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Summary
The parabolic equation (PE) is one of the numerical methods used for sound propagation simulation in com-
plex outdoor situations. Such model is able to take several phenomena into account at the same time such as
meteorology and impedances discontinuities, but it neglects backscattering. Even if this assumption is effective
in many configurations, it does not allow using PE for studies of acoustic wave propagation between a source
and a receiver when an obstacle (e.g. a rigid barrier, a building) is located just before the source, or just behind
the receiver. In those cases, energy reflected by the obstacle is not negligible and results obtained with PE may
be incorrect. This paper aims at presenting a new method able to integrate backscattering in the GFPE (Green’s
Function Parabolic Equation method). In this approach a complementary Kirchhoff approximation is used by
setting to zero the sound pressure above the vertical obstacle. Thus, new configurations with multiple reflections
can be studied. In order to point out the role played by backscattering, we first study a barrier located just behind
a source. Then, a comparison with BEM (Boundary Element Method) calculations is presented in the case of a
simple reflection in homogeneous and inhomogeneous atmosphere. A more complex road traffic noise configu-
ration with two parallel barriers and meteorological effects is also studied. Results show that the complementary
Kirchhoff approach seems to be promising.

PACS no. 43.28.Js

1. Introduction

Long-range acoustic waves propagation in the atmosphere
is of interest for many applications, including the noise
impact of road and railway infrastructures [1, 2]. For such
problems, the propagation medium is often complicated,
so that meteorology and terrain effects (impedances dis-
continuities, uneven ground) cannot be ignored [3, 4, 5].
Several numerical methods have been developed for com-
putation of sound in an inhomogeneous atmosphere above
an impedant plane: the Fast-Field Programm (FFP) [6, 7,
8], the Ray model [9, 10, 11, 12], the Gaussian Beams
(GB) [13, 14, 15], the Linearized Eulerian equations (LE)
[16] and the Parabolic Equation (PE) [17, 18, 19]. The
parabolic equation, approximation of the Helmholtz wave
equation, is one of the powerful numerical methods effi-
cient for long-range, forward- wave propagation thought
relatively general media [20, 21].
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Sound barriers are widely used for noise reduction near
transportation infrastructures. In the presence of a vertical
obstacle, the forward wave is divided into an incident wave
and a reflected wave. In most of long-range sound prop-
agation configurations the barrier is located between the
source and the receiver so that only the incident diffracted
wave is considered. The treatment of sound diffraction
by a barrier has been intensively study in homogeneous
medium [22, 23, 24, 25] and few authors have analyzed
the effect of wind on barrier efficiency [26, 17, 27].

In some cases, the reflected wave has to be considered,
for example when the source (or the receiver) is located
between two vertical barriers. For such configurations,
multiple reflections phenomenon appears whose acoustic
contribution at the receiver is not negligible. The classical
PE cannot be applied anymore due to the fact that it ig-
nores backscattering and a two-way PE [28, 29] has to be
used.

This paper aims at presenting a new method (call here
GFPE- Kirchhoff) able to integrate backscattering in the
GFPE (Green’s Function Parabolic Equation) method. In
this approach, the global problem (with backscattering)
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is divided in several sub-problems without backscattering.
The reflections on vertical obstacle are considered by us-
ing the source image method and a complementary Kirch-
hoff approximation.

2. The GFPE model

The GFPE was adapted for the atmospheric propagation
by Gilbert [30] and Di [31] at the beginning of the 90s.
This powerful method is used to describe outdoor sound
propagation in inhomogeneous medium. The two dimen-
sional calculation is initialised by an expression of the
acoustic field of a monopole source on a vertical line and
propagated step by step from the source to the receivers.
The ground impedance and the sound speed profile may
vary for each step with a low cost of calculation time. The
great advantage of this method is the step of computation
that may be considerably larger than the wavelength in-
stead of a fraction of a wavelength for classical PE; the
consequence is a significant decrease of computation time.

The GFPE model is based on an elliptic form of the
Helmholtz equation for the harmonic sound pressure p in
(r, z) coordinates,�
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with k(r, z) = ω/c(r, z) the effective wave number, c(r, z)
the effective sound speed and ω the angular frequency. The
pressure is written

p(r, z) =
1√
r
φ(r, z) e jkrr

and the azimutal derivative of the field in the wave equa-
tion is neglected. After several assumptions as far field,
slow variations of the refraction index with distance and
neglecting backscattering, the following one-way equation
can be obtained from equation (1):
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+
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where the operator Q is written
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For a range independent sound speed profile on a step, a
solution of equation (2) is:

φ(r+Δr, z) = e jΔr
√

Qφ(r, z). (4)

After many developments described by Gilbert [30] and
Salomons [32], the field at φ(r+Δr, z) is given by
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Figure 1. GFPE-Kirchhoff method applied to a barrier located
behind the source. The curved rays stand for the meteorologi-
cal effects. c(z) = c!(z) = c0 in homogeneous atmosphere. c(z)
and c!(z) represent respectively the downwind effect and the new
profile for the propagation from the image source to the barrier.

with

Φ(r, z) =
�∞

0
φ(r, z)e−jkz! dz

the Fourier transform of φ and where the wave num-
ber k(r, z) is split into a reference wave number kr at
zero height and δk the small variation with height. β =
kr/Zg represents the surface wave pole in the reflecting
coefficient R(k!). Equation (5) is the product of an ex-
ponential factor e jΔrδk2(z)/(2kr ), contribution of the non-
constant sound speed profile, and of 3 terms Φ(r, k!),
R(k!)Φ(r,−k!) and Φ(r, β) respectively representing the
direct wave, the reflected wave by the ground and the sur-
face wave. Details about the numerical implementation of
equation (5) is discussed in references [32, 33].

3. The GFPE-Kirchhoff approach

The parabolic equation neglects the effects due to back-
ward wave. Even if this assumption is correct in most of
cases, numerous configurations need to be studied with
backscattering. The GFPE-Kirchhoff is a way to solve this
problem.

3.1. Single reflection in homogeneous medium

The method for a single reflection on a vertical obstacle
located behind the source is introduced here (Figure 1). It
will be extended to multiple reflections in section 3.3.

In this approach, backscattering due to sound reflec-
tion on vertical obstacles is considered by using a comple-
mentary Kirchhoff approximation [34, 35]. “Complemen-
tary” means that the principle is the same as in the case of
diffraction by a straight barrier [36] (a series of receivers at
the barrier calculation step has their pressure set to zero)
but with the introduction of an image-source and apply-
ing a complementary Kirchhoff approximation to receiver
position above the barrier.

For such configurations, two calculations have to be
done. First, a “classical” GFPE calculation is performed
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to evaluate the acoustic pressure at the receiver without the
obstacle effect. The second calculation is achieved to de-
termine the part of the acoustic energy reflected by the ob-
stacle back to the receiver. For this, an image-source S ! is
constructed relatively to the barrier vertical plane. Its con-
tribution is calculated with the GFPE. At the barrier step
(r = rbarrier) the complementary Kirchhoff approximation
is applied, i.e. the sound pressure at any calculation point
above the obstacle is set to zero,�

p!(rbarrier, z) = p(rbarrier, z), z < hbarrier,
p!(rbarrier, z) = 0, z ≥ hbarrier,

�
(6)

with hbarrier the height of the vertical obstacle (Figure 1).
As an approximation for an absorbant barrier, the calcu-

lated fields on its surface are multiplied by the plane wave
reflection coefficient Rp = (Zg − 1)/(Zg + 1) determined
from the material impedance Zg ,�

p!(rbarrier, z) = Rp · p(rbarrier, z), z < hbarrier,
p!(rbarrier, z) = 0, z ≥ hbarrier,

�
(7)

and then propagated to the receiver.
At last, the total pressure ptotal at the receiver is the sum

of pS , the direct field above ground calculation, and pS ! ,
the field due to the image-source S ! (Figure 1).

3.2. Single reflection in inhomogeneous medium

In outdoor acoustics, variations of sound speed profiles are
mainly due to temperature and wind fluctuations. In two
dimensions, the sound speed profile c(z) is given by

c(z) = cT (z) + cw (z), (8)

where

cT (z) =

,
cp

cv
RgazTv , cw (z) = w(z). (9)

In equation (9), cT is the contribution of the temperature,
cp the specific heat capacity at constant pressure, cv the
specific heat capacity at constant volume, Rgaz the specific
gaz constant in dry air and Tv the virtual temperature. cw is
the wind contribution where �v(r, z) is a vector representa-
tive of the wind flow and w(z) the wind component in the
direction of the sound propagation.

The way to introduce meteorological effects in the
GFPE-Kirchhoff depends if inhomogeneities are due to
temperature gradient or to wind speed variation. These two
phenomena have to be studied separately.

The wind profile can be represented by series of height
dependant vectors. Its contribution depends on the propa-
gation direction. Thus, a new sound speed profile c! has to
be built for the propagation from the image source S ! to
the obstacle (Figure 1),

c!(z) = c0 − w(z). (10)

The temperature profile is represented by a scalar. Sound
speed gradient is identical independently to propagation
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Figure 2. Different paths of propagation with two parallel barriers
at the order 2 of reflection.

direction of the acoustics waves. Sound speed profile
c!(r, z) is written

c!(z) = c(z) =

,
cp

cv
RgazTv. (11)

For a sound speed profile due to vertical temperature and
wind gradients, the new speed c!(z) to be used in the
GFPE-Kirchhoff method is given by

c!(z) = cT (z) − cw (z) =

,
cp

cv
RgazTv − w(z). (12)

3.3. Multiple reflections in homogeneous medium

Backscattering due to a vertical obstacle located behind
the source has been studied in homogeneous and in in-
homogeneous media with the GFPE-Kirchhoff method in
sections 3.1 and 3.2, respectively. In the present section,
the method is extended to a source located between two
parallel vertical obstacles. For such a configuration multi-
ple reflections occur and have to be taken into account.

To introduce the multiple reflections, a set of image-
sources is built for each path of propagation (Figure 2).
The pressure at the receiver is the sum of each image-
sources contribution. The principle of the GFPE-Kirchhoff
at the order 2 (maximum of two successive reflections on
obstacles) is presented Figure 3. In this case, two image-
sources S ! and S !! are built. Contribution of the source
S is achieved by a classical GFPE calculation with one
diffraction on barrier H1 (Figure 3a). The second calcula-
tion from the image-source S ! corresponds to the path with
only one reflection on the obstacle. S ! is constructed rela-
tively to barrier vertical plane H2. Its acoustic field is cal-
culated with a complementary Kirchhoff approach at bar-
rier H1 and a diffraction at barrier H2 (Figure 3b). The
same principle is applied to the source S !!, image of S rel-
atively to the obstacle H !

1 (symmetrical to H1). S !! repre-
sents the acoustic path with two reflections on obstacles
and one diffraction. Its contribution to the pressure at the
receiver is obtained after the use of two complementary
Kirchhoff approaches and one diffraction (Figure 3c).
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Figure 3. Principle of calculation with two parallel barriers at the
order 2 of reflection. In inhomogeneous medium, the curved rays
represent the meteorological effects.

3.4. Multiple reflections in inhomogeneous medium

The principle of the GFPE-Kirchhoff method in inhomo-
geneous medium is presented Figure 3. The presence of
two parallel obstacles creates different path of propaga-
tion with several reflections. As the direction of propaga-
tion changes after each reflection on a barrier, the sound
speed profile given equation (12) has to be used alterna-
tively with the sound speed profile from the image-sources
to the receiver.

4. Numerical simulations and validations

4.1. Single reflection

4.1.1. Configuration

A realistic road traffic noise configuration with a barrier
and an impedance jump is studied. A source is located at a
height of 0.5 m in the middle of a 14 m wide road consid-
ered as acoustically rigid (air flow resistivity σ1 = ∞). A
3 m high barrier stands on the left side of the road. The ex-
cess attenuation is calculated at a receiver located at 82 m
of the source and a height of 4 m above a grass like ground.
The ground impedance is determined by use of the Delany
and Bazley formulation [37] with an air flow resistivity
σ2 = 180 kPa s/m2 and an infinite thickness (Figure 4).

4.1.2. Reflection on a rigid vertical obstacle in homoge-
neous medium

The barrier used in the configuration described in Fig-
ure 4 is considered as acoustically rigid (air flow resistivity
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Figure 4. Geometry of the barrier case with an impedance jump.
hs = 0.5 m, hr = 4 m, he = 3 m, d1 = 7 m, d2 = 7 m, d3 = 75 m,
σ1 = ∞, σ2 = 180 kPa s/m2.

Figure 5. Excess attenuation vs frequency. Comparison between
BEM, classical GFPE and GFPE-Kirchhoff calculations results
in homogeneous atmosphere for the case described in Figure 4.
σe = ∞.

σe = ∞). Classical GFPE and GFPE-Kirchhoff calcula-
tions results in homogeneous atmosphere are compared to
a reference calculation performed with the BEM (Bound-
ary Element Method [38]). Results are given Figure 5. Dif-
ferences between classical GFPE and BEM calculations
point out the inefficiency of the classical GFPE to study
this configuration. On the other hand, the interferences
amplitudes and localisations are perfectly respected be-
tween BEM and GFPE-Kirchhoff results. Thus, the GFPE-
Kirchhoff method is efficient to add simple reflection and
backscattering effect in GFPE models.

4.1.3. Reflection on an absorbent vertical obstacle in
homogeneous medium

The barrier is now covered by an acoustic absorbent whose
air flow resistivity σe equals 30 kPa s/m2. The compari-
son between GFPE- Kirchhoff with a rigid barrier, BEM
with an absorbent barrier and GFPE-Kirchhoff with an ab-
sorbent barrier are presented in Figure 6. Excess attenua-
tions calculated with BEM and GFPE-Kirchhoff with ab-
sorbent material are very similar for the studied frequency
range. This means that the GFPE-Kirchhoff approach is
fully appropriate to take material impedances into account
in reflections phenomena.

GFPE-Kirchhoff results comparisons between the rigid
barrier case and the absorbent barrier one show no sig-
nificant difference of the excess attenuations at low fre-
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Figure 6. Excess attenuation vs frequency. Comparison between
GFPE-Kirchhoff with a rigid barrier, BEM with an absorbent bar-
rier, GFPE-Kirchhoff with an absorbent barrier calculations re-
sults in homogeneous atmosphere for the case described in Fig-
ure 4. σe = 30 kPa s/m2.

( ) azczc += 0 ( ) 0czc =

Rc = 1/a

Figure 7. Analogy between sound speed profile and curved sur-
face.

quencies, as expected. On the other hand, the absorbent
efficiency increases with frequency and reduces the inter-
ferences amplitudes.

4.1.4. Single reflection on a rigid vertical obstacle in
inhomogeneous medium

The road traffic noise configuration described in Figure 4
is studied with an inhomogeneous medium. The barrier is
considered as acoustically rigid (air flow resistivity σe =
∞). A strong sound speed gradient is chosen to point out
the influence of refraction; the sound speed profile corre-
sponding to a downwind propagation condition writes:

c(z) = c0
�
1 + az

$
, (13)

with the reference sound speed c0 = 340 m/s and the re-
fractive index a = 4.9 · 10−3/m.

Temperature gradient First the sound speed profile
given in equation (13) is supposed to be created by verti-
cal temperature variations only. Such a sound speed profile
presents the advantage to be possibly introduced in BEM
calculation by using the analogy between sound propa-
gation above a flat surface along curved ray paths and
sound propagation above a curved surface along straight
ray paths [39] (Figure 7).

The methodology discussed in section 3.2 for a temper-
ature gradient is applied to the road traffic configuration
described in Figure 4. Figure 8 shows the results obtained

Figure 8. Excess attenuation vs frequency. Comparison between
BEM curved ground and GFPE-Kirchhoff calculations results in
inhomogeneous atmosphere due to a temperature gradient for the
case described in Figure 4. c(z) = c0(1 + az) with c0 = 340 m/s
and a = 0.0049/m.

with GFPE- Kirchhoff approach in the case of inhomoge-
neous atmosphere compared to BEM in homogeneous at-
mosphere with an equivalent curved ground (ray of curva-
ture Rc = 1/a = 1/(4.9 · 10−3) = 5.20 m). The agreement
between the two methods is very good. Minimum excess
attenuation levels of the GFPE-Kirchhoff results appear at
the same frequency as in BEM results and levels are well
estimated.

Wind speed gradient The sound speed profile given in
equation (13) is now supposed to be created by vertical
wind speed variations only. The methodology discussed
in section 3.2 for a wind speed gradient is applied to the
road traffic configuration described in Figure 4. Thus, a
new sound speed profile c!, symmetrical about c relatively
to the reference sound speed c0 is used for propagation
from image-source S ! to the barrier, and writes

c!(z) = c0
�
1 − az

$
, (14)

GFPE-Kirchhoff results for a sound speed profile due to
wind speed variations are compared in Figure 9 to GFPE-
Kirchhoff results for a sound speed profile due to a temper-
ature gradient. Up to 500 Hz, the effect of introducing an
upward symmetrical sound speed profile c! (instead of c),
for the propagation between S ! and the barrier, is small.
This effect increases with frequency and becomes espe-
cially sensible between 700 Hz and 1900 Hz where the ex-
cess attenuations difference can reach about 10 dB.

The large value of the refractive index is used to high-
light the modelling of meteorological effect in the formu-
lations. A simulation using a more realistic value (a =
6·10−3/m) is shown in Figure 10 to give a proper indication
of wind gradient effects in real life. GFPE-Kirchhoff re-
sults in inhomogeneous conditions are compared to GFPE-
Kirchhoff results in homogeneous atmosphere. Ampli-
tudes and locations of interferences between the two re-
sults are rather different due to the wind gradient effect.
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Figure 9. Excess attenuation vs frequency. Comparison between
GFPE-Kirchhoff calculations results in inhomogeneous atmo-
sphere due to temperature gradient and GFPE-Kirchhoff calcula-
tions results in inhomogeneous atmosphere due to a wind speed
gradient for the case described in Figure 4. c(z) = c0(1+az) with
c0 = 340 m/s and a = 0.0049/m.

Figure 10. Excess attenuation vs frequency. Comparison be-
tween GFPE-Kirchhoff calculations results in homogeneous at-
mosphere and GFPE-Kirchhoff calculations results in inhomo-
geneous atmosphere due to a wind speed gradient for the case
described in Figure 4. c(z) = c0(1 + az) with c0 = 340 m/s and
a = 0.006/m.

This leads to a difference about 2 dB in A-weighted global
excess attenuation between homogeneous and inhomoge-
neous conditions for an emission spectrum of a normalized
traffic noise [40].

4.2. Multiple reflections

4.2.1. Configuration

A road configuration with vertical rigid barriers on both
sides is studied (Figure 11). A source is located at a height
of 0.5 m in the middle of a 14 m wide road considered
acoustically rigid (air flow resistivity σ1 = ∞). Rigid 3 m
high barriers (air flow resistivity σe = ∞) are on each side
of the road. The excess attenuation is calculated at a 4 m
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Figure 11. Geometry of road configuration with two barriers.
hs = 0.5 m, hr = 4 m, he = 3 m, d1 = 14 m, d2 = 75 m, d3 = 7 m,
σ1 = ∞, σ2 = 180 kPa s/m2.

high receiver located at 82 m of the source above a grass
like ground. The ground impedance is determined by use
of the Delany and Bazley formulation [37] with an air flow
resistivity σ2 = 180 kPa s/m2 and an infinite thickness.

4.2.2. Multiple reflections on rigid vertical obstacles in
homogeneous medium

The Configuration described in Figure 11 is studied in ho-
mogeneous medium. The GFPE-Kirchhoff approach pre-
sented in section 3.3 is used to compute multiple reflec-
tions calculations. Comparison between BEM and GFPE-
Kirchhoff are presented in Figure 12 for 1st order (one re-
flection), 6th order (6 reflections), 15th order (15 reflec-
tions) and 25th order (25 reflections) of reflections.

Results show the importance of increasing the reflec-
tion order when frequency increases. Even if a 6th order
of reflection calculation is efficient for frequencies under
800 Hz, the 25th order is required for calculation up to
5000 Hz. Moreover, on a Pentium III 700 MHz, calcula-
tion time to get 25th order results is only 25% higher than
for 6th order calculations. The 24 Hz frequency interval
which separates two interferences is well correlated with
distance between the two barriers,

c0/d1 = 340/14 ≈ 24 Hz. (15)

4.2.3. Multiple reflections on absorbent vertical obsta-
cles in homogeneous medium

The same configuration described below is now studied
with two impedant vertical barriers whose air flow resistiv-
ity σe equals 30 kPa s/m2. Comparison between BEM and
GFPE-Kirchhoff are presented in Figure 13 for 1st order
(one reflection), 6th order (6 reflections), 15th order (15
reflections) and 25th order (25 reflections) of reflections.

The energy reflected by the barrier is reduced due
to the absorbing layers. Thus less number of reflections
is required to achieve a good accuracy between GFPE-
Kirchhoff and BEM results. In this case, the solution given
by GFPE-Kirchhoff for the 6th order of reflections fits
quite well with the BEM for all the frequency range, in-
stead of the case of rigid barriers which need a 25th order
of reflection.

4.2.4. Multiple reflections on rigid vertical obstacles in
inhomogeneous medium

Multiple reflections principle in inhomogeneous atmo-
sphere presented in section 3.4 is applied to the config-
uration described in Figure 11. The sound speed profile
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Figure 12. Excess attenuation vs
frequency. Comparison between
BEM and GFPE-Kirchhoff cal-
culations results in homogeneous
atmosphere with two rigid barrier
(σe = ∞) for the case described
in Figure 11 for the 1st order, 6th
order, 15th order and 25th order
of reflection.

Figure 13. Excess attenuation vs
frequency. Comparison between
BEM and GFPE-Kirchhoff cal-
culations results in homogeneous
atmosphere with two absorbent
barriers (σ3 = 30 kPa s/m2) for
the case described in Figure 11
for the 1st order, 6th order, 15th
order and 25th order of reflection.

given by equation (13) is used. It is supposed to be created
by vertical wind speed variation only. Because of the pres-
ence of the two barriers, multiple propagation path lead to
use a new sound speed profile c!, symmetrical about c rel-
atively to reference sound speed c0 (equation 14). Thus,
for each reflection on one of the two barriers, the image
source method requires to apply c and c! alternatively.

Calculations are performed up to the 25th order of re-
flections. Results given by GFPE-Kirchhoff calculations
in inhomogeneous medium are compared with GFPE-
Kirchhoff in homogeneous atmosphere (Figure 14). The
results point out the importance of the meteorological ef-
fects. For a typical traffic noise spectrum at emission [41],
the difference in A-weighted sound levels calculated in ho-
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Figure 14. Excess attenuation vs frequency. Comparison be-
tween GFPE-Kirchhoff calculations results in homogeneous at-
mosphere and GFPE-Kirchhoff calculations results in inhomoge-
neous atmosphere for the case described in Figure 11.

mogeneous and downward conditions is about 6 dB. Even
if a strong sound speed profile has been chosen to point
out the meteorological effect, it is interesting to note the
decrease of the barrier efficiency in downward conditions.

5. Conclusion

The principle of the GFPE-Kirchhoff method and its ap-
plications to realistic traffic noise configurations has been
presented. The results for three different studied configu-
rations show that the complementary Kirchhoff approach
is efficient for backscattering integration in the GFPE
method. More precisely, the comparison of numerical re-
sults with BEM calculations shows that the method is
well adapted to solve multiple reflections problems on
vertical obstacles and allows to deal with impedant or
rigid surfaces both in homogenous or inhomogeneous me-
dia. This approach could be easily extended to other PE
models such as the SPPE [42] (Split-step Padé Parabolic
Equation) and the SFPE [43] (Split-step Fourier Parabolic
Equation). Works are in progress in order to investigate
more complex range dependant wind speed profiles.
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