f. S. u. T. Informatik, Ed. Berlin, Germany:
Technische Universität Berlin. http://tfs.cs.tu-berlin.de/agg/

[AGRAWAL, A. 2003] Agrawal, A., "Graph Rewriting And Transformation (GReAT): A Solution For The
Model Integrated Computing (MIC) Bottleneck," in 18th IEEE International Conference on Automated
Software Engineering (ASE 2003). Montreal, Canada: IEEE Computer Society, 2003, pp. 364-368.

[AKKOK, N. 2004] Akkok, N., Towards the Principles of Designing Diagrammatic Modeling Languages: Some
Visual, Cognitive and Foundational Aspects, Doctoral Dissertation presented to Department of Informatics,
Faculty of Mathematics and Natural Sciences. Oslo: University of Oslo, 2004.

[AL-AHMAD, W. 2001] Al-Ahmad, W., "On the Interaction of Programming by Contract and Liskov
Substitution Principle," 2001, pp. 421-423.

[ARGAWAL, R. and SINHA, A.P. 2003] Argawal, R. and Sinha, A. P., "Object-oriented modeling with UML: a
study of developers' perceptions," in Communications of the ACM (CACM), vol. 46, 2003, pp. 248-256.

[ATKINSON, C., et al 2002] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Paech, B., Wüst, J., and Zettel, J., Component-based Product Line Engineering with UML, in The
Addison-Wesley Object Technology Series, 1 ed: Addison-Wesley, 2002.

[AUDI, R. 1999] Audi, R., "Cambridge dictionary of philosophy," Cambridge University Press, 1999.
[BARDOHL, R., et al 2004] Bardohl, R., Ehrig, H., Lara, J. d., and Taentzer, G., "Integrating Meta-modelling

Aspects with Graph Transformation for Efficient Visual Language Definition and Model Manipulation,"
presented at Fundamental Approaches to Software Engineering, 7th International Conference, FASE 2004,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, 2004, pp. 214-228.

[BARESI, L. and PEZZÈ, M. 2005] Baresi, L. and Pezzè, M., "Formal interpreters for diagram notations,"
ACM Transaction on Software Engineering Methodology, vol. 14(1), pp. 42-84, 2005.

[BARWISE, J. and ETCHEMENDY, J. 1993] Barwise, J. and Etchemendy, J., The language of first-order
logic : including the Macintosh version of Tarski’s world 4.0, in CSLI Publications, 3rd ed: Center for the
Study of Language and Information, 1993.

[BARWISE, J. and ETCHEMENDY, J. 2002] Barwise, J. and Etchemendy, J., "Language, Proof and Logic,"
Center for the Study of Language and Information, 2002.

[BATE, I., et al 2003] Bate, I., Hawkins, R., and McDermid, J., "A contract-based approach to designing
safe systems," in Proceedings of the 8th Australian workshop on Safety critical systems and software -
Volume 33. Canberra, Australia: Australian Computer Society, Inc., 2003, pp. 25-36.

[BEIZER, B. 1990] Beizer, B., Software Testing techniques. New York: Van Nostrand Reinhold, 1990.
[BIENVENIDO, J.F. and FLORES-PARRA, I.M. 2004] Bienvenido, J. F. and Flores-Parra, I. M., "Automatic

Generation of the Behavior Definition of Distributed Design Tools from Task Method Diagrams and Method
Flux Diagrams by Diagram Composition," presented at Diagrammatic Representation and Inference, Third
International Conference, Diagrams 2004, Cambridge, UK, 2004, pp. 435-437.

[BLACK, P.E. 1998] Black, P. E., Axiomatic Semantics Verification of a Secure Web Server, Doctoral Dissertation
presented to Department of Computer Science: Brigham Young University, 1998.

[BMI-DTF 2007] BMI-DTF, "Business Process Management Initiative". Accessed in June 19,2007.
www.bpmi.org

[BOGACZ, S. and TRAFTON, J.G. 2002] Bogacz, S. and Trafton, J. G., "Understanding Static and Dynamic
Visualizations," presented at Diagrammatic Representation and Inference, Second International Conference,
Diagrams 2002, Callaway Gardens, GA, USA, 2002, pp. 347-349.

[BOOCH, G., et al 1998] Booch, G., Jacobson, I., Rumbaugh, J., and Rumbaugh, J., The Unified Modeling
Language User Guide: Addison-Wesley Pub Co, 1998.

[BOSWORTH, R. 2004] Bosworth, R., "Automatic Proofs for Scalecharts," presented at Diagrammatic
Representation and Inference, Third International Conference, Diagrams 2004, Cambridge, UK, 2004, pp.
227-230.

[BOTTONI, P., et al 2001] Bottoni, P., Koch, M., Parisi-Presicce, F., and Taentzer, G., "A Visualization of
OCL Using Collaborations," presented at UML 2001 - The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, 4th International Conference. Lecture Notes in Computer Science 2185, Toronto,
Ontario, Canada, 2001, pp. 257-271.

Bibliographical references

142

[BOWEN, J. 1996] Bowen, J., "The ARIANE 5 Flight 501 Failure Report, annotated version". Accessed in:
Inquiry Board, European Space Agency (ESA).
http://www.cafm.sbu.ac.uk/cs/people/jpb/teaching/ethics/ariane5anot.html

[BROOKS, F. 1987] Brooks, F., "No Silver Bullet: Essence and Accidents of Software Engineering," IEEE
Computer, vol. 20(4), pp. 10-19, 1987.

[BRUEL, J.-M. 1998] Bruel, J.-M., "Integrating Formal and Informal Specification Techniques. Why?
How?," presented at Workshop on Industrial-strenght Formal Techniques, Boca Raton, Florida, USA, 1998,
pp. 50-57.

[BRUEL, J.-M., et al 2000] Bruel, J.-M., Lilius, J., Moreira, A. M. D., and France, R. B., "Defining Precise
Semantics for UML," in Object-Oriented Technology, ECOOP 2000 Workshops, Panels, and Posters, Sophia
Antipolis and Cannes, France, June 12-16, 2000, Proceedings, vol. 1964, Lecture Notes in Computer Science,
J. Malenfant, S. Moisan, and A. M. D. Moreira, Eds.: Springer, 2000, pp. 113-122.

[BUTCHER, K.R. and KINTSCH, W. 2004] Butcher, K. R. and Kintsch, W., "Learning with Diagrams:
Effects on Inferences and the Integration of Information," presented at Diagrammatic Representation and
Inference, Third International Conference, Diagrams 2004, Cambridge, UK, 2004

[CATALYSIS 2002] Catalysis, "Catalysis Concept Map". Accessed in June: www.catalysis.org.
www.catalysis.org

[CHEN, P. 1976] Chen, P., "The entity-relationship model—toward a unified view of data," ACM Transactions
on Database Systems, vol. 1(1), pp. 9-36, 1976.

[CHEN, P. 1977] Chen, P., "The Entity-Relationship Model - A basis for the Enterprise View of Data.,"
presented at AFIPS National Computer Conference, 1977, pp. p. 77-84.

[CHENG, P.C.-H. 2004] Cheng, P. C.-H., "Why Diagrams Are (Sometimes) Six Times Easier than Words:
Benefits beyond Locational Indexing," presented at Diagrammatic Representation and Inference, Third
International Conference, Diagrams 2004, Cambridge, UK, March 22-24, 2004, Proceedings, 2004, pp. 242-
260.

[CHERUBINI, M., et al 2007] Cherubini, M., Venolia, G., DeLine, R., and Ko, A. J., "Let's go to the whiteboard:
how and why software developers use drawings," presented at CHI '07: Proceedings of the SIGCHI
conference on Human factors in computing systems, San Jose, California, USA, 2007, pp. 557-566.

[COCKBURN, A. 2001] Cockburn, A., Writing effective use cases, 1 ed: Addison-Wesley, 2001.
[COLEMAN, D., et al 1994] Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., and

Jeremaes, P., Object-oriented development: the Fusion method, 1 ed. Englewood Cliffs: Prentice-Hall, Inc.,
1994.

[COMBINATORICS 2007] Combinatorics, "Combinatorics". Accessed in June 20th,2007.
http://www.combinatorics.org/Surveys/ds5/VennEJC.html

[COOK, S. and DANIELS, J. 1994] Cook, S. and Daniels, J., Designing Object Systems: Object-Oriented
Modelling with Syntropy: Prentice Hall, 1994.

[COX, R., et al 2004] Cox, R., Romero, P., Boulay, B. d., and Lutz, R., "A Cognitive Processing
Perspective on Student Programmers' "Graphicacy"," presented at Diagrammatic Representation and
Inference, Third International Conference, Diagrams 2004, Cambridge, UK, March 22-24, 2004,
Proceedings, 2004, pp. 344-346.

[CRNKOVIC, I. 2002] Crnkovic, I., "Building Reliable Component-Based Systems." Edited book, prompt
to publication, 2002.

[DAVID, R. and ALLA, H.H. 1997] David, R. and Alla, H. H., Du GRAFCET aux réseaux de Petri, in
Automatique, 2nd ed. Paris: Hermes, 1997.

[DE LA CRUZ, J.D., et al 2006a] De la Cruz, J. D., Le, L. S., and Wegmann, A., "Validation of Visual
Contracts for Services," presented at 4th International Workshop on Modelling, Simulation, Verification and
Validation of Enterprise Information Systems, MSVVEIS 2006, Paphos, Cyprus, 2006a

[DE LA CRUZ, J.D., et al 2006b] De la Cruz, J. D., Lê, L.-S., and Wegmann, A., "Visual Contracts - A
way to reason about states and cardinalities in IT system specifications," presented at 8th International
Conference on Enterprise Information Systems - ICEIS 2006, Paphos, Cyprus, 2006b, pp. 298-303.

[DE LA CRUZ, J.D., et al 2005] De la Cruz, J. D., Wegmann, A., and Regev, G., "Expressing Systemic
Contexts in Visual Models of System Specifications", in Proc. of 1st Workshop on Context Modeling and
Decision Support. Accessed in October 31, 2005. A. Gachet and R. Sprague, Eds. Paris, France: CEUR
Workshop Proceedings. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-
144/04_deLaCruz.pdf

[DE WIN, B., et al 2002] De Win, B., Piessens, F., and Joosen, W., "On the importance of the separation-of-
concerns principle in secure software engineering," presented at ACSA Workshop on the Application of
Engineering Principles to System Security Design (WAEPSSD), 2002

[DIJKSTRA, E.W. 1976] Dijkstra, E. W., A Discipline of Programming, 1 ed. Englewood Cliffs: Prentice
Hall, 1976.

Bibliographical references

143

[DINH-TRONG, T.T., et al 2006] Dinh-Trong, T. T., Ghosh, S., and France, R. B., "A Systematic
Approach to Generate Inputs to Test UML Design Models," presented at 17th International Symposium on
Software Reliability Engineering (ISSRE 2006), Raleigh, North Carolina, USA, 2006, pp. 95-104.

[DISKIN, Z. 1995] Diskin, Z., "Formalizing Graphical Schemas for Conceptual Modeling: Sketch-based Logic
vs. Heuristic Pictures," Laboratory for Database Design, University of Latvia, Riga, Latvia, Technical Report
FIS/LDBD-95-03, July 1995 1995.

[DISKIN, Z. and KADISH, B. 1998] Diskin, Z. and Kadish, B., "The Arrow Manifesto: Towards software
engineering based on comprehensible yet rigorous graphical specifications," Laboratory for Database Design,
University of Latvia, Riga, Latvia 1998.

[DOBING, B. and PARSONS, J. 2006] Dobing, B. and Parsons, J., "How UML is used," Communications of the
ACM, vol. 49(5), pp. 109-113, 2006.

[DORI, D. 2002a] Dori, D., Object-Process Methodology: A Holistic Systems Paradigm, 1 ed: Springer Verlag,
2002a.

[DORI, D. 2002b] Dori, D., "Why significant UML change is unlikely," in Communications of the ACM
(CACM), vol. 45, 2002b, pp. 82-85.

[D'SOUZA, D.F. and CAMERON WILLS, A. 1998] D'Souza, D. F. and Cameron Wills, A., Objects, components,
and frameworks with UML: The Catalysis approach, 1 ed: Addison Wesley Longman, inc., 1998.

[ECMA-INTERNATIONAL 2006] ECMA-International, "Standard ECMA-367 —Eiffel: Analysis, Design
and Programming Language". Accessed in June,2006, 2nd ed: ECMA International. http://www.ecma-
international.org/publications/standards/Ecma-367.htm

[ELKAN, C. 1991] Elkan, C., "Reasoning about action in fist-order logic," presented at Conference of the
Canadian Society for Computational Studies of Intelligence (CSCSI), 1991, pp. 221-227.

[ERIKSSON, H.-E. and PENKER, M. 2000] Eriksson, H.-E. and Penker, M., Business modeling with UML
Business Patterns at work: Wiley, 2000.

[EVANS, A., et al 1998] Evans, A., France, R. B., Lano, K., and Rumpe, B., "The UML as a Formal
Modeling Notation," in The Unified Modeling Language, «UML»'98: Beyond the Notation, First International
Workshop, Mulhouse, France, June 3-4, 1998, Selected Papers, vol. 1618, Lecture Notes in Computer
Science, J. Bézivin and P.-A. Muller, Eds. Mulhouse, France: Springer, 1998, pp. 336-348.

[FIRESMITH, D.G. 1996] Firesmith, D. G., "Pattern Language for Testing Object-Oriented Software," in
Object Magazine, vol. 5, 1996, pp. 32-38.

[FISH, A., et al 2005] Fish, A., Flower, J., and Howse, J., "The semantics of augmented constraint
diagrams," Journal of Visual Language Computing, vol. 16(6), pp. 541-573, 2005.

[FLOYD, R.W. 1967] Floyd, R. W., "Assigning meanings to programs," in Proceedings of Symposia in
Applied Mathematics, vol. 19, Mathematical Aspects of Computer Science, 1967, pp. 19-32.

[FRAPPIER, M., et al 2002] Frappier, M., Fraikin, B., Laleau, R., and Richard, M., "Automatic Production of
Information Systems,," American Association for Artificial Intelligence, Menlo Park, California., Stanford,
CA, Technical Report SS-02-05. 2002.

[GERVAIS, F. 2004] F. Gervais, "EB4 : Vers une méthode combinée de spécification formelle des systèmes
d'information" Examen de spécialité, Doctorat Informatique, Université de Sherbrooke (Québec), Canada,
2004

[GIL, J., et al 2001] Gil, J., Howse, J., and Kent, S., "Towards a Formalization of Constraint Diagrams,"
presented at 2002 IEEE CS International Symposium on Human-Centric Computing Languages and
Environments (HCC 2001), Stresa, Italy, 2001

[GIL, J. and KENT, S. 1998] Gil, J. and Kent, S., "Three Dimensional Software Modeling," presented at
International Conference on Software Engineering, ICSE 98, Kyoto, Japan, 1998

[GIL, J.Y., et al 2000] Gil, J. Y., Howse, J., Taylor, J., and Kent, S., "Projections in Venn-Euler
Diagrams," in Proceedings of the 2000 IEEE International Symposium on Visual Languages (VL'00): IEEE
Computer Society, 2000, pp. 119.

[GIRARD, J.-Y. 1987] Girard, J.-Y., Proof Theory and Logical Complexity. Napoli: Bibliopolis, 1987.
[GLASER, H., et al 2001] Glaser, H., Hartel, P. H., Leuschel, M., and Martin, A., "Declarative Languages in

Education," in Encyclopedia of Microcomputers, vol. 27, A. Kent and J. G. Williams, Eds. New York: Marcel
Dekker Inc, 2001, pp. 79-102.

[GLASGOW, J., et al 1995] Glasgow, J., Narayanan, N. H., and Chandrasekaran, B., "Diagrammatic
Reasoning: Cognitive and Computational Perspectives," AAAI Press, 1995, pp. 807.

[GOSLING, J., et al 2005] Gosling, J., Joy, B., Steele, G., and Bracha, G., The Java Language Specification,
in Java, 3rd ed: Addison-Wesley Professional, 2005.

[GRIES, D. 1981] Gries, D., The science of programming, in Text and monographs in computer science, 1 ed.
New York: Springer-Verlag, 1981.

[GRIES, D. and LEVIN, G. 1980] Gries, D. and Levin, G., "Assignment and procedure call proof rules,"
presented at TOPLAS 2, 1980, pp. 564-579.

[GRUNDY, J. 1993] Grundy, J., A Method of Program Refinement, Doctoral Dissertation presented to Fitzwilliam
College: Unversity of Cambridge, 1993.

Bibliographical references

144

[GUTTAG, J.V. and HORNING, J.J. 1978] Guttag, J. V. and Horning, J. J., "The Algebraic Specification of Abstract
Data Types," ACTA Informatica, vol. 10, pp. 27-52, 1978.

[HAMMER, E. 1995], Hammer, E., "Logic and Visual Information". Studies in Logic, Language, and
Computation. Stanford: CSLI Publications and FoLLI, 1995..

[HAREL, D. 1987] Harel, D., "Statecharts: A Visual Formulation for Complex Systems," Science of Computer
Programming, vol. 8(3), pp. 231-274, 1987.

[HAREL, D. 1992] Harel, D., "Biting the Silver Bullet - Toward a Brighter Future for System Development,"
IEEE Computer, vol. 25(1), pp. 8-20, 1992.

[HATLEY, D. and IMTIAZ, P. 1988] Hatley, D. and Imtiaz, P., Strategies for Real-Time System Specification.
New York: Dorset House, 1988.

[HECKEL, R. and SAUER, S. 2001] Heckel, R. and Sauer, S., "Strengthening UML Collaboration Diagrams
by State Transformations," presented at Proc. Fundamental Approaches to Software Engineering
(FASE'2001), Genova, Italy, 2001, pp. pp. 109-12.

[HELM, R., et al 1990] Helm, R., Holland, I. M., and Gangopadhyay, D., "Contracts: Specifying
Behavioural Compositions in Object-Oriented Systems.," presented at OOPSLA/ECOOP 1990, Ottawa,
Canada, 1990, pp. pp. 169-180.

[HOARE, C.A.R. 1969] Hoare, C. A. R., "An Axiomatic Basis for Computer Programming,"
Communications of the ACM (CACM), vol. 12(10), pp. 576-580, 1969.

[HOARE, C.A.R. 1972] Hoare, C. A. R., "Proof of correctness of data representations," in Acta Informatica,
vol. 1, 1972, pp. 271-283.

[HOARE, C.A.R. 1985] Hoare, C. A. R., Communicating Sequential Processes, in Computer Science
Series: Prentice-Hall International, 1985.

[HOARE, C.A.R. and WIRTH, N. 1973] Hoare, C. A. R. and Wirth, N., "An Axiomatic Definition of the
Programming Language PASCAL," ACTA Informatica, vol. 2, pp. 335-355, 1973.

[HODGES, W. 1993] Hodges, W., Model theory, in Encyclopedia of mathematics and its applications vol. 42.
Cambridge: Cambridge University Press, 1993.

[HOWSE, J., et al 2001] Howse, J., Molina, F., Taylor, J., Kent, S., and Gil, J., "Spider Diagrams: A
Diagrammatic Reasoning System," Journal of Visual Languages and Computing, vol. 12(3), pp. 299-324,
2001.

[IGARASHI, S., et al 1975] Igarashi, S., London, R. L., and Luckham, D. C., "Automatic program verification:
a logical basis and its implementation," in Acta Informatica, vol. 1, 1975, pp. 145-182.

[ILLINGWORTH, V. and (ED.) 1996] Illingworth, V. and (Ed.), Dictionary of computing. Oxford: Oxford
University Press, 1996.

[INSTITUTE FOR LOGIC, C.A.D.S.-U.O.K. and GOTHENBURG, C.U.-. 2001] Institute for Logic, C. a. D. S.-U.
o. K. and Gothenburg, C. U.-. "KeY: Authoring Tool for OCL Constraints", 0.7 ed.
http://i12www.ira.uka.de/~projekt/specifications.htm

[IRANI, P. 2004] Irani, P., "Notations for Software Engineering Class Structures," presented at Diagrammatic
Representation and Inference, Third International Conference, Diagrams 2004, Cambridge, UK, 2004, pp.
441-445.

[ISE 2001] ISE, "Building bug-free O-O software: An introduction to Design by Contract (TM)".
Accessed in: http://www.eifel.com/doc/manuals/technology/contract.
http://www.eifel.com/doc/manuals/technology/contract

[ISO/IEC 1995-1996] ISO/IEC, 10746-1, 2, 3, 4 | ITU-T Recommendation X.901, X.902, X.903, X.904.
Open Distributed Processing - Reference Model.:
http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm, 1995-1996.

[ISO/IEC 1996] ISO/IEC, ISO/IEC 10746-1: Overview, in Information Technology - Open Distributed
Processing - Reference Model. Geneva: ISO/IEC, 1996.

[ISO/IEC and ITU-T 1998] ISO/IEC and ITU-T, "Recommendation X.901, X.902, X.903, X.904, "Open
Distributed Processing - Reference Model"," ISO and ITU-T, Recommendation 1995-98 1998.

[JACKSON, D. 2002] Jackson, D., "Alloy: a lightweight object modelling notation," ACM Trans. Softw. Eng.
Methodol., vol. 11(2), pp. 256-290, 2002.

[JACKSON, D. 2005] Jackson, D., "Alloy Reference Manual". Accessed in October,2006: MIT Software Design
Group. alloy.mit.edu/reference-manual.pdf

[JACKSON, D. and RINARD, M. 2000] Jackson, D. and Rinard, M., "The Future of Software Analysis," in The
Future of Software Engineering, A. Finkelstein, Ed.: ACM Press, 2000.

[JARRATT, T., et al 2004] Jarratt, T., Keller, R., Nair, S., Eckert, C., and Clarkson, P. J., "Visualization
Techniques for Product Change and Product Modelling in Complex Design," presented at Diagrammatic
Representation and Inference, Third International Conference, Diagrams 2004, Cambridge, UK, 2004, pp.
388-391.

[JÉZÉQUEL, J.-M. and MEYER, B. 1997] Jézéquel, J.-M. and Meyer, B., "Design by Contract: The lessons of
Ariane," in IEEE Computer, vol. 30, 1997, pp. 129-130.

Bibliographical references

145

[JÉZÉQUEL, J.-M., et al 2000] Jézéquel, J.-M., Train, M., and Mingins, C., Design patterns and contracts, 1 ed:
Addison Wesley Longman, 2000.

[JIN, Y., et al 2004] Jin, Y., Esser, R., and Janneck, J. W., "A method for describing the syntax and semantics of
UML statecharts," Software and System Modeling, vol. 3(2), pp. 150-163, 2004.

[JONES, C.B. 1990] Jones, C. B., Systematic Software development using VDM, 2 ed. Englewood Cliffs, NJ:
Prentice Hall International, 1990.

[KENT, S. and GIL, J. 1998] Kent, S. and Gil, J., "Visualising action contracts in object-oriented modelling,"
IEE Proceedings - Software, vol. 145(2-3, April-June), pp. 70-78, 1998.

[KHAN, K., et al 2000] Khan, K., Han, J., and Zheng, Y., "Security Characterisation of Software
Components and Their Composition," 2000, pp. 240-249.

[KOCH, S. 1999] Koch, S., "Using Weakes Precondition for Software Process Model Reuse," presented at Fifth
Americas Conference on Information Systems (AMCIS 1999), Milwaukee, WI, 1999, pp. 741-743.

[KOWALSKI, R.A. and SERGOT, M.J. 1986] Kowalski, R. A. and Sergot, M. J., "A Logic-based Calculus of
Events," New Generation Computing, vol. 4(1), pp. 67-95, 1986.

[KRUCHTEN, P. 2000] Kruchten, P., The rational unified process: An introduction, in Object Technology
Series, 2 ed: Addison-Wesley, 2000.

[LAMPORT, L. 1984] Lamport, L., "An Axiomatic Semantics of Concurrent Programming Languages,"
presented at Logics and Models of Concurrent Systems, Colle-sur-Loup, France, 1984, pp. 77-122.

[LAMPORT, L. and SCHNEIDER, F. 1989] Lamport, L. and Schneider, F., "Pretending Atomicity," SRC Research,
Research Report May 1989.

[LAMSWEERDE, A.V. and LETIER, E. 2002] Lamsweerde, A. v. and Letier, E., "From Object Orientation to
Goal Orientation: A Paradigm Shift for Requirements Engineering," presented at Radical Innovations of
Software and Systems Engineering in the Future, 9th International Workshop, RISSEF 2002, Venice, Italy,
October 7-11, 2002, Revised Papers, 2002, pp. 325-340.

[LANO, K. and EVANS, A. 1999] Lano, K. and Evans, A., "Rigorous Development in UML," presented at
FASE 1999 (Part of ETAPS 1999), Amsterdam, The Netherlands, 1999, pp. 129-144.

[LAPLANTE, P.A. and (ED.) 2001] Laplante, P. A. and (ed.), Dictionary of computer science, engineering
and technology: CRC Press, 2001.

[LARA, J.D. and VANGHELUWE, H. 2002] Lara, J. d. and Vangheluwe, H., "AToM3: A Tool for Multi-
formalism and Meta-modelling," presented at Fundamental Approaches to Software Engineering, 5th
International Conference, FASE 2002, held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2002, Grenoble, France, 2002, pp. 174-188.

[LARKIN, J. and SIMON, H. 1987] Larkin, J. and Simon, H., "Why a diagram is (sometimes) worth ten
thousand words," Cognitive Science, vol. 11, pp. 65-99, 1987.

[LARMAN, C. 1997] Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design: Prentice Hall, 1997.

[LE, L.S. and WEGMANN, A. 2005] Le, L. S. and Wegmann, A., "Definition of an Object-Oriented Modeling
Language for Enterprise Architecture," presented at Hawaii International Conference on System Sciences
(HICSS'05), Hawaii, USA, 2005

[LE MOIGNE, J.-L. 1993] Le Moigne, J.-L., Modelisation des systemes complexes (La): Dunod, 1993.
[LENAT, D.B. and GUHA, R.V. 1990] Lenat, D. B. and Guha, R. V., Building Large Knowledge-Based Systems:

Representation and Inference in the CYC Project. Reading, Massachusetts: Addison-Wesley, 1990.
[LIEBERMAN, H. 1986] Lieberman, H., "Using prototypical objects to implement shared behavior in object-

oriented systems" in Conference proceedings on Object-oriented programming systems, languages and
applications Portland, Oregon, United States ACM Press, 1986 pp. 214-223

[LISKOV, B. and WING, J.M. 1993] Liskov, B. and Wing, J. M., "A New Definition of the Subtype Relation,"
in Proceedings ECOOP '93 - 7th European Conference on Object-Oriented Programming, vol. 707, LCNS.
Kaiserslautern, Germany: Springer Berlin / Heidelberg, 1993.

[LISKOV, B. and WING, J.M. 1994] Liskov, B. and Wing, J. M., "A Behavioral Notion of Subtyping," ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 16(6), pp. 1811-1841, 1994.

[LISKOV, B. and ZILLES, S. 1974] Liskov, B. and Zilles, S., "Programming with abstract data types,"
presented at Proc. ACM SIGPLAN Conf. on Very High Level Languages, 1974, pp. 50-60.

[LOHMANN, M., et al 2005] Lohmann, M., Sauer, S., and Engels, G., "Executable Visual Contracts," presented
at IEEE VL/HCC’05, Dallas, Texas, USA, 2005

[MARCA, D.A. and MCGOWAN, C.L. 1988] Marca, D. A. and McGowan, C. L., SADT : structured analysis
and design technique. New York: McGraw-Hill, 1988.

[MELLOR, S.J., et al 2003] Mellor, S. J., Clark, A. N., and Futagami, T., "Guest Editors' Introduction: Model-
Driven Development," in IEEE Software, vol. 20, 2003, pp. 14-18.

[MELLOR, S.J., et al 1999] Mellor, S. J., Tockey, S. R., Arthaud, R., and Leblanc, P., "An Action Language for
UML: Proposal for a Precise Execution Semantics," in Selected papers from the First International Workshop
on The Unified Modeling Language \&\#171;UML\&\#187;'98: Beyond the Notation: Springer-Verlag, 1999,
pp. 307-318.

Bibliographical references

146

[MERRIAM-WEBSTER 2005] Merriam-Webster, "Merriam-Webster OnLine". Accessed in April 2005. www.m-
w.com, Ed.: Merriam-Webster, Inc.

[MEYER, B. 1988] Meyer, B., Object-Oriented Software Construction, in Computer Science: Prentice Hall
International, 1988.

[MEYER, B. 1992] Meyer, B., "Applying "Design by Contract"," in IEEE Computer, vol. 25, 1992, pp. 40-51.
[MEYER, B. 1997] Meyer, B., Object-Oriented software construction, 2 ed: Prentice-Hall, 1997.
[MEYER, B. 2001] Meyer, B., "Product or Service?," in Software Development Magazine:

www.sdmagazine.com, 2001.
[MILLER, G.A. 1956] Miller, G. A., "The Magical Number Seven, Plus or Minus Two: Some Limits on

our Capacity for Processing Information," Psychological Review, vol. 63, pp. 81-97, 1956.
[MILLER, J.G. 1995] Miller, J. G., Living Systems, 2 ed: University Press of Colorado, 1995.
[MILNER, R. 1980] Milner, R., Calculus of Communicating Systems, in LNCS vol. 92: Springer-Verlag, 1980.
[MILNER, R. 1989] Milner, R., Communication and Concurrency, 1 ed: Prentice Hall, 1989.
[MILNER, R. 1999] Milner, R., Communicating and mobile systems: The Pi-calculus, 1 ed. Cambridge:

Cambridge University Press, 1999.
[MITCHELL, R. and MCKIM, J.] Mitchell, R. and McKim, J., "Extending a method for devising software

contracts"
[MITCHELL, R. and MCKIM, J. 2002] Mitchell, R. and McKim, J., Design by Contract, by example, in Object-

oriented programming (Computer science), 1 ed: Addison-Wesley, 2002.
[MONIN, J.-F. 2000] Monin, J.-F., Introduction aux Méthodes Formelles, 2nd ed. Paris: Hermes Science, 2000.
[NARAYANAN, N.H. and HEGARTY, M. 2000] Narayanan, N. H. and Hegarty, M., "Communicating Dynamic

Behaviors: Are Interactive Multimedia Presentations Better than Static Mixed-Mode Presentations?,"
presented at Theory and Application of Diagrams, First International Conference, Diagrams 2000,
Edinburgh, Scotland, 2000, pp. 178-193.

[NAUMENKO, A. 2002] Naumenko, A., Triune Continuum Paradigm: a paradigm for General System
Modeling and its applications for UML and RM-ODP, Doctoral Dissertation presented to School of Computer
Science and Communications Systems. Lausanne: EPFL, 2002.

[NELSON, T., et al 2000] Nelson, T., Cowan, D., and Alencar, P., "A Model for Describing Object-Oriented
Systems from Multiple Perspectives," in FASE 2000, vol. 1783, Lecture Notes in Computer Science, T. S. E.
Maibaum, Ed. Berlin, Germany: Springer, 2000, pp. p. 237-248.

[OMG 1997] OMG, "CORBA/IIOP Specifications". Accessed in October,2006.
http://www.omg.org/technology/documents/corba_spec_catalog.htm

[OMG 2003] OMG, "Unified Modeling Language: Superstructure 2.0 Final adopted specification, ptc/03-
08-02". Accessed in 2004. http://www.omg.org/docs/ptc/03-08-02.pdf

[OMG 2004] OMG, "UML Profile for Relationships, v1.0". Accessed in 10.10,2005.
http://www.omg.org/cgi-bin/doc?formal/2004-02-07

[OMG 2005a] OMG, "Business Process Modeling Notation (BPMN) Information". Accessed in 10.10,2005.
http://www.bpmn.org/

[OMG 2005b] OMG, "SysML Specification v. 0.9 Draft, http://www.sysml.org/artifacts.htm". Accessed in.
http://www.sysml.org/artifacts.htm

[OMG 2005c] OMG, "Unified Modeling Language (UML)". Accessed in: www.omg.org. www.omg.org
[OMG 2006] OMG, "Modeling and Metadata Specifications". Accessed in October,2006.

http://www.omg.org/technology/documents/modeling_spec_catalog.htm
[OMMERING, R.C.V., et al 2001] Ommering, R. C. v., Krikhaar, R. L., and Feijs, L. M. G., "Languages for

formalizing, visualizing and verifying software architectures," Computer Languages, vol. 27(1/3), pp. 3-18,
2001.

[ORMSC, O.-A.B. 2001] ORMSC, O.-A. B., "Model Driven Architecture (MDA)," Object Management
Group, Document number orms/2001-07-01 July 9 2001.

[PARNAS, D.L. 1972] Parnas, D. L., "On the Criteria To Be Used in Decomposing Systems into
Modules," Communications of the ACM, vol. 15(12), pp. 1053-1058, 1972.

[PARNAS, D.L. and LAWTON, A. 1998] Parnas, D. L. and Lawton, A., "Precisely Annotated HIerarchical Pictures
of Programs," McMaster University, Hamilton, Ontario, Canada, Technical Report March 18, 1998 1998.

[PETERSON, J. 1981] Peterson, J., Petri Net Theory and the Modeling of Systems: Prentice Hall, 1981.
[PEZZÈ, M. and BARESI, L. 2000] Pezzè, M. and Baresi, L., "Can Graph Grammars make Formal Methods

more Human?," presented at Workshop on Graph Transformation and Visual Modeling Techniques, co-
located with ICALP 2000, and published in ICALP Workshops 2000, Geneva (Switzerland), 2000, pp. 387-
394.

[PREISS, O. 2004] Preiss, O., Foundations of systems and properties, Doctoral Dissertation presented to School
of Computer Science and Communications Systems. Lausanne, Switzerland: EPFL, 2004.

[PRICE, S. 2004] Price, S., "Processing Animation: Integrating Information from Animated Diagrams,"
presented at Diagrammatic Representation and Inference, Third International Conference, Diagrams 2004,
Cambridge, UK, 2004, pp. 360-364.

Bibliographical references

147

[PUML 2002] pUML, "The precise UML group". Accessed in. http://www.cs.york.ac.uk/puml/index.html
[QUINE, W.V.O. 1937] Quine, W. V. O., "Logic Based on Inclusion and Abstraction," Journal of Symbolic

Logic, vol. 2(4), pp. 145-152, 1937.
[REGEV, G. and WEGMANN, A. 2003] Regev, G. and Wegmann, A., Defining Early IT System Requirements

with Regulation Principles: The Lightswitch Approach, Doctoral Dissertation presented to School of
Computer Science and Communications Systems. Lausanne: EPFL, 2003.

[REGEV, G. and WEGMANN, A. 2005] Regev, G. and Wegmann, A., "Where do Goals Come from: the
Underlying Principles of Goal-Oriented Requirements Engineering," presented at RE '05: Proceedings of the
13th IEEE International Conference on Requirements Engineering (RE'05), Washington, DC, USA, 2005, pp.
253-362.

[REITER, R. 1991] Reiter, R., "The frame problem in the situation calculus: a simple solution (sometimes) and a
completeness result for goal regression," in Artificial Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy, V. l. Lifschitz, Ed.: Academic Press, 1991, pp. 359-380.

[RICHTERS, M. and GOGOLLA, M. 1998] Richters, M. and Gogolla, M., "On Formalizing the UML Object
Constraint Language OCL," presented at Conceptual Modeling - ER '98, 17th International Conference on
Conceptual Modeling, Singapore, 1998, pp. 449-464.

[RIK ESHUIS, R.W. 2001] Rik Eshuis, R. W., "A Real-Time Execution Semantics for UML Activity
Diagrams," presented at FASE 2001, Genova, Italy, 2001, pp. pp. 76-90.

[ROYER, J.-C. 2004] Royer, J.-C., "Checking Class Schema Usefulness," Journal of Object Technology,
vol. 3(1), pp. 157-176, 2004.

[RUMBAUGH, J.R., et al 1991] Rumbaugh, J. R., Blaha, M. R., Lorensen, W., Eddy, F., and Premerlani, W.,
Object-Oriented Modeling and Design: Prentice Hall, 1991.

[RUSSELL, S. and NORVIG, P. 1995] Russell, S. and Norvig, P., Artificial Intelligence: a Modern Approach, in
Artificial Intelligence. Englewood Cliffs, New Jersey, USA: Prentice Hall, 1995.

[SCHÄTZ, B., et al 2002] Schätz, B., Pretschner, A., Huber, F., and Philipps, J., "Model-based development
of embedded systems," in Advances in Object-Oriented Information Systems, OOIS 2002 Workshops, vol.
LNCS 2426, J.-M. Bruel and Z. Bellahsene, Eds. Montpellier, France: Springer, 2002, pp. 298-312.

[SCHUBERT, L.K. 1976] Schubert, L. K., "Extending the Expressive Power of Semantic Networks,"
Artificial Intelligence, vol. 7(2), pp. 163-198, 1976.

[SCOTT, K. 2002] Scott, K., The unified process explained, 1 ed: Addison-Wesley, 2002.
[SELIC, B. 2003] Selic, B., "The Pragmatics of Model-Driven Development," in IEEE Software, vol. 20, 2003,

pp. 19-25.
[SENDALL, S. 2002] Sendall, S., Specifying Reactive System Behavior, Doctoral Dissertation presented. Ecublens:

Faculté Informatique et Communications. Ecole Polytechnique Fédérale de Lausanne, 2002.
[SENDALL, S. and STROHMEIER, A. 2002] Sendall, S. and Strohmeier, A., "Using OCL and UML to

Specify System Behavior," in Object Modeling with the OCL, The Rationale behind the Object Constraint
Language, vol. 2263, Lecture Notes in Computer Science, T. Clark and J. Warmer, Eds.: Springer, 2002, pp.
250-280.

[SETHI, R. 1996] Sethi, R., Programming languages: concepts and constructs, 1 ed: Addison-Wesley, 1996.
[SHIMOJIMA, A. 2002] Shimojima, A., "The Inferential-Expressive Trade-Off: A Case Study of Tabular

Representations," presented at Diagrammatic Representation and Inference, Second International Conference,
Diagrams 2002, Callaway Gardens, GA, USA, April 18-20, 2002, Proceedings, 2002, pp. 116-130.

[SHIMOJIMA, A. 2004] Shimojima, A., "Inferential and Expressive Capacities of Graphical
Representations: Survey and Some Generalizations," presented at Diagrammatic Representation and
Inference, Third International Conference, Diagrams 2004, Cambridge, UK, March 22-24, 2004,
Proceedings, 2004, pp. 18-21.

[SHIN, S.-J. 1995] Shin, S.-J., The Logical Status of Diagrams: Cambridge University Press, 1995.
[SOWA, J.F. 1999] Sowa, J. F., Knowledge Representation: Logical, Philosophical, and Computational

Foundations, 1 ed: Brooks/Cole Pub Co, 1999.
[SPIVEY, M. 1990] Spivey, M., The Z Notation: A Reference Manual. Englewood Cliffs, NJ: Prentice Hall

International, 1990.
 [SPADE, P.V. 2006] Spade, Paul Vincent, "William of Ockham", The Stanford Encyclopedia of Philosophy (Fall

2006 Edition), Edward N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/fall2006/entries/ockham/>
 [STAPLETON, G., et al 2004] Stapleton, G., Howse, J., Taylor, J., and Thompson, S., "What Can Spider

Diagrams Say?," presented at Diagrammatic Representation and Inference, Third International Conference,
Diagrams 2004, Cambridge, UK, 2004, pp. 112-127.

[STEVENS, P. 2001] Stevens, P., "On Use Cases and Their Relationships in the Unified Modelling Language,"
presented at FASE 2001, Genova, Italy, 2001, pp. pp. 140-155.

[SWOBODA, N. and ALLWEIN, G. 2002] Swoboda, N. and Allwein, G., "Modeling Heterogeneous Systems,"
presented at Diagrammatic Representation and Inference, Second International Conference, Diagrams 2002,
Callaway Gardens, GA, USA, 2002, pp. 131-145.

Bibliographical references

148

[SZYPERSKI, C. 2002] Szyperski, C., "Services Rendered", in Software Development Magazine. Accessed
in January: www.sdmagazine.com. www.sdmagazine.com/print/documentID=20209

[TAENTZER, G. 1999] Taentzer, G., "AGG: A Tool Environment for Algebraic Graph Transformation,"
presented at Applications of Graph Transformations with Industrial Relevance, International Workshop,
AGTIVE'99, Kerkrade, The Netherlands, 1999, pp. 481-488.

[THOMAS, L., et al 2004] Thomas, L., Ratcliffe, M., and Thomasson, B. J., "Can Object (Instance) Diagrams
Help First Year Students Understand Program Behaviour?," presented at Diagrammatic Representation and
Inference, Third International Conference, Diagrams 2004, Cambridge, UK, 2004, pp. 368-371.

[TUCKER, S., et al 1997] Tucker, S., Taft, R., and Duff, A., Ada 95 Reference Manual: Language and
Standard Libraries, in LNCS vol. 1246: Springer, 1997.

[TUFTE, E.R. 1997] Tufte, E. R., Visual Explanations: Images and Quantities, Evidence and Narrative: Graphics
Press, 1997.

[UNION, I.T. 1992] Union, I. T., "ITU-T Recommendation Z.100 (08/2002) Specification and Description
Language (SDL)". Accessed in October,2006: International Telecommunication Union.
http://www.itu.int/ITU-T/studygroups/com17/languages/

[WARD, P. 1985] Ward, P., Structured Development for Real-Time Systems. Englewood Cliffs: Yourdon Press,
1985.

[WARE, C. 2004] Ware, C., Information Visualization: Perception for Design, in Interactive Technologies:
Morgan Kaufmann, 2004.

[WARMER, J. and KLEPPE, A. 1999] Warmer, J. and Kleppe, A., The Object Constraint Language, Precise
Modeling with UML: Addison-Wesley, 1999.

[WARMER, J.B. and KLEPPE, A.G. 1998] Warmer, J. B. and Kleppe, A. G., The Object Constraint Language:
Precise Modeling With Uml, in Object Technology Series: Addison-Wesley Professional, 1998.

[WEGMANN, A. 2001] Wegmann, A., xC Method (version 1.0 - January 2001). Lausanne, Suisse: ICA-
EPFL, 2001.

[WEGMANN, A. 2003] Wegmann, A., "On Systemic Enterprise Architecture Methodology (SEAM),"
presented at 5th International Conference on Enterprise Information Systems, ICEIS 2003, Angers, France,
2003, pp. 483-490.

[WEGMANN, A., et al 2005] Wegmann, A., Balabko, P., Le, L.-S., Regev, G., and Rychkova, I., "A Method and
Tool for Business-IT Alignment in Enterprise Architecture," presented at CAiSE'05, Porto, Portugal, 2005

[WEGMANN, A. and GENILLOUD, G. 2000] Wegmann, A. and Genilloud, G., "The Role of ¨Roles¨ in Use
Case Diagram," presented at 3rd International Conference on the Unified Modeling Language (UML2000),
York, UK, 2000, pp. 210-224.

[WEGMANN, A. and NAUMENKO, A. 2001] Wegmann, A. and Naumenko, A., "Conceptual Modeling of
Complex Systems Using an RM-ODP Based Ontology," presented at 5th IEEE International Enterprise
Distributed Object Computing Conference - EDOC 2001, Seattle, USA, 2001, pp. 200-211.

[WEINBERG, G.. 1975] Weinberg, G., An introduction to General Systems Thinking. New York: Wiley &
Sons, 1975.

 [WEINBERG, G. 2001] Weinberg, G., An Introduction to General Systems Thinking: Silver Anniversary
Edition: Dorset House Publishing, 2001.

[WEINBERG, G. and WEINBERG, D. 2001] Weinberg, G. and Weinberg, D., General Principles of Systems
Design: Dorset House Publishing, 2001.

[WFMC 2005] WfMC, "WfMC Documents and Interfaces". Accessed in 10.10,2005.
http://www.wfmc.org/standards/standards.htm

[WINTERSTEIN, D., et al 2002] Winterstein, D., Bundy, A., Gurr, C. A., and Jamnik, M., "Using
Animation in Diagrammatic Theorem Proving," presented at Diagrammatic Representation and Inference,
Second International Conference, Diagrams 2002, Callaway Gardens, GA, USA, 2002, pp. 46-60.

[WINTERSTEIN, D., et al 2004] Winterstein, D., Bundy, A., Gurr, C. A., and Jamnik, M., "An
Experimental Comparison of Diagrammatic and Algebraic Logics," presented at Diagrammatic
Representation and Inference, Third International Conference, Diagrams 2004, Cambridge, UK, 2004, pp.
432-434.

[WIRFS-BROCK, R., et al 1990] Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing Object-
Oriented Software, 1 ed. Englewood Cliffs: Prentice Hall, 1990.

[WIRTH, N. 1995] Wirth, N., "A Plea for Lean Software," in IEEE Computer, 1995, pp. 64-68.
[YOURDON, E. 1988] Yourdon, E., Modern Structured Analysis. Upper Saddle River: Prentice Hall PTR,

1988.

Curriculum Vitae

José Diego De la Cruz

Academic Experience Research Assistant

Fellowship Holder
EPFL , Switzerland

Instructor, Project lead
Universidad del Cauca , Colombia

2005-2007
2002-2003
2000-2002

1998-2000

Industrial Experience

Ensures Consulting
Senior Consultant
Switzerland

IT Consultant

Control Electrónico Ltda
Division Mgr, Project lead
Colombia

Antares Tecnología Ltda
Project lead, Engineer
Colombia

CTD Project
Research Engineer
Colombia

Universidad del Cauca (IT Services)
Programmer
Colombia

2007-present

2003-2005
1998-2001

1996-1998

1995-1996

1994

1989-1994

Education

Ph.D student
EPFL, Switzerland

Operational Manager in Project Management
CEFCO, Switzerland

Graduate School in Computer Science
EPFL, Switzerland

Postgrade in Language and Speech Engineering
EPFL, Switzerland

Ingeniero en Electrónica y Telecomunicaciones
Universidad del Cauca, Colombia
Mención de Honor (Equivalent to Suma Cum Laude)

2004-present

2004-2005

2001-2002

2001-2002

1988-1994

Publications

Monographies and edited books

J. D. De La Cruz. SDDT- Symbolic Distributed Real-Time Debugging Tool. Thesis. Universidad del
Cauca. 1997.

J. D. De La Cruz. SDDT – Symbolic Debugging Real-Time Distributed Tool. Thesis, Mención de Honor
(Equivalent to Suma Cum Laude). Universidad del Cauca. 1997.

J. D. De La Cruz, et al (ed.). Join II – Segundas jornadas de Informática Universitaria. Proceedings.
Universidad del Cauca. 1992.

J. D. De La Cruz, C.A. Yepez. Las teorías politicas en la historia. Prix à la meilleure monographie pour
baccalauréat. Colegio S.J. Berchmans. 1986.

Journals

A. Wegmann, G. Regev, J. D. de la Cruz, L.-S. Lê, and I. Rychkova. Teaching Enterprise and Service-
Oriented Architecture in Practice. Journal of Enterprise Architecture, (accepted for publication), 2007.

Arteaga, G. - Acosta, D.A. - De la Cruz, J.D. - Rendón, A. SMART - Sistema Modular para
Aplicaciones en RI y Telemática. In: Revista Colombiana de Telecomunicaciones p.36 - 43 , 2000

Conference Papers

A. Wegmann, G. Regev, I. Rychkova, L.-S. Lê, J. D. De La Cruz, and P. Julia. Business-IT Alignment
with SEAM for Enterprise Architecture. In The 11th IEEE International EDOC Conference (EDOC 2007).
IEEE, 2007.

De la Cruz, José D. - Lê, Lam-Son - Wegmann, Alain. VISUAL CONTRACTS: A way to reason
about states and cardinalities in IT system specifications. In: Proceedings ot the Eighth International
Conference on Enterprise Information Systems p.298-303 , 2006

De la Cruz, J.D. - Tamura, E. - Rendón, A. Ambiente CTD: desarrollo de sistemas de tiempo real
utilizando especificaciones ejecutables. In: Memorias del VIII Congreso Latinoamericano de Control
Automático CLCA'98 , 1998

Workshops Papers

A. Wegmann, L.-S. Lê, J. D. de la Cruz, I. Rychkova, and G. Regev. An Example of a Hierarchical
System Model Using SEAM and its Formalization in Alloy. In 4th International Workshop on ODP for
Enterprise Computing (WODPEC 2007), 2007.

De la Cruz, José D. - Lê, Lam-Son - Wegmann, Alain. Validation of Visual Contracts for Services.
In: Fourth International Workshop on "Modeling, Simulation, Verification and Validation of
Enterprise Information Systems , 2006

De La Cruz, José Diego - Regev, Gil - Wegmann, Alain. Expressing Systemic Contexts in Visual
Models of System Specifications. In: Workshop on Context Modeling and Decision Support , 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

