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ABSTRACT

In this work we present a method to perform a complete au-

diovisual source separation without need of previous information.

This method is based on the assumption that sounds are caused by

moving structures. Thus, an efficient representation of audio and

video sequences allows to build relationships between synchronous

structures on both modalities. A robust clustering algorithm groups

video structures exhibiting strong correlations with the audio so that

sources are counted and located in the image. Using such informa-

tion and exploiting audio-video correlation, the audio sources activ-

ity is determined. Next, spectral Gaussian Mixture Models (GMMs)

are learnt in time slots with only one source active so that it is pos-

sible to separate them in case of an audio mixture. Audio source

separation performances are rigorously evaluated, clearly showing

that the proposed algorithm performs efficiently and robustly.

Index Terms— Audiovisual processing, blind source separa-

tion, sparse signal representation, GMM

1. INTRODUCTION

When looking at an audiovisual sequence, our interest is focused in

the part of the image that moves synchronously with the occurrence

of a sound, since we intuitively feel that this movement has gener-

ated the sound. In this paper, we name audiovisual source this image

segment together with the set of sounds that it has generated. For ex-

ample, here we analyze sequences where two speakers are uttering

numbers. One audiovisual source is thus composed of the image of

one speaker and the sounds that he produces. However, we cannot

associate to this source a part of the image (or soundtrack) belong-

ing to the other speaker. What we want to do here is to detect and

separate these audiovisual sources. Separation of speech sources has

a broad range of applications, from automatic speech/speaker recog-

nition to robotics or indexing and segmentation of multimedia data.

The robust separation of audio-video sources is achieved by com-

pleting four consecutive objectives. First, we want to know how

many audiovisual sources are present in the sequence (one silent per-

son cannot be considered). Second, the visual part of these sources

has to be determined and located in the image. Third, we need to

detect the temporal periods where these audiovisual sources are ac-

tive, i.e. when each person is speaking. Finally, these time slots can

be used to build the source audio models and separate the original

soundtrack when several sources are active at the same time. The

first three objectives are achieved by using the method explained

in [1] and reviewed shortly in Sec. 3. From a purely audio point

of view, this is the part that ensures the blindness of the audio mix-

ture separation, since the number of sources and their activity peri-

ods are the only information needed for the audio separation method

explained in Sec. 3.4.

Few methods exist that exploit audiovisual coherence to separate

stereo audio mixtures [2, 3, 4, 5]. All existing algorithms consider

the problem from an audio source separation point of view, i.e. they

use audio-video synchrony as side information to improve and over-

come limitations of classical Blind Audio Source Separation (BASS)

techniques [6]. We want to stress three important differences be-

tween our approach and existing audiovisual separation methods :

1. State-of-the-art audiovisual separation algorithms exploit stereo

audio signals, using classic BASS techniques helped by visual

information. In contrast the audio signal we consider here comes

from only one microphone;

2. Existing methods simplify the task of associating audio and video

information. Either the audio-video association is given a priori,

i.e. it is known which audio signal corresponds to which video

signal [4, 5], either it is considered the case where one audiovi-

sual source is mixed with an audio-only source [2, 3]. Here, in

contrast, we simultaneously separate audio-video sources build-

ing correlations between acoustic and visual entities;

3. Existing algorithms, except for [4], require off-line training to

build the audiovisual source model. This is mainly due to the fact

that the algorithms in [2, 3, 5] try to map video information into

the audio feature space using techniques similar to lip-reading

(requiring moreover accurate mouth parameters that are difficult

to acquire). Here, in contrast, no training is required.

In Sec. 2 we describe the audio and video features used to represent

both modalities, while Sec. 3 details the Blind Audiovisual Source

Separation (BAVSS) algorithm. In Sec. 4 we present the separation

results obtained on real and synthesized audiovisual clips. Finally,

in Sec. 5 achievements and future research directions are discussed.

2. AUDIO AND VIDEO REPRESENTATIONS

Audio Representation – The audio signal a(t) is decomposed us-

ing the Matching Pursuit algorithm (MP) over a redundant

dictionary of Gabor atoms D(a) [7]. Thus, the signal a(t) is

approximated using K atoms as

a(t) ≈
K−1
X

k=0

ckφ
(a)
k (t) , (1)

where ck are the coefficients for every atom φ
(a)
k (t).

Video Representation – The video signal is represented using the

video MP algorithm adopted in [7]. The sequence is decom-

posed into a set of video atoms representing salient visual

components and their temporal transformations. The video

signal V (x1, x2, t) is approximated using N video atoms φ
(v)
n

as

V (x1, x2, t) ≈
N−1
X

n=0

cn(t)φ
(v)
n (x1, x2, t) , (2)



where cn(t) are the coefficients. The atoms φ
(v)
n are edge-

like functions that are tracked across time. Each function is

represented by a set of parameters describing its shape and

position and that evolve through time [7]. The displacement

of each video atom, dn(t) =
q

t21n
(t) + t22n

(t), is computed

from its position parameters (t1n
(t), t2n

(t)).

3. BLIND AUDIOVISUAL SOURCE SEPARATION (BAVSS)

The BAVSS process is composed of four main steps. First, video

sources are localized using a clustering algorithm that spatially groups

the video structures that are correlated with the audio atoms. Second,

a spatial criterion is used to separate the sources. Third, the cor-

relations between audio and video events are employed to identify

temporal periods with only one active source (audio localization).

Fourth, the sources frequency behavior is learned in time periods

during which sources are active alone in order to separate them in

the mixed periods.

Two main assumptions are made on the type of analyzed se-

quences. First, for each detected video source there is one and only

one associated source in the audio mixture. This means that au-

dio “distractors” in the sequence (e.g. a person speaking out of the

camera’s field of view) are considered as noise and their contribu-

tion to the mixture is associated to the sources found in the video.

Moreover, we consider the video sources approximately static, i.e.

their positions over the image plane do not change too much. This

assumption is less stringent as it can be removed by analyzing the

sequences using shifting time windows.

3.1. Video Source Localization

Correlation scores χk,n are computed between each audio atom φ
(a)
k

and each video atom φ
(v)
n . These scores measure the degree of syn-

chrony between relevant events in both modalities : the presence of

an audio atom (energy in the time-frequency plane) and a peak in the

video atom displacement (oscillation from an equilibrium position).

Audio feature – The feature fk(t) that we consider is the energy

distribution of each audio atom projected over the time axis.

In the case of Gabor atoms it is a Gaussian function whose po-

sition and variance depend on the atoms parameters (Fig.1(a)).

Video feature – An Activation Vector yn(t) [7] is built for each

atom displacement function dn(t) by detecting the peaks lo-

cations as shown in Fig. 1(b). The Activation Vector peaks

are filtered by a window of width W = 13 samples in order

to model delays and uncertainty.

Finally, a scalar product is computed between both features to obtain

the correlation scores, χk,n = 〈fk(t), yn(t)〉, ∀ k, n. This value is

high if the audio feature and the video displacement peak exhibit

a big temporal overlap. Thus, a high correlation score means high

probability for a video structure of having generated the sound.

The idea, now, is to spatially group all the structures belonging

to the same speaker in order to estimate its position on the image.

We define the empirical confidence value κn of the n-th video atom

as the sum of the MP coefficients ck of all the audio atoms associ-

ated with it in the whole sequence, κn =
P

k ck, with k such that

χk,n 6= 0. This value is a measure of the number of audio atoms

related to this video structure and their weight in the MP decompo-

sition of the audio track. Each video atom thus is characterized by

its position over the image plane and by its confidence value, i.e.

((t1n
, t2n

), κn). We group all the video atoms correlated with the

(a) (b)

Fig. 1. Audio feature fk(t) (a) and displacement function dn(t) with

corresponding Activation Vector yn(t) obtained for a video atom (b).

audio signal (i.e. with κn 6= 0) with the clustering algorithm de-

scribed in [1]. The number of sources does not have to be specified

in advance since a confidence measure is introduced to automati-

cally eliminate unreliable clusters. The algorithm is robust and the

localization results do not critically depend on the cluster parameters

choice.

3.2. Video Source Separation

This step classifies all the video atoms closer than the cluster size D

to a centroid into the corresponding source (in previous step only

atoms with κn 6= 0 are considered). Each such group of video

atoms, Si, describes the video modality of an audiovisual source,

achieving thus the Video Separation objective.

3.3. Audio Source Localization

The objective of this phase is to determine the temporal periods dur-

ing which the sources are active. First, each audio atom φ
(a)
k is clas-

sified into its corresponding source in the following way :

1. Take all video atoms φ
(v)
n correlated with the atom φ

(a)
k ;

2. Each of these video atoms is associated to an audiovisual

source Si; for each source Si compute a value HSi
that is

the sum of the correlation scores between the audio atom φ
(a)
k

and the video atoms φ
(v)
j s.t. j ∈ Si : HSi

=
P

j∈Si
χk,j ;

3. Classify the audio atom into the source Si if the value HSi
is

twice as big as any other value HSh
for the other sources. If

this condition is not fulfilled, this audio atom can belong to

several sources and further processing is required.

Using this labelling time periods during which only one source is

active are clearly determined. This is done using a simple criterion :

if in a continuous time slot longer than ∆ seconds all audio atoms

are assigned to Si, then during this period only source Si is active.

In all experiments the value of ∆ is set to 1 second.

3.4. Audio Source Separation

We perform a GMM-based audio source separation by modifying the

method used in [8]. Here, the main difference is the use of the video

information, which allows us to perform a blind separation since no

previous information about the audio sources is required.

For each source k, the short-term Fourier spectrum Sk(t) of the

audio signal is modeled as a complex circular Gaussian random vari-

able, with probability density NC(·), zero mean and diagonal covari-

ance matrixes Rk,i = diag[r2
k,i(f)], that is :

p(Sk(t)|Λspec

k ) =
X

i

uk,iNC(Sk(t); 0̄, Rk,i), k = 1, 2 (3)

where uk,i are the weights of the gaussians with
P

i
uk,i = 1.
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Fig. 2. Example of spectral GMM states for female [left] and male

[right] speakers. Each state i is represented by its PSD : r2
i (f).

Then, the source spectral GMMs are defined as : Λspec

k =
{uk,i, Rk,i}i. For each state i of the model, the diagonal of the

covariance matrix r2
k,i(f) represents a local Power Spectral Den-

sity (PSD), as shown in Fig. 2. This figure shows how the states

correctly characterize the sources frequency behavior : the male’s

audio energy is mainly present at lower frequencies (on the left in

the figures) while the female’s formants start to appear at higher fre-

quencies. The typical frequency periodicity of the speech can also

be observed in the female’s graphic.

Let us now describe the learning process. For each source,

time slots during which it is active alone are detected as described in

Sec. 3.3. Such periods are used as a training sequence for the source.

First, this training sequence is represented on the time-frequency

plane by applying a Short Time Fourier Transform (STFT) using

temporal windows of 512 samples length with 50% overlap. As a re-

sult, we obtain a set of short time Fourier spectra (|Sk|
2), but we are

only interested in those that are representative of the source behavior.

Thus, we use the K-Means algorithm to group all these PSDs into a

number QK of spectral shapes that characterize the source k (simi-

lar PSDs are grouped together). Finally, for each state i, the spectral

GMM parameters Λspec

k = {uk,i, Rk,i}i are iteratively adjusted by

using the Expectation Maximization algorithm. The formulas used

for the parameters re-estimation are explained in depth in [8].

The method used for the mixture separation is explained in Al-

gorithm 1. For each time instant we look for the most suitable couple

of states given the mixture spectrum. This is done by maximizing a

resemblance measure Θ(·, ·), which is the inverse of the euclidean

distance. This information is used to build a time-frequency Wiener

mask for each source (5) by combining the spectral PSDs in the cor-

responding states (r2
1,i∗(t), r

2
2,j∗(t)) with the knowledge about the

sources activity wk. When only one source is active, this weight

wk assigns all the soundtrack to this speaker. Otherwise, wk = 0.5
and the analysis takes into account only the audio GMMs. In a fur-

ther implementation we could assign intermediate values to wk that

account for the degree of correlation between audio and video. How-

ever, such cross-modal correlation has to be accurately estimated to

avoid the introduction of separation errors.

4. EXPERIMENTS

The proposed BAVSS algorithm is evaluated on synthesized audio-

visual mixtures, in order to have an objective evaluation of the algo-

rithm’s performances. Sequences are synthesized using clips taken

from the groups partition of the CUAVE database [9] with one girl

and one boy uttering sequences of digits alternatively. The video

data is sampled at 29.97 frames/sec with a resolution of 480 × 720
pixels, and the audio at 44 kHz. The video has been resized to a

120 × 176 pixels, while the audio has been sub-sampled to 8 kHz.

The video signal is decomposed into N = 100 video atoms and the

soundtrack is decomposed into K = 2000 atoms.

Ground truth mixtures are obtained by temporally shifting audio

and video atoms of one speaker in order to obtain time slots with both

Algorithm 1: Monochannel Source Separation using knowl-

edge about sources activity

Input: Mixture x, Spectral GMMs Λspec

k = {uk,i, Rk,i}i

and activity vectors wk for the sources k = 1, 2
Output: Estimation of the sources ŝ1 and ŝ2

A. Compute STFT of mixture X from the temporal signal x ;

foreach t = 1, 2, . . . , T do
1. Find the best combination of states (PSD) according to

the mixture spectrum |X(t)|2, that is :

(i∗(t), j∗(t)) = arg max
(i,j)

Θ(|X(t)|2, r2
1,i + r

2
2,j) , (4)

where Θ(·, ·) is a resemblance measure.

2. Build a time-frequency local mask using knowledge

about the sources activity. For source k = 1 :

M1(t, f) =
r2
1,i∗(t)(f) · w1(t)

r2
1,i∗(t)(f) · w1(t) + r2

2,j∗(t)(f) · w2(t)

(5)

and then M2(t, f) = 1 − M1(t, f).

3. Apply the local masks to the mixture spectrum X(t)
to obtain the estimated source spectra :

Ŝk(t, f) = Mk(t, f)Xk(t, f) (6)

end

B. Reconstruct the estimations of the sources in the temporal

domain ŝk from the STFT estimations Ŝk

speakers active simultaneously. For further details on the adopted

procedure, please refer to [1]. Fig. 3 shows the results obtained by

the proposed method when analyzing clip g20 of CUAVE database.

Waveforms are very similar for original and estimated tracks, and

the audible quality of the estimated sequences is also remarkable.

The BSS Evaluation Toolbox is used to evaluate the perfor-

mance of the proposed method in the Audio Separation part. The es-

timated sources ŝk are decomposed into: ŝk = starget + einterf +
eartif , as described in [6]. starget = f(sk) is a version of the real

sources sk modified by an allowed distortion f ∈ F , and einterf ,

and eartif are, respectively, the interferences and artifacts error terms.

These three terms should represent the part of ŝk perceived as com-

ing from the wanted source sk, from other unwanted sources (sk′)j′ 6=j

and from other causes. Three quantities are used for the evaluation,

the source to distortion ratio, the source-to-interferences ratio, and

the sources-to-artifacts ratio, defined as :

SDR = 10 log10

‖starget‖
2

‖einterf + eartif‖2
(7)

SIR = 10 log10

‖starget‖
2

‖einterf‖2
(8)

SAR = 10 log10

‖starget + einterf‖
2

‖eartif‖2
(9)

For a given mixture and using the knowledge about the original

sources sk, oracle estimators for single-channel source separation by

time-frequency masking are computed using the BSS Oracle Tool-

box. Real-valued masks are subject to a unitary sum constraint. For

further explanation about how the oracle masks are estimated, please

refer to [10]. SDRoracle, SIRoracle and SARoracle are established
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Fig. 3. Comparison between real (b)-(c) and estimated (e)-(f) sound-

tracks for a synthetic sequence (d) generated by applying a shift of

150 frames to the male speaker in clip g20 of CUAVE database (a).

as upper bounds for the performance measures.

Table 1 shows an important progress in all the sequences when

using the GMM-based separation instead of the probabilistic method

presented in [1]. Oracle values are also provided. Obtained results

are satisfactory when the detected periods where each one of the

present speakers is active alone are long enough (sequence g20).

Due to the short duration of the analyzed sequences (30-40 seconds),

the detection of this time slots has to be correctly performed in order

to have enough time to train the spectral GMMs properly or, what is

the same, to have enough samples of the sources frequency behavior

to be able to separate them in the future. In this case, separated

sequences have a good audible quality and we have observed that

results can be easily improved by iterating the separation algorithm.

However, when the training sequences are shorter (sequences g12
and g21), the quality of the separated tracks gets worse although the

numbers that each speaker utters can be easily understood.

5. CONCLUSION

In this paper we have introduced a novel algorithm to perform Blind

Audiovisual Source Separation. We consider sequences made of one

soundtrack and the associated video signal, without the stereo audio

signal usually employed for the BASS task. The method correlates

acoustic and visual structures that are represented using atoms taken

from redundant dictionaries. Video atoms that exhibit strong correla-

tions with the audio track and that are spatially close are grouped to-

gether using a robust clustering algorithm that can confidently count

and localize on the image plane audiovisual sources. Then, using

such information and exploiting the coherence between audio and

video signals, audio sources are localized as well and separated. The

presented algorithm needs time periods with sources active alone

to learn GMMs that model their behavior and separate the mixture.

This condition is however not very restrictive, since it is rare that in

real-world mixtures all the sources are active all the time.

Several tests were performed on synthetic sequences, obtaining

encouraging results. The audible quality of the separated audio sig-

nals is reasonably good when the detected periods with only one

speaker are long enough. An evaluation of the audio separation

results has been performed using the BSS Evaluation Toolbox [6].

Separation results are still far from oracle results but clearly improve

those obtained using the algorithm in [1]. Given the short length of

the analyzed sequences, a possible improvement could be the adapta-

tion of a general model for speech in time slots with a single speaker.

Sequence probabilistic[1] GMM-based oracle

g12

female

SDR -3.00 2.63 18.08

SIR 0.18 9.38 32.32

SAR 2.77 4.14 18.25

male

SDR -4.15 4.73 19.66

SIR 5.18 11.40 31.72

SAR -2.46 6.09 19.95

g20

female

SDR 4.58 8.77 20.37

SIR 12.49 19.91 34.73

SAR 5.58 9.16 20.54

male

SDR 5.43 9.91 21.44

SIR 20.37 20.65 36.38

SAR 5.61 10.33 21.58

g21

female

SDR 1.76 4.64 21.08

SIR 8.72 14.71 35.61

SAR 3.28 5.24 21.24

male

SDR 1.63 5.49 21.61

SIR 12.17 12.46 36.83

SAR 2.29 6.70 21.75

Table 1. Results obtained with synthetic sequences generated for

different clips of CUAVE database. All results are in dB.
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