
THE SYMMETRIC DISCONTINUOUS GALERKIN METHOD

DOES NOT NEED STABILIZATION IN 1D FOR POLYNOMIAL

ORDERS p ≥ 2

E. BURMAN1, A. ERN, I. MOZOLEVSKI2, AND B. STAMM1

Abstract. In this Note we prove that in one space dimension, the symmetric
discontinuous Galerkin method for second order elliptic problems is stable
for polynomial orders p ≥ 2 without using any stabilization parameter. The
method yields optimal convergence rates in both the broken energy norm and
the L2-norm and can be written in conservative form with fluxes independent
of any stabilization parameter. To cite this article: E. Burman, A. Ern, I.

Mozolevski and B. Stamm, C. R. Acad. Sci. Paris, vol. 345, num. 10, 2007,

p. 599-602.

1. Introduction

The Discontinuous Galerkin (DG) method is a classical technique to approximate
elliptic and hyperbolic PDE’s. A unified theory has been developed recently in the
framework of Friedrichs’ systems [4]. For elliptic PDE’s, two of the most popular
methods are the Symmetric Interior Penalty (SIP) method introduced by Baker [2]
and Arnold [1] and the Nonsymmetric DG method introduced by Oden, Babuška
and Baumann [7]. One attractive feature of the latter method is that, because of
the absence of penalty terms, it can be written in conservative form with fluxes
that are independent of numerical parameters. Moreover, the Nonsymmetric DG
method is proven to yield optimal convergence estimates in the broken energy norm
in one [5] and two space dimensions [6] for polynomial orders p ≥ 2, while for p = 1,
penalty terms must be introduced to grant stability and optimal convergence rates
in the broken energy norm, but the conservative fluxes then depend on the penalty
parameter.

Working with the SIP method instead of the Nonsymmetric DG method presents
the twofold advantage of dealing with symmetric linear systems and of ensuring
optimal convergence rates also in the L2-norm. The difficulty with the SIP method
is that stability usually relies on the use of penalty parameters that will subsequently
enter the expression of the conservative fluxes. An exception was provided in the
case of polynomial order p = 1 in [3] where stable SIP methods were proposed
in two and three space dimensions without stabilization on interior faces or with
stabilization of the diffusive fluxes only.

The purpose of this Note is to fill the gap between Symmetric and Nonsymmetric
DG methods in one space dimension. We indeed prove that the symmetric DG
method without any penalty leads to optimal convergence rates in the broken energy
norm and in the L2-norm in one space dimension for polynomial orders p ≥ 2.
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Thus, the present method has only advantages with respect to the Nonsymmetric
DG method in the one-dimensional setting. The two-dimensional case for p ≥ 2 is
being currently investigated.

2. Model problem and method formulation

Let Ω = (a, b) ⊂ R, f ∈ L2(Ω) and ga, gb ∈ R. Consider the following boundary
value problem:

(1) −u′′ = f in Ω, u(a) = ga, u(b) = gb.

This problem is well-posed in H1(Ω) and since f ∈ L2(Ω), its unique solution is
in H2(Ω). Let Kh be a partition of the domain Ω formed by M elements Ki =
(xi, xi+1). For simplicity, Kh is assumed to be uniform, i.e., xi = a + ih, i ∈
{0, . . . , M} where h = b−a

M
denotes the mesh size. Let an integer p ≥ 0 and

consider the usual discontinuous finite element space

(2) V
p

h = {v ∈ L2(Ω); ∀i ∈ {1, . . . , M}, v|Ki
∈ Pp(Ki)},

where Pp(Ki) denotes the p-th order polynomial space on Ki. Let Nh denote the set
of all nodes of Kh and let N i

h denote the set of all interior nodes. For any function
v ∈ H1(Kh), where for any s ≥ 1, Hs(Kh) denotes the usual broken Sobolev space
of order s, define its jump and average at interior nodes as follows:

[[v]]i = v|Ki
(xi) − v|Ki+1

(xi), {v}i = 1
2

(

v|Ki+1
(xi) + v|Ki

(xi)
)

.

On boundary nodes, the following notation is used: [[v]]0 = −v(a), [[v]]M = v(b),
{v}0 = v(a) and {v}M = v(b). For any region R ⊂ Ω composed of one or more mesh
cells, (·, ·)R denotes the usual L2(R)-scalar product and ‖ · ‖R the associated norm.
In the sequel, the inequality A . B means that there is a positive c, independent
of h, such that A ≤ cB. For simplicity, the dependency of the constants on p is not
addressed herein.

The symmetric DG method consists of finding uh ∈ V
p

h such that

(3) ah(uh, vh) = l(vh), ∀vh ∈ V
p
h

where

ah(uh, vh) =
∑

Ki∈Kh

(u′
h, v′h)Ki

−
∑

xi∈Nh

([[uh]]i{v
′
h}i + {u′

h}i[[vh]]i)(4)

l(vh) =
∑

Ki∈Kh

(f, vh)Ki
+ gav′h(a) − gbv

′
h(b).(5)

Observe that the jumps of the discrete solution at interior nodes are not penalized
and that the boundary conditions are not enforced by penalty but just through
the consistency terms, i.e., the contribution of boundary nodes in the last term of
Eq. (4). Furthermore, the discrete problem (3) is consistent. Indeed, integration
by parts yields for any v, w ∈ H2(Kh),

(6) ah(v, w) = −
∑

Ki∈Kh

(v′′, w)Ki
−
∑

xi∈Nh

[[v]]i{w
′}i +

∑

xi∈N i
h

[[v′]]i{w}i.

Applying this with v := u, the solution to (1), and w := vh arbitrary in V
p

h yields
ah(u, vh) = l(vh).
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3. Convergence analysis

Define the following triple norm in H1(Kh):

‖|v‖|2 = ‖v′‖2
Kh

+
∑

xi∈Nh

1

h
[[v]]2i where ‖v′‖2

Kh
=

∑

Ki∈Kh

‖v′‖2
Ki

.

The main technical result of this section is the following

Lemma 3.1. Assume p ≥ 2. Then,

(7) ∀vh ∈ V
p

h , ‖|vh‖| . sup
06=wh∈V

p

h

ah(vh, wh)

‖|wh‖|
.

Proof. Let vh ∈ V
p

h .
(i) Let us prove that there is (a unique) yh ∈ V

p

h such that

(8)



















(yh, zh)Ω = 0, ∀zh ∈ V
p−2
h ,

{y′
h}i =

1

h
[[vh]]i, ∀i ∈ {0, . . . , M},

{yh}i = 0, ∀i ∈ {1, . . . , M − 1}.

To this purpose, let us first establish the a priori estimate

(9) ‖|yh‖| . ‖|vh‖|.

Since yh⊥V
p−2
h and p ≥ 2, yh has zero mean over each mesh cell. As a result, yh

satisfies for all i ∈ {1, . . . , M}, the strong Poincaré inequality

‖yh‖Ki
. h‖y′

h‖Ki
.

Hence, using a trace inequality yields
∑

xi∈Nh

1

h
[[yh]]2i .

1

h2

∑

Ki∈Kh

‖yh‖
2
Ki

. ‖y′
h‖

2
Kh

.

Moreover, integrating by parts and using the properties of yh, it is inferred that

‖y′
h‖

2
Kh

= −
∑

Ki∈Kh

(y′′
h , yh)Ki

+
∑

xi∈N i
h

[[y′
h]]i{yh}i +

∑

xi∈Nh

[[yh]]i{y
′
h}i

=
∑

xi∈Nh

[[yh]]i
1

h
[[vh]]i . ‖|vh‖|

(

∑

xi∈Nh

1

h
[[yh]]2i

)
1
2

. ‖|vh‖| ‖y
′
h‖Kh

,

whence the a priori estimate (9) readily follows. To conclude this first step of
the proof, it now suffices to observe that (8) is nothing more than a square linear
system of size (p + 1)M . Hence, the existence of yh is equivalent to the fact that
the matrix associated with (8) has zero kernel, which, in turn, is a straightforward
consequence of the a priori estimate (9).
(ii) Owing to (6) and (8),

ah(vh,−yh) =
∑

xi∈Nh

1

h
[[vh]]2i .

Furthermore, using a trace inequality leads to

ah(vh, vh) = ‖v′h‖
2
Kh

− 2
∑

xi∈Nh

[[vh]]i{v
′
h}i ≥

1
2‖v

′
h‖

2
Kh

− c
∑

xi∈Nh

1

h
[[vh]]2i ,



4 E. BURMAN1, A. ERN, I. MOZOLEVSKI2, AND B. STAMM1

10-1 10-2
10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

p =3

p=7

p=6

p=5

Symbol - SDG 
    - O(hp+1)

 

 

p=4

p =2

|| 
u 

- u
h||

h 10-1 10-2
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

p =2

p=7

p=6

p=5

Symbol - SDG 
    - O(hp)

 

 

p=4

p =3

| u
 - 

u h| 1,
K
h

h

Figure 1. L2(Ω) (left) and H1(Kh) (right) norm of the error as
function of the mesh diameter h.

with c independent of h. Hence, there is λ large enough such that ‖|vh‖|2 .

ah(vh, vh − λyh), whence (7) is readily inferred owing to (9). �

Remark 1. The proof of Lemma 3.1 breaks down for p = 1 because in this case, it
can not be inferred that yh has zero mean elementwise and thus the strong Poincaré
inequality cannot be used. A direct analysis for the case p = 1 shows that the
matrix associated with the bilinear form ah on V 1

h is singular with one-dimensional
kernel spanned by the so-called checkerboard mode (the function in V 0

h equal to ±1
on alternating mesh cells). This matrix becomes symmetric definite positive if the
bilinear form ah is supplemented by penalizing a jump at an interior node or one
boundary value. In the multidimensional case with p = 1 the checkerboard mode
can be controlled by the mesh geometry (see [3]).

Owing to (7) and using standard finite element techniques for error estimates
leads to the main convergence result of this Note.

Theorem 3.2. Let u ∈ Hr(Kh)
⋂

H2(Ω), r ≥ 2, solve (1) and let uh ∈ V
p

h
, p ≥ 2,

solve (3). Then, for all 1 ≤ s ≤ min(p + 1, r),

‖u − uh‖Ω + h‖|u − uh‖| ≤ chs‖u‖Hs(Kh).

4. Numerical test

To illustrate the convergence result of Theorem 3.2, consider Ω = (0, 1) with
homogeneous boundary conditions and with f such that the solution is u(x) =
sin(12πx)e1.75x. Figure 1 presents the convergence rates in the H1(Kh)- and L2(Ω)-
norms for a sequence of nested uniform meshes and for approximation orders p ∈
{2, . . . , 7}. Remark on the dependency on p of the inf-sup constant once Igor gets
the results for that..
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