Ion transport across membranes prepared by gel crystallization

A one-step procedure for the preparation of ion-selective membranes is described. The method employs the thermally induced gel crystallization of ultrahigh molecular weight poly(ethylene) (UHMW-PE) from a dilute xylene solution. After evaporation of the xylene, a microporous UHMW-PE film remains, which can serve as the support for liquid and polymeric ion-selective membranes. The addition of a membrane solvent and suitable receptor molecules to the xylene solution allows a one-step incorporation of these membrane components into the UHMW-PE support. The influence of the preparation conditions of the UHMW-PE support on the rates of the p-tert-butylcalix[4]arene tetraethylester-mediated transport of NaClO4 was studied. Two concepts to improve the life-time of the membranes are introduced. In a first approach, the addition of photocrosslinkable nitril-substituted siloxane copolymers to the membrane phase has been evaluated. The enhanced viscosity of the membrane phase reduces leaching of carrier and solvent molecules from the membrane into the aqueous phases. In a second approach, the solvent is omitted and the membrane-phase merely consists of a benzo-15-crown-5 or calix[4]arene modified siloxane-copolymer, which is substituted to such a degree that ion transport no longer has to take place via diffusion of host-guest complexes but by jumping of the cations from one fixed carrier to a neighboring carrier. © 1998 John Wiley & Sons, Inc.


Publié dans:
Journal of Polymer Science, Part B: Polymer Physics, 36, 2, 383-394
Année
1998
Mots-clefs:
Note:
08876266 (ISSN), Cited By (since 1996): 3, Export Date: 25 September 2007, Source: Scopus, CODEN: JPBPE
Laboratoires:




 Notice créée le 2007-10-15, modifiée le 2018-12-03


Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)