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Abstract

The graph coloring problem is one of the most famous problems in graph theory and has a
large range of applications. It consists in coloring the vertices of an undirected graph with
a given number of colors such that two adjacent vertices get different colors. This thesis
deals with some variations of this basic coloring problem which are related to scheduling

and discrete tomography. These problems may also be considered as partitioning problems.

In Chapter 1 basic definitions of computational complexity and graph theory are presented.

An introduction to graph coloring and discrete tomography is given.

In the next chapter we discuss two coloring problems in mixed graphs (i.e., graphs having
edges and arcs) arising from scheduling. In the first one (strong mixed graph coloring prob-
lem) we have to cope with disjunctive constraints (some pairs of jobs cannot be processed
simultaneously) as well as with precedence constraints (some pairs of jobs must be executed
in a given order). It is known that this problem is A'P-complete in mixed bipartite graphs.
In this thesis we strengthen this result by proving that for & = 3 colors the strong mixed
graph coloring problem is N'P-complete even if the mixed graph is planar bipartite with
maximum degree 4 and each vertex incident to at least one arc has maximum degree 2 or
if the mixed graph is bipartite and has maximum degree 3. Furthermore we show that the
problem is polynomially solvable in partial p-trees, for fixed p, as well as in general graphs
with k& = 2 colors. We also give upper bounds on the strong mixed chromatic number or
even its exact value for some classes of graphs. In the second problem (weak mixed graph
coloring problem), we allow jobs linked by precedence constraints to be executed at the
same time. We show that for k = 3 colors this problem is N'P-complete in mixed planar
bipartite graphs of maximum degree 4 as well as in mixed bipartite graphs of maximum
degree 3. Again, for partial p-trees, p fixed, and for general graphs with & = 2 colors, we

prove that the weak mixed graph coloring problem is polynomially solvable.

We consider in Chapter 3 the problem of characterizing in an undirected graph G = (V, E) a
minimum set R of edges for which maximum matchings M can be found with specific values
of p=|M N R|. We obtain partial results for some classes of graphs and show in particular
that for odd cacti with triangles only and for forests one can determine in polynomial time
whether there exists a minimum set R for which there are maximum matchings M such

that p = |[RN M|, for p=10,1,...,v(G).

The remaining chapters deal with some coloring (or partitioning) problems related to the

iii



basic image reconstruction problem in discrete tomography.

In Chapter 4 we consider a generalization of the vertex coloring problem associated with
the basic image reconstruction problem. We are given an undirected graph and a family of
chains covering its vertices. For each chain the number of occurrences of each color is given.
We then want to find a coloring respecting these occurrences. We are interested in both,
arbitrary and proper colorings and give complexity results. In particular we show that for
arbitrary colorings the problem is NP-complete with two colors even if the graph is a tree
of maximum degree 3. We also consider the edge coloring version of both problems. Again

we present some complexity results.

We consider in Chapter 5 some generalized neighborhoods instead of chains. For each vertex
x we are given the number of occurrences of each color in its open neighborhood Ny(x) (resp.
closed neighborhood Nj (x)), representing the set of vertices which are at distance d from
x (resp. at distance at most d from x). We are interested in arbitrary colorings as well
as proper colorings. We present some complexity results and we show in particular that
for d = 1 the problems are polynomially solvable in trees using a dynamic programming
approach. For the open neighborhood and d = 2 we obtain a polynomial time algorithm
for quatrees (i.e. trees where all internal vertices have degree at least 4). We also examine
the bounded version of these problems, i.e., instead of the exact number of occurrences of
each color we are given upper bounds on these occurrences. In particular we show that the
problem for proper colorings is N'P-complete in bipartite graphs of maximum degree 3 with
four colors and each color appearing at most once in the neighborhood N(z) of each vertex
x. This result implies that the L(1,1)-labelling problem is A'P-complete in this class of

graphs for four colors.

Finally in Chapter 6 we consider the edge partitioning version of the basic image recon-
struction problem, i.e., we have to partition the edge set of a complete bipartite graph into
k subsets such that for each vertex there must be a given number of edges of each set of
the partition incident to this vertex. For k = 3 the complexity status is still open. Here we
present a new solvable case for k = 3. Then we examine some variations where the union
of two subsets E', E? has to satisfy some additional constraints as for example it must
form a tree or a collection of disjoint chains. In both cases we give necessary and sufficient
conditions for a solution to exist. We also consider the case where we have a complete
graph instead of a complete bipartite graph. We show that the edge partitioning problem
in a complete graph is at least as difficult as in a complete bipartite graph. We also give
necessary and sufficent conditions for a solution to exist if E' U E? form a tree or if they
form a Hamiltonian cycle in the case of a complete graph. Finally we examine for both,
complete and complete bipartite graphs, the case where each one of the sets E' and E? is
structured (two disjoint Hamiltonian chains, two edge disjoint cycles) and present necessary

and sufficient conditions.

Keywords: Graph coloring, Mixed graph, Scheduling, Discrete tomography, Edge parti-
tioning, Complexity, Bipartite graph
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Résumé

Le probléme de coloration est un des plus célebres en théorie des graphes et a de nom-
breuses applications. Il consiste & colorer les sommets d’un graphe non orienté de sorte que
deux sommets adjacents n’aient pas la méme couleur. Cette thése traite de quelques varia-
tions du probléme de coloration qui sont issues de problémes d’ordonnancement et de la
tomographie discréte. Tous ces problémes peuvent aussi étre vus comme des problémes de

partitionnement.

Dans le premier chapitre nous présentons des notions et définitions élémentaires de la théorie

des graphes ainsi qu’une introduction & la coloration de graphes et a la tomographie discréte.

Dans le chapitre suivant nous considérons deux problémes de coloration dans les graphes
mixtes (i.e. des graphes contenant & la fois des arcs et des arétes) issus de problémes d’or-
donnancement. Dans le premier (“strong mixed graph coloring problem”) nous devons traiter
a la fois des contraintes de disjonction (certains travaux ne peuvent pas étre exercés simul-
tanément) et des contraintes de précédence (certains travaux doivent étre exécutés dans un
ordre spécifique). Ce probléme est N/P-complet dans les graphes mixtes bipartis. Dans cette
thése nous renforgons ce résultat en prouvant que pour k = 3 couleurs ce probléme est N P-
complet méme si le graphe mixte est biparti planaire de degré maximum 4 et les sommets
incidents a au moins un arc sont de degré maximum 2 ou si le graphe mixte est biparti
de degré maximum 3. De plus nous allons montrer que le probleme est résoluble en temps
polynomial dans les p-arbres partiels, pour p fixé, ainsi que dans les graphes mixtes avec
k = 2 couleurs. Nous donnons également des bornes supérieures du nombre chromatique
mixte voire méme sa valeur exacte pour certaines classes de graphes. Dans le deuxiéme pro-
bléeme (“weak mixed graph coloring problem”), nous relachons les contraintes de précédence
en permettant aux travaux d’étre exécutés en méme temps. Nous montrons que pour k = 3
couleurs ce probléme est NP-complet dans les graphes mixtes bipartis planaires de degré
maximum 4 ainsi que dans les graphes mixtes bipartis de degré maximum 3. A nouveau nous
démontrons que dans les p-arbres partiels, p fixé, et dans les graphes avec k = 2 couleurs ce

probléme peut étre résolu en temps polynomial.

Nous traitons le probléme suivant dans le chapitre 3 : nous voulons caractériser dans un
graphe non orienté un ensemble d’arétes R de taille minimum tel qu’il existe des couplages
maximum M avec p = |[R N M| pour des valeurs spécifiques de p. Nous allons obtenir des

résultats partiels pour quelques classes de graphes et en particulier nous montrons que pour



des cactus impairs ne contenant que des triangles et pour des foréts nous pouvons déterminer
en temps polynomial s’il existe un ensemble R de taille minimum pour lequel il existe des
couplages maximum M avec p = |RN M|, pour p =0,1,...,v(G).

Les trois derniers chapitres traitent de problémes de coloration (ou de partitionnement) qui

sont liés au probléme basique de reconstruction d’image de la tomographie discréte.

Dans le chapitre 4, nous considérons une généralisation du probléme de coloration de som-
mets associé au probléme basique de reconstruction d’image. Etant donné un graphe non
orienté et une famille de chaines couvrant les sommets du graphe telle que pour chaque
chaine nous connaissons le nombre d’occurrences de chaque couleur, nous voulons trouver
une coloration qui respecte ces occurrences. Nous nous intéressons a la fois aux colora-
tions arbitraires et aux colorations propres et nous donnons des résultats de complexité.
Nous montrons en particulier que dans le cas de la coloration arbitraire le probléme est
NP-complet avec 2 couleurs méme si le graphe est un arbre de degré maximum 3. Nous
considérons également les deux problémes dans le cas de coloration d’arétes et présentons a

nouveau des résultats de complexité.

Les chaines sont remplacées par des voisinages généralisés dans le chapitre 5. Pour chaque
sommet 2, nous fixons le nombre d’occurrences de chaque couleur dans son voisinage ouvert
Ng4(z) (resp. son voisinage fermé N (z)), qui contient tous les sommets qui sont & distance
d de x (resp. a distance au plus d de x). Nous traitons les cas de colorations arbitraires et
de colorations propres. Nous présentons des résultats de complexité et en particulier nous
montrons que pour d = 1 les deux problémes sont résolubles en temps polynomial en utilisant
une approche de programmation dynamique. Dans le cas du voisinage ouvert et pour d = 2
nous obtenons un algorithme polynomial pour les “quatree” (i.e. les arbres dans lesquels
tous les sommets internes sont de degré au moins 4). Nous nous intéressons également a la
version bornée de ces problémes, i.e., au lieu de connaitre le nombre exact d’occurrences de
chaque couleur, on se donne des bornes supérieures pour ces occurrences. Nous montrons en
particulier que dans le cas de coloration propre, le probléme est NP-complet pour 4 couleurs
dans les graphes bipartis de degré maximum 3 et chaque couleur apparaissant au plus une
fois dans le voisinage Nj(z) de chaque sommet z. Ce résultat implique que le probléme

“L(1,1)-labelling” est N'P-complet dans cette classe de graphes pour 4 couleurs.

Finalement dans le chapitre 6 nous considérons le probléme de partitionnement d’arétes asso-
cié au probléme basique de reconstruction d’image, i.e., nous devons partitionner ’ensemble
des arétes d'un graphe biparti complet dans k sous-ensembles tels que pour chaque sommet
il y ait un nombre fixé d’arétes de chaque sous-ensemble incidentes & ce sommet. Pour k = 3
la complexité de ce probléme n’est pas connue. Dans ce travail nous présentons un nouveau
cas résoluble en temps polynomial pour £ = 3. Ensuite nous examinons quelques variations
du probléme en imposant des contraintes supplémentaires aux sous-ensembles E' et E?
comme par exemple qu’ils doivent former un arbre ou une collection de chaines disjointes.
Dans les deux cas nous présentons des conditions nécessaires et suffisantes pour qu’une so-

lution existe. Nous considérons également le cas ol le graphe est un graphe complet au lieu
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d’un graphe biparti complet. Nous montrons que le probléme de partitionnement dans un
graphe complet est au moins aussi difficile que dans un graphe biparti complet. Dans le
cas d’'un graphe complet nous donnons également des conditions nécessaires et suffisantes
pour qu’une solution existe si E' U E? est un arbre ou un cycle hamiltonien. Finalement
nous considérons le cas oil chacun des sous-ensembles E! et E? est structuré (deux chaines
hamiltoniennes disjointes, deux cycles disjoint par les arétes) et nous donnons des conditions
nécessaires et suffisantes pour ’existence d’une solution dans le cas d’un graphe complet et

dans le cas d’un graphe biparti complet.

Mots-clés : Coloration de graphes, Graphe mixte, Ordonnancement, Tomographie discréte,

Partitionnement d’arétes, Complexité, Graphe biparti
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Introduction

Many real world problems are easy to state, easy to explain and even easy to understand but
they are very hard to solve, which means that even with the help of computers one cannot
find an optimal solution in a reasonable amount of time. It would take years, decades or

even centuries to get an optimal solution for these problems.

Combinatorial optimization deals with problems which have a finite number (or at least a
countable number) of solutions. This does not make them easier to solve because the number
of solutions may be exponentially high. Thus even for these problems, looking for an optimal
solution doesn’t seem to be the best approach. Combinatorial optimization problems occur
in a large variety of industries such as telecommunication, scheduling, transportation or
inventory management. Of course not all problems are hard to solve. For some of them

there are algorithms producing an optimal solution in polynomial time.

So it seems to be natural to first analyze a problem from a computational complexity point
of view, which means that one has to check whether the considered problem is easy to
solve (i.e., there exists a polynomial time algorithm which produces an optimal solution) or
not. In the first case, the goal may be to develop algorithms solving the problem within a
computing time which is as short as possible. In the second case, one may apply different
methods. One consists in considering the same problem but under specific constraints and
checking whether it remains hard or not. This allows a better understanding of what may
make the problem hard to solve, and to detect the border between hard problems and easy
problems. Another approach would be to develop algorithms which run in polynomial time
but do not necessarily find an optimal solution. These may be heuristics which give a
‘good’ solution fast, i.e., the computing time of these algorithms is reasonable but there is
no guarantee of optimality of the solution, or approzimation algorithms which guarantee
a certain performance, i.e., we are sure that the solution found is ‘close’ to the optimal
solution. Since we do not treat these last two approaches in this thesis, we will not go into
further details. The reader interested in this subject is referred to [73] and [77].

Real world problems, before being analyzed as combinatorial optimization problems, have
first to be modelled. A powerful tool to do this is graph theory. Its origin goes back to
the year 1736 when Leonhard Euler published a paper on the ‘Seven Bridges of Konigsberg
problem’ [30]. Nowadays graph theory has become one of the fastest growing areas of

modern mathematics, one reason being the large range of applications that it has in such



diverse disciplines as computer science, chemistry, social science and resource planning.

One of the most famous problems in graph theory is probably the graph coloring problem
which consists in associating a color (or integer) from a finite set {0,1,...,k — 1} to each
vertex of a graph such that two vertices which are adjacent (i.e., linked by an edge) get
different colors. In this thesis we will consider several variations of this basic coloring
problem which arise from scheduling and discrete tomography. We shall essentially analyze
these problems, which are hard to solve in general, using the first method described here
above, namely considering special cases, and trying to determine whether the problems

remain hard to solve or not.

We consider scheduling problems containing disjunctive constraints as well as precedence
constraints. Disjunctive constraints impose that some pairs of jobs cannot be done simul-
taneously, and precedence constraints impose that some pairs of jobs must be executed in
a specified order. These problems have not been paid much attention in the literature.
They may be modelled by a mixed graph Gy = (V,U, E), and a coloring ¢ of the vertices
of G'ps under the given constraints provides a feasible schedule. In Chapter 2 we analyze
this problem in two different versions and show that they are AN/P-complete even in special
classes of graphs. We also present some polynomially solvable cases and give upper bounds

for the mixed chromatic number.

Scheduling is probably the most famous application of graph coloring. But there are other
fields of applications where graph coloring and its variations are used, for example in tomog-
raphy. Discrete tomography deals with the reconstruction of objects from their projections.
We introduce the basic image reconstruction problem which consists in reconstructing a two
dimensional image (m x n pixels) knowing the number of pixels of each color in each row
and each column. This problem is easy if we have only two colors but it is N"P-complete if
the number of colors is four. The case of three colors is still open. We present two different
graph theoretical approaches for the basic image reconstruction problem. One consists in
coloring, or more precisely in partitioning the vertex set of a grid graph with respect to some
constraints which we will explain later. The other approach consists in partitioning the edge
set of a complete bipartite graph with respect to some constraints which will be precised.
In this thesis we will consider coloring (or partitioning) problems which are closely related
to these two approaches. Complexity results will be given including also some polynomially

solvable cases.

This thesis is organized as follows. In Chapter 1 we present an introduction to computational
complexity as well as some basic concepts concerning graph theory and discrete tomography.
Each one of Chapters 2 - 6 is based on some published or accepted or submitted paper.
Chapter 2 (see |62, 63]) deals with two coloring problems in mixed graphs related to some
scheduling problems. In Chapter 3 (see [20]) we consider a problem consisting in finding a
minimum number of edges in a graph such that each maximum matching contains p edges of
this set, for several values of p. Although it is not directly related to scheduling or discrete

tomography, we present it for its graph theoretical interest. Finally Chapters 4, 5 and 6



deal with problems arising from discrete tomography. We consider some problems related
to (Chapter 5 (see |6]) and Chapter 6 (see [7])) or generalizing (Chapter 4 (see [21])) the

basic image reconstruction problem.






Chapter 1

Preliminary definitions and results

1.1 Computational complexity

A problem is a general question to be answered, usually possessing several parameters (also
called free variables) whose values are left unspecified. In order to describe a problem, one
has to give a description of its parameters as well as the properties that the answer (or
solution) is required to satisfy. We distinguish two types of problems: decision problems
are problems which have as answer ‘yes’ or ‘no’, and optimization problems are problems
which have as answer an optimal value, i.e., a maximum or minimum value which is called

the optimal solution.

An instance of a problem P, denoted by Ip, is obtained by specifying the values for all the

parameters of the problem.

Algorithms are general step-by-step procedures used to find an answer to a given problem.
An algorithm is said to solve a problem P if it can be applied to any instance Ip of P
and always produce a solution for that instance. For a given problem P, we are in general
interested in finding an algorithm able to solve that problem as fast as possible. The time
requirements of an algorithm are normally expressed in terms of the size of an instance Ip,
which is conveniently a measure of the amount of input data. For each possible size, the
time complezity function of an algorithm expresses the largest amount of time needed by

the algorithm to solve a problem instance of that size.

We say that a function f(n) is O(g(n)) if there exists a constant ¢ such that |f(n)| < ¢|g(n)|
for all possible values of n. An algorithm is called polynomial time algorithm if its time
complexity function is O(p(n)) for some polynomial function p, where n denotes the input
length. Thus we say that a problem P can be solved in polynomial time if there exists a

polynomial time algorithm A which solves P.

Let us now focus on decision problems. We denote by O(P) the set of instances Ip of a

decision problem P which have answer ‘yes’.

Definition 1.1 (set P). P is the set of all decision problems which can be solved in poly-

nomaal time.



CHAPTER 1. PRELIMINARY DEFINITIONS AND RESULTS

Definition 1.2 (set N'P). NP is the set of all decision problems P such that for each
instance Ip € O(P) there exists a proof verifiable in polynomial time that Ip € O(P).

We clearly have P C NP. In fact, suppose that P € P. If there is a polynomial time
algorithm A solving P, then for each instance Ip € O(P), we can verify if Ip € O(P) by
applying algorithm A which will give answer ‘yes’ in polynomial time. Whether we also
have NP C P, and thus P = NP, is not known so far.

Among the decision problems in NP, there are some which are classified as the ‘hardest’.

In order to explain this, we need the following definition.

Definition 1.3 (polynomial time reduction). Let Py and P> be two problems. A polyno-
mial time reduction from Py to Py is an algorithm A which solves Py by using an algorithm
B solving Py such that if B was a polynomial time algorithm, then A would be a polynomial

time algorithm.

If there is a polynomial time reduction from P; to P, we denote it by P, <P P,. If
algorithm B is used exactly once during the reduction, we say that there is a polynomial
time transformation from P; to P» and we denote it by P; o« P». Now we can define the
‘hardest problems in N'P’.

Definition 1.4 (set N'P-complete). N'P-complete is the set of all decision problems P
such that

(i) P NP;
(i) P' < P, VP € N'P.
If any single problem which is in AP-complete can be solved in polynomial time, then all

problems in AP can be solved in polynomial time. Therefore a problem P in NP has the
property that if P # NP, then P € N"P-P, or more precisely, P € P if and only if P=N"P.

We defined here the notion of NP-complete as being a set of decision problems having
certain properties. In this thesis we will also use NP-complete as an adjective, i.e., a

problem P in N'P-complete will also be said to be N'P-complete.

Lots of results in this thesis concern the proof of NP-completeness of some specified problem.

In order to show that a given problem P is NP-complete, we have to proceed as follows:

(a) show that P € N'P;
(b) select a problem P’ which is known to be N'P-complete;

(c) show that P’ o P.

In general it is easy to verify that a given problem P is in AN'P. Therefore whenever we
want to show that a problem is AP-complete, we shall simply skip (a), and concentrate on
(b) and (c).

6



1.2. GRAPH THEORY

The foundations of the theory of N"P-completeness were given by S. Cook in 1971 (see [17]).
He proved that a particular problem, the ‘satisfiability problem’, has the property that every
other problem in NP can be polynomially transformed to it. So in other words he found
the first N'P-complete problem.

In [36] and [48], further developments in the theory of NP-completeness can be found as
well as a list of NP-complete problems.

Let us finally introduce the notion of A/P-hardness.

Definition 1.5 (set N'P-hard). N'P-hard is the set of all problems P such that there ezists
P’ € N'P-complete with P’ <P P.

In particular each problem in A/P-complete is necessarily in NP-hard. Furthermore, an
optimization problem whose decision version is N'P-complete is in N'P-hard. This is obvious
since the optimization problem could be used to solve the decision problem. Notice that a

problem in N'P-hard is neither necessarily a decision problem nor a problem in NP.

We may use the term of A'P-hard also as an adjective in this thesis.

1.2 Graph theory

1.2.1 Basic definitions

First we give some basic definitions concerning graph theory. More specific definitions will
be defined in the concerned chapters. If even more information about graphs are needed,

the reader is referred to [9].
Definition 1.6 (undirected graph). An undirected graph G is a pair (V, E), where V =
{v1,...,vn} is a set of vertices and E C {[vy,vj]| vi,v; € V'} is a set of unordered pairs of

elements of V.

Figure 1.1: An undirected graph G = (V, E) with V = {v1,v2,v3,v4,v5,v6} and E =

{[v1, v2], [v1, vs), [v1, vs], [v2, va], [U3, V4], [V3, V5], [va, V6], [v5, V6] }-

Definition 1.7 (directed graph). A directed graph G is a pair (V,U), where V =
{v1,..,vn} ds a set of vertices and U C {(v;,v;)| vi,v; € V'} is a set of ordered pairs of

elements of V.
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Figure 1.2: A directed graph G = (V,U) with V' = {uvy,v9,v3,04,05,06} and U =

{(Uhv?)? (U17U6), (U5,U1), (U?HU?)? (U4,U2), (U5,U3), (U4,U5), (U67U4)}'

Definition 1.8 (mixed graph). A mized graph Gy is a triple (V,U, E), where V =
{v1, ..., v} 1s a set of vertices, U C {(v;,vj)] vi,vj € V'} is a set of ordered pairs of elements

of V, and E C {[v;,vj]| vi,v; € V'} is a set of unordered pairs of elements of V.

Figure 1.3: A mixed graph Gy = (V,U,E) with V. = {v1,v2,v3,v4,05,06}, U =

{(v1,v2), (vs,v2), (v4,v3), (v4, V), (v5,v6)} and E = {[v1,vs], [v1,v4], [v3, 5], [V3, V6] }-

The elements in V', called vertices, will be denoted in general by v;, where ¢ =1,2,...,n =
|[V|. The elements of U, called arcs, will be denoted by (v;,v;), where i,j € {1,2,... ,n}. If
there is an arc (v;, v;), we say that vertices v; and v; are joined by an arc, with v; being the
tail and v; being the head of this arc. They are also called the endvertices of the arc. The
elements of F, called edges, will be denoted by [v;,v;], where i,j € {1,2,...,n}. If there
is an edge [v;,v;], we say that vertices v; and v; are joined by an edge and that they are
the endvertices of that edge. Whenever we say that two vertices v; and v; are adjacent, we
mean that there is an edge or/and an arc joining these vertices. Two edges (or two arcs, or

one edge and one arc) having at least one common endvertex are also said to be adjacent.

Here we will only consider graphs without loops, i.e., without edges [v;,v;] and arcs (v, v;),
where 4,5 € {1,...,n}.

Notice that undirected and directed graphs are just special cases of mixed graphs (for

undirected graphs U = () and for directed graphs E = ). The number of arcs and edges

8
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having a common endvertex v; is called the degree of vertex v; and will be denoted by d(v;).
The degree of a graph Gy = (V,U, E) is the maximum over all degrees of its vertices. We
denote it by A(Gyr), and thus A(Gpr) = maxy, ey (d(v;)). We also define the indegree of
a vertex v; as the number of arcs in Gj; having v; as head. It will be denoted by d~(v;).
Similarly we define the outdegree of a vertex v;, denoted by d*(v;), as the number of arcs
in Gy having v; as tail.

The following definitions are usually given for undirected graphs. We will do the same, but

remark that one could easily adapt the definitions to the more general case of mixed graphs.
Consider an undirected graph G = (V, E).
Definition 1.9 (induced subgraph). Let A C V be a subset of the vertex set V. The

subgraph of G induced by A is the graph Ga = (A, E4) where E4 = {[v;,vj] € E | v;,vj €
A}.

Definition 1.10 (partial graph). H = (V. E’) is a partial graph of G if E' C E.
Figure 1.4 shows an induced subgraph G4 = (A,E4) of G = (V,E) from Figure 1.1

with A = {vg,v3,v4,v5,v6} and a partial graph H = (V,E’) of G = (V,E) with E' =
{[’Ug, ’U4], [v37 ’U4], [v37 /U5]7 [’U4, /Uﬁ]7 [/U57 /Uﬁ]}-

Definition 1.11 (partial subgraph). H = (V' E’) is a partial subgraph of G if it is an
nduced subgraph of a partial graph of G.

An example of a partial subgraph is shown in Figure 1.5. It represents a subgraph induced
by V' = {v1,v9,v3,v4,v5} of the partial graph H from Figure 1.4b).

v
s v, A v,

a) b)

Figure 1.4: a) An induced subgraph G4 = (A,E4) of G = (V,E). b) A partial graph
H=(V,E') of G = (V, E).

The next two concepts play an important role in vertex coloring and edge coloring as we

will see later in the next section.
Definition 1.12 (stable set). A stable set is a set of pairwise nonadjacent vertices.

Definition 1.13 (matching). A matching is a set of pairwise nonadjacent edges.
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Figure 1.5: A partial subgraph H = (V/, E’) of G = (V, E).

For the following definitions, let us consider a mixed graph Gy = (V, U, E) with |V| = n.

Definition 1.14 (chain). A chain is a sequence of vertices {vy,va, ..., v} such that [v;,v;41] €
E or (vi,vi41) € U or (viz1,v;) €U fori=1,...,1—1.

Definition 1.15 (cycle). A cycle (or closed chain) is a sequence of vertices {v1,va, ..., v}
such that [vi,viy1] € E or (vi,viy1) € U or (vig1,v;) €U fori=1,...,1—1 and [vi,v] € E
or (vi,v) € U or (v, v) € U.

Definition 1.16 (path). A path is a sequence of vertices {v1, va, ..., v;} such that (v;,vi11) €
U fori=1,...,1—-1.

Definition 1.17 (circuit). A circuit is a sequence of vertices {vi,ve,...,v;} such that
(v, viy1) €U fori=1,...,1 —1 and (v;,v1) € U.

Figure 1.6 shows examples of a chain, a cycle, a path and a circuit.

Notice that a path is a special case of a chain and a circuit is a special case of a cycle.
The length of a chain (resp. cycle, path, circuit) is the number of edges and arcs contained
in the chain (resp. cycle, path, circuit). A chain (resp. cycle, path, circuit) is said to be
elementary if v; # vj for all @ # j, i,j € {1,...,1}.

A chain (resp. cycle path, circuit) is called Hamiltonian if it contains all the vertices of the

graph.

Definition 1.18 (connected graph). A mized graph Gy = (V,U, E) is said to be con-

nected if for all pairs of vertices v;,v; € V, there exists a chain joining these two vertices.

Definition 1.19 (strongly connected graph). A mized graph Gy = (V,U, E) is said to
be strongly connected if for all pairs of vertices v;,v; € V, there ewists a path from v; to v;

and from v; to v;.

Let us finally define some special classes of graphs which will be frequently used in this

thesis.

Definition 1.20 (tree). A mized graph Gy = (V,U, E) is called a tree if it is connected

and contains no cycle.

10
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a) b) c) d)

Figure 1.6: a) A chain. b) A cycle. ¢) A path. d) A circuit.

Definition 1.21 (A-regular graph). A mized graph Gy = (V,U, E) is a A-regular graph
if d(v;) = A, for all v; € V.

Definition 1.22 (bipartite graph). A mized graph Gy = (V,U, E) is bipartite if its

vertex set V' can be partionned into two stable sets V1 and V5.

In this case we write Gy = (V1, Vo, U, E).

1.2.2 Vertex coloring

In this section we will introduce one of the most famous problems in graph theory and
combinatorial optimization, namely the graph coloring problem. This problem has been

studied intensively in the literature (see for instance [8, 47]).

Definition 1.23 (vertex coloring of G). Let G = (V, E) be an undirected graph. A vertex
coloring of G is a mapping ¢ : V — C, where C is the set of colors (typically the natural
numbers), such that for each edge [v;,v;] € E, c(v;) # c(v;).

If the number of available colors is k, i.e., if |C| = k, then c is called a k-coloring. Given a
graph G = (V, E'), the smallest integer k such that there exists a k-coloring of the vertices of
G is called the chromatic number of G and denoted by x(G). The graph coloring problem

in its decision version may be formulated as follows.

Graph Coloring Problem GC(G, k)
Instance: An undirected graph G = (V, F) and an integer k > 1.

Question: Does G admit a k-coloring?

11
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While the graph coloring problem is solvable in polynomial time for & = 2, it remains
N'P-complete for all fixed k > 3 (see [48]).

Notice that coloring the vertices of a graph G = (V| E) using k colors is equivalent to
partition the vertex set V into k stable sets Vi, ..., V. In fact, the set of vertices having the

same color s form a stable set since they cannot be pairwise adjacent.

The graph coloring problem has a large range of applications (see for instance |57, 77]). We

shall give here two examples of applications: timetabling and frequency assignment.

For the timetabling problem, suppose for instance that a set of courses has to be scheduled,
i.e., one has to associate a time period with each course respecting the following disjunctive
constraints: a class cannot have two different courses at the same time period and a teacher
cannot give two different courses at the same time period. If there are k time periods avail-
able, we may want to find out whether it is possible to determine a timetabling of these
courses respecting the contraints mentioned above. To represent this problem as a graph
coloring problem, we associate with each course a vertex and two vertices are linked if the
corresponding courses are given by the same teacher or if there is a class attending the two
courses. If the resulting graph is k-colorable, then there exists such a timetabling and each

color corresponds to a time period.

In the frequency assignment problem (FAP), a set of wireless communication connections
(or a set of antennae) must be assigned frequencies such that data transmission between the
two endpoints of each connection (the receivers) is possible. The frequencies assigned to two
connections which are close to each other incur interference, resulting in quality loss of the
signal if they are assigned the same frequency. The FAP consists in assigning frequencies to
the connections such that there is no interference. Given k frequencies and the network of
antennae, is it possible to assign a frequency to each antenna such that there is no interfer-
ence? Again, this problem may be transformed into a graph coloring problem by associating
a vertex to each antenna, and by joining two vertices if the corresponding antennae are close
to each other and their frequencies may incur interference. If there exists a k-coloring of the

resulting graph, then by associating each color to a frequency, we get a solution for the FAP.

But nevertheless, it may happen that some constraints cannot be modelled by simply using
an undirected graph and hence the coloring model described above may be too limited to be
useful in some applications. For example, if we want to include some precedence constraints
in our timetabling problem (i.e., we impose for some pairs of courses that they must be
scheduled in a given order), the model given by the undirected graph will not be sufficient
anymore. In this case, we have to introduce a new model which will be given by mixed

graphs.

Definition 1.24 (strong mixed graph coloring of Gy;). Let Gy = (V,U, E) be a mized
graph. A strong mized graph coloring of Gy is a mapping ¢ : V. — C, where C is the set

12
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of colors (typically the natural numbers), such that for each edge [v;,v;] € E, c(v;) # c(vj)
and for each arc (v;,vq) € U, c(v) < c(vg).

As before, if the number of available colors is k, i.e., if |C| = k, then c is called a strong
mized graph k-coloring. Given a mixed graph Gy = (V,U, E), the smallest integer k, such
that there exists a strong mixed graph k-coloring of the vertices of Gy, is called the strong

mized chromatic number of G and denoted by vas(Gar).

The strong mixed graph coloring problem in its decision version may be stated as follows.

Strong Mixed Graph Coloring Problem S(Gjy, k)
Instance: A mixed graph Gjy = (V,U, E) and an integer k£ > 1.

Question: Does G admit a strong mixed graph k-coloring?

It can easily be seen, that a strong mixed graph coloring of a mixed graph will give an
answer to our timetabling problem containing precedence constraints. In fact, we join two
vertices v; and vy by an arc (v;, v,) if the course corresponding to vertex v; must be scheduled
before the course corresponding to vertex v,. Thus the resulting graph is a mixed graph
and there is a one-to-one correspondance between a strong mixed graph k-coloring and a

feasible schedule over k time periods.

Notice that for a strong mixed graph coloring to exist, the mixed graph must not contain any
circuit. It is easy to see that the graph coloring problem is just a special case of the strong
mixed graph coloring problem where we have no precedence constraints. Thus S(Gr, k) is
also N'P-complete for all fixed k& > 3.

Suppose now that for the pairs of courses in our timetabling problem which have been linked
by a precedence constraint, we decide that they can take place at the same time. In other
words, we allow the pairs of vertices which are linked by an arc to get the same color. To
take these relaxations into account, we have to introduce yet another type of mixed graph

coloring.

Definition 1.25 (weak mixed graph coloring of Gys). Let Gy = (V,U, E) be a mized
graph. A weak mized graph coloring of Gyr is a mapping c: V. — C, where C is the set
of colors (typically the natural numbers), such that for each edge [v;,v;] € E, c(v;) # c(v;),
and for each arc (vy,vq) € U, c(v;) < c(vy).

Again, if the number of available colors is k, i.e., if |C| = k, then c is called a weak mized
graph k-coloring. Given a mixed graph Gy = (V,U, E), the smallest integer k such that

there exists a weak mixed graph k-coloring of the vertices of Gy is called the weak mized

13
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chromatic number of Gps and denoted by xar(Gar).

The weak mixed graph coloring problem in its decision version may be stated as follows.

Weak Mixed Graph Coloring Problem W (G, k)
Instance: A mixed graph Gy = (V,U, E) and an integer k£ > 1.

Question: Does Gjs admit a weak mixed graph k-coloring?

Clearly this type of mixed graph coloring may solve our new timetabling problem. It con-
tains the strong mixed graph coloring problem in the sense that the latter one is just a
special case of it. In fact, if in the weak mixed graph coloring problem we suppose that each
pair of vertices linked by an arc is also linked by an edge, we again obtain the strong mixed

graph coloring problem. Thus W (G, k) is N'P-complete.

While the graph coloring problem has been studied intensively, the strong and weak mixed
graph coloring problems have not found much attention in the literature. In Chapter 2 of
this thesis, we investigate these two coloring problems. First we give an overview of the
work that has already been done. Then for both problems, we determine some bounds on
the mixed chromatic numbers. Finally we analyze some special classes of mixed graphs for

which we show that either the problem considered is N'P-complete or polynomially solvable.

1.2.3 Edge coloring and matchings

In this section we present another famous coloring problem in undirected graphs: the edge
coloring problem. As the vertex coloring problem, it has been studied intensively (see for
instance [43, 74]) and it also has a large range of applications, especially in scheduling (see
[27]).

Definition 1.26 (edge coloring). Let G = (V, E) be an undirected graph. An edge coloring
of G is a mapping e : E — C such that for each pair of edges [vi,vj], [vs,v1], e([vi,v;]) #

e([vi,vp]).

We call e an edge k-coloring if the number of colors available is k, i.e., if |C] = k. Given
an undirected graph G = (V, FE), the smallest integer k, such that there exists an edge
k-coloring of G, is called the chromatic index of G and denoted by x'(G).

Hence the edge coloring problem may be defined as follows.

14
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Edge Coloring Problem EC(G,k)
Instance: An undirected graph G = (V, E) and an integer k > 1.

Question: Does G admit an edge k-coloring?

As the vertex coloring problem, the edge coloring problem EC(G, k) is in general NP-
complete (see [43]). But there are some special classes of graphs for which polynomial time
algorithms are known. A famous result concerning edge coloring is Kénig’s coloring theorem

which can be stated as follows.

Theorem 1.27 (Konig’s coloring theorem [4]). Let G = (V1, V4, E) be an undirected
bipartite graph. Then X' (G) = A(G).

Similar to the case of vertex coloring, the edge coloring problem may be seen as a partition
problem. Indeed, the set of edges with a same color f must be pairwise non adjacent. So
they form a matching. Thus, coloring the edges of a graph G = (V, E) with k colors is

equivalent to partition the edge set E into k sets Fi, ..., E}, each one being a matching.

The matching theory has been studied intensively and plays an important role since many
discrete problems can be formulated as matching problems (e.g. timetabling problems). A
matching M in a graph G = (V, E) is called mazimum if for all matchings M’ in G, we have
|M| > |M’|. A perfect matching M in a graph G = (V, E) is a matching such that for each
vertex v; € V, there exists an edge [v;,v;] € M. In contrast to the vertex and edge coloring
problems, the problem of finding a maximum matching in a general graph is polynomially
solvable (see [28, 29]).

In this thesis, we will not consider the edge coloring problem or the maximum matching
problem themselves, but we will concentrate on some problems which are in a certain way
related to them. In Chapter 3 we consider the problem of characterizing a minimum set R
for which maximum matchings M can be found with specific values of p = |M N R|. More
precisely, given a graph G = (V, E) and a set P = {po,p1,...,ps} of integers 0 < pg < p1 <
... < ps < [|V]/2], we want to color a subset R C E of edges of G, say in red, in such a
way that for any i (0 < i < s) G contains a maximum matching M; with exactly p; red
edges, i.e., |M; N R| = p;. Notice that we do not impose that two red edges are necessarily
non adjacent. So we consider a problem of edge partitioning rather than edge coloring in

the way it was defined above.

Edge coloring, or more precisely edge partitioning, is also closely related to what is called

discrete tomography. In the next section we will introduce this field and explain this relation.
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1.3 Discrete tomography

Tomography deals with the reconstruction of an object from its projections in given direc-
tions. While these projections are uniquely defined, this is not necessarily the case for the
underlying object or it may not exist at all. Thus once we are given the projections, we

may be interested in the following problems.

(1) Does there exist an object with the given projections?
(2) Is there a unique object corresponding to the projections?

(3) How can the object, if it exists, be reconstructed?

Tomography has its main application in medical imagery, where continuous 3-dimensional
objects must be reconstructed from several projections, which consist in 2-dimensional func-
tions. But there are lots of other areas in which tomography plays an important role, for
example in crystallography, data compression, pattern recognition, electron microscopy or

timetabling.

In discrete tomography, the object to be reconstructed can be expressed using a discrete
set of data. One of the most famous problems in discrete tomography is the reconstruction
problem of 2-dimensional images from two projections (horizontal and vertical), which we
simply call basic image reconstruction problem. Here we consider an (m xn) array A = (a;;)
where each entry may contain a pixel to be colored with one of the colors 1,2, ..., k. Given
the number hj (resp. vj) of pixels with color s in row i (resp. column j) for s = 1,...,k and
i=1,..,m (resp. j = 1,...,n), the basic image reconstruction problem consists in assigning
a color in {1,...,k} to each entry of A such that there are exactly h; (resp. v]) pixels in
row ¢ (resp. column j) having color s, for s = 1,....,k and i = 1,...,m (resp. j = 1,...,n).

Clearly the values h and v; must satisfy some necessary conditions for a solution to exist:

k
d b= n (i=1,...,m) (1.1)
s;1
dwi=m (G=1,...,n) (1.2)
s=1

dohi= > vl (s=1,....k) (1.3)
=1

This basic image reconstruction problem, also called colored matriz reconstruction problem,
occurs in problems associated with the location of atoms in a crystal by means of X-rays
parallel to the two coordinate axes. There are k types of atoms present and each X-ray
gives the number of atoms of each type lying on each line in a family of parallel lattice
lines. Another application concerns timetabling (see [18]). With each row we associate a

class, with each column a time period, and with each color a professor. Then the horizontal
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projection h corresponds to the number of one-hour lectures that teacher s must give to
class ¢, and the vertical projection v7 is equal to 1 if teacher s is available during period j
and 0 else. A feasible timetable is an assignment of colors to the entries with respect to the

projections.

In the case of two colors, i.e., k = 2, the basic image reconstruction problem corresponds to
the reconstruction of a binary matrix, given the number of occurrences of 1’s in each row
and each column. This case has been intensively studied (see for instance [65]). In 1957,
Ryser and Gale (independently from each other) gave necessary and sufficient conditions
under which there exists an image satisfying the projections. They may be formulated as

follows.

Consider the matrix A in which each row i consists of h} consecutive 1’s followed by n — h}
0’s. Such a matrix A is uniquely determined by its row sum vector. Let us denote by Q the
column sum vector of A. Furthermore, let us put the values hi1 (resp. vjl) in nonincreasing
order and denote them by p; > ps > ... > py, (resp. ¢1 > g2 > ... > @,). Then the Ryser
conditions are Z?:z qj = Z;-l:l Qj, for 2 < [ < n. Since these conditions may be veri-
fied in polynomial time, the image reconstruction problem for two colors can be solved in
polynomial time. Besides this, the proof also provides an algorithm which reconstructs the
corresponding image (if it exists) in time O(n(m + log(n))). In the case of two colors, the
problem of uniqueness of a solution has also been solved by Ryser. He shows that a binary
matrix A is nonunique if and only if it contains a switching component which consists of a

2 x 2 submatrix having two 1’s on one diagonal and two 0’s on the other one.

In 2002, Chrobak and Diirr showed that the basic image reconstruction problem with k = 4
colors is N'P-complete (see |16]). The complexity is still open for £ = 3. In |18, 19] some
polynomial solvable cases are given. In [18] it is shown for instance that the basic image
reconstruction problem with & = 3 colors is polynomial solvable, if for colors 1 and 2 we
have h}, hZ, vjl-, UJQ- € {0,2} for each row i and each column j. In [19] the case of k = 3 colors
is considered with the restriction that one color, say color 1, may have several occurrences,
but not more than r in a fixed number ¢ of rows and columns, and it is shown to be poly-

nomially solvable.

For a more complete overview of the theory and the applications of discrete tomography,
the reader is referred to [52, 53].

We will now show how the basic image reconstruction problem may be formulated in graph
theoretical terms. This formulation has been introduced for the first time in [18] and it has
been used to show several complexity results in [18, 19]. With each row i of A we associate
a vertex ¢. We denote by X the set of these vertices. Similarly we associate a vertex j

with each column j of A and denote by Y the set of these vertices. Then with each entry
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a;j, we associate an edge [i,j]. Hence we get a complete bipartite graph Kx y. The basic
image reconstruction problem then consists in finding a partition E', ..., E¥ of the edge set
of Kx y such that for each vertex ¢ € X, there are exactly h} edges of E/* which are incident
to ¢, and for each vertex j € Y, there are exactly v; edges of E* which are incident to j, for
s = 1,...,k. Thus the basic image reconstruction problem may be interpreted as a special
case of edge coloring where we allow adjacent edges to have the same color, but we impose

the number of edges of each color incident to each vertex of the graph.

But the basic image reconstruction problem may also be seen as a special kind of vertex
coloring. Indeed, let us associate a vertex with each pixel in the array A. We join two
vertices if the corresponding pixels are adjacent in A; we obtain a graph G which is called
grid graph. Notice that each column in A as well as each row in A corresponds to a chain
in the graph G. Since we want to associate a color with each pixel by respecting the given
projections (number of occurrences of each color in each row and each column), we equiv-
alently want to color the vertices of G such that in each chain corresponding to a column
or to a row, we have a given number of occurrences of each color. Notice that we do not
care about adjacent vertices having the same color. Thus we get a vertex coloring problem

which is equivalent to the basic image reconstruction problem.

In Chapter 4, we will concentrate on a generalization of this particular vertex coloring prob-
lem. We consider an undirected graph G = (V, E) and a collection P of chains covering
the vertices of G. We are given a set of colors {1,2,...,k} as well as for each chain P; the
number of occurrences of each color j denoted by hg, for y = 1,2,...,k. We have to find
a partition V1, V2, ... V¥ of V such that for each chain P; we have |P; N VJ| = hg, for
j = 1,2,....,k. This problem will be referred to as A(G,k,P, H), where H is the collec-
tion of vectors h(P;) = (hi,...,h¥). We may analyze the same problem with the additional
requirement that two adjacent vertices do not get the same color, i.e., we want to get a
graph coloring as defined previously. This problem will also be studied in Chapter 4 and
we denote it by A*(G, k, P, H). For both problems, we also consider the edge partitioning
version, i.e., we want to find a partition E', E?, ..., E¥ of E such that each chain contains a
given number of edges of each color, and we may require or not that two adjacent edges do
not belong to the same set of the partition. These problems will be respectively denoted by
U (G, k,P,H) and ¥*(G, k,P,H).

Instead of fixing the number of occurrences of each color in chains, one may be interested
in coloring the vertices of an undirected graph G = (V, E) by fixing the number of occur-
rences of each color in some generalized neighborhood of each vertex v. Let us denote by
N4(v) the d-neighborhood of a vertex v which is the set of vertices which are at distance
d from v (i.e., the shortest chain between each one of these vertices and v has length d).
Given an undirected graph G = (V, E), a set of colors {1,...,k} and a collection H of
vectors h(v) = (hl,....,hF), v € V, we want to find a partition V1, ..., V¥ of V such that
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|Ng(v) N V¥ = hi for all vertices v € V and all 1 < i < k. This problem is referred to
as P4(G, H, k). One may also define N (v) as the set of vertices which are at distance at
most d from v. The corresponding partition problem will be denoted by 77; (G,H,k). As
before we can also analyze these problems with the additional requirement that the coloring
must be proper, i.e., two adjacent vertices must belong to different sets V¢, V7, i # j. Then
the corresponding partition problems will be denoted by P5(G, H, k) and P;*(G, H, k), re-
spectively. In Chapter 5, we deal with the cases d = 1 and d = 2 for some values of k£ by
determining the complexity of the different problems. Finally we will also be interested in
the case where we do not fix the number of occurrences of each color in some generalized
neighborhood, but we simply give an upper bound on this number. In other words, we want
to find a partition V1, ..., V¥ of V such that |Ng(v) N V?| < hi for all vertices v € V and all
1 <4 < k. Results for d = 1 are given in Chapter 5, for the case of non proper coloring as
well as for the case of proper coloring. These problems will be denoted by BP(G, H, k) and
BP*(G, H, k), respectively.

As already mentioned before, the complexity status of the basic image reconstruction prob-
lem with k& = 3 colors is still open. Some special cases have been shown to be polynomially
solvable in [18, 19]. In Chapter 6, we use the edge partitioning version of the basic image
reconstruction problem, and we present another special case for which this problem can be
solved in polynomial time. Furthermore we consider the case of k = 3 colors where the sets
E' and E? have to satisfy some additional constraints. More precisely we consider the cases
where E' U E? must form a tree or a collection of disjoint chains. We give necessary and
sufficient conditions for a solution to exist. These conditions can be checked in polynomial
time, and the proofs provide polynomial time algorithms to construct a solution if there is
one. We also consider the case where each set E' and E? has to be a Hamiltonain chain, as
well as the case where they have to be edge-disjoint cycles through specified vertices. Again,
we give necessary and sufficent conditions for a solution to exist. Notice that these cases
do not correspond to special cases of the basic image reconstruction problem with k& = 3

colors, since we impose some additional constraints on the sets E' and E2.

Although there is no immediate connection with discrete tomography, we do consider the
case where the graph G is simply a complete graph Ky instead of a complete bipartite
graph. In Chapter 6 we give results for the same problems treated in the case of Kx y.

Finally we introduce in Chapter 6 the field of ‘oriented’ discrete tomography. Here we
consider a complete symmetric oriented graph G = K x. For each vertex ¢ of X we are
given the number of incoming (h;®) and outgoing (h;®) arcs of each color s. Then the
basic image reconstruction problem in its oriented version is as follows. We want to find a
partition ﬁl, e ,ﬁk of the arc set E such that for each color s and for each vertex i, we
have exactly h; ® incoming arcs belonging to E*® and h;-"s outgoing arcs belonging to E*.
We will consider the case of k = 3 colors, and we give necessary and sufficient conditions

. . . _>1 _>2
for a solution to exist in the case where E* U E“ has to be a tree.

19






Chapter 2

On two coloring problems in mixed

graphs

Introduction

A mixed graph Gy = (V,U, E) on vertex set V' = {vy,v9,...,v, } is a graph containing arcs
(set U) and edges (set E). We denote by [v;,v;] an edge joining vertices v; and v; and by
(v1,v4) an arc oriented from v; to v,. Here we consider only connected finite mixed graphs
containing no multiple edges, no multiple arcs, and no loops. The number of vertices in a
mixed graph Gy = (V,U, E) will be denoted by |V| = n. Mixed graphs have been intro-
duced for the first time in [69].

In this chapter we are interested in two coloring problems in mixed graphs, which have
already been presented in Chapter 1 in relation with some scheduling problems. Let us
recall some definitions and notations. The first problem is called strong mized graph col-
oring problem. A strong mized graph k-coloring of a mixed graph Gy is a mapping c:
V — {0,1,...,k — 1} such that for each edge [v;,v;] € E, c(v;) # c(vj), and for each arc
(v, v9) € U, c(u;) < c(vq). Notice that such a coloring can exist if and only if the mixed
graph Gy does not contain any directed circuit. We denote by vas(Gar) the strong mized
chromatic number of G, that is the smallest integer k such that G admits a strong mixed
graph k-coloring. A mixed coloring of Gp; with vy (Gpr) colors will be called optimal. We
will generally consider the following problem. Given a mixed graph Gy = (V,U, E) and
a positive integer k, find out whether Gj; admits a strong mixed graph k-coloring. This
coloring problem has been studied in [33, 41, 67, 68|. In [41] some upper bounds on the
strong mixed chromatic number are given. An O(n?) time algorithm to color optimally
mixed trees and a branch-and-bound algorithm are also developed. In [33]| a linear time
algorithm for mixed trees is given as well as an O(n33® log(n)) time algorithm for series
parallel graphs. Finally in |67, 68|, the unit-time job-shop problem is considered via strong

mixed graph coloring. In this particular case the partial graph (V. 0, E) is a disjoint union
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of cliques and the undirected graph (V,U, () is a disjoint union of directed paths. In [68]
three branch-and-bound algorithms are presented and tested on randomly generated mixed
graphs of order n < 200 for an exact solution and of order n < 900 for an approximate so-

lution. Also some complexity results are given concerning this special class of mixed graphs.

The second problem which we will consider in this chapter is called the weak mized graph col-
oring problem which was introduced for the first time in [69]. A weak mized graph k-coloring
of a mixed graph G is a mapping ¢: V' — {0, 1, ..., k—1} such that for each edge [v;,v;] € E,
c(v;) # c(v;), and for each arc (v;,vy) € U, ¢(v;) < c(vy). Notice that in such a coloring of
a mixed graph, all vertices on a directed circuit must necessarily have the same color. We
denote by xa(Gar) the weak mized chromatic number of Gy, that is the smallest integer k
such that G admits a weak mixed k-coloring. Given a mixed graph Gy = (V,U, E) and a
positive integer k, we are interested in finding out whether Gjs admits a weak mixed graph
k-coloring. The weak mixed graph coloring problem has been studied in [2, 50, 54, 69, 70].
In |70] some algorithms calculating the exact value of the weak mixed chromatic number

of graphs of order n < 40 and upper bounds for graphs of order larger than 40 are presented.

This chapter is organized as follows. In Section 2.1 we give some definitions and notations
which will be used later. Section 2.2 deals with the strong mixed graph coloring problem.
Some bounds on the strong mixed chromatic number are given, as well as some complexity
results concerning special classes of graphs. In Section 2.3 the weak mixed graph coloring
problem is considered and bounds on the weak mixed chromatic number are given with

some complexity results.

2.1 Preliminaries

Let Gy = (V,U, E) be a mixed graph and let V, be the set of vertices which are incident
to at least one arc in Gp;. We denote by G(V,) the mixed subgraph of Gj; induced by V,
and by G9; = (V,, U, 0) the directed partial graph of G(V,). n(G9,) denotes the number of
vertices on a longest directed path in G9,;. Notice that the length of a longest directed path
in Gy (i.e., the number of arcs of a longest directed path in Gs) is equal to n(G$,;) — 1.
Clearly n(G¢;) is a lower bound on v/ (Gr).

Let P be a directed path in G§,;. The number of vertices in P will be denoted by |P].

Let v; be a vertex in Gps. The inrank of v;, denoted by in(v;), is the length of a longest
directed path in G, ending at vertex v;. Similarly we define the outrank of v;, denoted by
out(v;), as being the length of a longest directed path in G, starting at vertex v;. If v;
is not incident to any arc, then in(v;) = out(v;) = 0. Notice that the length of a longest

directed path in Gy is given by max,,cv (in(v;) + out(v;)).
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Notice that the parameters introduced above can only be defined if G, has no directed

circuit.

We recall that the degree of a vertex v in Gy, denoted by dg,, (v), is the number of edges

and arcs incident to v. We shall simply write d(v) if no confusion can occur.

2.2 Strong mixed graph coloring problem

In this section we study the following problem, which is called the strong mized graph col-

oring problem and has already been introduced in Chapter 1.

Instance: A mixed graph Gy = (V,U, E) and an integer k > n(G$,).

Question: Can the vertices of Gs be colored using at most k colors such that for each edge
[vi,vj] € E, c(v;) # c(v;), and for each arc (v, vq) € U, c(v;) < c(vq)?

We will refer to this problem as S(Gjps, k). Notice that in this problem we can suppose
w.lo.g. that whenever (v;,vy) € U, then [v,v,] ¢ E since (v;,vq) € U implies that
c(vy) < c(vg) and thus c(vy) # c(vg).

A necessary and sufficient condition for a mixed graph to admit a strong mixed graph
coloring is that it does not contain any directed circuit. We will suppose for the rest of this

section that it is satisfied.

2.2.1 Bounds on the strong mixed chromatic number

Upper bounds on the mixed chromatic number have been given in [41]. In particular, one
of these bounds implies that for mixed bipartite graphs we have n(G%;) < Yym(Gum) <
n(G4;) + 1. In this section we will give some upper bounds for special classes of mixed

graphs and in some cases the exact value of the strong mixed chromatic number.

Lemma 2.1. Let G, = (V1 U V5, U, 0) be a mized bipartite graph. Assume that all paths of
length n(GS;) — 1 start in the same vertex set, say Vi. Then it is possible to find a strong
mized n(GS,)-coloring such that all vertices in Vi have an even color, and all vertices in Va

have an odd color.

Proof: Since G, has no circuit, we may decompose its set of vertices into subsets
Co,C1, ..., Cn(ng )—1, where Cj is the set of vertices having no predecessors when vertices in
Co,C1, ...,C;_1 have been removed.

So we start with the vertices in Cy and give each vertex v color 0 if it is in V) or color 1 if it

is in V5, and we continue with the vertices in Cq,Co, ..., by giving each vertex the smallest
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color which is larger than the color of all its predecessors.

This will give an odd color to vertices in V5 and an even color to vertices in V; (since G§,
is bipartite a vertex in V; (resp. V4) has all its predecessors in V5 (resp. V;)). Clearly we
will have ¢(v) < ¢(w) for each arc (v,w). Furthermore no more than n(G$,) colors will be
used (the longest paths starting in V5 will have length less than n(G9;) — 1 and therefore
contain colors in {1,2,...,n(G4,) — 1}). ]

Now using this Lemma, we obtain the following result.

Theorem 2.2. Let Gy = (V1 UV, U, E) be a mized bipartite graph. Assume that all paths
of length n(GS;) — 1 start in the same vertez set, say Vi. Then it is possible to find a strong
mized n(GS,)-coloring such that all vertices in Vi have an even color, and all vertices in Vs

have an odd color.

Proof: From Lemma 2.1 we know that the vertices of G, can be colored using at most
n(G9,) colors and such that all vertices in V; have an even color and all vertices in V5 have
an odd color. Notice that whenever there is an edge between two colored vertices v and w,
we necessarily have that c¢(v) # c¢(w), since if one color is even, then the second one is odd.
By coloring the remaining uncolored vertices of V; with color 0 and the remaining uncolored
vertices of V5 with color 1, we obtain a strong mixed n(G¢,)-coloring such that all vertices

in V4 have an even color and all vertices in V5 have an odd color. [ |

Theorem 2.3. Let Gy = (Vi U Vo,U, E) be a complete mized bipartite graph. Then
Y (Gar) = n(GS,) if and only if all paths of length n(GS;) — 1 start in the same vertez set
Vi, i€ {1,2}.

Proof: From Theorem 2.2 we know that if these paths start in the same vertex set, then
ym(Gar) = n(GS;). Now suppose that the strong mixed chromatic number is equal to
n(G9;). Assume there are two paths of length n(G$,) — 1 having their startvertices not in
the same vertex set V;, i € {1,2}; these vertices are necessarily linked by an edge since the
graph is complete. But in this case, a proper strong mixed n(G¢,)-coloring would not be
possible. So we conclude that all paths of length n(G¢,) — 1 start in the same vertex set V;,
ie{1,2}. |

Theorem 2.4. Let Gy = (V,U,E) be a mized graph such that G(V,) has strong mized
chromatic number yp(G(V,)) < n(GS) +1. Suppose that we have maxgrca,, (Minyeqr vav,
(der (v))) < n(GS,), where G is an induced subgraph of Gar containing V,. Then var(Gur) <
n(GS;) + 1.

Proof: Consider G(V}); it can be colored with at most n(G§;)+1 colors. Now assume that
the above condition holds. We can remove the vertices of set V'\ V,, by taking at each step a

vertex with minimum degree in the remaining graph (this is the Smallest Last Ordering of
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[59]); all these degrees will be at most n(G9;) as we will now show. So when reinserting the
vertices in the opposite order, it will be possible to color the graph with at most n(G$,) +1
colors (for each vertex there will be a color available among the n(G$,) + 1 colors).

Let us call vq,v2, ..., v4 the vertices of V'\V;, in the order in which they are removed, and let us
call G; the partial subgraph of Gj; remaining when vertices vy, ..., v;—1 have been removed;
so G1 = Gp. We denote by G’ an induced subgraph of Gj; containing V,. We have
maxcrcy, (Minveer vy, (dar (v))) = maxi<i<q(mingea, vgv, (dg, (v))) = maxi<i<q(da, (vi))
since in the left hand side all possible induced subgraphs G’ of G); containing V, are
considered, while in the right hand side, only G1, ..., G4 are considered.

We also have maxqrcq,, (minyeq vgv, (dar (v))) < maxi<i<q(dg, (vi)). In fact, let G” be the
induced subgraph for which the maximum on the left is attained. Let v, be the first vertex
of G” which is removed in the above process. Then maxgca,, (minyeq vgv, (dar(v))) =
minvegl/’vgvo (dG” (7))) < dgn (7)7«) < dg, (7)7«) < maxlgigq(dgi (Ul)) So the above inequality
holds. It follows that maxgca,, (minyea vgv, (der(v))) = maxi<i<q(dg,;(vi)) < n(GY;).
Hence the coloring of Gy is possible with at most n(G$;) + 1 colors. [

As already mentioned at the beginning of this section, we know that for a mixed bipartite

graph G, ym(Gar) < n(GS;) + 1, and so we obtain the following corollary.

Corollary 2.5. Let Gy be a mized graph such that G(V,) is mized bipartite and such
that maxcrcq,, (Minyeq vgv, (da (v))) < n(GY,), where G’ is an induced subgraph of G
containing V,. Then yar(Gar) < n(G$,) + 1.

Corollary 2.6. Let Gy be a mized graph such that each odd cycle C in Gy contains at least
one vertex which is not incident to any arc and such that maxg cq,, (min,eq vy, (da (v))) <

n(GS,), where G is an induced subgraph of Gar containing V,. Then v (Gar) < n(G§,)+1.

Proof: Consider the mixed graph G(V,). Since each odd cycle in G contains at least
one vertex which is not incident to any arc, G(V,) has no odd cycle and hence is mixed

bipartite. We conclude by using Corollary 2.5. |

2.2.2 Complexity results

In this section we will give some complexity results concerning the strong mixed graph
coloring problem. In [41] an open question is the complexity to decide whether the strong
mixed chromatic number is n(GS,) or n(G9,) + 1 for mixed bipartite graphs. G. Rote has
shown with an elementary construction that this problem is N'P-complete [64]|. Here we will
strengthen this result by proving that it is N/P-complete even for planar bipartite graphs
with maximum degree 4 and such that all vertices incident to at least one arc have maximum

degree 2 as well as for bipartite graphs with maximum degree 3.

Theorem 2.7. S(Gys,3) is N'P-complete even if Gy is planar bipartite with mazimum

degree 4 and each vertex incident to an arc has mazimum degree 2.
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Proof: We use a reduction from the List Coloring problem (LiCol) which is defined as

follows.

Instance: An undirected graph G = (V, E) together with sets of feasible colors L(v) for all
vertices v € V.
Question: Does there exist a proper vertex coloring of G' with colors from L = J,cy L(v)

such that every vertex v is colored with a feasible color from L(v)?

This problem is shown to be N'P-complete even if G is a 3-regular planar bipartite graph
and the total number of colors is 3 and each list L(v) contains 2 or 3 colors (see [15]).

Let G be a 3-regular planar bipartite graph. Suppose that each vertex v is given a list L(v)
with feasible colors such that 2 < |L(v)| < 3, and such that the total number of colors is 3
(colors 0,1 and 2). For each vertex v in G such that |L(v)| = 2, introduce new vertices as
shown in Figure 2.1 depending on the list L(v). The mixed graph Gj; we thereby obtain is
planar and bipartite with A(Gjps) = 4; each vertex incident to an arc has maximum degree
2 and n(G$;) = 3.

0,2} 8 ®

Figure 2.1: Depending on the list L(v), we add new vertices, edges and arcs.

Suppose now that LiCol(G) has a positive answer. Denote by ¢ the coloring corresponding
to the solution. Then in Gy, color each vertex v which is also in G with the color ¢(v). It is
easy to see that the remaining uncolored vertices (those which were added) can be colored

using colors 0,1 and 2 such that all the constraints are satisfied.

Conversely, if S(Gas,3) has a solution, each original vertex gets necessarily a color from its
list L(v) in G, and hence we obtain a solution of LiCol(G) in G by removing in Gj; the

new vertices added at the beginning. ]
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Theorem 2.8. S(Gyy,3) is N'P-complete when Gy is bipartite and has mazimum degree
3.

Proof: We will use a transformation from the 3SAT problem which is known to be NP-
complete even if each variable appears at most three times, each literal at most twice and
each clause contains 2 or 3 literals [61]. Notice that we can assume that whenever a literal
appears twice, this literal is positive.

With each variable z, we associate the variable gadget shown in Figure 2.2.

Figure 2.2: The variable gadget.

With each clause c. = (x VyV 2), where z has its i*" occurrence, y its j** occurrence and z
its ¢ occurrence, 4,7, q € {1,2}, we associate the variable gadget shown in Figure 2.3(a).
With each clause ¢, = (x V y V %), where x has its i*" occurrence, y its j* occurrence,

i,j € {1,2}, we associate the variable gadget shown in Figure 2.3(b).

(a)

Figure 2.3: (a) The clause gadget for ¢, = (xVyVz). (b) The clause gadget for c¢. = (zVyVZ).

With each clause ¢, = (x V § V 2), where x has its i occurrence, i € {1,2}, we associate
the variable gadget shown in Figure 2.4(a).
With each clause ¢, = (Z V y V Z), we associate the variable gadget shown in Figure 2.4(b).

With each clause c. containing only two literals, say I’ and I”, we associate the clause gadget
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Figure 2.4: (a) The clause gadget for ¢, = (xVgyVZz). (b) The clause gadget for ¢, = (ZVyVZ).

that we would associate with the clause (t.\V1'VI"), where t. is a new variable, but for ¢, we
introduce the variable gadget shown in Figure 2.5 instead of the variable gadget of Figure
2.2.

Figure 2.5: Variable gadget for ¢..

The mixed graph we obtain has maximum degree 3. Notice that for every pair of vertices
{ce,cr}, a chain from c. to ¢; always has even length. Thus there is no odd cycle in Gy,
i.e., Gy is bipartite. Furthermore, the length of a longest directed path is 2.

Also notice that if we want to color the vertices of G s using only colors 0,1 and 2, in each
clause gadget associated with clause ¢, the vertices x;,y;, 24, %,7,¢ € {1,2,3}, must not all
be colored with color 2, otherwise there would be no more color left for vertex c.. On the
other hand, when at least one of the vertices x;,¥;, 2, has color 1, the clause gadget can be
properly colored with colors 0, 1 and 2.

Suppose there is a truth assignment such that the formula is ‘true’. For each variable x
which has value ‘true’, color vertex x with color 0, vertices x1, x2, Z with color 1 and vertex
xs with color 2. For each variable y which has value ‘false’, color vertex y with color 0,
vertices y,y3 with color 1 and vertices y1,y2 with color 2. As in each clause there is at
least one variable which has value ‘true’; there is in each clause gadget at least one of the
vertices x;,¥;, 2z which has color 1, and thus, as we mentioned before, the clause gadget can
be properly colored using colors 0, 1 and 2. So S(Gy,3) has a positive answer.

Suppose now S(Gjpy,3) has a positive answer. In this case, in each variable gadget corre-
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sponding to a variable z, one of the vertices x,  has color 0 and one has color 1. Set variable
x to ‘true’ if x has color 0 and set it to ‘false’ otherwise. As in each clause gadget at least
one of the vertices x;,y;, z; has color 1, there is at least one variable in the corresponding
clause which will be set to the value ‘true’. Thus we have a truth assignment such that the

formula is ‘true’. [ |

We will now give some polynomially solvable cases in special classes of graphs. First let us

introduce the Precoloring Extension problem (PrFExt) which is defined as follows.

Instance: An undirected graph G = (V, E) and some vertices of V are precolored properly

using at most g colors.

Question: Can this precoloring of G be extended to a proper coloring of G using at most ¢

colors?

This problem was shown to be polynomially solvable in special classes of graphs like split
graphs [44], cographs [45], complements of bipartite graphs [44]| or graphs of maximum
degree 3 [15].

Theorem 2.9. S(Gyr,n(GS;)) is polynomially solvable if every vertex in GS; is on a path
of length n(GS;) — 1 and if the Precoloring Extension problem on the graph G with at
most n(GS,) colors, obtained by transforming each arc of Gy into an edge, is polynomially

solvable.

Proof: Let G be a mixed graph with G, satisfying the above hypothesis and such
that PrExt(G,n(GS,)) is polynomially solvable. Notice that if there exists a strong mixed
n(G¢9,)-coloring ¢ of G, then each vertex v belonging to G, must get color c(v) = in(v).
So we color each vertex v incident to an arc with the color ¢(v) = in(v). If a conflict occurs,
i.e., if there are two adjacent vertices which get the same color, then no solution exists.
Otherwise consider all arcs as edges. We get an undirected graph G with some precolored
vertices. Thus we get an instance of the Precoloring Extension problem in G. We know
that PrExt(G,n(GS,)) is polynomially solvable. It is easy to see that the two problems are

equivalent. Thus our problem is polynomially solvable. |
By [44] we know that PrEzt(G,2) is polynomially solvable. Thus we deduce the following
corollary from Theorem 2.9.
Corollary 2.10. S(Gys,2) can be solved in polynomial time.
Theorem 2.11. Let Gy be a mized graph having the following properties:

() V=V,

(b) for all mazimal directed paths P in Gy, |P| =n(GS,) or |P| =n(GY,) — 1.

Then deciding whether var(Gar) = n(GS;) or yar(Gar) > n(GS;) can be done in polynomial

time.
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Proof: Using an idea based on [68], we transform the problem into a 25 AT problem which
is known to be polynomially solvable [36]. Denote by P the set of vertices belonging to a
path P with |P| = n(G¢,).

(1) with each vertex v € P with in(v) = r, we associate a variable v, and a clause (v;);
(2) with each vertex v € P with in(v) = r, we associate two variables v, and v,41;

(3) with each path P = (¢°,0,...,0™%%)=2) with |P| = n(GS,) — 1, we associate the
clauses (vi Vi), (0} Vol,,), fori=0,1,...,n(G$;) — 2, and the clause (@§+1 \/ﬁgﬂ),

for j =0,1,...,n(GY;) — 3;

(4) with each edge [v,w] € E such that v € P, w ¢ P and in(v) = in(w) = r (resp.
in(v) = in(w) + 1 =r + 1), we associate the clause (v, V w,) (resp. (Up41 V Wry1));

(5) with each edge [v,w] € E such that v,w ¢ P and in(v) = in(w) = r (resp. in(v) =
in(w)+1 = r+1), we associate the clauses (0, VW, ), (Up41VWry1) (resp. (Upy1VWry1));

(6) with each edge [v,w] € E such that v,w € P and in(v) = in(w) = r, we associate the

clause (v, V wy).

Suppose that an instance of 2SAT is ‘true’. If a variable v, is set to ‘true’, then we will
color the corresponding vertex v with color r, i.e. ¢(v) = r. Notice that each vertex v € P
will be colored with ¢(v) = in(v) (see (1)), and each vertex v ¢ P will be colored with
c(v) =in(v) or c(v) =in(v) + 1 (see (2) and (3)). Thus the coloring uses at most n(G$,)
colors. The clauses in (1) and (3) ensure that for all (v,u) € U we have ¢(v) < ¢(u), and the
clauses in (1), (4), (5) and (6) ensure that for all [v,w] € E, ¢(v) # ¢(w). So we conclude
that v (Gar) = n(GY).

Suppose now that v (Gar) = n(GS,). Notice that in that case each vertex v € P will
be colored with ¢(v) = in(v), and each vertex v € P will be colored with ¢(v) = in(v) or
c(v) =in(v) + 1. For each variable v, occurring in the formula, set it to ‘true’ if c¢(v) = r

and ‘false’ otherwise. It is easy to see that each clause will be satisfied. ]

The previous theorem has the following consequence.
Corollary 2.12. Let G be o mized graph having the following properties:

(a) V=V,

(b) n(GYy) < ym(Gum) < n(Ghy) + 1

(¢c) for all mazimal directed paths P in G, |P| = n(GS,) or |P| =n(G$,) — 1.
Then the strong mized chromatic number of Gar can be determined in polynomial time.
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We denote by n; the number of vertices on a longest directed path P in Gjs containing vertex
v; (if v; is not incident to any arc, n; = 1 and P = {v;}). Notice that n; = in(v;)+out(v;)+1.
Let h > |P| be an integer. We define S; as the set of possible colors for v; such that whenever
v; has a color ¢(v;) € S; there exists a coloring ¢ of Gy (with an arbitrary number of colors)
with ¢(v) < h —1, for any v € P. We have the following result.

Proposition 2.13. Let P = {v1,va, ..., Vi—1, Vi, Vit1, ..., U, } be a longest directed path in
G containing v; and let h > |P| be an integer. Then S; = {in(v;),in(v;) +1,....h —
(out(v;) +1)}.

Proof: It is easy to see that the smallest feasible color for v; is in(v;). Suppose that
c(v;) = in(v;) + q, where ¢ > 0. We can color the vertices vy, vs,...,v;—1 with colors
c(vy) = in(v1), c(v2) = in(va),...,c(vi—1) = in(vi—1) and vertices vy, ..., vy, With colors
c(vig1) = in(v;)) + ¢+ 1,...,c(vy;) = in(v;) + ¢ + n; —i. Notice that n;, — i = out(v;)
since P is a longest directed path containing v;. Thus c(vy,) = in(v;) + g + out(v;). This
way we get a feasible coloring ¢ of Gy (the vertices of Gy not belonging to P can easily
be properly colored) and since the condition ¢(v) < h — 1 must hold for any v € P, we
have that in(v;) + ¢ + out(v;) < h — 1, ie, ¢ < h — (in(v;) + out(v;) + 1). Thus S; =
{in(v;),in(v;) + 1,...,h — (out(v;) + 1)}. [ |

We will now focus on a special class of graphs: partial p-trees. A p-tree is a graph defined
recursively as follows. A p-tree on p vertices consists of a p-clique. Given any p-tree T}, on n
vertices, we construct a p-tree on n+ 1 vertices by adjoining a new vertex v,+1 to T}, which
is made adjacent to each vertex of some p-clique of T,, and nonadjacent to the remaining
n — p vertices. A partial p-tree is a partial subgraph of a p-tree. Here we shall consider

partial p-trees for p > 2.

Consider now an undirected partial p-tree G = (V, E). Suppose that for some edges [v;, v;] €

E we add new vertices and edges as shown in Figure 2.6. Denote by G’ the graph we obtain.

We have the following result.

Proposition 2.14. Let G be a partial p-tree. Then G’ is also a partial p-tree.

Proof: Since G is a partial p-tree, it is the partial subgraph of a p-tree T,,. Notice that
[vi,v;] € Kj; in T, where K;; is a (p + 1)-clique. Consider 7" which is the graph obtained
by adding to G’ all the edges and vertices of T}, which are not in G. In order to show that
G’ is a partial p-tree, we just need to show how edges can be added to T” to make it become
a p-tree T™.

For each new vertex wgi, s = 1,...,7, make it adjacent to v; and to p — 2 vertices in
K;j — {v;,vj}. We obtain, for each s, a (p + 1)-clique K, containing wg;. Each new vertex
Wet, 8 = 1,7, t = 2,7 + 1, is linked to p — 2 vertices in K ;_1) — {wsp—1),vj}. We
obtain then for each s and ¢, ¢t # 1, a (p+ 1)-clique K containing wg;. Clearly the resulting
graph is a p-tree and thus G’ is a partial p-tree. |
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Figure 2.6: New vertices and edges added to [v;, vj].

In [33], it is shown that S(Gy, k) is polynomially solvable for series parallel graphs, i.e.,
partial 2-trees, by giving an algorithm which has complexity O(n?376 log(n)). Here we will

give a result concerning general partial p-trees, for fixed p.

Theorem 2.15. S(Gyy, k) is polynomially solvable if Gy = (V, U, E) is a partial p-tree for
fized p.

Proof: We use a transformation to the LiCol problem which is known to be solvable in
O(nP*2) time for partial p-trees (see [45]).

For each v; € V' which is not incident to any arc, we set L(v;) = {0,1, ...,k — 1}. For each
vertex v; € V which is incident to at least one arc, we set L(v;) = {in(v;),in(v;) +1,....k —
(out(v;) + 1)}. For each arc (v;,vj) € U such that k — (out(v;) + 1) > in(v;), we introduce
new vertices and edges as shown in Figure 2.6 with r» = k — (out(v;) + in(v;) + 1). For the

new vertices we set:
{in(v;) + s,in(v;) + s + 1} ifl<s<randt=1I;
L(wst) = { {in(vj) + s+ 1,in(vj)} ifl1<s<randt=2
{in(vj) +t—3,in(v;) +t -2} fl1<s<rand3<t<r+1.

Figure 2.7 shows a case where we have L(v;) = {3,4,5,6}, L(v;) = {4,5,6,7} and k = 8. For
the new vertices we set L(wi1) = {5,6}, L(wi2) = {6,4}, L(wa1) = {6,7}, L(wae) = {7,4}
and L(wa3) = {4,5}. This way we do not allow vertex v; to get a color less than the color

of vertex v;.

By considering all arcs as edges, we obtain a new undirected graph G’ which is still a partial
p-tree (see Proposition 2.14). Furthermore we associated with each vertex v in G’ a list
L(v) of integers such that L(v) C {0,1,....,k — 1}. Thus, we get an instance of the LiCol

problem with & colors in a partial p-tree G’, where p is fixed.
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Figure 2.7: Example of how new edges and vertices are introduced in the case of L(v;) =
{3,4,5,6} and L(v;) = {4,5,6,7}.

Suppose that an instance of the LiCol(G’) problem has answer ‘yes’ and denote by ¢ the
corresponding list-coloring. We will show that c¢ restricted to Gy is also a feasible coloring
for S(Gar, k). For each edge [v;,v;] in G', we have that c(v;) # c(v;) and so c(v;) # ¢(v;)
for each [v;,v;] or (v;,v;) in Gjr. Consider now an arc (v;,v;) in Gpr. We have to verify
that c(v;) < c(vj). If e(v;) < in(vj;), we clearly have that c(v;) < ¢(vj). So suppose that
c(v;) = in(v;) + q, ¢ > 0. In that case vertex wqi has necessarily color in(v;) + ¢ + 1 and
vertices w2, ..., Wy(q4+1) Must have colors in(v;), ...,in(v;) + ¢ — 1, due to their lists. Since
these vertices are adjacent to vj;, c¢(v;) > in(v;) + ¢ and hence c(v;) < c(v;). We conclude
that S(Gar, k) has answer ‘yes’.

Conversely, suppose now that an instance of S(Gys, k) has answer ‘yes’, and denote by ¢
the corresponding strong mixed k-coloring. Then each vertex v in G has a color which
belongs to the corresponding list L(v) in G', i.e., ¢(v) € L(v). In fact, for each vertex v;
not adjacent to any arc in Gy, we have L(v;) = {0,1, ...,k —1} and for each vertex v; which
is incident to at least one arc, we have L(v;) = {in(v;),in(v;) + 1, ...,k — (out(v;) +1)}. By
Proposition 2.13, we know that these colors are the only possible if P,, (a longest directed
path containing v;) is properly colored and ¢ (v) < k, for any v € P,,. Furthermore it is not
difficult to verify that coloring ¢’ can easily be extended in G’ by coloring the new vertices
wg (using the colors in their associated lists) and so we get a feasible coloring for the LiCol

problem in G’. Thus the LiCol problem on G’ has answer ‘yes’.

Clearly G’ can be obtained from G/ in polynomial time since n; and in(v;) can be computed
in polynomial time for each vertex v; in Gjps. The number of new vertices is restricted
by O(n?m), where m is the number of arcs, and thus S(Gjs, k) can be solved in time
O(n?H4mP+2) if Gy is a partial p-tree, with fixed p. [ |
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2.3 Weak mixed graph coloring problem

In this section we study the following problem which we call the weak mized graph coloring

problem.

Instance: A mixed graph Gy = (V,U, E) and an integer k > 1.
Question: Can the vertices of Gs be colored using at most k colors such that for each edge
[vi,v;] € E, ¢(v;) # c(v;) and for each arc (v, vq) € U, c(v;) < e(vg)?

We will refer to this problem as W (G, k). Notice that we have xar(Gar) < yar(Gar).

Necessary and sufficient conditions for a mixed graph to admit a weak mixed coloring have

been given.

Theorem 2.16 (see for instance |69, 70]). For the existence of a weak mized coloring of a
mized graph Gy = (V,U, E) it is necessary and sufficient that graph (V,0, E) does not have

loops and that Gas does not contain any directed circuit with a chord.

In the rest of this section, we will suppose that these conditions are satisfied. Notice that
in the case of weak mixed coloring we may have (v;,v,) € U and [v;,v,] € E. Then in
any proper weak mixed coloring ¢, we must have ¢(v;) < ¢(vq). So the strong mixed graph
coloring problem S(Gy, k) is the special case of W (G, k), where for each arc (v;,vq) € U

we have [v;,v4] € E.

2.3.1 Bounds on the weak mixed chromatic number

We will start with a few observations which will allow us to simplify the original mixed
graph Gy (see also [72] where a similar merging operation is designed for vertices belonging

to the same strongly connected component).

Lemma 2.17. Let Gy = (V,U, E) be a mized graph and let C be a strongly connected
component of G;. Then, in any feasible weak mized coloring ¢ of Gy, c(vi) = c(vj)
YV, v; € C.

Proof: Let ¢ be a feasible coloring of Gs. Suppose that c(v;) < ¢(v;) for some v;,v; in
C'. Since there is a directed path from v; to v; contained in C, we obtain a contradiction

because we should have c(v;) < c(v;). [ |

Consider a mixed graph G and let D = {Dq,..., D;} be a set of disjoint directed partial
subgraphs of Gjs. Let Gas/D be the mixed graph obtained by deleting the arcs of Ule D
and by replacing the vertices of each graph D; by a single vertex v;. Gjr/D may have
multiple edges or arcs in which case we delete them. We say that D; has been contracted

to a single vertex vy, for all [ = 1,...,t. Then we have the following result.
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Lemma 2.18. Let Gy = (V,U,E) be a mized graph and let C = {C1,C,...,Cq} be the
set of strongly connected components in GS; such that Vv,w € C;, i € {1,2,...,q}, we have

[v,w] & E. Then xm(Gum) = xm(Gm/C).

Proof: Let ¢ be an optimal coloring of Gj;/C. Let v; be the vertex in Gj;/C representing
component C; and let ¢(v;) be its color, for i = 1,2, ...,q. Consider now G; and color each
vertex w & Cy, i = 1,2, ...,q, in Gy with the same color as in G;/C. Color each vertex in
C; with color ¢(v;). Clearly we obtain a feasible coloring of Gs. Furthermore this coloring
is optimal. In fact, suppose that Gj; can be colored with xa(Gar) < xar(Gar/C) colors.
By Lemma 2.17, we know that all vertices of C;, i = 1,2, ..., q, have necessarily the same
color ¢;. Contracting each component C; to a single vertex v; and coloring it with color
¢i, we obtain a feasible coloring of Gys/C with xa(Gar) < xam(Gar/C) colors, which is a

contradiction. [}

Consider a mixed graph Gy = (V,U, E). As we have seen in Lemma 2.18, all strongly
connected components of G, such that no two vertices of a same component are linked by
an edge can be contracted to single vertices without changing the weak mixed chromatic
number of the original graph. So from now on we suppose that in G all these strongly
connected components have been contracted to single vertices. Let v be a vertex of G
which is not incident to any edge. Denote by Pred(v) the set of its neighbors w such that
(w,v) € U and by Succ(v) the set of its neighbors u such that (v,u) € U. Delete vertex
v from Gj; and introduce arcs (w,u) for all w € Pred(v) and u € Suce(v). Suppose we
perform this operation as long as there is a vertex v which is not incident to any edge. Let
Gy = (V*,U*, E) be the mixed graph obtained. Then we have the following result.

Theorem 2.19. Let Gy = (V,U, E) be a mized graph. Then xn(Gar) = xm(Gyy)-

Proof: Consider an optimal weak mixed coloring of G7,. This coloring ¢ can be extended
to an optimal weak mixed coloring of Gs. In fact, consider the mixed graph G and color
each vertex v which is incident to at least one edge with color ¢(v). Now color each remaining
uncolored vertex v (incident to no edge) with color c(v) = max,epred(v)(c(w)). We obtain
a feasible weak mixed coloring of Gjs. Furthermore this coloring is optimal. Suppose that
it is possible to color Gy with k colors, k < x(G7;). Then by transforming Gy into G},

we obtain a feasible coloring of G}, with at most k colors, which is a contradiction. Thus
xm(Gur) = xum(Gy)- u

So from now on we can also suppose that Gj; does not contain any vertex incident only to

arcs.

Let us consider the set DP of all maximal directed paths in Gps. Let P = (vy,...,v,) be a
maximal directed path and Ep = {[v;,v;]|0 < i < j < r} the set of edges linking each a pair
of vertices of P. We denote by Ep, ..., E% the subsets of Ep such that if [v;, vj], [vg, vi] € E%,
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then max(i,j) < min(k,!l), for s = 1,...,t. If ep = maxe—1__ (|E%|), then we obtain the

following lower bound on the weak mixed chromatic number.

Theorem 2.20. Let Gy be a mized graph. Then maxpepp(ep + 1) < xam(Gar)-

Proof: Let P’ = (v},...,v;) be a maximal directed path such that P’ = arg maxpepp(ep +

1). Suppose that epr = |E1J;,| for a certain integer f and EY, = {lvi,>vi ] iy v, s V7,0,
0<z’1<i2§z’3<...§ir_1<z}§q.

If we want to construct a weak mixed graph coloring ¢, we must have c(v; ) < c(v; ),
for j = 1,3,...,7 — 1 since there is a directed path from véj to v§j+1 and there is an edge
/ /

i Vg
color as /ngfl for k= 3,5,...,7 — 1. In fact there cannot be any edge between two vertices
7,;}17
Thus we use at least eps + 1 colors. [ ]

[v ] for all j =1,3,...,r — 1. Furthermore we can color each vertex vgk with the same

v vgg, ih—1 < iy < iy < i for k = 3,5,...,7 — 1 otherwise \EIJ;,| would not be maximal.

Remark 2.21. The lower bound given in Theorem 2.20 is tight. Indeed, if for all edges
[vi,vj] € E, we have (v;,vj) € U or (vj,v;) € U, then maxpepp(ep + 1) = xm(Gumr).

We will give now two very simple classes of graphs for which we can determine the exact

value of the weak mixed chromatic number.

Theorem 2.22. Let Ty = (V,U, E) be a mized tree, E # 0. Then xp(Th) = 2.

Proof: Choose a root r in Tj;. Color it with color ¢(r) € {0,1}. As long as there is an
uncolored vertex, choose such a vertex v having one colored neighbor w (it is easy to see
that this is always possible). If [v,w] € E, color v with color ¢(v) = 1 — ¢(w) and if (v, w)
or (w,v) € U, color it with ¢(v) = c(w).

We will only use two colors and V[v,w] € E, ¢(v) # c(w) and ¥Y(v,w) € U, ¢(v) = ¢(w) and
hence the conditions are satisfied. We conclude that xar(Ths) = 2. |

Theorem 2.23. Let Cyy = (V,U,E) be a mized chordless cycle with U E # (. Then
xm(Car) = 2.

Proof: We distinguish two cases:

(1) if |E| is even;
We contract each arc (v,w) to a single vertex vw. We get an undirected even cycle
which we can color with 2 colors. A feasible 2-coloring of C'; is obtained by expanding
each vertex vw and by coloring the vertices of the corresponding arc with the same

color as vertex vw.

(2) if |E| is odd;
We choose an arc (v, w). Contract all arcs (v/,w’) to single vertices v'w’ except arc

(v,w). We get an even cycle containg a single arc (v, w) which we can properly color
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using exactly two colors. A feasible 2-coloring of C)/ is obtained by expanding each
vertex v'w’, and by coloring the vertices of the corresponding arc with the same color

as vertex v'w'.

2.3.2 Complexity results

In this section we will give some complexity results concerning the weak mixed graph coloring

problem for some special classes of graphs.

Theorem 2.24. W (G, 3) is N'P-complete even if Gy is planar bipartite with mazimum
degree 4.

Proof: We use a reduction from S(G s, 3) which we have shown to be ANP-complete even
if Gy is planar bipartite with maximum degree 4 and each vertex incident to an arc has
maximum degree 2. Let Gjs be such a mixed graph. We replace each arc (v, w) by a path
(v,u, z,w), where v and z are new vertices, and we introduce an edge [v,w]|. The mixed
graph G, obtained is planar bipartite and has maximum degree 4.

Suppose that S(Gas,3) has a positive answer. Then by keeping this coloring ¢ in G, and
by coloring the new vertices w,z with color ¢(v), we obtain a solution for our problem.
Conversely if W(Gr, 3) has a positive answer, then we color in Gy each vertex v with the

same color it gets in G;. Clearly we obtain a solution for S(Gar,3). [

Remark 2.25. Notice that in the mized graph G';, vertices which are incident to an arc
may have a degree greater than two.

If we consider a mized graph G such as constructed in the proof of Theorem 2.7, then our
problem W (G, k) is trivial: we can color Gy using only two colors. In fact, the initial
undirected planar cubic bipartite graph G is 2-colorable and it is easy to see that the added
vertices can be properly colored (with respect to the weak mized graph coloring problem) using
the same two colors. Hence for this particular class of planar bipartite graphs, S(Gpy,3) is
NP-complete while W (G, k) is trivial, for any k > 1.

Theorem 2.26. W (G, 3) is N'P-complete even if Gay is bipartite with mazimum degree
3.

Proof: We use a reduction from S(Gjs,3) which we have shown to be N'P-complete if
Gy is bipartite with maximum degree 3. In G, replace each arc (v, w) by a directed path
(v, u1,u2,u3,us,w) and add a new edge [uy, us]. The resulting graph Gy, is bipartite with
maximum degree 3.

Suppose that W(G’,3) has a positive answer. Denote by ¢ the coloring. Then for each
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pair of vertices v, w such that (v,w) € G, we must have ¢(v) < ¢(w) because of the edge
[u1,u4]. Thus by replacing again the directed path by the arc (v,w) and by keeping the
coloring ¢ for the vertices of Gjs, we obtain a solution for S(Gyz, 3). Similarly, if S(Gys,3)
has a positive answer, denote by ¢ the coloring. Consider the mixed graph G’); and keep
the coloring ¢’ for the vertices of G, which are also vertices of Gys. By coloring the new
vertices wuy, uy and ug with color ¢/(v) and vertex wuy with color ¢(w), we clearly obtain a
solution for W (G, 3). |

Theorem 2.27. W(Gyy,2) is polynomially solvable.

Proof: We shall transform our problem into a 2SAT problem which is known to be
polynomially solvable (see [36]). Consider a mixed graph Gjs. For each vertex x in Gy,
we introduce two variables zp and z; as well as two clauses (xg V z1) and (Zg V Z1). For
each edge [x,y] € E, we introduce two clauses (Zo V go) and (Z1 V g1). Finally, for each arc
(z,y) € U, we introduce a clause (Z1 V o). Thus we get an instance of 25AT.

Suppose that the 25 AT instance is ‘true’. Then by coloring each vertex x with color 0 if xg
is ‘true’, and with color 1 if x; is ‘true’, we get a feasible 2-coloring of Gps. Conversely if Gy
admits a feasible 2-coloring, then by setting variable z; to ‘true’ if  has color 4, i € {0, 1},

we get a positive answer for the 25 AT instance. |

Theorem 2.28. W(Gy, k) is polynomially solvable if Gy is a partial p-tree, for fized p.

Proof: We will use a similar proof as for the case of strong mixed graph coloring in partial
p-trees. Let Gy = (V,U, E) be a mixed partial p-tree, for some fixed p. With each vertex
v € V we associate a list L(v) = {0,1,...,k — 1} of possible colors. Notice that each list
contains all possible colors 0,1,...,k — 1. Now for each arc (v;,v;) € U, we introduce new

vertices and edges as shown in Figure 2.6 with r = k — 1. For these new vertices we set:

{s,s+1} ifl<s<randt=1,
L(wgt) = {s+ 1,0} ifl<s<randt=2,
{t=3,t—-2} ifl<s<rand3<t<r+1.

Remember that the graph we obtain is also a partial p-tree for the same fixed p (see Propo-
sition 2.14). By deleting the arcs, we still have a partial p-tree. So consider the partial
p-tree G’ obtained by deleting the arcs. Since with each vertex in G’ we have associated
a list of possible colors, we get an instance of the LiCol problem, which is polynomially
solvable in partial p-trees, for fixed p [45]. By using similar arguments as in Theorem 2.15,
one can easily prove that W (G, k) and LiCol(G’) are equivalent and thus W (G, k) is
polynomially solvable. [ ]
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2.4 Conclusion

We considered two coloring problems in mixed graphs. In the first one, we were interested
in coloring the vertices of the graph such that two vertices linked by an edge get different
colors and the tail of an arc must get a color which is strictly smaller than the color of the
head of the arc. We gave some bounds on the minimum number of colors necessary to color
the vertices of special classes of graphs as well as some complexity results. In particular we
showed that the strong mixed graph coloring problem is NP-complete even if the mixed
graph is planar bipartite with maximum degree 4 and each vertex incident to an arc has
maximum degree 2 or if the graph is bipartite with maximum degree 3. Furthermore we

proved that the problem is polynomially solvable in partial p-trees, for fixed p.

In the second problem, we were interested in coloring the vertices of the graph such that
two vertices linked by an edge get different colors and the tail of an arc must not get a color
larger than the head of the arc. Again we gave some bounds on the minimum number of
colors necessary to color the vertices and some complexity results. In particular we showed

that this problem is polynomially solvable in partial p-trees, for fixed p.

The results presented here concerned special classes of graphs. Further research is needed to
extend these results to other classes of graphs. In particular it would be interesting to know
the complexity of the two problems in planar cubic bipartite graphs. Also mixed graphs
with a particular structure of the directed graph G, should be analyzed to detect maybe

more polynomially solvable cases.
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Chapter 3

Bicolored matchings in some classes

of graphs

Introduction

Various types of packing problems in graphs have been extensively studied by many authors;
the maximum stable set problem (find a maximum cardinality set of mutually non adjacent
vertices), the maximum matching problem (find a maximum cardinality set of mutually non
adjacent edges) and the maximal forest problem are some of the most famous examples (see

for instance [9] for a formulation of many basic packing problems in graph theory).

A natural extension of packing problems has been considered in several forms. It consists
in giving a bicoloring (R, B) (for red and black) of the vertex set (resp. of the edge set) of a
graph G = (V, E); it is then required to find if G contains a stable set S (resp. a matching
M) such that [SNR| > pand [SNB|>q (resp. |M NR|>p,|MnN B|>q) where p and ¢
are given positive integers (see |34, 75]).

Besides this, the problem of constructing a spanning tree 7" in a graph G = (V, E') whose edge
set is partitioned into sets R, B is considered in [34] with the requirement that |7'N R| > p:
it is shown that a solution can easily be constructed by using simple adaptations of basic

algorithms.

In addition, the problem of constructing a bicolored perfect matching M in a complete
bipartite graph K, , (both the left set and the right set consist of exactly n vertices) is
considered in [75] with the requirement that |M N R| = p; it is a special case of the problem
consisting of determining whether in a complete bipartite graph K, ,, where each edge [, j]
has a weight w;; there exists a perfect matching M with weight w(M) = 3y, 4oy wij = p-
This general case was shown to be N'P-complete in [13|, while the special case w;; =
1if [i,j] € R, and w;; = 0 else, was solved with a polynomial algorithm in [49, 75].
The complexity of the problem with 0,1-weights in general bipartite graphs is apparently

unknown.

In this chapter we intend to consider a related problem which is also based on a bicoloring
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(R, B) of the edge set of a graph. We will essentially try to characterize minimum sets R

for which maximum matchings M can be found with specific values of p = |M N R).

More specifically, given a graph G = (V,E) and a set P = {po,p1,...,ps} of integers,
0<po<pi<...<ps<|[|V]/2], we want to color a subset R C E of edges of G, say in
red, in such a way that for any i (0 < ¢ < s), G contains a maximum matching M; with
exactly p; red edges, i.e., |M; N R| = p;.

We shall in particular be interested in finding a smallest subset R for which the required

maximum matchings do exist.

A subset R will be P-feasible for G if for every p; in P there is a maximum matching M;
in G with |M; N R| = p;. Notice that for some P there may be no P-feasible set R (take
P ={0,1,2} in G = Ky3).

In Section 3.1 we will derive some elementary properties of solutions in regular bipartite
graphs. Section 3.2 will be devoted to a special case where the set of values p = |M N R| is
an interval of consecutive integers. Finally Section 3.3 will contain conclusions and possible

extensions.

Basic properties of matchings are to be found in [56|. For definitions linked to complexity,
the reader is referred to Chapter 1 and [36]. In general all graphs will be simple (i.e., no

multiple edges, no loops).

3.1 Regular bipartite graphs

In this section we will state some basic results concerning P-feasible sets in regular bipartite

graphs.

Proposition 3.1. In a A-regular bipartite graph G, for any P with |P| < A, there exists a
P-feasible set R.

This follows from the fact that the edge set of G can be partitioned into A perfect (and

hence maximum) matchings (by the Konig theorem, see Chapter 1).

Let us now briefly consider a special case for a A-regular bipartite graph.

Theorem 3.2. Let G = (X,Y, E) with | X| =|Y| =n be a A-regular bipartite graph, with
A > 2, and let P = {p,q}, with 1 < p < q < n. The minimum cardinality of a P-feasible
set R 1s given by

|R| = q +max{0,p —n + |C|/2}

where C is a collection of vertex disjoint cycles which are alternating with respect to a perfect

matching, and which have a minimum total length |C| = 3 . |Cil satisfying |C|/2 > q —p.

Proof: Observe first that one can always find a collection C of alternating cycles satisfying
IC|/2 > q—p. Take any 2-factor F'in G. It is a collection of vertex disjoint cycles which are

alternating with respect to a perfect matching. F' exists since G is bipartite and A-regular.
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Since 0 < ¢ — p < n = |F|/2 the 2-factor F satisfies the inequality. In order to minimize
the size of R, we will have to find a family C which in addition has a minimum number of

edges. Let now M be a perfect matching in G.

(1) Assume first p <n —|C|/2.
Then we color in red p edges of M — C and ¢ — p edges of M N C. This is possible
since 0 < ¢ — p < |C|/2. Clearly we will have |M N R| = ¢; by interchanging the edges
of M NC and of C — M we get a perfect matching M’ with |M' N R| = p. In such a
case |R| has minimum cardinality, since we must have |R| > ¢ for any P-feasible set
R. Notice that in this case any C with |C|/2 > g — p will do.

(2) Suppose now p >n —|C|/2.

We color in red n—|C|/2 edges of M —C and we also color ¢g— (n—|C|/2) = ¢—n+|C|/2
edges of M NC as well as p— (n—|C|/2) = p—n+|C|/2 edges of C— M. This is possible
since 0 <p—n+|C|/2<q—n+]C|/2 <|C|/2. So we have |R| =p+q—n+|C|/2 <
n+|C|/2. Again |[M N R| = g and by interchanging the edges of M NC and of C — M
we get a perfect matching M’ with |M' N R| = p.

In order to have a matching M and a matching M’ having respectively ¢ and p < ¢
red edges, M’ must be obtained from M by using a collection C of vertex disjoint
alternating cycles with |C|/2 > ¢ — p, since |C| = |[M AM'|; we would otherwise have
0<|MNR|—|MNR| <|C|/2 < q—p. Now for any P-feasible set R which is
minimal (inclusionwise), we have two perfect matchings M and M’ with [M N R| =p
and |[M' N R| = q. So we have |R| = p+q— |(M N M')N RJ|; |R| will be minimum
if we maximize the third term. We have |[(M N M') N R| < n —|C|/2 where C is any
family of vertex disjoint alternating cycles with respect to some perfect matching with
IC|/2 > q — p; taking such a family C, with |C| minimum, will give the largest value of

n —|C|/2, so R has minimum cardinality.

Notice that if p > g — 2, we can use a single alternating cycle C instead of the family C,
since in any alternating cycle C, we have |C|/2 > 2 > q — p.

Corollary 3.3. Let G = (X,Y, E) with | X| = |Y| =n be a A-regular bipartite graph, and
let P={q—a,q} withl1<qg<mnandl<a<2 The minimum cardinality of a P-feasible
set R s given by

|IR| = ¢ + max{0,q —n+ |C|/2 — a}

where C' is a shortest cycle which is alternating with respect to some perfect matching in G.

Surprisingly the complexity of finding in a graph G a shortest possible alternating cycle with
respect to some maximum matching (not given) is unknown even if G is a 3-regular bipartite
graph. For reference purposes, this problem will be called the SAC problem (Shortest
Alternating Cycle); it is formally defined as follows.
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Instance: A graph G = (V, E) and a positive integer L < |V]|.

Question: Is there a maximum matching M and a cycle C with |C| < L and [CNM| = §|C|
?

Notice that the problem is easy if either a cycle C or a perfect matching M is given.

In order to give a sufficient condition for a regular graph (X,Y, E) with |X| = |Y| =n
to have a P-feasible set R with |[R| = n+ 1 for P = {0,1,...,n}, we will need some

preliminaries.

Lemma 3.4. For any collection of n subsets S1,...,Sn of a set S = {s1,...,s,} such that
|Si| =1 >+/n+1,1 <i<n, there exist two subsets S; and S; such that |S; N S| > 2.

Proof: Assume we have a collection of m subsets S; of S with |S;| = r for all ¢ < m,
and |S; N S;| < 1 for all i,j < m, then an element s € S is contained in at most 2=

subsets S; (since the number of subsets S; which contain s and which are otherwise disjoint

is < (n—1)/(r —1)); so the total number m of subsets is at most %((Z:B because we can

take n different elements s and in doing this each set is counted r times.

Now if we have m =n > %((?:%)), then there will be two subsets S; and S; with |S;NS;| > 2.

The smallest r verifying r(r —1) >n—1isr = 3(14++4n —3) < /n+ 1. ]

In the following, we denote by §(G) the minimum degree of a graph G and by N(x) the set
of neighbors of z. Furthermore C will denote a cycle of length k.

Corollary 3.5. Let G = (X,Y,E) be a bipartite graph with |X| = |Y| = n,n > 4. If
0(G) > /n+1, then G contains a cycle of length four.

Proof: If 6(G) > /n+1, it follows from Lemma 3.4 that there exist two vertices z and 2’
in X such that |[N(z) N N(z')| > 2. Hence, for y,y' € N(z) N N(2'), (z,y,2",y") is a cycle.
|

Fact 3.6. Let n,p and q be three integers such that 0 < g < p < n.

Thenp++/n—p+1>q++/n—q+1.

Proof: If p = q, the result is obvious. Consider now the case p > gq.

Then p+n—p+1>q+/n—q+1
eptyn—p=>q+yn—q
Sp-—qgzyn—qg—y/n—p
Sp-9/n—qg+n—p) >p—q
SVn—qg+yn—-p=>1

This is necessarily true, as 0 < ¢ < p < n. |
20241
Fact 3.7. 220 > o)y 4 m (BT = 1) + 1
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. n2[ 7] +1
Proof: =1 —>2([2]-1)+/n—-2(F]-1)+1
Sn+2[7]+1>4[% —4+2,/n— (IF1-1)+2
<:>n—2 1+3>2y/n—-2(]%]-1)

& n? +4(ﬂ +9—4n[%] —12(%] +6n > 4n —8[%] + 8

Sn?+4[217+1—4n[2] —4[2]+2n. >0

S 4[2] <2n+ 14 (n—2[%])?

Notice that 4[2] <n+4 < 2nif n >4, thus 4[2] < 2n+ 1+ (n — 2[%])2 [ |

Lemma 3.8. Let G = (X,Y, E) be a simple bipartite graph with | X|=|Y|=n, n>4. A

sufficient condition for G to contain k vertex disjoint cycles of length four is
0(G) —2(k vn—2k-1)+1

Proof: Let Gg,Gq,...,Gir_1 be a sequence of graphs built as follows: Gop = G and G is
the subgraph of G;_; obtained by deleting four vertices x, £ eXandyy €Y.

We have §(G;) > §(Gij—1) — 2 and n; = n;—1 — 2 where n; is the number of vertices of the
left set (or of the right set) in Gj.

From fact 3.6, if 1 < i <k, we have:

0(G)>2k—1)++/n—2k—1)+1>2(i—1)++/n—2(i—1)+ 1. As a consequence we
have 6(Gi—1) > 6(G) —2(i —1) > \/n—2(i— 1)+ 1= /m—1+ 1foralli (1 <i<Ek).

So from Corollary 3.5, G;_1 contains a Cy for all i (1 <14 < k) and by the construction we
have found k vertex disjoint cycles Cy (taking at each step four vertices z,2’,y,y forming
a C4) [ |

Theorem 3.9. Let G = (X,Y, E) be a A-reqular simple bipartite graph with | X| =1|Y| =
n>4and A>1(n+2[2]+1). Let P ={0,1,...,n}; then there exists a P-feasible set R
with |R| = n + 1.

Proof: We have A > $(n+2[%]+1) > 2 ([2]-1) + /n—2([2]—1) + 1 from
Fact 3.7. It follows from Lemma 3.8 that G contains [n/4] vertex disjoint cycles Cy. Let
{@2i41, Y2i+1, T2it2, Y2i+2} be the vertices of cycle Ci for i = 0,...,[n/4] — 1.

We observe that the number of vertices of X (or of V) contained in the cycles Ci is 2[n/4] >
n—[n/2] = [n/2].

Let now H = (X',Y', E') be the subgraph of G obtained by deletion of all the cycles ct
and their vertices. We have \X'\ = |Y'| =n—2[n/4] < [n/2] and §(H) > A —2[n/4] >
Ln+2[n/4] +1) = 2[n/4] = L(n—2[n/4] + 1) = 2(1X'| + 1).

It is known (see [4] [Corollary 7.3.13|) that such an H is Hamiltonian. It has then a 2-

factor which can be partitioned into two perfect matchings M, H,M}I of H. Notice that
|Mp| = |My| =n—2[n/4].
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We now construct R as follows:
R={[z;y] i=1,...,2[n/4]} U{[z1, y2]} U MHn.

Clearly we construct perfect matchings in G by taking a perfect matching in each C{ and
in H. Each C} (i > 1) will give matchings with 0 or 2 edges of R; C¢ will give matchings
with 1 or 2 edges of R. In H, the matchings My and M, have | M| or 0 edges in R.
From the cycles C% we can construct matchings having 1,2,...,2[n/4] edges in R. These
can be combined with My to get perfect matchings M; in G having 1,2,...,2[n/4] edges
in R. Combining these matchings with My will give perfect matchings in G having 1 +
My, 2+ |Mg|,...,2[n/4] + |[Mg| edges in R. Since |My|=n —2[n/4] < [n/2] we will
produce perfect matchings of G having ¢ edges in R for any ¢ with 1 <14 < n.

Now since G is regular, we may remove the edges of all cycles C§ and of My U M}{ We
have a (A — 2)-regular graph, which has a perfect matching My such that My N R = (. So
we have constructed a P-feasible set R with |R| = 2[n/4]| + 1+ |My| =n+ 1. [ |

The following is a simple consequence of the Konig theorem.

Proposition 3.10. If a 3-reqular bipartite graph contains a cycle on four vertices, then this

cycle is alternating with respect to some perfect matching.

Remark 3.11. In general a graph G may not have perfect matchings. We can find a
minimum cardinality P-feasible set R for P = {n—1,n}. Here M, is a mazimum matching
which is not perfect; an alternating chain C = {e1, ea} exists which starts at some (exposed)

verter. We simply remove ey from M, and introduce ey into M, to obtain M,_1. So
R=M,U{e1} —{e2}.

Let us mention additional results related to alternating cycles in bipartite graphs.

Theorem 3.12. Let G = (X,Y,E) be a A-reqular bipartite graph (A > 3) with | X| =
|Y'| = n, then G contains a cycle C with |C| < 2[n/2] which is alternating with respect to

some perfect matching.

Proof: Let (M, Ms, ..., Ma) be an edge A-coloring of G if My U Ms is not a Hamiltonian
cycle, then it contains a cycle C with |C| < 2[n/2]. C is clearly alternating for M;.

If M1 U My is a Hamiltonian cycle, then consider any edge e € Ms; M; U My U {e} contains
2 cycles using e; at least one of them has at most 2[n/2] edges; this cycle is alternating
with respect to M7 or Mos. [ |

Theorem 3.13. Let G be a A-regular bipartite graph (with /\ > 3) such that for some
integer k > 3 every cycle of length at least 2k has a chord. Then there exists a cycle C' with
|C| < 2k — 2 which is alternating with respect to some perfect matching.
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Proof: Take a perfect matching M in G; since /A > 3 from the Konig theorem, there
exists a perfect matching M " with M' N M = 0. Then M U M contains a cycle C which is
alternating with respect to M. Assume |C| > 2k; then there is a chord [a,b]. It determines
with one part of C' an alternating cycle C" with respect to M. Now |[C'| < |[C] —2. If
|C"| > 2k we continue. We will finally get a cycle C” with |C"| < 2k — 2 which will be
alternating with respect to M. |

A tedious but not difficult enumeration of cases shows the following.

Theorem 3.14. For a S-regular bipartite graph G = (X,Y,E) with | X| = Y| =n <7,
there ezists a set R C E with |R| < n + 2 which is P-feasible for P ={0,1,...,n}.

This result is best possible in the sense that there exists a bipartite 3-regular graph on
2n = 14 vertices for which the minimum value of |R| is n + 2 = 9; this is the so-called
Heawood graph (or (3,6)-cage) (see [38], p.309).

In 3-regular bipartite graphs G = (X, Y, E) with | X| = |Y| = n > 8 the minimum cardinality
of a P-feasible set R for P = {0,1,...,n} is not known.

Finally if we restrict P to {0,1,...,p} with p <4, we can state the following.

Theorem 3.15. Let p < 4 be an integer. For a 3-regular bipartite graph G = (X,Y, E),
with | X| = Y| =n > 2(p — 1), there exists a set R C E with |R| = p which is P-feasible
for P={0,1,...,p}.

Proof: We just give the proof for p = 4; the case p < 3 can be handled similarly. Let M
and M’ be two disjoint perfect matchings in G. So E— (M U M) is also a perfect matching.
Suppose M U M’, which is a 2-factor, is connected. It is then a Hamiltonian cycle € of G.
Choose two chords of €, say [a,b] and [c, d], which are at distance at least 2 (i.e. there are
no two vertices of the chords that are adjacent). These chords, belonging to E — (M U M),
divide the set of edges of cycle € into four parts A, B, C and D.

Let M; (resp. Ma) be the matching containing the chord [a,b] (resp. [c,d]) and |M| —1
edges of €. M; and M; use the same edges of M U M’ in two parts, say A and C, and
different edges of M U M’ in B and D. As the chords are at distance at least 2, there are
at least two edges e1,es € My N Ms. Let us distinguish two cases:

(1) There exist e, e € My N My N M (if necessary exchange M and M’).
It is obvious that there exists an edge es in BUD such that es € M{NM or es € MyNM
as My and Ms use different edges in B and D. Suppose there exists e3 € M N M.
Take R = {[a,b],e1,e2,e3}. Then we have: [M NR| =3, |M'NR| =0, |M; NR| =4,
|[MoNR|=2and (E—-—(MUM))NR|=1.

(2) There exist no two edges e; and eg such that ej,es € My N My N M or ej,es €
My N Myn M.
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This of course implies |A| = |C| = 3. Suppose e; € MiNMyNM and ez € MiNMoNM'.
It is obvious that there exist two edges e3 and e4 in BU D such that es,eq € M1 N M
or eg,eq € Mo N M as at least one part B or D contains at least four edges. Suppose
es,eq € My N M. Take R = {e1,ea,e3,e4}. Then we have |IM N R| =3, [M'NR| =1,
IMiNR|=4, | MyNR|=2and |[(F—(MUM"))NR|=0.

Suppose now M UM’ is not connected. Then it consists of at least two cycles. Notice that if
there are more than two cycles, the solution is obvious. In fact consider three cycles C, C?
and C3. Take R = {e1, ea,e3,e4} such that e;,eg € C'NM, e3 € C2NM and ey € C3NM'.
Then of course there exist perfect matchings with 0, 1, 2, 3 and 4 edges of R. So suppose

now that M U M’ consists of exactly two cycles, C! and C?2. Distinguish two cases:

(1) At least one of the cycles, say C!, has a chord [a, b].

This chord divides cycle C' in two parts A and B which contain both an odd number
of edges. Let Mj be the perfect matching containing chord [a, b], the edges of M in
A, the edges of M’ in B (if necessary exchange M and M') and edges of M in cycle
C?. Let M, be the perfect matching containing chord [a,b], the edges of M; in C*
and edges of M’ in cycle C?. So there exist at least two edges e1,es € M1 N My
such that e; € M and es € M’. Consider e3,eq € C? such that es,eq € M. Take
R = {ej,eq,e3,e4}. Then we have M N R| = 3, [M'NR| = 1, |M; N R| = 4,
|[MoNR|=2and |[(E—(MUM'))NR|=0.

(2) None of the two cycles has a chord.
This is only possible if both cycles have same length. Asn > 6, we have |C!| = |C?| >
6. Consider two edges [a,b],[c,d] € E — (M U M') such that vertices a and c are
neighbors in C1. Let M; be the perfect matching containing [a, b], [c, d], edges of M
in C! and edges of M UM’ in C?. Let ej,ea € C'NM; and e3 € C?2N M;N M. Take
R ={]a,b],e1,ea,e3}. Then we have |[M; NR| =4, |M'NR| =0, |MNR| =3, taking
M in C* and M’ in C?, we obtain a perfect matching with two edges of R, taking M’

in C! and M in C?, we obtain a perfect matching with one edge in R.

3.2 The interval property (IP)

We shall consider here the special case where P is a set of consecutive integers and we
will characterize graphs which have a property related to such a P. We will exhibit some
classes of graphs (bipartite or not) for which a P-feasible set R with minimum cardinality
can be obtained in polynomial time. We will denote by v(G) the cardinality of a maximum

matching in G.

We shall say that G has property IP (interval property) if whenever there are maximum
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matchings M and M, in G with |M, N M,| = k < v = v(G), there are also maximum
matchings M; with |[M; "M, | =ifori=kk+1,...,v.

In other words, when G has property IP and there is some k and two maximum matchings
My, and M, with |[MNM,| =k < v(G), then R = M, is P-feasible for P = {k,k+1,...,v =

v(G)} and R has minimum cardinality.

We define a IP-perfect graph G as a graph in which every partial subgraph has property
IP. We remind the reader that a partial subgraph of a graph G is obtained by taking an
induced subgraph G’ and keeping only a subset of edges of G'.

A cactus is a graph where any two (elementary) cycles have at most one common vertex.
A cactus is odd if all its (elementary) cycles are odd. Notice that a tree is a special (odd)

cactus.

Theorem 3.16. The following statements are equivalent:

(a) G is an odd cactus;
(b) G is IP-perfect.

Proof: (b) = (a). If G is not an odd cactus, there exists a partial subgraph which is an
even cycle C = M, U My with |M,| = |My| > 2. We have MyN M, = () by construction and
|M, N M, | > 2, but there is no My with |M;| = |M,| and |M1 N M,| = 1.

(a) = (b). Assume we have two maximum matchings M} and M, with |M N M,| =k <
v =v(G). Consider My AM,,. It consists of a collection of vertex disjoint even alternating
chains with total length 2(v — k) > 0.

We may use some of the subchains (by starting from the endvertices saturated by M,) to
replace r edges of M, by r edges of M}, in order to obtain a maximum matching My, with
|Mg+r "M,| =k+rforr=1,...,v(G) — k. Since every partial subgraph of G is also an
odd cactus, G has property IP. |

It follows from Theorem 3.16 that if we want to find the largest sequence of consecutive
integers P = {po, p1,...,ps} such that a set R = M, is P-feasible for an odd cactus G, we

have to find in G’ two maximum matchings My and M, such that |My N M, | is minimum.
Let us examine first the case of bipartite graphs (that include trees but not odd cacti).

Theorem 3.17. If G = (X, Y, E) is a bipartite graph, there ezists a polynomial time algo-

rithm to construct two mazimum matchings M, M’ with a minimum value of |M N Ml\.

Proof: Let us replace each edge [z,y] of G by two arcs (z,y)° and (x,y)! with capacities
c(z,y)? = c(z,y)! =1 and costs k(z,y)" =0, k(z,y)! = 1. Introduce a source s with arcs
(s,z) having c(s,x) = 2 and k(s,z) = 0 for each vertex z in X. Similarly for each vertex y
in Y introduce a sink ¢ with arcs (y,t) with ¢(y,t) = 2 and k(y,t) = 0.

Construct in the network N obtained in this way an (integral) maximum flow f from s to ¢

with minimum cost K (f). There exists a feasible flow with value 2v(G) (obtained by setting
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Figure 3.1: An odd cactus where the 2-matching algorithm does not give the solution.

flx,y)t = f(z,y)? = 1 for all arcs (z,y) corresponding to the edges [z,y] of a maximum
matching in G). Furthermore no flow can have a value larger than 2v(G) (because this
would mean that there is in G a matching M with |M| > v(G)). Now the cost of f is equal
to the number of arcs (z,y)! with f(x,y)! = 1. Since K(f) has been minimized, we have a
minimum number of such arcs and furthermore f(x,%)! = 1 implies f(x,y)° = 1. These are
the edges [z,y] of G which are used in both matchings M and M. Hence an integral flow f
with maximum value 2v(G) and minimum cost K (f) will define two maximum matchings

M and M’ with |M N M'| = K(f) minimum.

It is known that such a flow can be constructed in polynomial time (see [1]). [ |

Remark 3.18. For non bipartite graphs, one cannot use the same construction (duplica-
tion of edges) and determination of a mazimum 2-matching (partial graph H with degrees
dp(z) < 2 for each vertex z).

In the graph of Figure 3.1, we would obtain a 2-matching H consisting of the edges of all
four triangles; its cost is 0. It is clearly not the union of two mazimum matchings. The two
mazimum matchings M and M’ with |M N M,| minimum are M = M’ given by the heavy
edges; the cost of this 2-matching is 6.

At this stage, we can deduce from Theorems 3.16 and 3.17.

Theorem 3.19. If G = (V, E) is a forest, we can determine in polynomial time a minimum
k and o minimum set R of edges to be colored in red in such o way that for i = k. k +
1,...,v(G), G has a mazimum matching M; with |M; N R| = 1.

Remark 3.20. In a graph G with the IP property, there ezxists a set R with |R| = v(G)
such that for i = 0,1,...,v(G) G has a marimum matching M; with |M; N R| = i if and

only if G has two disjoint mazimum matchings.
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It should be mnoticed that finding in a graph two mazimum matchings that are as disjoint
as possible is N'P-complete. This is an immediate consequence of the N'P-completeness of

deciding whether a 3-reqular graph has an edge 3-coloring [43].

We will now show that there is an algorithm to determine if some special odd cacti have

two disjoint maximum matchings.

In [31], it is shown that finding a maximum number of edges that can be colored with 2

colors is N'P-hard in multigraphs.

Hartvigsen has developed (see [42]) an algorithm for constructing in a graph a partial graph
H with dg(v) < 2 for each vertex v, which contains no triangle and which has a maximum

number of edges.

Such an algorithm can be used in graphs where the only odd cycles are triangles (these are

the so called line-perfect graphs (see [24], [71]). We obtain the following.

Theorem 3.21. If G is a line-perfect graph, one can determine in polynomial time whether

G contains two disjoint maximum matchings.

Proof: We apply the algorithm of Hartvigsen that gives a partial graph H with dg(v) < 2
for each v, which contains no triangle and which has a maximum number |E(H)| of edges.
Since G has no odd cycle of length 5 or more, F(H) has no odd cycle and is therefore the
union of two disjoint matchings M; and Ms.

We cannot have |E(H)| > 2v(G) because this would imply that H contains a matching
M with |M| > v(G). So we have |E(H)| < 2v(G) and if |E(H)| < 2v(G), then clearly
G cannot contain two disjoint maximum matchings. So assume we have |E(H)| = 2v(G).
Since | M|, |Mz| < v(G) and |E(H)| = 2v(G) = |M;|+|Mz|, we have two disjoint matchings
My and My with |M;| = |Ms| = v(G). [

From Theorems 3.16 and 3.21 we obtain the following.

Corollary 3.22. If G is a cactus where all cycles are triangles, one can determine in

polynomaal time whether there exists a minimum set R of edges that is P-feasible for P =

{0,1,...,0(G)}.

It should be noted that in order to find two maximum matchings M and M with [M N M|
minimum, we would need to introduce weights on the edges, but apparently this cannot be

handled by the above algorithm.

3.3 Conclusion

We have examined the problem of finding a minimum subset R of edges for which there
exist maximum matchings M; with |M; N R| = p; for some given values of p;. Partial results

have been obtained for some classes of graphs (regular bipartite graphs, forests, odd cacti
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with triangles only, ...). In general, our problem requires the determination of a shortest
alternating cycle (SAC problem) whose complexity status is open. Further research is needed
to extend our results to other classes of graphs. In particular the case of general odd cacti

would be interesting to analyze since these are exactly the IP-perfect graphs.

These problems seem to be more difficult than the spanning tree problems in bicolored
graphs mentioned in the introduction; the reason is that it is a special case of three matroid
intersections as mentioned in [34]: a matching is an intersection problem of two matroids
and the bicoloring (R, B) induces a partition matroid; for trees we simply have, in addition
to the partition matroid, a second matroid whose independent sets are the forests in G.

Such problems are known to be solvable in polynomial time (see [56]).
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Chapter 4

On a graph coloring problem arising

from discrete tomography

Introduction

In Chapter 1, we introduced the field of discrete tomography which deals with the recon-

struction of discrete objects from their projections.

Here we shall consider a graph coloring problem which generalizes the basic image recon-

struction problem in discrete tomography (see Chapter 1).

We are given a connected graph G = (V, E) and a collection P of p subsets P; of vertices
of G. We are also given a set {1,2,...,k} of colors as well as a collection H of p vectors
h(F;) = (h},...,hf) eNF (i=1,...,p).

We have to find a k-partition V1, V2, ..., V¥ of V such that
PN VI =h! foralli<pandallj<k. (4.1)

This problem will be called A(G,k, P, H). It is clear that in this formulation the structure
of G plays no role.

We shall from now on consider a family of chains u; in G; we will denote by P; the (ordered)
set of vertices in p; and the length of p; will be |P;|. Whenever no confusion may arise, we
shall identify p; with its vertex set P;. We will then call |P;| the length of P;. In the case
where the structure of G plays no role, it is not restrictive to start from chains p; (instead
of arbitrary subsets P; of vertices as above): we can indeed link the vertices of a P; to form
a chain ;.

The k-partition need not be a coloring of G where adjacent vertices have different colors.
We will talk indifferently of k-partition or k-coloring to describe a partition of the vertex
set into k subsets (color classes); whenever we will have the usual requirement of having

different colors on adjacent vertices, we will call this a proper k-coloring. The corresponding
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CHAPTER 4. ON A GRAPH COLORING PROBLEM ARISING FROM DISCRETE TOMOGRAPHY

reconstruction problem associated with proper k-colorings will be denoted A*(G, k, P, H).

Let us recall the relation between this problem and the basic image reconstrucion problem
in discrete tomography. Consider the special case where G = (V, E) is a grid graph; its

vertex set is V ={x,s |r=1,...,m; s=1,...,n} and its edge set is

E={lzrs,Trs+1]| s=1,....n—1; r=1,... m}U

{[ZrssTrir1s]lr=1,...,m—1; s=1,...,n}

If z,¢ is located in row r and column s of the grid, then by taking for P the collection of
chains P, = {z;1,..., &} for r = 1,...,m, and P45 = {Z1s,...,Tms} for s = 1,...,n,
A(G,k,P,H) is exactly the basic image reconstruction problem in discrete tomography;
here h (resp. K ) is the number of occurrences of color j in row r (resp. in column

m-+s

s) (ie. (Rl ...,hF) and (A}

s ...,hE ) are the horizontal and the vertical projections,

m—+s

respectively).

As already mentioned previously, the problem for k = 2 consists of reconstructing a (0, 1)-
matrix from its vertical and horizontal projections, i.e., number of occurrences of 1 in each

row and in each column; this case is solved in polynomial time [65].

We recall that for k = 4, this problem is N'P-complete [16]; for ¥ = 3 the complexity status

is open but some special cases were solved in polynomial time (see Chapter 6 and [18, 19]).

In this chapter we will consider some extensions and variations of this basic problem by

taking more general classes of graphs G such as trees, bipartite graphs, planar graphs, cacti.

As an application of A(G, k, P, H) let us mention the following problem consisting in schedul-
ing the refurbishment of the stations in a city subway network. The network is represented
by a graph G = (V, E)) where the vertices are the stations. Each metro line is associated with
a chain P;. Assuming that the renovation operation of every single station takes one month,
we want to schedule these operations while taking into account the following requirements:
in month j, the number of stations in metro line P, which will be closed for renovation is hz .
The problem of assigning a date (month) for the renovation of every station with the above
constraints is precisely A(G, k, P, H) if the whole refurbishment has to take place in a period
of k£ months. In some cases, it is desired to avoid closing two consecutive stations along the
same metro line; the assignment of dates is then a proper k-coloring of the underlying graph
G and the problem is A*(G,k, P, H).

In addition to the aforementioned application, our problem may be viewed in a different
context related to constraint satisfaction in logic. Essentially we are given a collection of n
Boolean variables as well as a collection of clauses P; (each one of them involves a subset of
the Boolean variables). It is required to find an assignment of values ‘true’ or ‘false’ to each
Boolean variable in such a way that in each clause P; the number of variables with value
‘false’ is exactly (or at most) a given number hf'. Notice that here we have a number k
of colors which is 2. The general k-coloring case would then correspond to k-valued logical

variables.
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4.2. PRELIMINARIES

After preliminaries given in Section 4.1, we will consider the basic problem A(G,k, P, H)
in Section 4.2 with the case k = 2 (difficult and easy cases) and the general case & > 3.
Then Section 4.3 will be dedicated to the case of proper colorings, i.e., to A*(G,k, P, H).
In Section 4.4 we will consider line graphs. This amounts to replacing the vertex colorings
by edge colorings. Again we will consider general k-colorings and also proper k-colorings.

Finally, Section 4.5 will present a summary of the results obtained in this chapter.

4.1 Preliminaries

In the following we assume that several basic conditions for a solution to exist are verified,
in particular Z§:1 hZ = |P;|, foralli =1,...,p. In addition, if we want to determine proper
colorings, we have to assume that h{ < [%1 for all 4,5. It follows that there is at most one
color such that hg = (‘Z—Z'} if |P;| is odd and at most two colors such that hg = u;—” if | Py

is even. These colors will be called saturating for P;.

We need some more definitions and notations for P. For a family P = (P, | i = 1,...,p) of
subsets P; of a set V', we call cover indez of P and denote by ¢(P) the maximum number
of members of P which may cover a single element of V' (i.e., which have a non empty

intersection).

For instance in the basic image reconstruction problem of discrete tomography we have
c(P)=2.

A family P = (P; | i = 1,...,p) of subsets P; of a set V is called nested if for any P;, Py € P,
we have either P, C Py or Py C P, or P;(\ Py = 0.

Consider now a partition of P into nested families. One can look for a partition into the
smallest possible number of nested families. This number, denoted by Nest(P), is called the

nesticity of P.

Fact 4.1. [39] One can determine in polynomial time if for a family P we have Nest(P) < 2.

Proof: Assign a vertex to each P; € P and link by an edge P; and Py whenever P; (| Py # 0,
P; & Py and Py ¢ P;. The resulting graph is bipartite if and only if Nest(P) < 2. [

(
Nest(P). For example, for P = ({a, b}, {a,c}, {b,c}), we have ¢(P) = 2 and Nest(P) =

Observe that ¢(P) and Nest(P) are unrelated: we may have ¢(P) > Nest(P) or ¢(P) <
) = ,
and for P’ = ({a, b, c},{a,b}), we have ¢(P’) =2 and Nest(P') = 1.

4.2 Arbitrary colorings

In this section we establish some complexity results and we exhibit some cases which can
be solved in polynomial time for A(G,k, P, H).
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CHAPTER 4. ON A GRAPH COLORING PROBLEM ARISING FROM DISCRETE TOMOGRAPHY

Notice that whenever the k-colorings are not required to be proper, we can assume that for
each edge e there is at least one chain p; which uses e; otherwise the edge can be removed.
Notice that it may happen that we get a disconnected graph; in such a case the problem is

decomposed.

We shall start with the case where we have k = 2 colors.

4.2.1 Difficult problems for k£ = 2

Let us first give two statements which do not refer to the nature of the underlying graph G.

Theorem 4.2. A(G,2,P,H) is NP-complete if P is a 3-uniform family
(|Pi| =3 fori=1,...,p) which is 3-reqular (each vertez is in ezactly three P,s).

Proof: We use a transformation from the CUBIC PLANAR MONOTONE 1-in-3SAT
problem which is known to be NP-complete (see [60]). In this problem we are given a set
X of variables and a set C' of clauses of the form (z V y V z) where z,y and z are distinct
variables without negation such that the underlying bipartite graph G = (X UC,E) =
(X U C,{[xi, ¢]|x; occurring in clause ¢ € C}) is 3-regular and planar. The question is to
decide whether there exists a truth assignment such that exactly one variable in each clause
is ‘true’.

We associate with each clause ¢ = (z Vy V 2) a chain P, = {z,y, z}. Since the underlying
bipartite graph G is 3-regular we have that each vertex z is in exactly three chains. We set
h(P.) = (1,2) for each chain P..

If an instance of CUBIC PLANAR MONOTONE 1-in-3SAT has answer ‘yes’, then by setting
V1 = {z| z is true} we get an positive answer for A(G,2,P, H). Conversely if A(G,2,P, H)
has a positive answer then by setting each variable = such that = € V! to ‘true’, we will get
a positive answer for CUBIC PLANAR MONOTONE 1-in-3SAT. [ ]

Theorem 4.3. A(G,2,P,H) is NP-complete if Nest(P) = 3.

Proof: We use a transformation of the 3-dimensional matching problem which is known to
be N'P-complete [36]. To state a 3-dimensional matching problem, we introduce a collection
of points with coordinates (a, 3,7) with a, 8,7 € {1,2,...,¢q} and 3 families formed by all
disjoint chains parallel to the coordinate axes; this gives P with Nest(P) = 3 = ¢(P).

We set hj = 1,h? = |P;| — 1 for each P; in P. Then there exists a matching of size ¢ if and
only if there exists a partition V1, V2 of the set of points which satisfies (4.1). |

Notice that it follows from this transformation that A(G, k, P, H) remains N'P-complete for
k =2 and ¢(P) = 3.

Theorem 4.4. A(G,2,P,H) is N'P-complete when G is bipartite of maximum degree < 4
and each color occurs at most 8 times in each P; (hz <3,Vi=1,...,p, Vj = 1,2) and

B Pyl <1 forall 1 <i, f<p (i #f).
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4.2. ARBITRARY COLORINGS

Proof: The transformation is from the NP-complete problem ONE-IN-THREE 3SAT
which is defined as follows [36].

Instance: A set U of variables, a collection C' of clauses over U such that each clause c € C

has |c¢| = 3 variables.

Question: Is there a truth assignment for U such that each clause in C has exactly one true
literal?

This problem is also N/P-complete in the case where there is no negated literal.

We build a graph by associating with each variable x occurring s times vertices z1, x12, 2, Z23,
x3,...,Ts—1,5,Ts and edges [z1,z12], [X12, 2], [T2, Z23], ..., [s—1,5, 25]. For each clause ¢; =
{z,y, z} we know the number of occurrences of its variables in clauses cy, ..., ¢;—1; S0 assume
¢; = {4, Ye, zf} which means that in ¢;,  has its d" occurrence, y its et® occurrence and z
its ft". We introduce vertices u; and w; with edges [xq, ], [u, Ye], [Ve, wi], [wy, z¢]. Clearly
the graph obtained is bipartite. Now we define P.

For each variable z, each edge [x1,z12], [x12, 2], ..., [Ts—1,s,Ts] becomes a chain P,;/ with
h(Pi') = (1,1). For each clause ¢; = {xg4, ye, 27} we introduce a chain Pi” = {4, u, Ye, wy, 2f }
with h(P; ) = (3,2) and also chains P} = {u;}, P/* = {w;} with h(P}") = h(P}*) = (1,0).
The family P of chains obtained verifies clearly |P;(P¢| < 1 for all ¢, f < p (i # f). Fur-
thermore no vertex of G has degree more than 4.

If an instance of ONE-IN-THREE 3SAT has answer ‘yes’, then assigning color 1 to vertices
w, wy (for all [) and to x1, z2, ..., x4 if variable x is ‘true’, or to x12, x93, ..., Ts—1, Otherwise,
and assigning color 2 to the remaining vertices gives a positive answer to the corresponding
instance A(G,2,P, H). Conversely if an instance of A(G,2,P, H) is positive, then all ver-
tices uy, w; (for all 1) have color 1, so for each chain Pl-" = {4, u;, Ye, wy, 25} there is exactly
one vertex in {zq,ye, 2z¢} with color 1. Furthermore from the requirements on the chains
PZ-/, for each variable z, all vertices x1, x2, ..., s have the same color. So assigning the value
‘true’ to x if x1,x9, ..., x5 have color 1, or value ‘false’ otherwise, we get a positive answer
to ONE-IN-THREE 3SAT. |

Theorem 4.5. A(G,2,P,H) is N'P-complete when G is a tree with mazimum degree 3.

Proof: Again, we reduce from the N'P-complete problem ONE-IN-THREE 3SAT with no
negated literal, already defined. We denote by x1,...,x, the variables, and by cy,...,cq
the clauses. We construct a tree as follows. There is a main path IT with v 4+ « vertices.
Each one of the v first vertices of IT is linked by an edge to a leaf, the i*" leaf being labelled
by z; (we shall speak of a variable leaf). Each one of the o next vertices of IT is linked to
a clause gadget (so that, in our tree, there is one gadget for each clause): the gadget for a
clause ¢p, = x; Vx; Vxy, is a tree with five vertices (labelled ay, by, x;, z; and xy), z;, «; and
x) being the 3 leaves, and aj being linked to II by an edge. The edges inside the gadget
are [ap, xi], [an, bp), [bp, x;] and [bp, zi] (see Figure 4.1 for an example). Note that the tree

constructed so far has maximum degree 3.

It remains to describe the collection P. First, in the gadget of clause ¢, = x; V x; V 2y, there
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CHAPTER 4. ON A GRAPH COLORING PROBLEM ARISING FROM DISCRETE TOMOGRAPHY

SRR

Figure 4.1: The tree constructed for the instance (z1 V xo V x3) A (22 V 23 V 24).

is a chain P, = {aj} with h(P,) = (1,0), a chain P, = {x;,ap, by} with h(P,) = (2,1),
and a chain P, = {z;,by,xy} with h(P, ) = (1,2). Then, the path IT is a chain in P with
h(IT) = (v 4+ «,0). Eventually, for each occurrence of a variable z; in a clause ¢, there
is a chain from the variable leaf ¢ to the leaf x; in the clause gadget of ¢,.. Let us denote
by P/ this chain. If the leaf x; in the clause gadget of ¢, is linked to a,, then we have
h(PI) = (|P]| — 1,1), else we have h(P]) = (|P]| — 2,2).

Now, the important point is that, because of all the chains of the form Py, P}; and P;L’, there
are only 3 ways of coloring each clause gadget (see Figure 4.2: black vertices have color 1,

white vertices have color 2).

Figure 4.2: The 3 possible colorings for the clause gadget of ¢, = x; V z; V .

Moreover, because of all the chains of the form P, given one of the 3 possible colorings of
the clause gadget of ¢, = x; V x; V x1, one and only one of the variable leaves labeled x;, z;
and xj, has color 1: z; in the coloring of Figure 4.2(a), z; in the coloring of Figure 4.2(b), x,
in the coloring of Figure 4.2(c). Hence, given a solution for A(G,2,P, H) on this instance,
we can easily obtain a solution for the associated satisfiability instance, by assigning ‘true’
to variables whose variable leaves have color 1 and ‘false’ to the others. Conversely, given
a truth assignment, assign color 1 to variable leaves associated with ‘true’ variables and
color 2 to the others, and color each clause gadget with respect to the only variable equal to
‘true’ in the associated clause. It follows from the above discussion that we obtain a valid

coloring. ]
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4.2. ARBITRARY COLORINGS

In the above construction, by contracting II into a single vertex v, and all the ap into v

(i.e., a1 = ... = ao = v) we obtain the following.

Theorem 4.6. A(G,2,P,H) is N'P-complete in trees of diameter at most 4 when |P;| < 4
for each P; in P, hg <3 (i<p, j=1,2) and |P; N Pf| < 2 for each P; and Py (P; # Py)
inP (i,f <p)

4.2.2 Polynomially solvable cases with k£ = 2

We recall that the basic image reconstruction problem in discrete tomography is polynomi-
ally solvable for k = 2 when the P/s are the rows and the columns of the associated grid

graph G. Remember that in this special case we have ¢(P) = 2.

More generally, we can state the following.

Theorem 4.7. A(G,2,P, H) is polynomially solvable if ¢(P) = 2.

Proof: We construct a multigraph G’ as follows. Assign a vertex P; to each chain P; in P.
Each vertex of G, which is in P; and in Py is represented by an edge in G’ between P; and
P¢. Each vertex, which is covered by a unique P; is associated with an edge in G’ between
vertex P; and a new vertex P,;/ . So there is a one-to-one correspondence between the vertices
of G and the edges of G’.

Then a solution, if there is one, will correspond to a subset F' of edges of G’ such that for

each vertex P, I has h] edges adjacent to P; (there is no restriction for the vertices PZ/)

In G’, the edges of F will give V! in G and the edges not in F will correspond to V? in G.
There are polynomial algorithms (see [56]) to construct such subsets F' if they exist or to

decide that there is no solution. [ |

One can derive the following from results in [39].

Theorem 4.8. A(G,2,P,H) is polynomially solvable if Nest(P) = 2.

Proof: Starting from the inclusion tree of each one of the two nested families covering P,
one can build a network flow model where a compatible integral flow will define the subset
V1 CV and V2 =V — V! will be obtained immediately as shown in [39].

Agsume P can be decomposed into nested subfamilies A and B. We represent both families
by the inclusion tree of their subsets P;. A source a (resp. a sink b) is linked to all maximal
(inclusionwise) subsets of A (resp. B). We link each | € V to the unique minimal subset
A, of A (resp. Bs of B) which contains [ by an arc (A,,l) (resp. (I, Bs)). The network is
obtained by orienting all remaining edges from a to b. The arc entering (resp. leaving) each
P; in A (resp. B) has a capacity and a lower bound of flow equal to h}. The arcs adjacent
to the vertices corresponding to the elements of V have capacity 1 and a lower bound of

flow equal to 0.
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CHAPTER 4. ON A GRAPH COLORING PROBLEM ARISING FROM DISCRETE TOMOGRAPHY

In Figure 4.3 an example is given for aset V = {1,2,..., 7} and a family P with Nest(P) = 2.
Here A = ({1,2},{3,4,5},{6,7}) and B = ({1,3,6},{2,4}, {5, 7},
{1,3,5,6,7}). The values h} are shown in brackets.

1

Figure 4.3: The network associated with a family P with Nest(P) = 2.

There is a one-to-one correspondence between the feasible integral flows from a to b and the

subset V1 of vertices in a coloring (V!, V?) satisfying the requirements. |

Theorem 4.9. Let G be an arbitrary graph and P a family of chains P; such that any P;
has at most two vertices belonging to some other chains of P. Then A(G,2,P,H) can be

solved in polynomial time.

Proof: We shall transform the problem into a 2SAT problem which is known to be
polynomially solvable [3].

We associate a binary variable x with every vertex of G which belongs to at least two chains
P;. Notice that we may assume that min{hz-l,h?} > 1, 7 < p, otherwise there is only one
color occurring in P; and the problem can be reduced. We first remove all vertices which
belong to exactly one P; (these will be considered later). Now each P; contains one or two
vertices. For each P; which has exactly two vertices, say « and gy, which belong to other
chains, we write a clause ¢; as follows.

If h} = 2, h? =1, we set ¢; = z\/y (this means that at least one of the vertices z,y must
have color 1) and if h} = 1,h? = 2, we set ¢; = £\/¥ (at least one of z,y must have
color 2). If min{h},h?} > 2, we do nothing (since x and y can get any color). Finally
when h} = h? = 1, we introduce a constraint z = § (because z and y must get different
colors). For any P; which has exactly one vertex belonging to more than one chain in P,
we do nothing since by assumption (min{h}, h?} > 1) this vertex can have any color. We
define C = AL, ¢; and using the equality constraints = § we may substitute variable § to
variable 2. We are left with a 2S AT instance. It has a solution if and only if A(G,2,P, H)
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4.2. ARBITRARY COLORINGS

has a solution.

From a solution of 2SAT, we derive a partition V', V2 of the vertices associated with the
binary variables. The bicoloring V!, V2 of the vertices of G belonging to more than one
chain of P is given by V! = {v| v is true}, V2 = {v| v is false}. For each P, it is possible to
assign color 1 or 2 to the uncolored yet vertices so that the number of occurrences of color
jis h{ (for 7 = 1,2). This will provide the required coloring of G.

Conversely if A(G,2,P, H) has a solution, then by setting x to ‘true’ (resp. z ‘false’) for all
variables corresponding to the vertices x which are in more than one chain and have color

1 (resp. color 2), we will satisfy all clauses in C (as well as the equality constraints). |

Theorem 4.10. If G = (V,U) is a directed tree and each P; € P is a directed path, then
A(G,2,P,H) can be solved in polynomial time.

Proof: Notice that the incidence matrix (paths x vertices) of such a graph is totally
unimodular. So if we write the system Az = b, 0 < < 1 where a4 = 1 if path P;
contains vertex v (or a;, = 0 else) and b; = h, then we may check in polynomial time with
a linear programming solver whether the system has a solution; if it is the case there is an
integral solution (since A is totally unimodular) which gives V!, and V? = V — V! which

form a partition of V' satisfying all requirements. |

4.2.3 The case k> 3

Let us first consider the special case where all P;’s have size |P;| < 2.

Theorem 4.11. For any graph G and any P such that every |P;| < 2, A(G,k,P,H) can

be solved in polynomial time.

Proof: Consider A(G,k,P, H). Eliminate all P;’s such that hg = 2 for some color j < k
(these have a unique coloring) and apply the reductions implied by these eliminations. We
also apply the reductions due to chains P; with |P;| = 1.

Consider a pair P;, Py with |P; N Pr| = 1. Let II; be the set of colors j with h{ > 0. If
II; N ITy = ), there is no solution; if |II; N IIf| = 1, then assign this color to the vertex in
P; N Py and the rest of F;, Py is also determined. We apply these reductions until either
we get a contradiction or we have a collection of connected components C1, ..., C, where in
each connected component all P;’s have the same set I1; of possible colors (remember that
|P;| = 2 and |II;| = 2). Then our problem has a solution if and only if every connected

component is bipartite. |

For the case where the number of colors is k£ = 3, we have the following.

Theorem 4.12. A(G,3,P, H) is N'P-complete when |P;| = 3, hf =1fori=1,....p, j =
1,2,3 and c¢(P) = 2.

61



CHAPTER 4. ON A GRAPH COLORING PROBLEM ARISING FROM DISCRETE TOMOGRAPHY

Proof: We use a transformation from edge 3-coloring of a 3-regular graph G'. This problem
is known to be N'P-complete [43].

We will construct a graph G and a family P of chains in G. We will associate a chain P; in
G with each vertex w; of G,; each edge [w;, wf] of G is associated with a vertex v = vy of
V(G). P; will be a chain in G containing the three vertices corresponding to the three edges
adjacent to w; in G'. If in G’ vertex w; is adjacent to w,,ws and wy (r < s < t), then in G,
P; = {vir, vis,vit }, and the corresponding chain will be formed by edges [vir, vVis], [Vis, Vit].

We set h{ =1fori=1,...,pand 7 =1,2,3. Then there is an edge 3-coloring of G’ if and
only if there is a partition V!, V2 V3 of V(G) such that for each P, |P;VI]| =1= hg for
any 1, j. [ ]

Theorem 4.12 is best possible since from Theorem 4.11 the problem is easy when |P;| < 2
for all ¢ < p.

Remark 4.13. According to Brooks’ theorem (see [9]), the chromatic number x(G) of a
3-reqular connected graph G is 3 unless G is either a clique on four vertices (in which case
X(G) =4) or a bipartite graph (in which case x(G) = 2).
Since edge 3-coloring is N'P-complete in 3-reqular graphs [43], we can state: edge 3-coloring
in a S-reqular graph G is N'P-complete even if x(G) = 3.
Conversely, note that if a connected graph G is edge 3-colorable then A(G) < 3 and thus

either G is a clique on four vertices or x(G) < 3.

4.2.4 The case where (G is a chain or a tree and k£ > 2

We will now consider A(G, k, P, H) where G is a tree, each P, is a chain of G and furthermore
for any two chains P;, Py in P we have |P; (| P| < 1. In such a case we have the following.

Lemma 4.14. If G is a tree and if the family P of chains of G satisfies |P;(\P¢| < 1 for
all i, f < p, then there is an order (which we call canonical order) of chains such that for

any q > 1
a

-1
IARCrIIES!

i=1

Proof: Notice first that we can assume |P;| > 2 for each ¢ < p. This implies that we cannot
have P; C Py, for any i, f < p (i # f). Now G has a pendent vertex contained in exactly
one chain P; of P. This chain will be called P;; we remove it from P as well as all vertices
belonging to P; only. Now we can find another pendent vertex of the remaining tree G’ and
this determines P,. We will thus find a numbering of the chains of P which satisfies the

requirements. u

We will describe below an algorithm for solving A(G,k,P,H) in a tree G = T'; in this
procedure (called FFC) we will have to determine for each vertex of 7" the ‘forced’ colors as

well as the ‘forbidden’ colors; such a procedure will also be able to detect contradictions in
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the data which imply that no solution exists. A color ¢ is said to be forced (resp. forbidden)
for a vertex v if there exists no feasible solution where v has a color ¢ # ¢ (resp. where v
has color ¢).

The procedure FFC which makes a repeated use of a maximum flow in a bipartite graph

can be sketched as follows.

Procedure FFC (Forced and Forbidden Colors): Let us consider a chain P, and let
us denote by x1,...,x, the vertices in P;. Let II; be the set of colors required in F;, i.e.,
I, ={j | h{ > 0}. For each vertex x;, [ = 1,...,v, m denotes the set of possible colors for
€, le m = ﬂilxzePi 1I;.

We construct the following bipartite graph G = (X,Y, E) with X = {z1,...,z,}, Y = II;,
and [z}, 7] € E if j € my; the capacity of [z, j] is equal to 1. To get a network N, we add a
source s with an arc of capacity 1 from s to each vertex in X and a sink ¢ with an arc from
each vertex j in Y to t; the capacity of (j,t) is equal to hg for all j € Y. Any integral flow
from s to t saturating the arcs out of s gives a possible coloring of the vertices in F;. To
any edge [z}, j] € E which is saturated in every maximum flow corresponds a forced color j
for z;. To any edge [z, j] € E with a flow equal to 0 in every maximum flow corresponds a
color j forbidden for z;.

Note that it is easy to determine all the edges saturated (resp. with no flow) in every maxi-
mum flow. For each edge [z, j] in E, suppress [z, j] (resp. force a flow from s to ¢ through
[z7,7]) and compute a new maximum flow in the obtained network. If the value of this flow
is lower than the original maximum flow, then [z, j] is saturated (resp. with no flow) in

every maximum flow.

Procedure FFC either finds the forbidden colors or a forced color for a vertex v or concludes
that there is no more forbidden color nor forced color. If the set m, of possible colors for
vis my = {1,...,k} initially for each vertex v, we notice that finding a forced color ¢ for v
reduces 7, to a set m, = {c} and finding the forbidden colors ¢;,, ..., ¢; . for v replaces m, by
Ty = Ty — {Ciyyoes Cig }-

Since we will apply FFC as long as forbidden or forced colors can be found, it will be called
at most |V|k times.

Clearly we remove all vertices which have a forced color and we update the values h{ ac-
cordingly as well as the sets II;.

At the end of the repeated applications of FFC we will either have discovered a contradiction

(7, = 0 for some vertex v) or obtained for each vertex v a set m, with |m,| > 2.

Theorem 4.15. If G is a tree and P a family of chains of G satisfying |P;(\P¢| < 1 for
any i, f <p (i # f), then A(G,k,P,H) can be solved in polynomial time.

Proof: We start by applying the FFC procedure; it may happen that one has to remove

some vertices with forced colors; in such a case we get a forest and we apply the procedure
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on each connected component separately.
W.lo.g. we consider a tree G' and we construct a canonical order P, ..., P, of the chains
of P. Since we apply procedure FFC until there are no more forced colors and neither

forbidden colors, we have the following.

Fact 4.16. If in a chain P; a single arbitrary vertex v has been given a possible color ¢ € m,,
there exists an assignment of possible colors c(w) € my, to all remaining vertices w of P;
such that P; has ezxactly hg vertices of color j (1 < j <k).

It is then possible to color the vertices of G by considering the chains P, ..., P, in the
canonical order (starting from any vertex of P;). Clearly we will be able to extend the
coloring to all vertices of G since, having colored the vertices of Py, ..., F;, the chain P
has exactly one vertex v which is already colored (with a color in 7).

The whole procedure is polynomial:

FFC consists of applying for each chain P; a maximum flow algorithm in a bipartite network
with |FP;| vertices on the left and k vertices on the right. To find the forbidden colors and
the forced colors, we have to find at most |P;|k times an augmenting chain (this takes
O(|P;|k) time); globally we have a complexity O((|P;|k)?) for getting the forbidden colors
and the forced colors. For a maximum flow we have O((|P;| + k)3) (see [1]). Hence an
application of FFC has a complexity O((|P;| + k)3 + (|P;|k)?). Since we apply FFC at most
|V |k times, we have O(((|P;| + k)® + (|P;|k)?)|V|k) and since |P;| < |V| we finally have
O(((IV]+&)* + (IV]&)*) |V |F). u

Proposition 4.17. If G is a cycle and if the family P is such that |P;(\P¢| < 1 for any
i, f <p withi+# f, then A(G,k,P,H) can be solved in polynomial time.

Proof: We take a consecutive numbering of the chains F;, as in the case where G is a tree
so that |P; () Pi+1| =1 for all i <p —1 and in addition |P, (| P1| = 1; let vg € P,() P1.
We simply consider the following problems O; (for j = 1,...,k): find a feasible coloring such
that vg has color j.

This amounts to removing vy and updating the hg accordingly; this is simply A(G —
vo, k, P, H") where G — vy is a chain. [ |

More generally if G is a cactus, i.e., a connected graph where any two cycles have at most
one common vertex, then we can proceed as for a tree in the following special case. Let us
assume that each P; belongs to exactly one cycle (or to a chain not contained in a cycle).
Each cycle C has some vertices which may belong to other cycles or to external chains; we
shall assume that all these vertices are necessarily endpoints of chains P;.

It is not difficult to see that we can number the P;’s in P in such a way that for all
f<p|Ps ﬂ(UZfz_ll P;)| <1 (except for the last P;’s which ‘close’ a cycle in G).

We can work separately on each cycle C and determine the possible colors for the last vertex,
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i.e., the vertex connecting C' to some cycle or some external chain covered by chains P; with
smaller indices.

We proceed as in the case of trees by applying an FFC procedure first and then, in case
no contradiction has occurred, we will be in the situation where we have either a single P;
(contained in an external chain) to color where exactly one vertex is already colored or we
reach a cycle (with exactly one vertex already colored). In the first case we proceed as before
and in the second one, we have that the cycle can be colored by extending the coloring from
the vertex which has been colored and we continue. This will finally color the whole graph.

As in the case of trees, the procedure will give a feasible coloring or exhibit a contradiction.

4.3 Proper colorings

Having discussed A(G, k, P, H) we shall examine the case where the k-partition is a proper
k-coloring (A*(G,k, P, H)).

Here we shall assume that for every edge e = [z, y] in G, there is a chain p; which uses e; this
implies in particular z,y € P;. This assumption is not restrictive: let e = [z,y] be an edge
which is not covered by any p; in the collection defined in A*(G, k, P, H). We replace e by

a chain p, = {xé = m,ué,xﬁ,ug,...,xlg_l,ulg_l,xlg = y} where ng,...,xlg_l are new vertices

and u},...,uF~1 are new edges; we set P, = {z},...,2¥} and hl=1forj=1,.. k.
There is a proper k-coloring of the resulting graph G* which is solution of
A*(G*,k,P, H) if there is a proper k-coloring which is solution of A*(G, k, P, H), because

x and y will necessarily get different colors in any feasible coloring of G*.

4.3.1 Solvable cases of proper colorings

Let us now consider some cases for which polynomial time algorithms can be found.

Fact 4.18. A*(G,2,P, H) is polynomially solvable.

Justification: Notice that in each P; with odd |P;|, the vertices have necessarily forced
colors. So we can assume that there are only chains of even length and each vertex may
be colored with color 1 or 2. The problem then consists in verifying whether the graph is

bipartite or not, which can be done in polynomial time.

We obtain from Theorem 4.15 and its proof.

Corollary 4.19. A*(G,k, P, H) can be solved in polynomial time if G is a tree, P is such
that |Pi(\Pf| <1 fori, f <p (i # f) and ! <1 for alli < p, j <k.

From now on we will have to consider repeatedly proper k-colorings of chains P; of G' (with
possibly k > 2 and with h] occurrences of color j in chain P;). So we will start by stating

some elementary properties of such colorings.

We recall that a color j is saturating in a chain P if b/ = (@1 The set of colors j such

that h’ > 0 will be denoted by IT.
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Remark 4.20. If P is an odd chain with a saturating color a, then a occurs necessarily at

both endpoints of P in any coloring.

Remark 4.21. If P is an even chain with a saturating color a, then a occurs necessarily at

least at one endpoint of P in any coloring.

Lemma 4.22. Let P be a chain to be colored and assume there is no saturating color in
II. For any two colors e,d in II, one can find a proper k-coloring of P where e and d occur
at the endpoints of P. In case h® > 2, we can have a coloring with d occurring at both

endpoints.

Proof: Let P = {1,2,...,n} and let d and e be the colors which have to occur at the
ends. Assume first that n is even. Start from the left, assigning h? times color d to vertices
1,3...,2h% — 1 and from the right, assign h® times color e to vertices n,n — 2,...,n —
2(h¢ —1). Tt remains maz{0,n — 2h¢ — 2h? 4 2} adjacent vertices in the center. We can
find max{0, 5 — h® — h? + 1} nonadjacent vertices among them. Together with the vertices
2,4,...,2h%* —2 and n — 1,n — 3,n — 2h¢ + 3, this gives 5 — 1 non adjacent vertices.

If n is odd, we choose a color f # d,e (which exists since there is no saturating color). We
color vertex n with e and we decrease h® by one. Then we apply the previous coloring, with
color f replacing color e, to P’ = P — {n}; this will give a proper coloring of P since vertex
n — 1 has color f and vertex n has color e.

Finally we start by coloring the non adjacent vertices with the remaining colors. If h® 4
ht—1> 5, then all uncolored vertices are nonadjacent and the coloring can be completed.
In the other case (h®+ h? — 1 < Z), we have an interval I of n — 2h¢ — 2h% + 2 consecutive
uncolored vertices in the center. We color the remaining vertices in the order 2h% 2h% +
2,..,n—2h¢ n—2h+3,..,n—1,2,4,...,2h? —2,2h? +1,2h¢ + 3, ..., n — 2h° + 1 exhausting
one color before taking the next one. Since there is no saturating color we will get a proper

coloring of the chain.

To obtain a coloring with d occurring on 1 and n, consider P’ = P — {n} and (h%)’= h9 — 1.
Apply the coloring algorithm to P’ with colors d and e. Clearly vertex n — 1 will not have

color d and we can color vertex n with d to get the required proper coloring of P. [ ]

Lemma 4.23. If P is an even chain with exactly one saturating color a, one can choose

any color b and construct a coloring of P such that a and b are occurring at the endpoints.

Proof: Assume first b # a. Color the vertices 1,3,5,...,|P| — 1 with color a and color the
vertices |P|,|P| —2,...,2 with the remaining colors starting with color b.
If b = a, then color a occurs at both ends: we color vertices 1,3,5,...,|P| — 3 and |P| with

color a. Since there are no other saturating colors, we can color the vertices |P| — 2, |P| —

4,...,2,|P| — 1 with the remaining colors and no conflict will occur. [ |

We shall say that the singletons P; in P have the CS property (Consecutive Singletons) if
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the following holds: if a singleton P; is an intermediate vertex of some P. = {x! 22 ... 2" =

C
Pyt 28), then either x}, ... 2771 or 27!

A , ..., x5 are also singletons in P.

Proposition 4.24. Let G be a chain. For any A*(G,k,P,H) with |P;(\Pf| < 1 Vi #
fli, f <p) and where all singletons P; have the CS property, there is an equivalent problem
A(G*, k,P*, H*) where the family P* satisfies:

(¢) |P7| = 2;
(b) [PFOP| <1(i<p) and BF(\P; =0 (& {f =1, f+1})

Here ‘equivalent’ means that one problem has a solution if and only if the other one has a

solution.

Proof: Assuming that the vertices are given in increasing order of numbering along the
chain, we can say that a chain P; starts at some vertex x4 (or ends at some vertex x.) if d
is the smallest (e is the largest) index in P;.

1

co e

r+1
C )

in P. We remove z.,...,2% and replace P. by P¥ = {271 ¢! ... y*=2} with h(P}) =
k—2

., % are singletons P}, ..., PT

e, x5} where #

. . o 1 r
Now consider a chain P. = {x,, ..., 2}, x

(1,...,1,0,1,...,1) where the missing color is the color of 2 and y!, ..., y*~2 are new vertices.

We also introduce P** = {271 ... 2%} with updated values of h{ according to the colors

t

". Similarly, if there is a chain Py = {z}, ...,z = 2!} ending

already assigned to x}:, ey T

1

(3]
{xfl_l,zl, ..y, 2872} with h(PCll) = (1,...,1,0,1,...,1) where the missing color is the color of

rl. We update the values h{ accordingly. Then we have an equivalent problem since :UZ_I

r+1
c

at vertex x}, we replace it by a chain P; = Py —z! = {2}, ...,2!7'} and introduce P =

will not get the color of 1 and 27! will not get the color of #”.. So we have cut the problem
into two subchains and singletons in P, have been removed. By repeating this we get an

equivalent problem with all P,’s verifying |P;| > 2. [

Theorem 4.25. If G is a chain where all the singletons P; have the CS property and P is
such that |P;(\Pr| < 1 Vi # f (i, f < p), then A*(G,k,P,H) can be solved in polynomial

time.

Proof: As already remarked, we can assume that k& > 3.

W.lo.g. we can assume that P has the properties (a) and (b) given in Proposition 4.24.
Consider now the problem A*(G,k, P, H). To solve it we use a procedure similar to the one
used for A(G, k, P, H). If any contradiction occurs during the following forced assignments

then there is no solution.

e whenever a vertex v € P;("] P,41 is assigned some color j we update the parameters as

follows: h] «— hi = 1;hl,y — i\, — 1 if hi = 0, then set II; — IT; — {j}; if b ™' =0,

then set IT; 11 «— IT;11 — {j};

e if there exists 1 < i < p such that IT; () II;11 = (), then there is no solution;
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e if there exists 1 < i < p such that |I];()Il;+1| = 1, then color P;() P41 with the

common color;
e for each odd P; with a saturating color, say j, assign color j to both endpoints of F;;

e for each even P; with a saturating color, say j,j must be assigned to one of the end-
points of ;. For 1 <1 < p,

if j ¢ II;_1\J II;+1, then there is no solution;
if j ¢ II,_;, then assign color j to P; () Pit1;

if j ¢ Il 11, then assign color j to P P—1.

For any colored vertex, propagate the possible implications of this coloring to the previous

and next intersections in the following way; if any contradiction occurs, there is no solution.

Assume that v € P;(] Pi+1 has been colored with j:

e if | # j is a saturating color of P; (resp. Pi+1), then color the left (resp. right)
endpoint of P; (resp. Pj+1) with [;

o if [IL;NIIi—1| =1 (i > 1) (resp. |ILiy1(Ii+2] =1 (i < p—2)), assign the unique
color [ such that hﬁ > 1 and hﬁ_l > 1 (resp. hé+1 > 1 and h§+2 > 1) to P, Pi-1
(resp. Pit1() Piy2)-

At this step, if no contradiction occurred, we have a set of colored vertices located at
intersections of chains P,. In addition, any pair {P;, Pi+1} (¢ < p) such that P; (") P;41 is un-
colored verifies |II; (| I1;+1| > 2 and if j is a color saturating P; then j € IT; 1 (II; () I;+1,
1 <i<p.

Moreover, if one endpoint of P; (1 < i < p) is already colored, any color remaining in II; is
compatible with it and can be used to color the other endpoint; if P; has a saturating color

it is the one already assigned.

The problem has a solution which can be obtained in two more steps.

(A) First we assign a color to all uncolored intersection P; () Pi+1(i < p), in the following
way. Let P;() P11 be the first uncolored intersection in Gj; color P; (] P41 with any
color j € II;(\1l;41. If i = 1, color the first endpoint of P; with any allowed color.
If Piy1() Ptz is uncolored (i + 1 < p) then there is at least one color different from
j in ITj1q () ;4o; if there is a saturating color [ in P;11, and if [ # j then assign
color I to P11 () Pi+2 (we are sure that | € II; () I1;+2) otherwise choose any color
in IT;11 () 1I;+2. Propagate the implications of each coloring until we reach a vertex
already colored. Then search for the following uncolored intersection and continue the

process until the end of G.
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(B) Clearly the partial coloring obtained so far is such that for every chain the saturating
colors are assigned to endpoints in such a way that according to Lemmas 4.22 and

4.23, the coloring can be extended to all yet uncolored vertices.

Remark 4.26. One should mention that Theorem 4.25 can be extended to trees where P is

such that in every P; only the ‘first” and ‘last’ vertices may belong to another P;.

Remark 4.27. A*(G,k, P, H) can be solved in polynomial time if |P;| = 2 for alli =1, ..., p.
Since |P;| = 2 for each i, each edge is a P; and there are exactly two possible colorings for
each P;. We take the first coloring of Pi; we propagate this coloring and if we obtain a
proper coloring of G, we are done. Else we have a conflict; we then reverse the coloring of
P1 and propagate this coloring as before and we will find a coloring of G or a conflict. In

the last case, there is no solution.

4.3.2 Difficult cases of proper colorings

Theorem 4.28. A*(G,3,P,H) is N'P-complete in trees with mazimum degree 3.

Proof: We use the construction in the proof of Theorem 4.5 and introduce a new vertex

on each edge of the tree; we force these new vertices to have color 3. |

Theorem 4.29. A*(G,3,P,H) is N'P-complete even if G is planar bipartite, |P;( Py| <1
(i,f <p,i# ), |P|<3 (i<p)andh] <1,i=1,..,p, j=1,2,3.

Proof: We use a transformation from the NP-complete problem PrExt which is defined

as follows.

Instance: A positive integer ¢ and a graph G in which some vertices are precolored using

at most ¢ colors.

Question: Can the precoloring of G be extended to a proper coloring of G using at most ¢

colors?

This problem is proven to be NP-complete even if ¢ = 3 and G is planar bipartite (see
51)).

Consider a planar bipartite graph G = (X,Y, F). Suppose that some of its vertices are
precolored using colors 1,2 and 3. For each precolored vertex z, we set P, = {z} and
h(P;) = (1,0,0) if  has color 1, h(P,) = (0,1,0) if 2 has color 2 and h(P,) = (0,0,1) if
has color 3. For each edge e = [z,y] in G, we add a new vertex z. and a new edge [z, z].
We set P, = {z,y, z.} and h(P.) = (1,1,1).

Clearly our new graph G’ is still planar bipartite. Furthermore |P;(P¢| < 1 (i, f < p,
i#f),|P|<3(<p)and h! <1,i=1,..,p, j=1,23.
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It is easy to see that PrFEzt has a solution in G if and only if A*(G’,3,P, H) has a solution
in G. [ |

4.4 Edge colorings

We now consider edge colorings instead of vertex colorings; we may in a similar way define
problem (G, k, P, H) where P is a collection of p subsets P; of edges of G and we want to
find a k-partition E', E2, ..., E* of E such that

PN E|=h! foralli<pandall j<k. (4.2)

If we want to find a proper edge k-coloring then the problem will be denoted by ¥*(G, k, P, H).
In general the subsets P; of edges will be chains (open or closed). |FP;| will be the number

of edges in chain P;.

Clearly problems ¥ and ¥* in a graph G are equivalent to problems A and A* in L(G) where

L(G) is the line graph of G (edges of G become vertices of L(G)).

It follows that when G itself is a chain, then L(G) is also a chain and the results for A and
A* also apply to the edge coloring case.

4.4.1 Arbitrary colorings

In this situation every edge e which is not included in some P; may be removed from G. So

we can assume w.l.o.g. that every e is in some P; of P.

Theorem 4.30. ¥(G,k,P,H) can be solved in polynomial time if |P;| < 2 for each chain
P, eP.

Proof: This follows directly from the proof of Theorem 4.11. After reduction we transform
the graph as follows: each edge becomes a vertex and we link two vertices if there is a P;
containing the corresponding edges. The problem has a solution if and only if there is no

odd cycle in this graph. ]

Theorem 4.31. ¥(G,2,P, H) is N'P-complete even if G is a tree T with mazimum degree

3 and the P;’s are chains or bundles.

Proof: We use the same reduction from ONE-IN-THREE 3SAT as in Theorem 4.5.

We have to color edges instead of vertices; the leaf variables now correspond to leaf edges
and for each clause ¢;, we now have for the sets P, bundles of edges y, z and = (see Figure
4.4(a)) if the clause is given by ¢;, = z; V x; V . We set h(P]) = (2,1). The set P} is now
the bundle y,u,t with h(P') = (1,2) and the set P, = {z} with h(P,) = (1,0). The other

chains P are defined similarly. |
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c

Ch

(a) (b)

Figure 4.4: Transformation of bundle constraints for a tree into chain constraints in a cactus.

If we require all P;’s to be exclusively chains in G (but not bundles) we can derive the
following for a special cactus in which no two cycles have a common vertex (see [10] for

additional properties of cacti).

Theorem 4.32. ¥(G,2,P, H) is N'P-complete even if G is a triangulated cactus (in which
no two cycles have a common vertex) with maximum degree 3 and where all the P;’s are

chains.

Proof: We just have to show how the bundle requirements can be transformed into con-
straints related to chains.

We transform the clause gadget ¢ as shown in Figure 4.4(b). The cactus obtained in this
way is triangulated (its cycles are triangles).

The bundle P’ = {z,y, 2z} with h(P") = (2,1) becomes chains P, = {x,y, 22,21}, P., = {22}
with h(P]) = (2,2), h(PL,) = (0,1).

The bundle P" = {y,u,t} with A(P") = (1,2) becomes chains P = {y,w,u,ts,t1},
Pl ={w,t;} with h(P)) = (1,4) and h(P},) = (0,2).

Finally the P;’s using chains between v and edges v and t can also be replaced by chains in

the new gadget ¢}, with appropriate modifications of the values hg . |

4.4.2 Proper colorings

Theorem 4.33. U*(G,3,P,H) is N'P-complete when G is 3-reqular, P is a collection
of vertex disjoint triangles P; considered as sets of edges (i.e. |P;j| = 3,Vi = 1,...,p,
PO\ Py =0 forall i, f,i# f) and b} =1,Yi=1,...,p,¥j =1,2,3.

Proof: We use a transformation from edge 3-coloring of a 3-regular graph G’. This problem
is known to be N'P-complete [43].
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For each vertex 7 adjacent to vertices f,l and p, we introduce in G the vertices v;¢,v; and
vip. These three vertices are pairwise linked forming a triangle which will correspond to P;.
Thus G will have 3|V| vertices. For each edge [i, f] in G’ we introduce an edge [v;r,vy;] in
G.

We take p = |V(G')] and P = (P,...,P,) with h) = 1 fori = 1,...,p and j = 1,2,3.
Notice that the P;’s form closed chains.

There is an edge 3-coloring of G’ if and only if there is an edge 3-coloring of G. The edges

of G are colored as follows:

(1) for each edge [i, f] of G’ with color k, the corresponding edge [vif,vy;] in G has color
k;

(2) the three edges forming a triangle P; can be colored with three colors by extending

the coloring obtained after the previous stage.

Finally, note that any edge 3-coloring of G will satisfy the requirements on the sets ;. W

Theorem 4.34. ¥*(G,3, P, H) is N'P-complete when G is a bipartite 3-regular graph and

P is a family of chains P; of length two which are pairwise non adjacent.

Proof: Let us call SIM (for simultaneity requirements) the following problem. We are
given a 3-regular bipartite simple graph G* with two subsets &1 and Ss of edges such that
81 NSy =) and the edges of S; are pairwise non adjacent for i = 1, 2.

Does there exist an edge 3-coloring (M, My, M3) of G* such that My O Sy, My O So?

SIM was shown to be N'P-complete in [25]. We use a reduction from SIM as follows. From
G* = (V,FE) with subsets S; and Sy, we construct a simple graph G by replacing each
edge e = [z,y] in §; by the graph given in Figure 4.5. We set P, = {[z,y.], [y.,z"']} with
hl =0,h2 =h2 =1fori=1or with h! = 1,h? = 0,h? =1 for i = 2. Note that in any

solution of ¥*(G, 3, P, H) the edge [x,,y] will get the same color as [z, ,).

Figure 4.5: Transformation of G where edge e = [x,y] is precolored into G*.

G is a 3-regular bipartite simple graph; it has an edge 3-coloring satisfying the requirements
on each P, if and only if G* has an edge 3-coloring where each edge e in S; has color ¢ for
i=1,2. |
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Theorem 4.35. V*(G,3, P, H) is N'P-complete when G is a planar bipartite graph with
mazimum degree A(G) < 3 and P is a family of chains P; of length 2.

Proof: We shall use a transformation from the precoloring extension problem on edges
which is shown to be N"P-complete even for planar, 3-regular bipartite graphs [58].

Let G' = (XUY, E) be a planar 3-regular bipartite graph in which some edges are precolored
using colors 1,2 and 3. For each vertex ¢ € X UY incident to two precolored edges, color the
third edge with the remaining color (if there is a contradiction, the problem has no solution).
For each vertex ¢ € X UY incident to one precolored edge [i, f], take P, = {[¢,!],[i,p]}
where [ and p are the endpoints of the two uncolored edges incident to i. If [¢, f] has color
j € {1,2,3}, take hf =0,h! =1, ¢ # j, ¢ € {1,2,3}. Delete the precolored edges. We get
a planar bipartite graph G with maximum degree A(G) < 3 and P is a family of chains P;
of length 2.

It is clear that the precoloring extension problem on the edges of G’ has a positive answer
if and only if ¥*(G,3,P,H) has a positive answer. As G can be obtained from G’ in

polynomial time, we proved that our problem is NP-complete. |

4.5 Summary and conclusion

We have studied an extension of the basic image reconstruction problem of discrete to-
mography. The complexity status of some variations has been determined; the results are
summarized in Table 4.1 for A(G,k, P, H). Then Table 4.2 presents the results for the case
of proper colorings (A*(G, k, P, H)).
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G ‘ k ‘ | ;] ‘ hg ‘ |P; (N Pl ‘ ‘ Status ‘ Theorem
2 c(P)=2 P 4.7
2 Nest(P) =2 P 4.8
2 PN Pr| <2 P 4.9
i#f
dir. tree | 2 P;: directed P 4.10
path
<2 P 4.11
tree <1 P 4.15
cactus <1 P Prop. 4.17
21 3 P 3-regular NPC 4.2
2 Nest(P) =3 | NPC 4.3
=¢(P)
bipartite | 2 <3 <1 A(G) <4 NPC 4.4
tree 2 A(G) =3 NPC 4.5
tree 21 <4]1<3 <2 diameter < 4 NPC 4.6
31 3 1 c(P)=2 NPC 4.12

Table 4.1: Summary of the results for A(G,k,P,H).

G ‘ k ‘ ra ‘ hg ‘ |P; () Pl ‘ ‘ Status ‘ Theorem ‘
2 P Fact 4.18
2 <1 P Rem. 4.27
tree <1 <1 P Cor. 4.19
chain <1 C'S property P 4.25
tree 3 A(G)=3 | NPC 4.28
bipartite | 3 | <3| <1 <1 NPC 4.29
planar

Table 4.2: Summary of the results for A*(G,k,P,H).

Finally for edge k-colorings, Table 4.3 (resp. Table 4.4) shows the status of some problems
for arbitrary edge k-colorings, i.e. for ¥ (G, k, P, H) (resp. for proper edge k-colorings, i.e.
for *(G,k, P, H)).
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‘ G ‘ k ‘ | ;] ‘ hg |P; () Pl ‘ ‘ Status ‘ Theorem ‘
e[ 1 ¢ [ o
tree 2 P;: chain or NPC 4.31
bundle; A(G) =3
cactus | 2 A(G) = 3; NPC 4.32
G triangulated

Table 4.3: Summary of the results for V(G,k, P, H).

G ‘ k ‘ | ;| ‘ hg |P; (N Pl ‘ ‘ Status ‘ Theorem ‘
31 3 1 0 G 3-regular; | NPC 4.33
F;: triangle
bipartite | 3 | 2 0 G 3-regular | NPC 4.34
bipartite | 3 | <2 A(G)<3 | NPC 4.35
planar

Table 4.4: Summary of the results for *(G,k,P,H).

There are more cases to examine and it would in particular be interesting to consider a
family P of chains with less restrictive hypotheses in some special classes of graphs. But the
results obtained here seem to show that the problems become difficult even in very simple

cases.
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Chapter 5

Graph coloring with cardinality

constraints on the neighborhoods

Introduction

Various extensions of the basic graph coloring model (see [9]) have been studied by many
authors from a theoretical point of view and also with a motivation stemming from appli-
cations in communication systems, operations scheduling, course timetabling, tomography,

etc.

Here we shall consider a few variations of the vertex coloring problem which consist essen-
tially in restricting the number of occurrences of the different colors in a given collection P

of subsets P; of vertices.

In Chapter 4, a formulation extending the basic image reconstruction problem in discrete
tomography was discussed where the subsets P; were chains in the underlying graph G. It

was motivated by a simple maintenance scheduling problem in a city metro network.

In this Chapter we will essentially be interested in colorings, i.e., partitions of the vertex
set of a graph, such that in some generalized neighborhood of each vertex x, the number of

occurrences of each color ¢ is a given integer h’.

More precisely we are given an undirected connected graph G = (V, E) with n vertices and
m edges. Given two vertices x and y, we denote by d(z,y) the distance between x and y
(the length of a shortest 2 — y chain). We denote by Ny(z) the d-neighborhood of x € V,
that is the set of vertices y such that d(x,y) = d. In case where d = 1 we simply write N (z)
for the 1-neighborhood (or neighborhood, as usual) of z, i.e., the set of vertices y such that
[z,y] € E. We also define N (z) = Jy<;<y Ni(z) as the set of vertices at distance at most
d from z (with No(z) = {z}). o

We are also given a set {1,2,...,k} of colors as well as a set H = {h(z) = (h},..., hF) €
NF|z € V}.
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CHAPTER 5. GRAPH COLORING WITH CARDINALITY CONSTRAINTS ON THE NEIGHBORHOODS

In the first problem, we have to find a k-partition V', V2, ..., V¥ of V such that

IN(z)NV =h! forallz eV andall1<i<k. (5.1)

We call this problem P(G, H, k). In addition, in case we want to obtain a proper coloring
(two adjacent vertices must be in two distinct sets Vi and V7) we let P*(G, H, k) denote

the corresponding problem.

We will also study the bounded version of these problems: we have to find a k-partition
VI v2 ... V¥ of V such that

IN(z)N VI <hi forallz eV andall1<i<k. (5.2)

We will call these problems BP(G, H, k) and BP*(G, H, k), respectively.
Our second problem is to find a k-partition V', V2, ..., V¥ of V such that

INT(2) NV =h! forallzcV andall 1 <i<k. (5.3)

We call this problem and its proper coloring version 731+ (G, H, k) and 731+ *(G, H, k), respec-
tively.

We will also be interested in P2(G, H,k) and Py (G, H,k), the problems of finding a k-
partition, respectively a proper coloring, V', V2, ..., V¥ of V such that

INo(z) NV =he forallz €V andall 1 <i<k. (5.4)

Notice that our formulation includes the so called cardinality constrained coloring problem
which consists in determining if a graph G = (V, E) has a proper k-coloring (V'!,...,V¥)
with given cardinality s; for each color class V' (see [5, 14, 26, 40, 46] for results on this
problem): it suffices to take any d larger than or equal to the diameter of G in the set
N (z) defined above (since then Ufl:o Ni(z) =V for each x) with hi = s; for all  and all
1<i<Ek.

These problems are close to the well known L(h, k)-Labelling problems (see [12] for a survey).
The problem consists in an assignment of nonnegative integers (i.e., colors) to the vertices
of a graph such that adjacent vertices get colors which differ by at least h and vertices
joined by a chain of length two receive colors differing by at least k& (even if there is an edge
joining these vertices). Applications to channel assignment or to multihop radio networks
are mentioned in [12]. Under the assumption h. = 1, for all i and for all x, the colorings of
BP*(G, H, k) and those of L(1,1)-Labelling satisfy the same requirements: adjacent vertices
have different colors and vertices linked by a chain of length two (i.e. common neighbors of
a single vertex) have different colors. It is also close to the so called star coloring problem
studied in [32].

One should also recall that nonproper coloring models have been used under the name of
defective coloring in [22] in a frequency assignment context where interferences had to be

minimized. Applications to scheduling are also discussed there.
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Let us denote by s(z) = {i : h%, > 0}, € V, the set of colors required to occur in N(z). We

have the following facts which will be used implicitely in the algorithms of the next sections.
Fact 5.1. If P(G, H, k) has a solution, then (e n, s5(y) # 0 for allz € V.

Fact 5.2. If for a given x € V, ﬂyeN(x) s(y) = {i}, then in any solution of P(G, H,k) we
have x € V.

Notice that these facts also hold for P; (G, H, k).

Fact 5.3. If P *(G, H,k) has a solution, then for every vertex = there is a color i such that
Rt =1.

Fact 5.4. If Pf'*(G, H, k) has a solution, then for each color i and each vertex x such that
hi # 1 we have x ¢ V.

5.1 N'P-completeness results

We shall study here the complexity status of problems P(G, H,2), P*(G, H,3), BP*(G, H, 3),
BP*(G, H,4), P{ (G, H,2) and P{*(G, H,3).

Theorem 5.5. P(G, H,2) is N'P-complete even if G is a 3-regqular planar bipartite graph.

Proof: We use a transformation from the CUBIC PLANAR MONOTONE 1-in-3SAT
problem which is known to be AN'P-complete (see [60]). In this problem we are given a set
X of variables and a set C of clauses of the form (a V bV ¢) where a,b and ¢ are distinct
variables without negation such that the underlying bipartite graph G = (X UC,FE) =
(X U C, {[xi, ¢]|x; occurring in clause ¢ € C}) is 3-regular and planar. The question is to
decide whether there exists a truth assignment such that exactly one variable in each clause
is ‘true’.

Consider an instance of CUBIC PLANAR MONOTONE 1-in-3SAT as well as its corre-
sponding graph G. For each vertex ¢, representing a clause, we set h(¢) = (1,2) and for

each vertex x, representing a variable z, we set h(z) = (3,0).

Consider a positive instance of CUBIC PLANAR MONOTONE 1-in-3SAT. Then for each
variable x, if x is ‘true’, we assign = to V! and if x is “false’, we assign = to V2. All the
vertices representing clauses are assigned to V!'. Thus we get a positive answer for the
corresponding instance of P(G, H,2). Conversely, if an instance of P(G, H,2) is positive,
then by setting x to ‘true’ if x has color 1 and to ‘false’ if « has color 2, the corresponding
instance of CUBIC PLANAR MONOTONE 1-in-3SAT is true: all vertices corresponding to
clauses ¢ are in V! since h(x) = (3,0) for all vertices x. Every = will be in V! or V2. Since
h(é) = (1,2), clause ¢ will have exactly one variable x occurring in V1, i.e., one variable

which is ‘true’. [ |

Theorem 5.6. P*(G, H,3) is N'P-complete even if G is 3-reqular planar bipartite.
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Proof: We use the same reduction as in the proof of Theorem 5.5 except that we take
h(z) = (0,0, 3) for each vertex x representing a variable and h(¢) = (1,2,0) for each vertex
¢ representing a clause. Given a positive instance of CUBIC PLANAR MONOTONE 1-in-
3SAT, each variable x which is ‘true’ is assigned to V!; it is assigned to V2 if it is ‘false’. All
clauses ¢ are assigned to V3. So we obtain a feasible solution of P*(G, H,3). Conversely if
an instance of P*(G, H,3) is positive, all vertices ¢ corresponding to clauses are in V3 since
h(z) = (0,0, 3) for each x representing a variable. Since h(¢) = (1,2, 0) exactly one variable
x occurring in ¢ will be ‘true’ (z will be in V1) and two variables in ¢ will be ‘false’. This
will give a positive instance of CUBIC PLANAR MONOTONE 1-in-3SAT. |

Theorem 5.7. BP*(G, H,4) is N'P-complete even if G is a bipartite graph with mazimum
degree 3 and h, =1Vx €V,i=1,2,3,4.

Proof: We use a reduction from the edge 3-coloring problem of a 3-regular graph. This
problem is known to be N'P-complete (see [43]).

Let G’ be a 3-regular graph. For each vertex x of G’ we introduce the vertex gadget
including (among others) vertices x1, z2,x3 and x4 shown in Figure 5.1; each edge [z, y] of
G’ corresponds to a unique edge [z, y,] in the new graph. We locally replace every edge
[, Y] by the edge gadget J(zy,yy) given in Figure 5.2. The resulting graph G is bipartite
and has maximum degree 3. A vertex gadget has the following properties: vertices 1, ..., x4
must all have different colors. W.l.o.g. we may assume initially that vertex x4 has color 4,
vertices x1, 9 and x3 will then have different colors in {1,2,3}. Each z; (i < 3) with color,
say c(i), will have its two neighbors, s and ¢, in the vertex gadget with colors ¢(s) # c(t)
and c(s), c(t) € {1,2,3}\ ¢(). We will show later that this will indeed hold for every vertex
gadget in G. For any edge gadget J(xy,yy), we have ¢(z,) = ¢(yy) and c(a) = c¢(a’) = 4,
where a and a' are shown in Figure 5.2. This holds because if x, has a color ¢(z,) in
{1,2,3}, say color 1, then since z, is in a vertex gadget (its two neighbors in the vertex
gadget have colors 2 and 3) a has color 4, this implies colors 2 and 3 for b and ¢ w.l.o.g.,
and d gets color 1; then e must receive color 4. It also follows that ¥" and ¢ have w.l.o.g.
colors 3 and 2. Now if d’ gets color 4 we reach a contradiction (e’ gets color 1 and this is
not possible if e has color 4). So d’ must have color 1, which gives color 4 for ¢’ and color 1
for y,. It now follows that we will have color 4 for each vertex z4 in the vertex gadgets of
vertices x and so the vertices z1,x2 and x3 of every vertex gadget associated with x will all
have different colors in {1,2,3}.

Suppose that an instance of BP*(G, H,4) has a solution ‘true’. By coloring each edge [z, y]
in G’ with the color of the corresponding vertices xz,, and y, in G (remember that these two
vertices necessarily have the same color ¢ € {1,2,3}), we get a feasible 3-coloring of the
edges of G'.

Now suppose that we have a 3-coloring of the edges of G'. If an edge [z,y] has color
¢ € {1,2,3}, then color the corresponding vertices z,, and y, in G with color ¢. Once we

have done this for all the edges in G’, we can complete as explained above the coloring using
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R
' gadget |
y
'edge
. e
gadget !

J édée ) I
gadget

Figure 5.2: The edge gadget J(z,y,) corresponding to an edge [z, Y]

at most 4 colors and satisfying [N(z) N\ V| < hi =1Voz €V, i=1,2,34. [

It is shown in [12] that L(1,1) is N'P-hard in bipartite graphs; the associated coloring
problem with & = 4 colors is shown to be AN'P-complete in 3-regular graphs. We have the

following consequence of Theorem 5.7.

Corollary 5.8. L(1,1) is N'P-complete even in bipartite graphs with mazimum degree 3

and 4 colors.

We will need the following Lemma in the proof of Theorem 5.10.

Lemma 5.9. BP*(G, H, 3) is N'P-complete even if G is planar with mazimum degree 4 and
h.=2VrcV,i=1,23.

Proof: We use a reduction from the problem of 3-coloring a planar graph with maximum
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degree 4. This problem is known to be N'P-complete (see [23]). Let G’ be a planar graph
with maximum degree 4. We replace each vertex z by the vertex gadget shown in Figure
5.3 and an edge [z,y] in G’ will be replaced by a suitable edge [z, y.], u,v € {1,2,3,4}.

We obtain a planar graph G with maximum degree 4.

X,

Figure 5.3: The vertex gadget replacing a vertex x.

Now suppose that there is a 3-coloring of G such that [N(z)N Vi <2Vz eV, i=1,2,3.
Necessarily 1,22, 73 and x4 must be colored with the same color as z’. Coloring the
corresponding vertex x in G’ with this color will give us a 3-coloring of G’.

Conversely, suppose we have a 3-coloring of the vertices of G’. If x has color ¢, then color the
corresponding vertices x’, x1, x2, x3 and x4 with this same color ¢ in G. Then the remaining
vertices can be colored using 3 colors in such a way that |[N(z)NV? <2Vz €V, i=1,2,3.
So we get a positive solution for the instance of BP*(G, H, 3). [ |

Theorem 5.10. BP*(G, H, 3) is N'P-complete even if G is planar bipartite with mazimum
degree 4 and hl, =2Vx €V, i=1,2,3.

Proof: We use a transformation from BP*(G’, H,3) which is N'P-complete when G’ is
planar with maximum degree 4 and h’, = 2 Vz € V, i = 1,2,3, as shown in Lemma 5.9.
Let G' be a planar graph with maximum degree 4. We replace each edge [z,y] by the
edge gadget shown in Figure 5.4. We obtain a planar bipartite graph G with maximum
degree 4. Now suppose that there is a 3-coloring of G such that |N(z) N V¢ < hi = 2
Vax € V,i=1,2,3. Denote by ¢ this coloring. We must have c¢(a) = ¢(b), since otherwise all
vertices in N (a) N N(b) should have the same color, which would violate the requirements
on hl, = hi = 2; similarly c(e) = ¢(f). So let c(a) = c(b) = 1 and c(e) = c(f) = 2. We
must have ¢(g) = ¢(x) = 3; then ¢(d) # c¢(a) = 1 since d € N(a), and ¢(d) # ¢(f) = 2 since
h2 =2, 50 c(d) = 3 = c(x) = c(g). Finally c(y) # c(d) = 3 (y € N(d)), c(y) # 1 (since
hl =2), 50 c(y) =2 =c(e) = ¢(f). Thus = and y get different colors. Coloring the vertices
xz and y in G’ with the color they get in G, we obtain a 3-coloring of G’. In fact, since
cle) =c(y) and [N(z) NV <2,i=1,2,3, in G, we will obtain a solution in G’ satisfying
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Figure 5.4: The edge gadget replacing an edge [z, y].

the constraints |[N(z) N V| <2Vx eV, i=1,2,3.
Conversely, suppose that there is a 3-coloring of G/ with |[N(z)NV? <2Vz € V,i=1,2,3.
Then by coloring the corresponding vertices in G with the same colors and by applying the

rules mentioned above for the remaining vertices, we get a feasible 3-coloring of G. |

Theorem 5.11. Pf’(G, H,2) is N'P-complete even if G is planar bipartite of mazimum
degree 4.

Proof: We use a transformation from P(G’, H,2) for a 3-regular planar bipartite graph G’
(see Theorem 5.5). From G’ we build a graph G as follows. For each vertex z’ of G’, we
introduce a new vertex x; x and a’ are linked by the edge [x,2']; every edge [2/, 7] of G’ is
also an edge of G. Thus G is planar bipartite with maximum degree 4. Now, for each new
vertex x we set h(z) = (1,1), and if we have h(z') = (a,b) in the instance of P(G’, H,2)
we set h(z') = (a + 1,b+ 1) for its corresponding instance P; (G, H,2). Let V1, V2 be a
2-coloring of G’, then we obtain a 2-coloring for G as follows: the twin z of 2’ is introduced
into V2 if 2’ € V!, and vice versa. Conversely, if we have a 2-coloring of G, then by deleting

the new vertices we obtain a 2-coloring of G'. |

Theorem 5.12. Pfr*(G, H,3) is N'P-complete even if G is planar bipartite of mazimum
degree 4.

Proof: We use a reduction from CUBIC PLANAR MONOTONE 1-in-3SAT. Let G be
the 3-regular planar bipartite graph associated with this problem. For each vertex z in G
representing a variable, we introduce a new vertex 2’ and an edge [x,2']. We obtain a planar
bipartite graph with maximum degree 4. We set h(z) = (1,1,3), h(z’) = (1,1,0) and for
the vertices ¢ representing the clauses we set h(¢) = (1,2,1).

Suppose that an instance of CUBIC PLANAR MONOTONE 1-in-3SAT has a solution
‘true’. Then for each variable  which is ‘true’, we assign « to V! and 2’ to V2, and for each
variable = which is ‘false’, we assign x to V2 and 2’ to V1. All the vertices ¢ representing a

clause are assigned to V3. Thus we get a positive answer to the corresponding instance of
P (G, H,3).
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Conversely, assume an instance of P (G, H,3) has a value ‘true’; then, since h(z') =
(1,1,0) vertices  and 2’ cannot be in V3; one will be in V!, the other in V2. Since every z
must have exactly three neighbors in V3, all vertices ¢ representing clauses are necessarily
in V3. Setting x to ‘true’ if 2 has color 1 and to ‘false’ if x has color 2, we get a positive
answer to the instance of CUBIC PLANAR MONOTONE 1-in-3SAT. |

5.2 The special case of trees

We shall now give a general dynamic programming algorithm which will show that P(G, H, k),
P*(G, H,k),P{ (G, H, k), P{*(G, H, k) and their bounded versions can be solved in poly-
nomial time when G is a tree. A version adapted to P(G, H, k) will be described and we

will show later how it can be modified to handle the other problems.

We consider a tree 7' = (V, E) on n vertices. We root T at an arbitrary vertex r. For any
vertex z of T we denote by T'(x) the subtree of T rooted at vertex x. By extension T'(x) will
also be the set of vertices in T'(z). Let y be the father of a vertex z in T, © # r. We denote
the set of possible colors for a vertex x by L(z) C C' = {1,2,...,k} in the given problem.

We set L(z) = (,en() $(2)-

We introduce a function F : V x V x C x C — {0,1}, defined when (y,x) is an arc of
the rooted tree and the pair of colors belongs to L(z) x L(y). Depending on the nature of

vertex z, the function F' is defined recursively as follows.

(1) if z is a leaf, F(x,y,c,c) =1 iff
hg =1 and hS > 0;

(2) if z is not a leaf, F(x,y,c,c) =1 iff
Vz € N(z) N T(x) there exists a color ¢ such that F(z,z,¢”,¢) = 1 and there exists
a partition Uy, Us, ..., Uy of N(x) NT(x) such that

(a) |Ui| = {z € N(z) NT(x)|z is colored with color i}| = hi if i # ¢';
(b) |Uy| = he — 1.

While in the first case, F(z,y,¢, ) can be determined in constant time, in the second case
we shall use an auxiliary graph B(z) in order to find the required partition. For x # r
we construct the bipartite graph B(z) = (Vi,Va,U) with Vi = N(x) NT(x) representing
the neighbors of z contained in T'(z) and V5 is defined as follows. For each i € L(x) set
Va(i) = {ijlj = 1, b} and Va = (Usep @y ine Vo(0) ULl = 1,...,hg — 1}. This will rep-
resent the occurrences of the different colors (for each color i different from ¢’ we introduce
hi, vertices and for color ¢’ we introduce hS — 1 vertices) in N (z) N T(z). We introduce an

edge [z,1;] if F(z,2,i,¢) = 1. In this graph B(z), a perfect matching will correspond to a
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partition Uy, ..., Uy of N(x) NT(x) satisfying the required constraints.

For the root r of T' we define the following function IT : {r} x L(r) — {0,1}, II(r,c) =1
iff Vz € N(r) there exists a color ¢ such that F(z,7,¢”,¢) =1 and there exists a partition
Ui, Us, ..., Uy of N(r) such that |U;| = hi Vi. Again, as described above, a perfect matching

in an auxiliary bipartite graph B(r) will give us a partition satisfying the constraints.
Thus we get the following algorithm.

Algorithm

(1) Number the vertices in reverse order of Breadth First Search (the leaves come first,

the root is at the end). Let z1,..., 2, be the vertices.

(2) For i =1 to n and for each pair of colors (¢,c’) € L(z;) x L(y), compute F(z;,y,c,c)
where y is the father of z;. If F(xz;,y,¢,¢') = 0 for each pair (¢, ), the problem has

no solution.

(3) Construct the feasible coloring of P(T, H, k) starting from the root r and recalling the
pairs (¢, ) for which F(z;,y,¢,d) = 1.

Theorem 5.13. The above algorithm solves problem P (T, H, k) in O(k*n*3) time.

Proof: When F(x,y,c,¢/) = 1 it means that there is a feasible solution for the problem
associated with the subtree T'(z) where x has color ¢ and its father y has color ¢’. Since for
each z, all pairs (¢, ) are examined we will obtain a solution whenever there exists one. If
II(r,c) = 1, assign color ¢ to r; then for each arc (y,x) where y is colored with color ¢ (x is

not colored) and F(z,y,c,c) =1, assign color ¢ to x; x is then colored.

Let us now analyze the complexity of this dynamic programming approach. For each vertex
x in T we have O(k?) pairs of colors (c,c) for which we have to determine the value of
F. A perfect matching can be determined in O(n??®) in a bipartite graph with 2n vertices
(see [1]). In our case the auxiliary bipartite graph B(xz) which we construct for a vertex
x of T contains 2(d(x) — 1) vertices, where d(z) = |N(z)|, and hence a perfect matching
can be computed in O(d(x)??) time. Thus the values of F for each vertex and each pair of
colors can be obtained in O(k* Y, .1 d(x)??) time, i.e., our algorithm has a complexity of
O(k*n?9). [

We will now explain how the previous algorithm can be adapted to the problems P*(G, H, k),
P(G, H, k), P{*(G, H, k) and their bounded versions.

e P*(G,H,k)
We just have to add the constraint that ¢ # ¢’ in the definition of F'; in this way we
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avoid having two adjacent vertices which will be colored with the same color.

e P (G,H,k)
First we have to adapt the definition of L(z), i.e., L(z) = (\,en+(y) 5(2). Then we

must modify the computation of F' in the following way.

(1) if z is a leaf, F(x,y,c,c) =1 iff

(a) h§ =hS =1, with ¢ # ¢, and hS,hS >0
or
(b) hg =2, with ¢ = ¢’ and hy > 0;
(2) if = is not a leaf, F(x,y,c,c) =1 iff
Vz € N(z) N T(x) there exists a color ¢’ such that F(z,z,¢”,¢) = 1 and there
exists a partition Uy, Us, ..., Uy of N(x) NT(x) such that
(a) [Ui| = hi, if i # ¢, s
(b) |Ue| = hé — 1, and |Uy| = hS — 1, if ¢ # ¢;
(c) |Uc] =hS —2,ifc="¢.

Finally we also have to modify the definition of I7: II(r,c) = 1 iff V2 € N(r) there
exists a color ¢’ such that F(z,7,¢",¢) = 1 and there exists a partition Uy, Us, ..., Uy
of N(r) such that

(1) Uil = B i i £ ¢
(2) ‘Uc‘ :hﬁ_l'

In the auxiliary graph B(x) constructed as before we introduce hS — 1 vertices for
color ¢ (instead of hS as used in P(G, H, k)).

o P{(G,H,k)
We use the version for Pj" (G, H, k) and add the constraint that ¢ # ¢ in the definition
of F.

e For all bounded problems BP, we adapt the above procedure as follows. Instead of
constructing a perfect matching in B(x), we simply determine a matching saturating
all vertices in V4. It need not be a perfect matching since we must have at most h’,

vertices of color 7 in the neighborhood of  but not necessarily exactly hi.

5.3 The case of P(G, H, k) and P;(G, H, k)

Here we will consider a special case of trees for which Py(G, H, k) and P5(G, H, k) can be
solved in linear time. We will first give conditions of a solution for a star. We recall that a
star S(y; 1, ...,oy) is a tree with n > 2 such that E = {[y,z;] : 1 <i <n}. yis the center

of the star and the x;’s are the external vertices.
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Proposition 5.14. Given a star S(y;x1,...,x,) with a collection H of nonnegative integral
vectors h(x) = (hL,h2,h3,...,hE) for each external vertex x, the following statements are

equivalent:

(a) {x1,...,xn} has a unique coloring with h; vertices of color i;

(b) (1) for each esternal vertex x, hl +h2 +h3 + .. +hk =n—1;
(2) for each color i,

n — h; external vertices x have h’, = h; and

h; vertices x have hé =h; —1;
(3) for each color i let V(i) = {x|hl = h; — 1}; then V(i) NV (j) = 0 for all i, with
i# .

Proof: (a) = (b): Zle h% is the number of colors (with their multiplicities) which have
to occur at distance two from x. Since |Na(z)| = n — 1 for each external vertex z, so (1)
holds. An external vertex of color ¢ (resp. color j # i) will have h; — 1 (resp. h;) vertices at
distance two with color ¢, so (2) will hold. The set of external vertices with color ¢ will be
V(i) and (3) holds.

(b) = (a): For each i we color the h; vertices x of V(i) with color i and this will give us

the required coloring which is uniquely defined. |

Remark 5.15. If G is a star, then the treatments of Pa2(G, H, k) and P5(G,H, k) are
similar. We just have to assign any color ¢ € {1,...,k} to the central vertex y for Po(G, H, k)
and any color c € {1, ..., k} not used in N(y) (if there is one) for P5(G, H, k).

Remark 5.16. Py2(G, H, k) when G is a star with n > 2 external vertices, is the same
problem as P(G', H, k) when G’ is a complete graph of order n; if we consider the pairs of
external vertices xp, x4 (1 < p,q < n) in a star, they are all at distance two. In a complete

graph G’ all pairs of vertices are at distance one. Hence the announced equivalence.

For a special case of trees, we give a complete description of a simple algorithm which will

determine in linear time whether a solution exists or not for Po(G, H, k).

We define a quaternary tree (or shortly quatree) as a tree where all internal vertices (i.e.,
non leaves) have degree at least four. Let (B, W) be the bipartition of the vertex set V (B

is the set of black vertices and W of white vertices).

A pendent star Sy (y; xg, x1, ..., ) in a quatree @ is the subgraph induced by the vertex set
{y} U N(y) where N(y) = {zo,x1,...,2n} and 1, ..., x, are leaves of ). @ being a quatree
we have n > 3. S}, is a star for which at least three external vertices are leaves of (). Notice

that xg is generally not a leaf (except when @ itself is a star).

Proposition 5.17. Let Sy(y;xo,x1,...,2y) be a pendent star. A necessary condition for a

coloring of N(y) to exist is that for any two external vertices x, and x4 either h(x,) = h(zg)
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or \h;p — h;q\ < 1 for each color ¢ and there are exactly two colors, say ¢ and ¢, such that

hS #hS. and hS # B .

Proof: As for the case of a star (see proof of Proposition 5.14) in any coloring there is no
pair of external vertices @, x4 with [hg — hg | > 2 for some color c.

We have necessarily Zle hi. = n, so we cannot have exactly one color ¢ such that hgp #* hg.,-
Now suppose that there are at least three colors c1,co and c3 with h%p =+ hgiq, i€ {l1,2,3}.
As for the case of a star (see proof of Proposition 5.14), if hg = hgi —1, xp must have color

c;. It follows that x, or x4, has at least two distinct colors, which is a contradiction. [ ]

Proposition 5.18. Let Sy(y;xo,x1,...,x,) be a pendent star. If there is a coloring of S,

1t 15 unique.

Proof: Suppose that the condition of Proposition 5.17 is satisfied.

In case h(z,) = h(z,) for each 1 < p,q < n, each external vertex x has the same color c.
Then for each x, h¢ = n — 1 or hS = n. In the first case, there is a color ¢’ # ¢ such that
for each x, h;l = 1 and thus xg must get color ¢’. In the second case, all external vertices
xg, 1, ..., Ty, Necessarily have color c.

In case there exists two vertices z, and x, with h(z,) # h(z,), there is a color ¢ such that
hg, = hg, —1. Thus x), has necessarily color c. So there is another color ¢’ with hglp = hglq +1
and z, must have color ¢. For each external vertex xs, f # p,q, since h(zp) # h(zq) we
have h(xz¢) # h(xp) or h(zy) # h(zg). So as above we obtain the color of vertex z¢. In
this way we can assign a color to each external vertex x. If an external vertex z receives
two distinct colors, clearly there is no solution. Now from each vector h(x), we determine a
unique color of zqg. If there are distinct colors assigned to xg, there is no solution, otherwise

we obtain a coloring for xg, z1, ..., and this coloring is unique. |

Theorem 5.19. P2(Q, H, k) can be solved in time O(kn?) when Q is a quatree. Moreover

if there is a coloring, it is unique.

Proof: In the following algorithm, we will start by coloring the vertices of W and a similar
second run will color the vertices of B. W.l.o.g. we may remove all black leaves for the first

run of the algorithm.

Algorithm

(1) G« Q;

(2) while G # 0 or G is not a star
for each pendent star Sy (y; xg, 21, ..., ;) do

(2.1) if condition of Proposition 5.17 is not satisfied then there is no solution;
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(2.2) color zg,z1,...,x, according to h(z1), ..., h(xy,);
(2.3) if the coloring fails, there is no solution;

(2.4 update h(xp) according to the (unique) coloring constructed,
G — G\{y,z1,....,xn};

(3) if G is a star, then color xg, x1, ..., Tp;

if the coloring fails, then there is no solution.

In step (2.2) the unique coloring is obtained as described in the proof of Proposition 5.18.
Applying the algorithm to B, we finally obtain a unique coloring of @ if such a coloring
exists.

For each pendent star Sy (y; xo,x1, ..., £q), the condition of Proposition 5.17 can be checked
in time O(k(d(y))?) and its coloring (Proposition 5.18) can be obtained in time O(kd(y)).
It follows that the whole complexity is O(3_, k(d(y))?) = O(kn?) since Q is a quatree. W

From the previous result we conclude the following.

Corollary 5.20. P;(Q, H, k) can be solved in time O(kn?) when Q is a quatree. Moreover

if there is a coloring, it is unique.

A (unique) coloring exists if there exist a coloring of the white vertices and a coloring of the
black vertices and if both colorings are compatible (no two adjacent vertices get the same

color).

We have restricted ourselves to the case of quatrees; this has allowed us to obtain a simple
linear algorithm. Notice first that if all internal black vertices in a tree have degree two,
then the problem of coloring the white vertices is equivalent to Py (G’, H', k) where G’ is the
tree obtained by removing each black vertex linked to two white vertices w; and we, and
introducing an edge [wy, ws)].

In addition (i.e., besides having all internal black vertices with degree two), if we have a
degree at least four for each internal white vertex, then one can solve the coloring problem
by using the algorithm of Py (G, H, k) for the white vertices and the first run of the algorithm
of Po(G, H, k) in quatrees for the black vertices.

For the general case where G is a tree, the algorithms proposed here do not seem easy to
be adapted to handle this case even if a single color class (B or W) has at the same time

internal vertices of degree two and internal vertices with degree at least four.

5.4 Conclusion

We have studied some coloring problems related to the basic image reconstruction problem
which could be solved in polynomial time for trees or sometimes for a subclass of trees:

the quatrees. These are generally NP-complete for more general graphs. Furthermore
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we obtained a new complexity result concerning the L(1,1)-labelling problem. It would
be interesting to examine the problems Po(G, H, k) and P;3 (G, H, k) in the case of general

trees. Also the bounded version of these problems should be considered even in quatrees.
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Chapter 6

Degree-constrained edge partitioning
in graphs arising from discrete

tomography

This chapter is dedicated to H.J. Ryser in acknowledgement for his seminal work which

stated the now famous Ryser conditions exactly 50 years ago.

Introduction

In this chapter our aim is to explore some problems that arise from a graph theoretical
formulation of the basic image reconstruction problem in discrete tomography (see Chapter
1). We recall that this problem is defined as follows.

Assume we are given an (m x n) array A = (a;;) where each entry may contain a pixel
having one of the colors 1,..., k. With an image we may associate the number h] (resp. vj)

of pixels with color s in row ¢ (resp. column j).

The basic image reconstruction problem consists in assigning a color in {1,... %k} to each
entry of A so that in each row ¢ (resp. column j) there are exactly h{ (resp. vj) pixels with

color s (for all i <m,j <n,s <k).

Clearly the values hj and v must satisty some (necessary) conditions which have already

been introduced in Chapter 1:
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It is known that for £ = 2, one can find if there is or not an image corresponding to values
h; and vj satisfying 6.1 - 6.3. Indeed in [65], Ryser gives, for the case k = 2, necessary
and sufficient conditions to be verified by the values hj and v} for a solution to exist (see

Chapter 1). Furthermore these conditions can be checked in polynomial time.

We recall that for & = 4, the image reconstruction problem was shown to be A'P-complete

[16], while for k = 3 its status is to our knowledge still open.

In this chapter we shall essentially consider the case where we have k& = 3 colors unless

stated otherwise.

The graph theoretical model we will associate with this problem is the following (see also
Chapter 1 and [18]). Each row i of A corresponds to a vertex i. Let X be the set of these
vertices. Similarly each column j of A corresponds to a vertex j and we call Y the set of
these vertices. In addition each entry a;; of A corresponds to an edge [i, j] between vertex i
in X and vertex j in Y. So we have a complete bipartite graph Ky y with | X| =m, |Y|=n.
Given the values h} and v}, the reconstruction problem consists in partitioning the edge set
E(G) of G = Kxy into k subsets E',..., E* (E* is the subset of edges which will be given
color s) such that for each s (1 < s < k)

hi is the number of edges of E* adjacent to vertex i in X (6.4)

S
(2
S
V.

7 s the number of edges of E® adjacent to vertex j in'Y (6.5)

For the rest of the chapter, when working in complete bipartite graphs, we assume that

conditions 6.1 - 6.3 are verified as well as the Ryser conditions for each color s =1, ..., k.

In general no requirement is imposed on the structure of the graphs generated by E® or by
Est = E% | B! besides satisfying 6.4 - 6.5.

Here we shall first examine some variations where the union of some subsets E° has to
satisfy some additional constraints. We will focus on these subsets and we will not care

about the other subsets corresponding to the remaining colors.

Let us observe that from constraints 6.1 - 6.2 we see that there are indeed k£ — 1 independent
colors, the last one, say color k, will be the ground color (the number of its occurrences in
each row and in each column is entirely determined by the occurrences of the first colors
1,...,k —1). Since we assume k = 3, we will have to determine disjoint sets E', E? and
E3 = E — (E' U E?) will be automatically determined and it will satisfy 6.4 and 6.5.
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We shall examine in the next sections the situation where the color classes F! and E? form

together a tree or a collection of disjoint chains.

For all these problems we will then examine the corresponding problem in the case where
instead of having an underlying graph G which is bipartite (as was Kx y) we have now a
complete graph G = Kx on |X| = m vertices. So we are given for each vertex ¢ in G and
each color s = 1,...,k a non negative integer h]. Our problem then consists in finding a
partition of the edge set F(G) of G = Ky into k subsets E', ..., E¥ such that for each color
s(s=1,..,k)

h; is the number of edges of E® adjacent to vertex i in X (6.6)

For a solution to exist the following conditions must hold:

k

dhi=m—1 (i=1,...,m) (6.7)
s=1

Z hi is even (s=1,...,k) (6.8)
1€X

For the rest of the chapter, when working in complete graphs, we assume that conditions
6.7 and 6.8 are satisfied.

We also discuss the case where G is an oriented graph in Section 6.4. In Section 6.5, we
give sufficient conditions based on the maximum degree in E'? for a solution to exist for the
case of non oriented complete bipartite graphs and simply complete graphs. This exhibits

a new solvable case of the basic image reconstruction problem with & = 3 colors.

Finally we will consider the problem corresponding to special values (0, 1 or 2) of A} (and
vj), i.e., the search of two edge-disjoint chains or cycles going through specified vertices in

complete bipartite graphs or simply complete graphs.

6.1 The case where F'? is a tree in Kyy

The first problem which we consider can be formulated as follows. We assume that k = 3;

2 1,2
i V50 Y
1,...,n) find two disjoint subsets E' and E? of edges of F(G) such that 6.4 - 6.5 hold for

s = 1,2, and in addition E'? is a tree.

given a complete bipartite graph G = Kx y with values h}, h (fori=1,....,m; j=

W.lo.g. we may assume that every vertex in G will be adjacent to some edge of E'?
(otherwise we simply delete the vertices not adjacent to any edge of E'? and consider the

remaining graph). This assumption can be stated as follows:
V(EYUV(E?*) =V(G) (6.9)

Observe also that h! + h? (resp. vjl- + Uj2) will be the degree of vertex ¢ in X (resp. vertex j
in Y) in the tree B2
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To avoid dealing with trivial cases, we shall assume that our problem is not degenerate so

that each one of colors 1 and 2 occurs on at least one edge.

We shall first state two lemmas that will be repeatedly used to construct the required subset

E'? of edges by reducing the number of connected components.

Recoloring Lemma Let C and Cy be two connected components of E'? satisfying 6.4 -

6.5 and such that Cy contains at least one cycle.

Assume one can find an edge [x1,y1] in C1 and an edge [x2,y2] belonging to some cycle C

of Co such that [x1,y1] and [x2,y2] have the same color (both are in E' or both are in E?).
Then by replacing [x1,y1] and [x2,y2] by [x1,y2] and [x2,y1], and by giving them the same

color as the removed edges we get a single connected component C' which still satisfies 6.4
- 6.5.

Proof: Since [z1, y2] and [z2, y1] get the same color as [z1,y1] and [z2, y2], 6.4 - 6.5 are still
satisfied. One verifies that xo and y, are still connected in C' — [x9, yo]; furthermore in C,
x1 and y; are connected by a chain consisting of edge [x1,y2] followed by C — [z2,y2] and
by edge [z2,y1]. It follows that there are chains between any two vertices of C’. Notice
furthermore that C” is still bipartite if C; and Cy were bipartite. |

Recycling Lemma Assume we have a connected component C of E'? satisfying 6.4 - 6.5
and containing some cycle C; let e be an edge of C not contained in any cycle. If there is
a chain C in C containing e and starting with some edge [x2,y2] in C and ending with an
edge [z1,y1] # e in C — C with the same color as [r2,ys], then one may exchange edges so
that 6.4 - 6.5 still hold and e is on a cycle.

Proof: Notice that [z1,ys] and [x2,%1] are not simultaneously in E'? (otherwise e would
be in a cycle). Replacing [z1,y1] and [z2, y2] by [z1,y2] and [ze, y1], and assigning them the
same color as [z, y1], [r2, y2] gives another connected component where 6.4 - 6.5 still hold.
It can be checked that there is a cycle C” (possibly of length 2) containing e which goes
either through x; and ys or through zs and y;. [ |

Remark 6.1. We shall use later an oriented version of these lemmas; the translation to the

new case will be immediate.

Proposition 6.2. In G = Kxy there exist two disjoint subsets E' and E? of edges such
that 6.4 - 6.5 hold, and E'2 is a tree if and only if

(a) 3 (hi+h) =3 (vj+vf)= (m+n—1)

iex jey
() > hi= > vj < (ms+ns—1) for s =1,2 where ms (resp. ns) is the number of
iex jey

vertices i in X (resp. j in'Y) with hi >0 (resp. vj >0) for s =1,2.
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Proof:

= If E'? is a tree it does satisfy (a) and E', E? cannot contain any cycle, so they are

forests and (b) is verified.

< From [65] we know how to construct E' and E?, since the Ryser conditions are satis-
fied. Notice that some edges may appear in both E' and E?, creating cycles of length

2. But these will be removed later in the process.
If F12 is connected, it is a tree from (a) and 6.9 and we are done.

Otherwise, E'2? consists of p > 2 connected components C1,. .., Cp. From (a) there is
at least one such component, say C7, which is a tree and at least one that contains

cycles. By 6.9, C] contains at least one edge.

As long as we can find two edges [z1,y1] and [r9,y2] of the same color (1 or 2) in
two connected components and such that in addition [z1,y;] is in some cycle, we can

reduce these components to a single component by the Recoloring Lemma.

When we cannot find such pairs of edges anymore, either we are done or we are
necessarily in the following situation. All connected components that are trees are
monochromatic and all have the same color, say 1. Furthermore there is exactly one
additional connected component C' that contains cycles (otherwise we could have used

the Recoloring Lemma); all edges belonging to cycles in C' have color 2.

Notice that in C' there must be at least one edge of color 1, otherwise (b) would be
violated for color 2. From (b) we also know that C' must also contain an edge [z2, y2]
of color 2 which is not incident to any cycle of C'. It is linked to some vertex x* of a
cycle C by a chain @ containing at least one edge e of color 1. Now take some edge
[x1,y1] of C. Applying the Recycling Lemma, we replace [z1,v1] and [z, y2] by [21, y2]
and [x2,y1]; it gives a connected component where edge e (of color 1) now belongs to

some cycle (which may possibly be of length 2).

Now we are again in the situation where e has color 1 and it belongs to some cycle of
a connected component; besides this there is at least one component F' which is a tree
and where all edges have color 1. So we can apply the Recoloring Lemma to e and
some edge €’ of F'; this will not create any new cycle of length 2 since the new edges
join distinct vertices of two different connected components. With this we reduce the
number of connected components. We repeat this until we get a connected E'?; it will

be a tree satisfying all requirements.
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6.2 The case where E'? is a collection of vertex disjoint chains

in KX,Y

We are now given values h?,v; which satisfy

R ]

1 <hl+h?<2 foreachiin X (6.10)
1 <wj+v] <2 foreachjiny (6.11)

Here E'? will have to consist of a collection of elementary open chains having their endver-
tices at vertices 7 (resp. t) with Al + h2 =1 (resp. v} + v = 1). These will be called odd
vertices. Clearly we must have an even positive number of odd vertices for the existence of

a solution.

Notice that we exclude cycles in a solution, i.e., we have to show that we only have open

chains.

Proposition 6.3. In a complete bipartite graph Kxy there exist subsets E' and E? of
edges satisfying 6.4 - 6.5 and such that E'2 is a collection of elementary open chains if and

only if

(a) for each color s € {1,2}, there is at least one vertex which has to be adjacent to exactly

one edge of color s;
(b) there exists a vertex i € X with hl + h? =1 or a vertez j € Y with vjl- + 0]2» =1.

Proof: It follows from (b) and from 6.3 that the number of odd vertices is even and positive.

If (a) does not hold, there is one color s such that every vertex is adjacent to two edges or

to no edge of color s. Clearly the edges of color s cannot be on a chain of E12,

To show that the conditions are sufficient, we start from a set E'? satisfying 6.10 - 6.11; E*
and E? can be constructed separately since the Ryser conditions are assumed to hold. As
before E'? may contain cycles of length two. If it contains no connected component which
is a cycle we are done. Otherwise consider a cycle C; since there is at least one odd vertex
(from (b)) there is a chain C’ in E'2; if C' is not monochromatic we can find a pair of edges
[z1,y1] in C, [x2,y2] in C of the same color and we use the Recoloring Lemma. When
we cannot use the Lemma anymore we are in the situation where we have monochromatic
cycles (all of the same color, say 1) and monochromatic chains (all of color 2) between odd
vertices. But this is not possible: from (a) for color 1, there must be a vertex adjacent to
exactly one edge of color 1. Hence we do not have this case and we can construct a set £'2

satisfying 6.10 - 6.11 and consisting of open chains. |
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6.3 The case where G is a complete graph Ky

Similar problems as in the previous section can be raised for the case where G is simply a

complete graph Kx on a set X of m vertices.

Although this has no immediate connection with discrete tomography as before, we mention

it for its interest in a graph theoretical context.

As already mentioned in the introduction we now want to find a partition E', ..., E* of the
edge set E(G) of G = Kx such that in each E* there are exactly k] edges adjacent to vertex
i (i =1,...,m) (condition 6.6). E* is usually called a b-factor. Since we are in Ky, the
conditions of existence are given by the Erdos-Gallai theorem (existence of a simple graph
with given degrees; see Chapter 6 in [9]). We shall assume that these conditions hold for

each E® (otherwise our problem has no solution.

Furthermore we assume, as before, that 6.9 holds, i.e., every vertex is adjacent to at least
one edge of E'U...U EF1,

The following proposition shed some light on the relative complexity of the decision versions

of the edge k-partitioning problems in a complete graph and in a complete bipartite graph.

Proposition 6.4. The degree-constrained edge k-partitioning problem P’ in a complete
graph is at least as difficult as the degree-constrained edge k-partitioning problem P in a

complete bipartite graph.

Proof: We are given a problem P defined by a complete bipartite graph G = Kxy and
values hj (i € X), vj (j €Y) for 1 <s < k. We recall that conditions 6.1-6.3 do hold. We
construct a complete graph G’ = Kx_y on X UY by introducing in G a clique on X and a
clique on Y. Let m = |X| and n = |Y|. For each i € X we set h;' = h} +m — 1, h;* = h$
(s =2,....,k) and for each j € Y we set U;-Q :v]2-+n— 1, v;-s =v; (1<s<k,s#2). This
defines a problem P’ on G’. If P has a solution S, we can derive a solution S’ to P’ by
keeping the colors of the edges [z;,y;] of G', by giving color 1 to all edges [z, 2] and color
2 to all edges [yu,yv]. Conversely assume that P’ has a solution S” in G’. Then all edges
with both ends in X (resp. in Y') have color 1 (resp. color 2). In fact, suppose an edge
[z, z;] has some color ¢ # 1; then z; and x; are adjacent to m — 2 edges of color 1 (instead
of m — 1) with both ends in X; so the number of edges of color 1 going out of X will be at
least > oy hi +2 > diey vj = djey v;-l which is at least as large as the number of edges
of color 1 which may have one or two ends in Y. This is impossible. For color 2, the same
holds (interchanging the roles of X and Y). Then by keeping the colors of all edges [z, y] of
Kxuy, we get a solution for P in Kx y. [ |

From Proposition 6.4 and from the A'P-completeness of the basic image reconstruction
problem for k = 4 [16], we obtain the following.

Corollary 6.5. For any fized k > 4, the degree-constrained edge k-partitioning problem in
a complete graph is N'P-complete.
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Here we shall deal with the case where we have k = 3 colors. We can give an analogous

statement to Proposition 6.2. We first consider the case where E'? is a tree.

Proposition 6.6. In a complete graph G = Kx there exist disjoint subsets E' and E? of
edges such that 6.6 holds for each vertex i and for s = 1,2, and E'? is a tree, if and only if

(a) ;{(h} +h7) =2 (IX| - 1);

(b) > hi <2 (ms—1) for s =1,2 where mg is the number of vertices i with h{ > 0.
1€X
The proof follows the same lines as the proof of Proposition 6.2 (except that we do not have

to take care about the bipartite character of E'? when connecting different components).

The case where E'? is a collection of chains between odd vertices could be considered as
before. If we have two odd vertices exactly then the problem amounts to finding a subset F12

(satisfying the degree requirements) which is a Hamiltonian chain with fixed end vertices.

We may as well consider the case where a Hamiltonian cycle has to be constructed while

taking the condition 6.6 into account.

Proposition 6.7. Given values h} and h?, satisfying h} + h? = 2 for each vertez i of a
complete graph G = Kx, there are disjoint subsets E' and E? of the edge set E(G) such
that 6.6 holds for each vertez i and for s = 1,2 and in addition E'? is a Hamiltonian cycle,

if and only if there exists at least one vertexr with h} = h? =1.

Proof: If the condition does not hold, no connected solution can be found. The sufficiency
is shown by the Recoloring Lemma. The only case where it cannot be applied is when E12
consists of two disjoint elementary cycles which are monochromatic (one with color 1, the

other one with color 2), but this is impossible from the condition. |

6.4 A short incursion in the field of ‘oriented’ discrete tomog-

raphy

In order to further generalize the previous formulations of these variations on the basic image
reconstruction problem, we could consider that the underlying graph G is now oriented with
arcs (x,y) instead of edges [z,y]. We shall assume that when two vertices z and y are linked

in G, there may be several arcs (z,y). This will be needed for constructing an initial solution.

—
Let us consider here the case where G = K x is a complete symmetric oriented graph on a

set X of vertices with | X| = m.

For each vertex i in X we are given 2k integers h;®, h;® for s = 1,..., k. We have to find
a partition ﬁl, R E* of the arc set E(G) such that for each color s we have

h® is the number of arcs of Es leaving vertex i in X (6.12)

h; ® is the number of arcs of Es entering vertex i in X (6.13)
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Clearly for a solution to exist we must have

k
Z hi® =d}(i) (outdegree of i in G) (6.14)
s=1
k
Z h;® =dg,(i) (indegree of i in G) (6.15)
s=1
donfr=>"h* (s=1,....k) (6.16)
i€X i€X

We assume that 6.14 - 6.16 are verified. As before we shall assume that for each color s
the values h;’s and h; ® are such that there exists a subset s satisfying 6.12 and 6.13.
Necessary and sufficient conditions for the existence of such a subset E* are given in [9]
(Chapter 6); to construct such a subset E)s, we have to find a b-factor in a bipartite graph
G = (X, X',U) obtained by introducing for every vertex i € X a vertex i’ € X’ and linking
every i € X to every j/ € X' (with i # j) by an arc (i,5"). We set b(i) = h;® for each i € X
and b(i') = h; ° for every ' € X’. Finding a b-factor can be done in polynomial time with

network flow techniques.

As in the previous sections, we shall consider here the case of k& = 3 colors. We assume
w.l.o.g. that there is no vertex with hZTH = hz-_l = hzﬂ = hz-_2 =0.

Proposition 6.8. Let G = I—(>X be a complete symmetric oriented graph with values h;‘s
and h;® given for each vertex i in X and for colors s = 1,2. There exist disjoint subsets
E' and E? of the arc set E(G) satisfying 6.12 - 6.13 and such that E'?> = E1|JE? is a
tree if and only if

(@) X (B +R?) = X (TR = X -1
iex i€X

(b) > h° = Y h* < mg—1 for s=1,2
iex iex

where my is the number of vertices i in X with hj® + h;® >0 (i.e., vertices adjacent

to at least one arc of color s).

—

Proof: Condition (a) is necessary for E'2 to be a tree. Furthermore if there is a solution,
— —

then E! and E? have to be forests, so (b) must hold.

Let us now show that the conditions are sufficient. By our assumptions one can find subsets
E and E? of ﬁ(G) satisfying 6.12 and 6.13. Notice that E' and E? may use parallel
arcs ((z,y)1 (z,y)2,...,0r (y,x)1, (y,x)2,...) between pairs of vertices x € X, y € X. But

A
since E'2 has to be a tree, these parallel arcs will have to be removed during the process.

. _>12 _>1 _>2 . . . .
Consider £~ = E-|J E~;if it generates a connected graph, it is a tree from (a) and we

are done.
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N
Otherwise E'? generates several connected components; at least one of them is a tree (from
(a)). Now let us suppose that we can find two connected components C; and Ca such that
(1 contains at least one cycle C'. Take an arc (x1,y;) in C' and assume there is in Cy an

arc (x2,y2) of the same color.

Replacing (z1,y1) and (z2,y2) by (z1,y2) and (z2,y1) gives a single connected component
and the conditions 6.12 and 6.13 are still satisfied. No new pair of parallel arcs is created
and the graph generated by E12 has one less connected component. We can then apply

systematically the Recoloring Lemma and the Recycling Lemma as in the bipartite case.

N
This can be repeated until we get a tree for E12. ]

6.5 Sufficient conditions for a solution of the image recon-

struction problem with & = 3 colors

In this section we shall impose no requirements on the structure of E' and E?. We shall
give a sufficient condition for a partition E', E?, E3 satisfying 6.4 - 6.5 to exist. So we are
considering here a special case of the basic image reconstruction problem with £ = 3 colors.
We recall that its complexity status is open. The condition involves the largest degree p in
E'2 = E'(J E?. We shall assume that p > 2 in this section (since the case p = 1 is trivial).

Proposition 6.9. In a complete bipartite graph G = Kx y let p = max;ex jey {h} +h?, vjl- +

0]2} > 2. There ezists a partition E*, E*  E3 of E satisfying 6.4 - 6.5 if |E'2| > 2p(p—2)+3.

Proof: By [65], we know how to construct separately E' and E2. If there is no cycle of
length 2, then we are done. E' and E? are disjoint and the remaining (uncolored) edges

will necessarily belong to E3.

Otherwise we have at least one cycle of length 2, [z,y]1,[z,y]2, where z € X, y € Y,
[,y € B! and [z,y]s € E% If we can find an edge [z,t] € E'? (z € X,t € Y) of color s
such that [x,t],[z,y] € E'2, then by replacing [z,y]s and [z,t] by [z,] and [z,y] which get
color s, conditions 6.4 and 6.5 are still satisfied and we have at least one less cycle of length
2. By repeating this procedure while there is a cycle of length 2, we will finish by getting 2
disjoint edge sets B and E? satisfying 6.4 - 6.5 and thus we get a solution of our problem.

Let us now show in which case we can always find an edge [z,t] € E'? such that [z,1],[z,y] &
E'2. Such an edge will be called a ‘good’ edge. Notice that = and y are considered as linked
by two edges. Clearly all edges having as endvertices x or y are not ‘good’. We have at most
2(p — 1) such edges. Furthermore, all edges [u,v] € E'? such that [z,v] or [u,y] belongs to
E'2 are not ‘good’; there are at most 2(p — 2)(p — 1) such edges. Every other edge in E'2
not belonging to these two sets will be a ‘good’ edge. Thus if we require that E'? contains
at least 2(p — 1) +2(p—2)(p — 1) + 1 = 2p(p — 2) + 3 edges, there will always be a ‘good’
edge and hence all cycles of length 2 can be replaced by two disjoint edges. ]
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We will now deal with the analogous case where G = Kx is a complete graph.

Proposition 6.10. In a complete graph G = Kx, let p = max;ex(h} +h?), p > 2. There
exists a partition E', E?, E3 of the edge set E satisfying 6.6 if |E2| > p® — 2p + 3.

Proof: We proceed in a similar way as in the proof of Proposition 6.9, i.e., we first construct
E' and E? independently (using the construction given in [66]). If they are disjoint, then
we are done. Otherwise there is at least one cycle of length 2, say [z,y]1, [z, y]2, where
[z,y]1 € E' and [,y € E%

If we find an edge [2,t] € E'? of color s such that [z, z],[y,t] € E'? or [x,],[y,2] € E'?,
then we can replace [z,t] and [z,y]s by one of these pairs of edges which will get color s
and condition 6.6 will still be satisfied. Repeating this procedure will necessarily lead to a

solution.

Now we will show a sufficient condition for such an edge [z, ], called ‘good’ edge, to exist.
Clearly all edges incident to = or y in E'? are not ‘good’. We have at most 2(p — 1) such
edges. Let g denote the number of vertices w which are common neighbors of 2 and y in E'2.
Then all edges incident to these vertices are not ‘good’ either. We have at most g(p — 2)
of them different from edges [z, w], [y, w]. Finally each edge [u,v] joining two neighbors
of x (resp. y) which are not neighbors of y (resp. x) is not ‘good’. We have at most
(p—2—q)(p— 3 — q) such edges. It is easy to see that every other edge will be a ‘good’
one. Thus if we require that |E*2| > 2(p—1)+q(p—2)+ (p—2—q)(p—3 —q) + 1, then we
can always find a ‘good’ edge and hence replace each cycle of length 2. If we consider the
extreme cases where ¢ = 0 and ¢ = p — 2, we find that |E'?| > max(p? — 2p+3,p*> —3p +5)
and thus |E'?| > p? — 2p + 3 since p > 2. |

6.6 Cases where each one of E', E? is structured

We shall now examine additional cases where the number k of colors is k¥ = 3 and the subsets
E! and E? have a given structure. The first situation will be the following. Each one of
E' and E? is a Hamiltonian chain in the complete bipartite graph K x,y associated with
the array A = (a;5). For this graph to have Hamiltonian chains we shall assume |X| = |Y|
(notice that we could have |X| < |Y| < |X]|+ 1 but for simplicity we will limit our study to
the case where |X| = |Y|) and each chain has an endvertex in X and the other one in Y.
Let X = {z1,...,zp} and Y = {y1,...,yn} and let a € X and b € Y be the endvertices of

the Hamiltonian chain forming E'; this means that we have

1 ifz; =a;

2 if z; # a

hl ((IZ‘Z) =

and
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1 ify; =b;

vl (yi) =
Let u € X and v € Y be the endvertices of the Hamiltonian chain E?; we will have similarly

1 if x; = u;

h? () =
2 if x; # v
and
1 ify; = v
U2(yi) =
2 ify; # .

Proposition 6.11. In G = Kxy (with |X| = |Y| = n) there exist two disjoint Hamiltonian
chains E' (with arbitrary endvertices a and b) and E* (with arbitrary endvertices u and v)
iof and only if n > 5.

Proof: For n < 4 one cannot find two disjoint Hamiltonian chains in K, , for arbitrary
endvertices. For instance one cannot find two disjoint Hamiltonian chains with ¢ = u and
b = v. We shall therefore assume now that n > 5. Let x1,xo,...,x, and y1,yo, ...,y be a
numbering of the vertices in X and in Y such that z; = a and y; = b. We construct E! by
taking edges [z, ¥it1], [Tiv1,yi], for i = 1,...,n — 1, and [z,,y,]. We have several cases to

consider for E2.

(a) u=a,v="
For n > 5 we construct E? as follows (see Figure 6.1). We build the sequence of indices
of vertices which will be visited by E? by taking first the odd indices in increasing
order followed by the even indices in increasing order but where we just interchange 4
with the largest even index 2p; the sequence 6’) obtained in this way is then completed
by the same sequence 6 in reverse order; then we assign labels  and y alternately to
all terms of the sequence 8@6; we get thus z1,ys, ..., x3,y1. This gives a Hamiltonian
chain E? with endvertices 21 and y; which is disjoint from E! since E? contains neither

edges [x;,y;] with |i — j| =1 nor [xy, yn)-

Vo

13579246810

13579210684||148610297531

X Y3 Xs ¥ X %o Xo¥s X Y X % %6 YioXo % % %5 % Vs

Figure 6.1: Construction of E? in the case of n = 10.
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(b) u=a,v#b
Notice that v is a fixed arbitrary vertex of Y with v # y;. We can w.l.o.g. assume
that from the beginning our vertices have been numbered in such a way that v = y3.
Now replacing [r1,y3] by [z1,y1] in the E? constructed in a) gives a new Hamiltonian

chain E? disjoint from E' and with endvertices u and v.

(c) u#a,v#b
Again u and v are fixed arbitrary vertices of X and Y respectively. We can w.l.o.g.
assume that from the beginning our vertices have been numbered in such a way that
u = x4 and v = y4. We obtain E? by replacing [x4,y4] by [z1,y1] in the E? constructed

in a). Clearly E? is a Hamiltonian chain disjoint from E*.

Remark 6.12. One can easily verify that Proposition 6.11 can be extended to the case of
a complete graph G = Kx (|X| =m) withm >4 ifa #u and b # v, m > 5 if a = u and
b#v, m>6ifa=uandb=n0.

Consider now the case where for each color s = 1,2 we have hj, v; € {0,2} for all 4, j. V(E?®)

2 for s = 1,2. The problem consists then

—
J

in finding two disjoint cycles E! and E? through specified vertex sets V(E') and V (E?).
W.lLo.g. we can assume that 6.9 holds: V(G) = X UY = V(E') UV(E?).

will be the set of vertices with hf = 2 or v

The reconstruction problem where both E' and E? are collections of vertex disjoint cycles
was studied in [18| under the name RPB(m,n,p = 2) (see also |11, 76]). It was shown that

a solution could be constructed if and only if one did not have one of four pathological cases:

(a) Y hi=4= 3 hi |X[<3,|Y]<3;
ieX ieX

(b) X hi=4, 3 hi=6,|X|=3,[Y[<4

ieX e X

() X hj=6= 3 hi |X]=3,|Y[<5
1€X 1€X

(d) X hi=6, > hi=8|X|=4=]Y]
i€X 1€X

For more results on disjoint cycles in graphs, we refer the reader to [55] where the case of

Hamiltonian cycles is considered.
Goddyn and Stacho give in [37] the following theorem concerning general graphs.
Theorem 6.13. [37] Let G = (V, E) be a finite undirected simple graph of order m, let

W CV, |W| >3, and let k be a positive integer. Suppose that GIW] is 2k-connected, and
that

max(dg(u), dg(v)) >

% 2k — 1) (6.17)
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for every u,v € W such that distg)(u,v) = Then G contains k pairwise edge-disjoint

2.
cycles E', ..., E¥ such that W C V(E), 1 <i < k.

(Here, G[W] is the subgraph induced by W, and distg(u,v) is the distance from u to v in
G.)
Notice that for £ > 2 condition 6.17 cannot be verified in the case of bipartite graphs. For

complete bipartite graphs we give the following.

Proposition 6.14. Let Kxy be a complete bipartite graph. There exist two edge-disjoint
cycles EY and E? through specified vertex sets V(E') and V(E?) if and only if we are not
in one of the four pathological cases and we do not have the forbidden configuration F' given

in Figure 6.2.

Figure 6.2: Configuration F' admitting no connected solution. The black vertices belong to
X and the white ones to Y.

Proof: First, if ), h? > 10, then, whenever 6.1-6.3 are satisfied, there always exists a
‘connected’ solution (i.e., two disjoint cycles E' and FE?) satisfying 6.4 and 6.5. Indeed,
remove a cycle of length Y, ¢ hi (the cycle E' through V(E') corresponding to edges of
color 1) from Kx y. Then, if we consider any p by p induced subgraph of the resulting graph
(and so, in particular, the one induced by the .y hf = 2p vertices adjacent to edges of
color 2), it has a minimum degree of p — 2. Since ), h? > 10, we have p > 5 and so
p—2> 1%1. Thus, by [4] (Chapter 7, Section 3), there exists a Hamiltonian cycle in this
(sub)graph which will correspond to E2. This implies that we can obtain two disjoint cycles

(one for color 1 and one for color 2) respecting the given projections.

Second, if ) ..y h} => h? = 8, then, as previously, there always exists a connected solu-
tion whenever 6.1-6.3 are satisfied. Take any cycle E! on V(E!). Say E' = {[z1, y1], [y1, %2], -..
[‘7747 y4]7 [y47 xl]} Consider the cycle C' = {[‘r,lﬂy/IL [y/17 ‘7:,2]7 s [xih yzl]? [yﬁp xll]}a where x;, =T
if h?(x;) = 2 and 2} = z; if h%(z;) = 0, where 2; # x;, j = 1,2,3,4, is some vertex in X
with h%(z;) = 2 as well as y, = y; if v2(y;) = 2 and vy} = t; if v3(y;) = 0, where t; # y;,
j =1,2,3,4, is some vertex in Y with v?(¢;) = 2. We construct E? by linking each vertex

v in C to the two vertices in C' which are at distance three of v.

Finally, let us deal with the case where ), h} <6and ) .y h? < 8. First, it is easy to
see that the example given in Figure 6.2 (where Y, v bl =4 and }_,_ h? = 8) does not
have an equivalent connected solution. If ),y h} < 6 and Yoiex h? < 6, then, if we are not

in one of the four pathological cases, there exists a solution and this solution is necessarily
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connected (since there can be no cycle of length three or less). The last case to consider is
when 3, ¢ h? =8 and > ,.y hl < 6. Assume we are not in one of the four pathological
cases (and thus there exist two disjoint subsets of edges E'! and E'? satisfying 6.4 and 6.5
(E" necessarily forming a single cycle)) and that the subgraph induced by V(E") UV (E?)
is not the one in Figure 6.2. If E'? consists of one Cg, we are done. Otherwise (E? consists
of two Cy), if there exists in the solution a Cy with edges of color 2,3,2 and 3, then color 2
and color 3 can be interchanged in the C4. This provides an equivalent solution in which the
edges of color 2 form a Cg. If such a cycle does not exist, then anyway there exists at least
one edge of color 3 between the vertices of the two Cy of color 2 (since otherwise there are
8 edges of color 1 between these vertices, and this contradicts ),y h} < 6). This implies
that there exist four edges of color 1 between these vertices (since otherwise there is a Cy
with edges of color 2,3,2 and 3), which form a C4. Therefore, this Cy is the cycle of color 1.

Hence, we obtain the graph in Figure 6.2, which is a contradiction. |

Consider now the case where both E' and E? are cycles in a simple complete graph G = Kx
with | X| =m, i.e., hf =0 or 2 for s = 1,2. We shall assume that V(E') UV (E?) = X and
|V (EY)|,|V(E?)| > 3. We have the following.

Proposition 6.15. In G = Kx with | X| =m, one can find two edge-disjoint cycles E* on
V(EY) and E? on V(E?) if and only if we are not in the following cases.

(a) m < 4;
(b) 3<|V(EY)NV(E?)| <4 and m = 5.

Proof: It is easy to see that the conditions are necessary. If we are in case (a) or (b), one can
easily check that E' and E? cannot be disjoint, by enumerating all possible configurations
(case (a) or (b) and different lengths of the cycles (3, 4, or 5)).

Consider now the case where m > 5.

From Theorem 6.13 we deduce that the proposition is true for |W| = |V(E') NV (E?)| > 5.
Indeed, in a complete graph there are no two vertices at distance 2 and W is 4-connected
if |W| > 5. Thus, the conditions of Theorem 6.13 are verified and the graph contains 2
edge-disjoint cycles through V(E') and V(E?).

If |W] < 5, W is not 4-connected and the conditions do not hold anymore. Let us now

study the different cases.

If |[V(EY)NV(E?)| <1, then E! and E? will be edge disjoint.

If V(EY) N V(E?) = {a,b}, then wlo.g. |V(EY)\ (V(EY)NV(E?)| > 2, say V(E!)\
(V(EYNV(E?)) = {c,d,...,z}. We construct a cycle E! = a,¢,b,d, ..., z,a and for E? a
cycle through [a, b] followed by a chain between a and b in V (E?)\ (V(E?)NV(E')). These
subsets B! and E? will be disjoint.

If [V(EY)NV(E?)| = 3 or 4 and m > 6, it is easy to obtain two disjoint cycles. We give
the construction for [V (E') N V(E?)| = 4 (the case |V (EY) N V(E?)| = 3 can be treated
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similarly). Let V(EY)NV(E?) = {a,b,c,d}. Then |V(EY) -V (E?)|+|V(E?) -V (EY)| > 2.
Ife € V(EY)—V(E?) and f € V(E?)—V(E'), we can take for E'! the cycle beginning with
vertices a, b, c,d, e, ... followed by the remaining vertices of V(E') — V(E?). For E? we can
take the cycle beginning with vertices c,a,d,b, f, ... followed by the remaining vertices of
V(E?) — V(E'). If f does not exist, i.e., V(E?) C V(E!) then we have V(E!) — V(E?) =
{e,g,...}. In this case we take for E' the cycle beginning with vertices a,b,e,c,d,g, ...
followed by the remaining vertices of V(E') —V(E?). For E?, we take the cycle (a,d, b, c,a).
Clearly E' and E? will be disjoint. |

We have considered here the problem of constructing in a complete (bipartite) graph two
disjoint subsets of edges satisfying some requirements on their degrees at every vertex.
Since the given values hj and vj determine the cardinalities |E| and |E?|, we have in fact
to find if there exist two disjoint subsets of edges with given cardinalities which satisfy
some additional requirements (on their degrees). This problem is related to the following
NP-complete problem (see [35]). Given a bipartite graph G and two integers p > ¢ > 0,
does G contain two edge disjoint matchings M, and M, with |[M,| = p, |M,| = ¢7 In case
the values hj and v7 are 0 or 1, then E' and E? are matchings of a fixed size. But we
know which vertices have to be saturated by E' and/or E? and the graph G is a complete
bipartite graph. This situation has been studied in [18] under the name RPU(m,n,p).

6.7 Conclusion

We have investigated some graph theoretical problems related to the basic image recon-
struction problem in discrete tomography. We have exhibited a solvable case of the basic
image reconstruction problem with k£ = 3 colors. The complexity of the related problem in

a complete graph has been settled for a fixed k > 4.

We imposed the structure of the graph formed by the union of two colors. Here having a
tree allowed us to find solutions whenever they existed. The choice was adequate since it
eliminated the cycles that were introduced by the parallel edges or arcs needed in the model
(the presence of parallel edges in E'? would have meant that the corresponding entries of the
array A received several colors!). In fact we have imposed constraints on the cardinalities of
E',E? and/or E'? and it is worth observing that if we introduce some requirements on |E|
(for instance |E'| < f(m,n) where f is a linear function of the size of the array A = (a;;)),
this additional piece of information does not simplify the problem in the following sense.
One may transform any reconstruction problem P with k& = 3 colors into a larger problem
P’ with k& = 3 colors where the first color class will satisfy a requirement of the form
|EY| < f(m',n') and P’ will have a solution if and only if P has one. This can be seen easily
by embedding array A in a corner of a larger (m’ x n’) array A’ where we impose color 3 to
all entries of A" outside of A.

It would be interesting to examine other structures for the graph associated with the union
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of several colors.

Finally we mention the case where each one of E' and E? is a spanning tree; this problem
seems to be of interest. As far as we know problems consisting of packing some special types
of graphs, like trees, have not been explored intensively when there are requirements on the

degrees of the vertices.
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Conclusion

We examined in this thesis some variations of coloring problems which arise from schedul-
ing and discrete tomography. We obtained several results concerning the computational
complexity of these problems, i.e., we considered special cases and either we developped
polynomial time algorithms or showed that even in these restricted cases the problems re-

main hard to solve. This work suggests ideas for further research concerning these topics.

In Chapter 2 we considered two coloring problems in mixed graphs arising from scheduling.
We gave some upper bounds on the strong and the weak mixed chromatic number and pre-
sented some complexity results. For both problems, it should be interesting to determine
their complexity in other classes of graphs, e.g. in mixed planar cubic bipartite graphs. But
also mixed graphs Gy = (V, U, E) for which the directed partial graph G$; = (V,, U, 0) has
a specific structure (e.g. collection of disjoint paths, arborescence) should be considered.
These kinds of graphs are maybe the most promising for finding more polynomially solvable
cases. Furthermore, it should be interesting to find more lower and upper bounds on the

weak mixed chromatic number.

We examined in Chapter 3 the following problem: in an undirected graph G = (V, E) we
want to characterize a minimum set R of edges for which maximum matchings M can be
found with specific values of p = |[M N R|. In general our problem requires the determination
of a shortest alternating cycle with respect to some maximum matching (not given). As far
as we know the complexity status of this problem is still open. For 3-regular bipartite graphs
G = (X,Y,FE) with | X| =1|Y| =n >2(p — 1), where p < 4 is an integer, we determined a
minimum set R which is P-feasible for P = {0, 1, ...,p}. The construction does not seem to
hold for p > 5, thus it would be interesting to find another construction or to adapt the first
one. Also the case of general odd cacti would be interesting to analyze since these graphs

are exactly the IP-perfect graphs.

In Chapters 4, 5 and 6 we examined some coloring (resp. partitioning) problems which arise
from discrete tomography. These problems are generalizations or variations of the basic

image reconstruction problem.
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We considered in Chapter 4 a generalization of the vertex coloring problem associated with
the basic image reconstruction problem. Here the vertices of the graph are covered by chains
and for each chain the number of occurrences of each color is given. We then want to find
out whether there exists a coloring of the vertex set respecting these occurrences. We gave
several complexity results for the case of arbitrary colorings (two adjacent vertices may have

the same color) as well as for the case of proper colorings.

Most of the results concerned graphs for which we did some restrictive hypothesis. Of course
considering more general cases would be interesting but our results show that the problems

become difficult even in very simple cases.

Instead of considering chains, we considered in Chapter 5 some generalized neighborhoods.
We obtained for the 2-neighborhood a polynomial time algorithm for quatrees (i.e. trees
where all internal vertices have degree at least 4). It does not seem easy to adapt our
algorithm to general trees. So it would be interesting to try another approach or detect
some more special cases of trees which are polynomially solvable. Considering quatrees
allowed us to obtain a unique solution, if it existed. In the case of closed neighborhood this
does not seem to be true anymore and hence it will be difficult to adapt our algorithm to

this case in trees or even quatrees.

We also examined the bounded version of these problems, i.e., instead of the exact number
of occurrences of each color we are given upper bounds on these occurrences. Some com-
plexity results were given for the case of open neighborhood and three or four colors. It
would be interesting to analyze the bounded version in the case of the 2-neighborhood for

trees or quatrees.

Finally in Chapter 6 we considered the edge partitioning version of the basic image recon-
struction problem. We presented a new solvable case for k = 3 colors. Then we examined
some variations where the union of the two subsets E! and E? have to satisfy some addi-
tional constraints. One should consider other cases where some of the sets E® are imposed
to have a certain structure or where they form a special graph. One may also consider the
case of k > 3 colors where the union of more than two subsets must form a special graph.
An open question is whether the reconstruction problems in complete graphs and complete
bipartite graphs are equivalent from a computational complexity point of view. In other
words, can we transform the reconstruction problem in a complete graph into an equivalent

reconstruction problem in a complete bipartite graph?

Lots of open questions exist and further research is needed to detect more solvable cases or
to strengthen existing complexity results for these problems. Probably the most important
open question which remains is the complexity of the basic image reconstruction problem
for K = 3 colors. Since there exist so far only very few polynomial solvable cases for

this problem, this could also be a direction of further research. Concerning the mixed

110



graph coloring problems, there are some cases left where the complexity is unknown and it
would be interesting to identify more classes of graphs where the problems are polynomially

solvable.
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