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Abstract. We extend the results on minimal stabilization of Burman and
Stamm (”Minimal stabilization of discontinuous Galerkin finite element meth-

ods for hyperbolic problems”, J. Sci. Comp., DOI: 10.1007/s10915-007-9149-5)
to the case of the local discontinuous Galerkin methods on mixed form. The
penalization term on the faces is relaxed to act only on a part of the polyno-
mial spectrum. Stability in the form of a discrete inf-sup condition is proved
and optimal convergence follows. Some numerical examples using high order
approximation spaces illustrates the theory.

Local discontinuous Galerkin h-FEM, Interior penalty, Diffusion equation.

1. Introduction

Discontinuous Galerkin methods for scalar elliptic problems date back to the pi-
oneering work of Douglas and Dupont (1976) [10], Baker (1977) [3], Wheeler (1978)
[18] and Arnold (1982) [1]. Later the discontinuous Galerkin method was applied
to the case of elliptic problems written as first order system by Bassi and Rebay
(1997) [4] and the local discontinuous Galerkin (LDG-) method was proposed by
Cockburn and Shu (1998) [9]. An essential point of a DG-method is that con-
tinuity is not imposed by the space and therefore some stabilizing mechanism is
needed to impose continuity weakly. A number of approaches have been proposed.
For a unified framework for discontinuous Galerkin methods for elliptic problems
and a discussion of stabilization mechanism involved see the papers of Arnold and
coworkers [2]. In the high order framework both the first order scalar hyperbolic
problem and the diffusion equation was analysed by Houston and co-workers [13].
Finally the case of elliptic equations on mixed form and hyperbolic equations was
given a unified treatment in the framework of Friedrich systems in the papers by
Ern and Guermond [11], [12].

Recently it has been discussed how much the methods for elliptic problems on
mixed form really need to be stabilized. Indeed most of the above mentioned
references considered sufficient stabilization to obtain stability, however in many
cases this is not necessary. There may be many reasons to try to diminish the
amount of stabilization added. The computation of stabilization terms is costly and
the added stability may perturb the local conservation properties of the scheme.
Another reason for the numerical analysist is simple curiosity: what are the most
basic stability mechanisms of DG-methods.

It was noticed in the paper by Sherwin and coworkers [17] that for certain con-
figurations the discontinuous Galerkin method was stable in the sense that the
discrete solution exists even with any stabilization. This phenomenon was also ob-
served and given a detailed analysis by Marazzina in [14]. It was shown that it is
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enough to stabilise the solution on one boundary face. The convergence analysis
however was restricted to the case of structured meshes. The ideas of minimal
stabilization was then applied to the case of first order scalar hyperbolic problems
by Burman and Stamm in the case of high order approximation [8]. In this work
it was shown that it is enough to penalise the upper two thirds of the polynomial
spectrum in order to obtain stability and optimal order graph-norm convergence.
As a particular case stabilization of the tangential part of the gradient jump was
advocated. The relaxation of the penalty allowed for a local mass conservation
property that was independent of the penalty parameter. The same authors then
made a detailed analysis of the scalar second order elliptic equation for the case of
affine approximation [7]. It was shown in two or three space dimensions that both
for the symmetric and the non symmetric formulation a boundary penalty term
is sufficient to assure stability. Optimal convergence however requires either that
the mesh satisfies a certain macro element property or that the space is enriched
with non-conforming quadratic bubbles. If these conditions are not met a checker-
board mode can appear that destroys convergence when the mesh is irregular or
the data rough. In one space dimension a complete characterization of the stability
properties for the symmetric DG-method for scalar elliptic problems was given by
Burman and co-workers in [6].

In this note we will revisit the results of [8] and show how the analysis can be
extended to the case of the local discontinuous Galerkin method for elliptic problems
on mixed form on triangular meshes. Although we add stabilization on all faces it
only affects a part of the polynomial spectrum. Since full control of the solution
jumps is recovered by an inf-sup argument the method has optimal convergence
order. This way the local conservation property of the scheme is independent of
the penalty parameter.

2. Technical Results

2.1. Definitions. Let K be a subdivision of Ω ⊂ R
2 into non-overlapping triangles.

For an element κ ∈ K, hκ denotes its diameter and set h = maxκ∈K hκ. Assume
that (i) K covers Ω exactly, (ii) K does not contain any hanging nodes, and (iii) K
is locally quasi-uniform in the sense that there exists a constant ρ > 0, independent
of h, such that ρhκ ≤ minκ′∈N (κ) hκ′ , where N (κ) denotes the set of elements
sharing at least one node with κ. Suppose that each κ ∈ K is an affine image of
the reference element κ̂. Let Fi denote the set of interior faces (1-manifolds) of the
mesh, i.e., the set of faces that are not included in the boundary ∂Ω. The sets Fe

denote the faces that are included in ∂Ω and denote F = Fi ∪ Fe. For F ∈ F , hF

denotes its diameter. Let us denote h̃ the function defined such that h̃|◦
κ

= hκ for

all κ ∈ K and such that h̃| ◦
F

= hF for all F ∈ F .

For a subset R ⊂ Ω or R ⊂ F , (·, ·)R denotes the L2(R)–scalar product, ‖ · ‖R =

(·, ·)
1/2
R the corresponding norm, and ‖·‖s,R the Hs(R)–norm. For s ≥ 1, let Hs(K)

be the space of piecewise Sobolev Hs–functions and denote its norm by ‖ · ‖s,K.
For v ∈ H1(K), τ ∈ [H1(K)]2 and an interior face F = κ1 ∩ κ2 ∈ Fi, where κ1

and κ2 are two distinct elements of K with respective outer normals n1 and n2,
the jump is defined by

[v] = v|κ1
n1 + v|κ2

n2, [τ ] = τ |κ1
· n1 + τ , |κ2

· n2
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and the average by

{v} = 1
2 (v|κ1

+ v|κ2
) , {τ} = 1

2 (τ |κ1
+ τ |κ2

) .

On outer faces F = ∂κ ∩ ∂Ω ∈ Fe with outer normal n, the jump and the average
are defined as [v] = v|κn and {v} = v|κ, resp. [τ ] = τ |κ · n and {τ} = τ |κ.

Further let nF be an arbitray but fixed normal on F ∈ F and define [v]n =
[v] · nF .

2.2. Finite element spaces. Let p, λ ≥ 0 be two arbitrary integers and let κ be
an arbitrary element of the mesh K. Further let Pp(κ) be the space of polynomials
of total degree p on κ and introduce the global discontinuous finite element space

(1) V p
h = { vh ∈ L2(Ω); vh|κ ∈ Pp(κ), ∀κ ∈ K }.

Define the following polynomial space on ∂κ:

Pλ(∂κ) = {v ∈ L2(∂κ) : v|F ∈ Pλ(F ), ∀F ∈ F(∂κ)},

where Pλ(F ) is the usual one dimensional polynomial space of total degree λ on
F and F(∂κ) denotes the set of all faces of κ. Observe that there is no continuity
required at the vertices of κ. On a global level we define

(2) Wλ
h = {v ∈ L2(F) : v|F ∈ Pλ(F ), ∀F ∈ F }.

Let us further present some known results.

Lemma 2.1 (Trace inequality). Let τh ∈ [V p
h ]m, m ≥ 1, then there exists a con-

stant cT > 0, independent of the mesh size h, such that

‖{τh}‖2
F + ‖[τh]‖2

F ≤ cT ‖h̃− 1

2 τh‖
2
Ω.

On the other hand if τ ∈ [H1(K)]m, then there exists a constant cT > 0, indepen-

dent of the mesh size h, such that

‖{τ}‖2
F + ‖[τ ]‖2

F ≤ cT

(
‖h̃− 1

2 τ‖2
Ω + |h̃

1

2 τ |21,K

)
.

Lemma 2.2 (Inverse inequality). Let vh ∈ V p
h , then there exists a constant c > 0,

independent of the mesh size h, such that

‖∇vh‖
2
Ω ≤ c ‖h̃−1vh‖

2
Ω.

2.3. Projections. Let V1(κ̂), V2(κ̂) ⊂ Pp(κ̂), and V3(∂κ̂) ⊂ Pp(∂κ̂). Then, we
address the questions for which spaces V1(κ̂), V2(κ̂), V3(∂κ̂) the following projection
exists: Let v ∈ L2(∂κ̂) given, then find π ∈ [V1(κ̂)]2 such that

∫

bκ

π · ∇wh = 0 ∀wh ∈ V2(κ̂),(3)

∫

∂bκ

π · nzh =

∫

∂bκ

vzh ∀zh ∈ V3(∂κ̂).(4)

Let us remark that the global variants of V1(κ̂), V2(κ̂) will be the spaces in which
we will seek for approximations of the flux respectively the primal variable whereas
V3(∂κ̂) defines the part of the spectrum of the jump which may be omitted in the
stabilization. Thus, we would like to chose V1(κ̂) = V2(κ̂) = Pp(κ̂) in order to
ensure full approximability of both variables and have V3(∂κ̂) as rich as possible to
reduce the stabilization to a minimum. Let us discuss several cases:
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• V1(κ̂) = V2(κ̂) = Pp(κ̂) and V3(∂κ̂) = Pλ(∂κ̂): In [8] the theoretical bound

for λ of 0 ≤ λ ≤ ⌊p+1
3 ⌋ − 1 for p ≥ 2 has been showed for a scalar projec-

tion. It can be further generalized to a vectorial projection by considering
componentwise the scalar projection. However this approach may be sub-
optimal since in the vectorial case only the normal component of π in (3)
has to be imposed. Indeed, computations on the reference element κ̂ show

that the projection is well defined for 0 ≤ λ ≤ ⌊ 2(p+1)
3 ⌋ − 1 and p ≥ 1,

see Appendix. Thus only the upper third of the polynomial spectrum of
the jump has to be stabilized to get optimal convergence for the flux and
primal variable.

• V1(κ̂) = Pp(κ̂), V2(κ̂) = Pp−1(κ̂) and V3(∂κ̂) = Pp(∂κ̂): In this case no
stabilization is necessary, but optimal convergence for the primary variable
can not be achieved. The existence of the projection in this case is assured
by the fact that the BDM-space (Brezzi-Douglas-Marini, [5]) is included in
[V1(κ̂)]2.

Let V1, V2 ⊂ V p
h and V3 ⊂ W p

h be the global versions of V1(κ̂), V2(κ̂) and V3(∂κ̂),
i.e.,

Vi = {vh ∈ L2(Ω) : vh|κ ∈ Vi(κ), ∀κ ∈ K} i = 1, 2,

V3 = {vh ∈ L2(F) : vh|∂κ ∈ V3(∂κ), ∀κ ∈ K }.

Proposition 2.1 (Global projection). Let v ∈ L2(F), then there exists a projection

Πh(v) ∈ [V1]
2 such that

∫

Ω

Πh(v) · ∇wh = 0 ∀wh ∈ V2,(5)

∫

F

({Πh(v)} · nF − v)zh = 0 ∀ zh ∈ V3.(6)

In addition, the projection satisfies the following stability properties

(7) ‖{Πh(v)}‖2
F + ‖[Πh(v)]‖2

F ≤ c ‖v‖2
F ,

where c > 0 is a constant independent of the mesh size h.

Remark 2.3. The stability result follows directly from the local construction of the
projection and from the equivalence of discrete norms on the reference triangle. We
do not address the stability with respect to the polynomial degee p.

Remark 2.4. Another approach consists in directly considering the global projec-
tions without constructing the projection locally. This approach can allow a further
reduction of the stabilization but goes beyond of the scope of this paper. For details
of this approach for second order elliptic problems on scalar form see [7] and [6].

Corollary 2.5 (Inverse trace inequality). If vh ∈ W p
h is single valued on each face,

then there exists a constant c > 0, independent of the mesh size h, such that

‖Πh(vh)‖2
Ω ≤ c ‖h̃

1

2 vh‖
2
F .

3. The discontinuous finite element method

We consider the following diffusion equation with Dirichlet boundary conditions:
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Find u : Ω → R such that

(8)

{
−∇·(ε∇u) = f in Ω,

u|∂Ω
= g on ∂Ω,

with ε > 0, f ∈ L2(Ω) and g ∈ L2(∂Ω). Problem (8) is equivalent to the following
system of first order differential equations:

Find u : Ω → R and σ : Ω → R
d such that

(9)






σ − ε
1

2∇u = 0 in Ω,

−∇·(ε
1

2 σ) = f in Ω,

u|∂Ω
= g on ∂Ω.

Define by P : L2(F) → V3 the L2-projection onto V3 satisfying

(10) ‖Pv‖2
F ≤ cp‖v‖

2
F and ‖(I − P )v‖2

F ≤ cp‖v‖
2
F ,

where cp > 0 is a constant independent of h. Then, define the bilinear forms

a(τh, vh) = (τh,∇vh)Ω − ({τh}, [vh])F ,

j(vh, wh) = γ(h̃−1ε (I − P )[vh]n, (I − P )[wh]n)F ,

for all τh ∈ [V1]
2, vh, wh ∈ V2 and where γ is a stabilisation parameter.

Let us define the discontinuous finite element space Vh = [V1]
2 × V2 being a

discrete subspace of V = [H1(K)]2 × H1(K). Then, the discrete problem consists
of seeking (σh, uh) ∈ Vh such that

(11) A(σh, uh; τh, vh) = F (τh, vh) ∀ (τh, vh) ∈ Vh,

where

A(τh, vh; ρh, wh) = (τh, ρh)Ω − a(ε
1

2 ρh, vh) + a(ε
1

2 τh, wh) + j(vh, wh),

F (τh, vh) = (f, vh)Ω + (τh, ε
1

2 gn)Fe
+ γ(h̃−1ε (I − P )g, (I − P )vh)Fe

.

Remark 3.1. Observe that if W 0
h ⊂ V3, then the above defined flux variable sat-

isfies the following local mass conservation property, which is independent of the
stabilization parameter and the primal variable uh,

∫

∂κ

{σh} · nκ ds =

∫

κ

f dx

for all interior elements κ and where nκ denote the exterior normal vector of κ.

Remark 3.2. If Wλ
h ⊂ V3 with λ ≥ 0 and using the Bramble-Hilbert lemma one

easily shows that the (I − P ) operator may be replaced by a differential operator
of order λ + 1 in the tangential directions of the face. In particular if λ = 0 we get

‖h̃− 1

2 ε
1

2 (I − P )[vh]n‖F ≤ ‖h̃
1

2 ε
1

2 [∇vh]t‖F ,

where here [∇v]t = ∇v|κ1
×n1 +∇v|κ2

×n2 is the tangential jump of the gradient.
It follows that an equivalent stabilization term is obtained penalizing the jumps of
certain derivatives, leading to a term that is no more complicated or expensive to
compute that in the standard case. The following analysis holds in this case also
with minor modifications.

Lemma 3.3. Let (τ , v) ∈ V , then

a(τ , v) = −(∇·τ , v)Ω + ([τ ], {v})Fi
.
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Proof. Straight forward by integration by parts. �

Lemma 3.4 (Coercivity). Let (τh, vh) ∈ Vh, then there exists a constant cL > 0
such that

cL A(τh, vh; τh, vh) ≥ ‖τh‖
2
Ω + ‖h̃− 1

2 ε
1

2 (I − P )[vh]n‖
2
F .

Proof. The definition of the bilinear form A(·; ·) yields

A(τh, vh; τh, vh) = ‖τh‖
2
Ω + γ‖h̃− 1

2 ε
1

2 (I − P )[vh]n‖
2
F ,

then taking cL = 1/ min(1, γ) completes the proof. �

Lemma 3.5 (Consistency). Let u ∈ H1(Ω) be the exact solution of problem (8)
and let (σh, uh) be the solution of (11), then

A(ε
1

2∇u − σh, u − uh; τh, vh) = 0

for all (τh, vh) ∈ Vh.

Proof. Since (σh, uh) is the discrete solution it satisfies

A(σh, uh; τh, vh) = F (τh, vh) ∀(τh, vh) ∈ Vh.

On the other hand since u ∈ H1(Ω) we have [u]|F = 0 and [u]n|F = 0 ∀F ∈ Fi.
Additionally applying Lemma 3.3 yields

A(ε
1

2∇u, u; τh, vh)

= (ε
1

2∇u, τh)Ω − (ε
1

2 τh,∇u)Ω + ({ε
1

2 τh}, [u])F + a(ε∇u, vh) + j(u, vh)

= (−∇·(ε∇u), vh)Ω + ({τh}, [ε
1

2 u])Fe
+ γ(h̃−1ε(I − P )[u]n, (I − P )[vh]n)Fe

= (f, vh)Ω + (τh, ε
1

2 gn)Fe
+ γ(h̃−1ε (I − P )g, (I − P )vh)Fe

.

Finally we conclude

A(ε
1

2∇u, u; τh, vh) = F (τh, vh).

�

4. Convergence Analysis

We denote by c a generic strictly positive constant independent of the mesh size
h that might change at each occurence whereas constants with an index stay fixed.
Further the following triple norm is defined for all (τ , v) ∈ V by

|‖τ , v‖|2 = ‖τ‖2
Ω + ‖ε

1

2∇v‖2
Ω + ‖h̃− 1

2 ε
1

2 [v]‖2
F .

Proposition 4.1 (Inf-Sup Condition). Assume that the spaces V1, V2 and V3 are

chosen such that the projection defined by Proposition 2.1 exists. Then, there exists

a constant c > 0, independent of the mesh size h, such that

c |‖τh, vh‖| ≤ sup
(τ ′

h
,v′

h
)∈V

p

h

A(τh, vh; τ ′
h, v′h)

|‖τ ′
h, v′h‖|

∀(τh, vh) ∈ Vh

Proof. The proof consists of two lemmas, Lemma 4.1 and 4.2.

Lemma 4.1. For all (τh, vh) ∈ Vh there exists (τ ′
h, v′h) ∈ Vh and a constant c > 0

independent of the mesh size h such that

c |‖τh, vh‖|
2 ≤ A(τh, vh; τ ′

h, v′h).
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Lemma 4.2. Fix (τh, vh) ∈ Vh and let (τ ′
h, v′h) ∈ Vh be the functions defined in

Lemma 4.1, then there exists a constant c > 0 independent of the mesh size h such

that

|‖τ ′
h, v′h‖| ≤ c |‖τh, vh‖|.

Combining these two lemmas leads to the result. Indeed for all (τh, vh) ∈ Vh

there exists (τ ′
h, v′h) ∈ Vh and c > 0 such that

A(τh, vh; τ ′
h, v′h) ≥ c |‖τh, vh‖|

2 ≥ c |‖τh, vh‖| |‖τ
′
h, v′h‖|.

�

Proof of Lemma 4.1. First fix (τh, vh) ∈ Vh and define the vector functions ρh ∈
[V2]

2 and wh ∈ [V1]
2 by

ρh = −ε
1

2∇vh and wh = h̃−1ε
1

2 Πh(P [vh]n)

where the projection Πh is defined by Proposition 2.1. We proceed in three steps.
Step 1:

In the first step we show that there exists a constant cρ > 0 such that

‖ε
1

2∇vh‖
2
Ω ≤ A(τh, vh; 2ρh + cρτh, cρvh) + cρ ‖h̃

− 1

2 ε
1

2 P [vh]n‖
2
F .

The definition of the bilinear form A(·, ·) yields

‖ε
1

2∇vh‖
2
Ω = A(τh, vh; ρh, 0) + (τh, ε∇vh)Ω + ({ε∇vh}, [vh])F

= A(τh, vh; ρh, 0) + I1 + I2.

Then using Young’s inequality leads to

(12) I1 ≤ c ‖τh‖
2
Ω + 1

4‖ε
1

2∇vh‖
2
Ω.

On the other side, using additionally the trace inequality, Lemma 2.1, yields

(13) I2 ≤ c ‖h̃− 1

2 ε
1

2 [vh]‖
2
F + 1

4‖ε
1

2∇vh‖
2
Ω.

Thus combining (12) and (13) and using coercivity, Lemma 3.4, yields

1
2‖ε

1

2∇vh‖
2
Ω ≤ A(τh, vh; ρh, 0) + c

(
‖τh‖

2
Ω + ‖h̃− 1

2 ε
1

2 [vh]n‖
2
F

)

≤ A(τh, vh; ρh, 0) + c
(
A(τh, vh; τh, vh) + ‖h̃− 1

2 ε
1

2 P [vh]n‖
2
F

)

and therefore exists a constant cρ > 0 such that

‖ε
1

2∇vh‖
2
Ω ≤ A(τh, vh; 2ρh + cρτh, cρvh) + cρ ‖h̃

− 1

2 ε
1

2 P [vh]n‖
2
F .

Step 2:
In the second step we show that there exists a constant cw > 0 such that

‖h̃− 1

2 ε
1

2 P [vh]n‖
2
F ≤ A(τh, vh; 2wh + cwτh, cwvh).

Firstly observe that by the definitions of the bilinear form A(·, ·) and of the projec-
tion Πh we have

A(τh, vh; wh, 0) = (τh, wh)Ω − (ε
1

2 wh,∇vh) + ({ε
1

2 wh}, [vh])F

= (τh, wh)Ω + ({ε
1

2 wh} · nF , [vh]n)F

since vh ∈ V2. Secondly, again by the definition of the projection Πh we may write

({ε
1

2 wh} · nF , [vh]n)F = ‖h̃− 1

2 ε
1

2 P [vh]n‖
2
F + ({ε

1

2 wh} · nF , (I − P )[vh]n)F .
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Therefore we have

‖h̃− 1

2 ε
1

2 P [vh]n‖
2
F = A(τh, vh; wh, 0) − (τh, wh)Ω − ({ε

1

2 wh} · nF , (I − P )[vh]n)F

= A(τh, vh; wh, 0) − I1 − I2.

Using Young’s inequality and the inverse trace inequality, Corollary 2.5, leads to

(14) |I1| ≤ c ‖τh‖
2
Ω + 1

4‖h̃
− 1

2 ε
1

2 P [vh]n‖
2
F .

On the other hand applying Young’s inequality and the stability property of the
projection Πh, (7), yields

(15) |I2| ≤ c ‖h̃− 1

2 ε
1

2 (I − P )[vh]n‖
2
F + 1

4‖h̃
− 1

2 ε
1

2 P [vh]n‖
2
F .

Thus, combining (14) and (15) and using coercivity, Lemma 3.4, yields

‖h̃− 1

2 ε
1

2 P [vh]n‖
2
F ≤ A(τh, vh; 2wh + cwτh, cwvh).

Step 3:
Now it only remains to combine coercivity and the results of Step 1 and Step

2:

|‖τh, vh‖|
2 = ‖τh‖

2
Ω + ‖ε

1

2∇vh‖
2
Ω + ‖h̃− 1

2 ε
1

2 [vh]n‖
2
F

≤ A(τh, vh; cLτh, cLvh) + ‖ε
1

2∇vh‖
2
Ω + ‖h̃− 1

2 ε
1

2 P [vh]n‖
2
F

≤ A(τh, vh; (cL + cρ)τh + 2ρh, (cL + cρ)vh) + (1 + cρ)‖h̃
− 1

2 ε
1

2 P [vh]n‖
2
F

≤ A(τh, vh; τ ′
h, v′h)

where τ ′
h = (cL + cρ + (1 + cρ)cw)τh + 2ρh + 2(1 + cρ)wh = c1τh + 2ρh + 2c2wh

and v′h = (cL + cρ + (1 + cρ)cw)vh = c1vh. �

Proof of Lemma 4.2. By definition of the triple norm:

|‖τ ′
h, v′h‖|

2 = ‖τ ′
h‖

2
Ω + c2

1 ‖ε
1

2∇vh‖
2
Ω + c2

1 ‖h̃
− 1

2 ε
1

2 [vh]‖
2
F .

For the first term use Corollary 2.5 and (10)

‖τ ′
h‖

2
Ω ≤ c2

1‖τh‖
2
Ω + 4‖ρh‖

2
Ω + 4c2

2‖wh‖
2
Ω

≤ c2
1‖τh‖

2
Ω + 4‖ε

1

2∇vh‖
2
Ω + 4c2

2cIT ‖h̃
− 1

2 ε
1

2 P [vh]n‖
2
F

≤ c2
1‖τh‖

2
Ω + 4‖ε

1

2∇vh‖
2
Ω + 4c2

2cIT cp‖h̃
− 1

2 ε
1

2 [vh]‖
2
F

≤ max(c2
1, 4, 4c2

2cIT cp)|‖τh, vh‖|.

Thus there exists a constant c > 0 such that

|‖τ ′
h, v′h‖| ≤ c |‖τh, vh‖|.

�

Let us denote by πh the piecewise vectorial L2-projection πh : [L2(Ω)]2 → [V1]
2

and by πh its scalar version πh : L2(Ω) → V2 satisfying the following approximation
results

‖πhτ − τ‖k,K ≤ chs1−k|τ |s1,K k = 0, 1(16)

‖πhv − v‖k,K ≤ chs2−k|v|s2,K k = 0, 1(17)



LDG-FEM WITH INTERIOR PENALTY 9

for all τ ∈ [Hr1(K)]2, v ∈ Hr2(K) and with si = min(pi + 1, ri) for some space
specific pi. Further let σ and u denote the exact solution of (9) and let (σh, uh) ∈ Vh

be the solution of (11), then define

(18)
ησ = σ − πh(σ),

ηu = u − πhu,
and

ξσ = σh − πh(σ),

ξu = uh − πhu.

To disburden the continuity proof for the bilinear form A(·, ·; ·, ·) we define a well
scaled auxiliary norm:

|]ησ, ηu[|2 = |‖ησ, ηu‖|
2 + ‖h̃

1

2 {ησ}‖2
F .

Proposition 4.2 (Continuity). Let ησ, ηu, ξσ and ξu be defined by (18). Then

A(ησ, ηu; ξσ, ξu) ≤ |]ησ, ηu[| |‖ξσ, ξu‖|.

Proof. Develop

A(ησ, ηu; ξσ, ξu) = (ησ, ξσ)Ω − a(ε
1

2 ξσ, ηu) + a(ε
1

2 ησ, ξu) + j(ηu, ξu),

and apply the Cauchy-Schwarz inequality for the first term

(ησ, ξσ)Ω ≤ ‖ησ‖Ω ‖ξσ‖Ω ≤ |]ησ, ηu[| |‖ξσ, ξu‖|.

Use the same argument for the last term

j(ηu, ξu) ≤ j(ηu, ηu)
1

2 j(ξu, ξu)
1

2 ≤ c |]ησ, ηu[| |‖ξσ, ξu‖|,

where additionally the stability result (10) is used. For the remaining terms similar
arguments are used. The trace inequality, Lemma 2.1, yields

−a(ε
1

2 ξσ, ηu) = −(ξσ, ε
1

2∇ηu)Ω + ({ξσ}, ε
1

2 [ηu])F

≤ ‖ξσ‖Ω‖ε
1

2∇ηu‖Ω + ‖h̃
1

2 {ξσ}‖F‖h̃
− 1

2 ε
1

2 [ηu]‖F

≤ ‖ξσ‖Ω‖ε
1

2∇ηu‖Ω + c ‖ξσ‖Ω‖h̃
− 1

2 ε
1

2 [ηu]‖F

≤ c |]ησ, ηu[| |‖ξσ, ξu‖|.

In the same manner we develop

a(ε
1

2 ησ, ξu) ≤ c |]ησ, ηu[| |‖ξσ, ξu‖|,

and respecting all bounds yields

A(ησ, ηu; ξσ, ξu) ≤ c |]ησ, ηu[| |‖ξσ, ξu‖|.

�

Proposition 4.3 (Approximability). Let ησ, ηu, ξσ and ξu be defined by (18)
and let V1, V2 such that the approximation results (16), (17) hold for some p1, p2.

Assume that u ∈ Hr(K), then for all 0 ≤ sσ ≤ min(p1 + 1, r − 1) and 0 ≤ su ≤
min(p2 + 1, r):

|‖ησ, ηu‖| ≤ c
(
hsσ |u|sσ+1,K + hsu−1|u|su,K

)
,

|]ησ, ηu[| ≤ c
(
hsσ |u|sσ+1,K + hsu−1|u|su,K

)
.

Proof. Since u ∈ Hr(K) it follows that σ ∈ [Hr−1(K)]2. Using the standard ap-
proximation properties of the L2-projection, (16), (17), yields

‖ησ‖Ω ≤ c hsσ |σ|sσ ,K = c hsσ |u|sσ+1,K,

|ησ|1,K ≤ c hsσ−1|σ|sσ ,K = c hsσ−1|u|sσ+1,K,
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since σ = ε
1

2∇u. In addition,

‖ηu‖Ω ≤ chsu |u|su,K,

|ηu|1,K = ≤ chsu−1|u|su,K.

For the boundary terms, the trace inequality, Lemma 2.1, is applied:

‖h̃− 1

2 [ηu]‖F ≤ c
(
‖h̃−1ηu‖Ω + |ηu|1,K

)
≤ c hsu−1|u|su,K.

In the same manner we develop

‖h̃
1

2 {ησ}‖F ≤ c
(
‖ησ‖Ω + |h̃ησ|1,K

)
≤ c hsσ |u|sσ+1,K.

Recalling the definitions of the triple norm and the auxiliary norm yields

|‖ησ, ηu‖| ≤ c
(
hsσ |u|sσ+1,K + hsu−1|u|su,K

)
,

|]ησ, ηu[| ≤ c
(
hsσ |u|sσ+1,K + hsu−1|u|su,K

)
.

�

Theorem 4.3 (Convergence). Assume that the spaces V1, V2 and V3 are chosen

such that the projection defined by Proposition 2.1 exists and that the approximation

results (16), (17) hold for some p1, p2. Let σ and u denote the exact solution of

(9) and let σh and uh be the solution of (11). Assume that u ∈ Hr(K) ∩ H1(Ω)
with r ≥ 1; then for all 0 ≤ sσ ≤ min(p1 + 1, r − 1) and 0 ≤ su ≤ min(p2 + 1, r)

|‖σ − σh, u − uh‖| ≤ c
(
hsσ |u|sσ+1,K + hsu−1|u|su,K

)

where c > 0 is independent of the mesh size h.

Remark 4.4. If V1 = V2 = V p
h , then choose s = su = sσ + 1. Indeed, observe that

if p + 1 ≥ r, then

min(p + 1, r) = min(p + 1, r − 1) + 1

and thus the largest admissible sσ, su are the choice of s = su = sσ + 1. On the
other hand if p + 1 ≤ r − 1, then

min(p + 1, r) = min(p + 1, r − 1).

Thus 0 ≤ s ≤ min(p + 1, r) implies that 0 ≤ s − 1 ≤ min(p + 1, r − 1). As a
consequence

|‖σ − σh, u − uh‖| ≤ c hs−1|u|s,K

for all 0 ≤ s ≤ min(p + 1, r).

Remark 4.5. Note that in the case of Remark 2.4, i.e. V1 = V p
h , V2 = V p−1

h ,
V3 = W p

h , the convergence of the primal variable is suboptimal for smooth problems.
Indeed if p ≤ r − 2 it follows that su = p and sσ = p + 1. Thus

|‖σ − σh, u − uh‖| ≤ c
(
hp+1|u|p+2,K + hp−1|u|p,K

)
≤ c hp−1.

Proof. Let ησ, ηu, ξσ and ξu be defined by (18). Use the triangle inequality

|‖σ − σh, u − uh‖| ≤ |‖ησ, ηu‖| + |‖ξσ, ξu‖|,

and by Proposition 4.3 the first term is bounded by

(19) |‖ησ, ηu‖| ≤ c
(
hsσ |u|sσ+1,K + hsu−1|u|su,K

)
,



LDG-FEM WITH INTERIOR PENALTY 11

for all 0 ≤ sσ ≤ min(p1 +1, r−1) and 0 ≤ su ≤ min(p2 +1, r). For the second term
use the inf-sup condition, the consistency and the continuity result, Proposition
4.1, Lemma 3.5 and Proposition 4.2,

|‖ξσ, ξu‖| ≤ c sup
(τh,vh)∈V

p

h

A(ξσ , ξu; τh, vh)

|‖τh, vh‖|
= c sup

(τh,vh)∈V
p

h

A(ησ, ηu; τh, vh)

|‖τh, vh‖|

≤ c sup
(τh,vh)∈V

p

h

|]ησ, ηu[| |‖τh, vh‖|

|‖τh, vh‖|
= c |]ησ, ηu[|

≤ c
(
hsσ |u|sσ+1,K + hsu−1|u|su,K

)
.

�

5. Numerical results

In this section we report some basic numerical results for the method with V1 =
V2 = V p

h , V3 = W 0
h and a stabilization term consisting of the jump of the tangential

part of the gradient as presented in Remark 3.2. We compare our method to
the existing local discontinuous Galerkin (LDG-) method for the problem (8) with
smooth solution, i.e. we consider a domain Ω = (0, 1)2 with ε = 1,

f(x, y) = 40

(
1 −

(x − 0.25)2 + (y − 0.25)2

0.1

)
exp

(
−

(x − 0.25)2 + (y − 0.25)2

0.1

)

and corresponding Dirichlet boundary condition such that the solution consists of

u(x, y) = exp

(
−

(x − 0.25)2 + (y − 0.25)2

0.1

)
∈ C∞(Ω̄).

We considerer sequences of unstructured meshes for polynomial degrees p = 1, . . . , 7.
For the computations the C++ library life, a unified C++ implementation of the
finite and spectral element methods in 1D, 2D and 3D, is used, see [15, 16].

Figure 1 shows the behavior of the approximations uh and σh for h-refinement
and fixed polynomial degree p. It shows similar behavior of the solutions of the
here presented method and the LDG method.

Figure 2 shows the behavior of the approximations uh and σh for p-refinement
and fixed mesh size h. Observe the exponential decay of the error for both methods.
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Appendix

The matrix that defines the projection in the case of V1(κ̂) = V2(κ̂) = Pp(κ̂)
and V3(∂κ̂) = Pλ(∂κ̂) has been computed using a Matlab code. In order for the
projection to exist two criterias has to be satisfied. Firstly the number of columns
should be at least the number of lines in order to have more degrees of freedom
than conditions and the rank of the matrix has to be equal to the number of lines
in order to ensure existence of at least one projection. The following table shows
the largest possible λ for each p such that the projection exists, noted as λ⋆:

p 1 2 3 4 5 6 7 8
λ⋆ 0 1 1 2 3 3 4 5

Observe that λ⋆ behaves as ⌊ 2(p+1)
3 ⌋−1. Another approach consists of stabilizing the

lower modes of the polynomial spectrum of the jump which implies that V3(∂κ̂) =
Pp(∂κ̂)\Pλ(∂κ̂). The following table shows the smallest possible λ for each p such
that the projection exists:

p 1 2 3 4 5 6 7 8
λ⋆ 1 2 2 3 3 4 4 5
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Observe that λ⋆ behaves as ⌊p
2⌋ + 1.
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