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Chapter 1

Introduction

Survival time is a main topic in medical statistics, and many reasons makes
it difficult to get complete data in studies of survival time. A study is often
finished before the death of all patients, and we may keep only the informa-
tion that some patients were still alive at the end of the study, disregarding
when they really died. That is a motivation of studing theory of censored
data.

We will see that a first possibility to deal with non-complete (we will say
censored) data is to be unaware of them, and compute the statistic only on
the rest of the data. However we may lose some information ignoring cen-
sored data, and actually our estimator will also be biased because ignoring
right-censored data for example is ignoring data which has the property to
be greater than a given value. In this case, the expectation of our estimator
is smaller than the real value of survival time.

We introduce in this report some model for the survival time and see
how we can handle with censored data. We may first deal with right- and
left-censored data, and then we will show how we could use an algorithm
given by Turnbull [4] to get a nonparametric estimate for interval-censored
data. Some applications on data will also be given in order to illustrate the
theory.
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Chapter 2

Survival models

2.1 A trivial exponential model

In order to analyse survival time, we will study the following model:

Ti = exp(β0 + β1xi)Zi, Zi ∼ exp(1), β0, β1 ∈ R, i = 1, ..., n. (1)

In this model, xi is an explanatory covariate, which may be interpreted in
our further example as the age of the patient i. A particularity of this model
is that the covariate acts multiplicatively on the time scale, it accelerates
or deccelerates the survival time depending on the sign of β1. This kind of
models is called accelerated failure time models [1]. This model is reasonable
because it takes only positive values for any given parameters β0, β1 ∈ R.
Another advantage is that the expected survival time is :

E[Ti|xi] = E[exp(β0 + β1xi)Zi|xi] = exp(β0 + β1xi)E[Zi] = exp(β0 + β1xi).

Distribution of Ti

The cumulative distribution function of Ti is:

FT (t) = P (Ti ≤ t) = P (exp(β0 + β1xi)Zi ≤ t) = P (Zi ≤
t

exp(β0 + β1xi)
)

= Fexp(1)(
t

exp(β0 + β1xi)
) = 1 − e

− 1
exp(β0+β1xi)

t
, t ≥ 0.

In other words:

Ti ∼ exp

(

1

exp(β0 + β1xi)

)

, β0, β1 ∈ R, i = 1, ..., n.
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Linearisation of the model

Studing log(Ti) instead of Ti has the advantage of giving a linear model.
Indeed we have:

log(Ti) = β0 + β1xi + log(Zi), β0, β1 ∈ R, i = 1, ..., n.

It is possible to estimate β0, β1 using the well-known least squares method.
Let εi = log(Zi), we find the distribution of εi:

Fεi
(t) = P (log(Zi) ≤ t) = P (Zi ≤ et) = FZ(et) = 1 − e−et

, t ∈ R.

We remember that the smallest extreme value distribution [11] is given by

sEV(µ, σ) : F (t) = 1 − e−e
t−µ

σ , t ∈ R, µ ∈ R, σ > 0,

so, εi follows a smallest extreme value distribution with parameters µ = 0
and σ = 1. That is εi ∼ sEV(0, 1). It is now easy to find the density function
of εi:

fεi
(t) = et exp(−et), t ∈ R.

A generalisation of the exponential model

We find a simple generalisation of the exponential model adding a scale
parameter σ > 0 to εi. The model becomes log(Ti) = β0 + β1xi + σεi. We
show that σεi ∼ sEV(0, σ):

Fσε(t) = P (σε ≤ t) = P (ε ≤
t

σ
) = 1 − exp(−e

t
σ ), t ∈ R, σ > 0.

Coming back to the exponential form of the model, we have

Fexp(σε)(t) = P (exp(σε) ≤ t) = P (σε ≤ log t) = 1−exp(−t
1
σ ), t > 0, σ > 0

that is:

Ti = exp(β0 + β1xi)Zi, Zi ∼ Wei(1,
1

σ
), β0, β1 ∈ R, σ > 0, i = 1, ..., n.

and we remember that the general form of the Weibull [11] cumulative dis-
tribution function is:

FW (t) = 1 − exp
[

−
( t

b

)c]

, t > 0, b, c > 0.

We notice too that Ti ∼ Wei(exp(β0 + β1xi),
1
σ
):

P (Ti ≤ t) = P
{

Zi ≤
t

exp(β0 + β1xi)

}

= 1 − exp
{

−
( t

exp(β0 + β1xi)

)
1
σ
}

.

Another generalisation is possible adding new covariates into the model:

Ti = exp(β0 + β1xi1 + ... + βpxip)Zi, Zi ∼ Wei(1,
1

σ
), i = 1, ..., n. (2)
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2.2 Survival and hazard functions

We usually use two different ways to define a distribution: we may give the
cumulative distribution function or the density function. In survival time,
we prefer to use the survival function which is related to the cdf:

S(t) = P (T > t) = 1 − F (t).

For survival time we have t > 0 in general. This function represents for a
given t the probability to live until at least t. That is the reason which we
prefer to talk about survival function rather than distribution function.

Another function useful in survival analysis is the hazard function [1]:

h(t) = lim
∆t→0

P
(

t < T ≤ t + ∆t|T > t
)

∆t
=

f(t)

S(t)
,

where T has to be a non negative continous random variable. This function
represents the probability of dying really soon, knowing we have live until
t. We see that for an exponential distribution, the hazard function is:

h(t) =
f(t)

S(t)
=

λe−λt

e−λt
= λ, t > 0.

We expected this result as we know [3] that the exponential distribution is
memoryless. That means the probability of dying soon doesn’t depend on
the time. This hazard function is useful, because it gives another interpre-
tation, which may be more interpretable for non-statisticians. Moreover, we
could imagine that a model has good reasons that we assume some proper-
ties on its hazard function, and then find the survival function corresponding
to the particular hazard function with the relation:

S(t) = exp
(

−

∫ t

0
h(u)du

)

.

Hazard functions is also interesting to fit a model. Cox proposed a distribution-
free model where the regression is made on the hazard function [16]. We
could compute the hazard function of our model using the distribution we
had given. The exponential model (1) has a hazard function given by:

hi(t) = λi =
1

exp(β0 + β1xi)
, i = 1, ..., n,

and the Weibull model (2):

hi(t) =
exp−

(

t
b

)c
c
(

t
b

)c−1 1
b

exp−
(

t
b

)c ,

= ctc−1
(1

b

)c

,

=
( 1

exp(β0 + β1xi)

)
1
σ 1

σ
t

1
σ .
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2.3 Maximum likelihood estimator

Here we are interested in fitting a model to the data. We will use the MLE
[9] to find the most likely parameters of our model. In this Section, we show
how to fit the exponential model (1) to the data. The parameter that we
want to estimate is β = (β0, β1) ∈ R2. We first need to find the log-likelihood
function:

fT (t) =
1

exp(β0 + β1xi)
exp

(

−t

exp(β0 + β1xi)

)

, t > 0, i = 1, ..., n,

so

l(β0, β1) = log
(

n
∏

i=1

fT (t)
)

=

n
∑

i=1

[

−(β0 + β1xi) −
ti

exp(β0 + β1xi)

]

.

We will see that there is a special case in solving the partial derivatives
equations which gives a closed form, and there is no closed form in the
general case.

A special case : β1 = 0

If we assume that β1 is fixed to 0, there is a closed form for β̂0, given by:

∂l

∂β0
(β0) = 0 ⇔

n
∑

i=1

ti
exp(β0)

= n ⇔
n
∑

i=1

ti
exp(β0)

= n ⇔ β̂0 = log(t̄).

General case : β1 6= 0

In order to find the maximum of the log-likelihood function, we try to set
the partial derivatives to 0 :

{

∂l
∂β0

(β̂) = 0
∂l

∂β1
(β̂) = 0

⇔







−n +
∑n

i=1
ti

exp(β̂0+β̂1xi)
= 0

∑n
i=1

xiti
exp(β̂0+β̂1Xi)

−
∑n

i=1 xi = 0
.

We note that we have no closed form for the solution of the system of
equations. Hence, we intoduce an iterative method to find the solution. We
propose Newton’s method.

2.4 Newton’s method

Newton’s method [8] works on the principle that it is easy to find the max-
imum of a quadratic approximation of our function l(β) = l(β0, β1). Let
lQ(β) be the quadratic approximation of l(β) at β0, where β0 is the vector of
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initial values of the parameters. We define a 1×p vector: ∇l(β0)j = ∂l
∂βj

(β0),

and a p × p matrix: H(β0)ij = ∂2l
∂βiβj

(β0). We have:

lQ(β) = l(β0) + ∇l(β0)(β − β0) +
1

2
(β − β0)H(β0)(β − β0).

We look for the maximum of the quadratic approximation:

max lQ(β) ⇔ ∇lQ(β) = 0 ⇔ ∇l(β0) + H(β0)(β − β0) = 0

⇔ β = β0 − H−1(β0)∇l(β0).

Starting from the initial parameter β0, we use the iterative formula

βk+1 = βk − H−1(βk)∇l(βk),

which would converge to the global maximum of l(β) assuming that l(β) is
concave and has at least a local maximum. For practical reasons, we will set
a stopping condition to our iterative algorithm, which could be for example
the absolute convergence criterion: |xk+1 − xk| < ǫ, for some ǫ > 0.

Application of Newton’s method

In order to apply Newton’s method to the exponential model (1), we have
to calculate:

∇l(β) =

(

−n +
n
∑

i=1

ti
exp(β0 + β1Xi)

,
n
∑

i=1

xiti
exp(β0 + β1Xi)

−
n
∑

i=1

xi

)

,

H(β) =

(

−
∑n

i=1
ti

exp(β0+β1Xi)
−
∑n

i=1
xiti

exp(β0+β1Xi)

−
∑n

i=1
xiti

exp(β0+β1Xi)
−
∑n

i=1
x2

i ti
exp(β0+β1Xi)

)

.

Of course, this method works also for the Weibull model proposed in Section
2.1, in which a scale parameter σ > 0 should be contained in the parameter
vector β as well.

2.5 Variance and covariance of MLE’s

We know that MLE’s are asymptotically unbiased [9]. However we are
interested in the variance of MLE’s in order to compute confidence interval
and test our model. We may find the asymptotic variance of MLE’s [16]
using the Fisher information matrix:

Iij = E
[

−
∂2l(β)

∂βi∂βj

]

.

The inverse matrix I−1 is the asymptotic variance-covariance matrix of the
estimated parameters β.
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2.6 Likelihood ratio tests

For the moment, we have presented two models: the exponential (1) and
the Weibull (2). In order to choose which one is better, we introduce the
likelihood ratio test. Assume that we have two vectors of parameters cor-
responding to two nested models: βf = (β1, ..., βr1) for the full model and
βr = (β1, ..., βr2) for the restricted model. Assume that r1 > r2 and let
d = r2 − r1. Then we have :

−2 log
[L(β̂r)

L(β̂f )

]

∼ χ2
d.

In our case, we have that the exponential model is a special case of the
Weibull model. Thus, these are nested models.
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Chapter 3

Censored data

3.1 Definitions

Right-censored data

A datum Ti is said to be right-censored if the event occurs at a time after
a right bound, but we don’t know when. The only information we have is
this right bound. This is very important in study of survival time, because
data are often right-censored.

Left-censored data

A datum Ti is said to be left-censored if we know that the event occurs at a
time before a left bound, but we don’t know when. It happens, for example,
when we know the date of a medical exam that revealed a disease, but we
don’t know when the patient has been infected.

Interval-censored data

A datum Ti is said to be interval-censored if we know that the event occurs
in a time interval

(

Li, Ri

]

, but we don’t know exactly when in this interval.
It could occurs, for example, when a patient is regularly checked, and one
time we discover a medical deterioration. The only information we have is
that the deterioration appears between two checks.

Generalisation of interval-censored data

We could easily generalize the definition of interval-censored data in censor-
ing the data in a union of intervals or even in any given set C, and call a
datum Ti censored if we only know that the event occurs in the set Ci of
possible survival time of patient i.
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3.2 Likelihood function of censored data

We are interested in the likelihood function of censored data, because it give
us the possibility to compute the MLE in order to fit a model to censored
data. In order to analyse such data we write ci the constant (it may be a
random variable too) defined:

ci =

{

1, ith data is not censored,
0, ith data is censored.

.

The likelihood function of an estimator based on censored data looks like
the usual likelihood function, but we have to add the information given by
censored data [2]. For right-censored data, we have:

L(β) =

n
∏

i=1

f ci

β (ti)S
(1−ci)(ti),

where S(t) = P (T > t) = 1−F (t) is the survival function. We could do the
same for left-censored data:

L(β) =

n
∏

i=1

f ci

β (ti)F
(1−ci)(ti).

Then for interval censored data, it becomes:

L(β) =
n
∏

i=1

f ci

β (ti)
[

S(Li) − S(Ri)
](1−ci).

And for general censored data, we have generalized this last expression:

L(β) =

n
∏

i=1

f ci

β (ti)P (Ci)
(1−ci),

where P (Ci) is the probability of Ci according to the distribution fβ:

P (Ci) =

∫

Ci

fβ(t)dt.

Now, we could theorically fit a model to any censored data. However, it
might not be so easy to find the MLE of general-censored data.

3.3 Parametric estimator for censored data

Fitting a model

We have given definitions of censored data, and we will see in this section
how we can fit a parametric model to them. In this Section, we assume the
Weibull model (2) we have introduced in Section 2.1:

Ti = exp(β0 + β1xi)Zi, Zi ∼ Wei(1,
1

σ
), β0, β1 ∈ R, σ > 0, i = 1, ..., n.
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We want to estimate β0, β1 and σ using right-censored data by the MLE:

L(β0, β1, σ) =

n
∏

i=1

[ (1/σ)t
( 1

σ
−1)

i

exp(β0 + β1xi)
1

σ

exp−(
ti

exp(β0 + β1xi)
)

1

σ

]ci
[

exp−(
ti

exp(β0 + β1xi)
)

1

σ

](1−ci)

=

n
∏

i=1

{

[ (1/σ)t
( 1

σ
−1)

i

exp(β0 + β1xi)
1

σ

]ci

exp−
[

(
ti

exp(β0 + β1xi)
)

1

σ

]

}

.

The log-likelihood l(β0, β1, σ) is

n
∑

i=1

{

ci

[

− log(σ) + (
1

σ
− 1) log(ti) −

1

σ
(β0 + β1xi)

]

−
ti

σ exp(β0 + β1xi)

}

.

We notice that setting ci = 1 for i = 1, ..., n and σ = 1, we find the particular
case that we have already met in Section 2.3. Thus we won’t find any closed
form by solving the equations of the partial derivatives set to zero. In
order to find the maximum of the log-likelihood, we will use the Newton’s
method, as outlined in section 2.4. We could follow the same principle to
fit a given model to left-censored, interval-censored or even general-censored
data. However, it might be more difficult to maximize the log-likelihood in
a general-censored case, and it requires some other optimisation techniques
[10].

Special case: β1 = 0 and σ = 1

In the very simple model

Ti = exp(β0)Zi, Zi ∼ exp(1), β0 ∈ R, i = 1, ..., n,

we could find a closed form for β0 in the case of right-censored data solving
the equation:

∂l

∂β0
(β0) = 0.

We introduce the following notation :

• nn : number of non-cenored data

• nc : number of censored data

• n = nn + nc : total number of data

Here we have :

l(β0) =

n
∑

i=1

−ciβ0 −
ti

exp(β0)
,
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∂l

∂β0
(β0) = 0 ⇔

n
∑

i=1

[

− ci +
ti

exp(β0)

]

= 0

⇔ exp(β0) =

∑n
i=1 ti

∑n
i=1 ci

=

∑n
i=1 ti
nn

⇔ β̂0 = log
(

∑n
i=1 ti
nn

)

.

where
∑n

i=1 ti involve the value of the ti for non-censored data and the
censor-bound for censored data. We remember that considering only non-
censored data, we found 2.3 the estimator

β̂0 = logt̄.
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Chapter 4

Nonparametric estimator for

the survival function

4.1 Trivial estimator

We want to estimate the survival function S(t) of a data set. The first idea is
to find the empirical cumulative distribution function of the data and write
Ŝ(t) = 1 − F̂ (t). The empirical distribution is:

F̂ (t) =
|{ti ≤ t}|

n
, t ∈ R

We ask ourselves what happens if we compute this estimator on right-
censored data. The answer is that it is impossible to compute it for t greater
than the smallest right-censored bound Ri, because if we have a data right-
censored by Ri and t > Ri we don’t know where we have to count it. One
solution to this problem is to ignore the censored data and to compute the
empirical distribution only for the non-censored data, but the estimate we
get is biased as we miss some information. We call this estimator the trivial

estimator.

4.2 Kaplan-Meier estimator

The great advantage of the Kaplan-Meier (K-M) estimator [18] is that it is
computable for right-censored data. The idea of the K-M estimator is given
by the conditional probability. Let ti ≤ ti+1:

S(ti) = P (T > ti)

= P (T > ti, T > ti−1)

= P (T > ti|T > ti−1)P (T > ti−1)

= P (T > ti|T > ti−1)P (T > ti−1|T > ti−2)...P (T > t0 = 0).
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We assume that at the start of the study all subjects were alive, so
P (T > T0 = 0) = 1. The conditional probability is

P (T > ti|T > ti−1) =
ni − di

ni
,

where ni is the number of subjects at risk in the study at the time ti, and di

is the number of subject dying at time ti. The Kaplan-Meier estimator is :

ŜKM(t) =
∏

i:ti≤t

ni − di

ni

=
∏

i:ti≤t

(

1 −
di

ni

)

.

Example

In order to illustrate the computation of the K-M estimator, we give a very
simple example. We have some data on survival time of dogs in years:

3, 5∗, 9, 9∗, 10∗, 12,

where “∗” means that the datum is right-censored. To compute K-M esti-
mate, we need to fill the table 4.1. Then we give the corresponding graph
of the K-M estimate in Figure 4.1.

t n d s(t)

0 6 0 1
3 6 1 5

6
9 4 1 5

6
3
4 = 5

8
12 1 1 0

Table 4.1: Survival time of dogs

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (years)

S
ur

vi
va

l f
un

ct
io

n

Survival time of dogs

Figure 4.1: K-M estimate for survival time of dogs
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Delta-method

In order to estimate the variance of the Kaplan-Meier estimator, we need to
introduce the delta method. The delta method uses the first order Taylor
expansion of a function f of a random variable X around µ = E(X) to
approximate the variance of f(X):

f(X) ≃ f(µ) + f ′(µ)(X − µ),

VAR
(

f(X)
)

≃ VAR
(

f(µ) + f ′(µ)(X − µ)
)

= f ′2(µ)VAR(X − µ)

= f ′2(µ)VAR(X)

= f ′2(µ)σ2,

where σ2 = VAR(X). The delta method estimator is:

V̂ AR
(

f(X)
)

= f ′2(µ̂)σ̂2,

where σ̂2 is an estimator of VAR(X) and µ̂ is an estimator of E[X].

Variance of the Kaplan-Meier estimator

The estimate of the variance is given by Greenwood’s formula:

V̂ AR(Ŝ(t)) = Ŝ2(t)
∑

ti<t

di

ni(ni − di)
.

Here we show how to find the Greenwood’s formulae using the delta method.
We need to use the delta method two times:

log(X) ≃ log(µ) + (X − µ)
1

µ
⇒ V̂ AR(log(X)) ≃ σ̂2 1

µ̂2
,

and

exp(X) ≃ exp(µ) + (X − µ) exp(X) ⇒ V̂ AR(exp(X)) ≃ exp2(µ̂)σ̂2.

First we look at log Ŝ(t):

log ŜKM(t) = log
∏

i:ti≤t

[

1 −
di

ni

]

=
∑

i:ti≤t

log
[

1 −
di

ni

]

.

Let pi = P (T > ti|T > ti−1) then p̂i =
[

1 − di

ni

]

is an estimate of this
conditional probability. That means we assume that di ∼ B(n, 1 − pi).

Hence, the variance of p̂i is estimated by p̂i(1−p̂i)
ni

. Moreover, the Binomial
variables are independent for all subjects in the study. We have then:

V̂ AR
{

∑

i:ti≤t

log(p̂i)
}

=
∑

i:ti≤t

V̂ AR(log(p̂i)).
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A first use of the delta method gives:

V̂ AR(log(p̂i)) ≃
pi(1 − pi)

n

1

p̂2
i

=
1 − (1 − di

ni
)

ni(1 − di

ni
)

=

di

ni

ni − di
=

di

ni(ni − di)

⇒ log
[

V̂ AR(Ŝ(t))
]

≃
∑

i:ti≤t

di

ni(ni − di)
.

We use the delta method for the second time and finally find:

V̂ AR(Ŝ(t)) = V̂ AR
{

exp
[

log(Ŝ(t))
]}

= exp2
[

log(Ŝ(t))
]

∑

i:ti≤t

di

ni(ni − di)

= Ŝ2(t)
∑

i:ti≤t

di

ni(ni − di)
.

This last formula had been given in 1926 by Greenwood [17] before Ka-
plan and Meier [18] published their estimator in 1958.

The Kaplan-Meier estimator for left-censored data

If we have left-censored data, we have to estimate the cumulative distribu-
tion function instead of the survival function. We could use an estimator
derived from the idea of the Kaplan-Meier estimator. However, here we
are interested in the infection time instead of the dead time. We have the
following statement (assuming ti ≤ ti+1):

F (ti) = P (Ti ≤ ti)

= P (Ti ≤ ti|Ti ≤ ti+1)P (Ti ≤ ti+1)

= P (T ≤ ti|T ≤ ti+1)P (T ≤ ti+1|T ≤ ti+2)...P (T ≤ tn).

We assume that we have only non-censored or left-censored data. Then we
have P (T ≤ tn) = 1, as tn is the greatest time of realisation of all random
variables. This suggests the following estimator:

F̂L(t) =
∏

i:ti>t

ni − di

ni
=
∏

i:ti>t

[

1 −
di

ni

]

where di is the number of subjects getting infected at time ti and ni is the
number of data in the study at time ti. If a datum is left-censored, it would
enter in the study at the left-censor bound time, and may be count among
ni. If a datum ti is not left-censored, it would enter in the study at time ti
and count among di.
For the variance of this estimator, we may adapt the Greenwood’s formula
changing ti ≤ t by ti > t.
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4.3 Turnbull’s algorithm

For the moment, we know how to compute a non-parametric estimator for
non-censored, right-censored or left-censored data, but we have nothing for
interval-censored data. Turnbull gives an algorithm [4] that we will use to
find a nonparametric estimator for interval-censored data. This algorithm
works on the principle of Expectation-Maximisation algorithm [5]. Assume
that we have some incomplete data, and we want to estimate a parameter.
The EM-algorithm starts from an initial parameter, and expects the missing
values knowing the initial parameter. Then it finds the parameters that
maximize the likelihood considering expected data as the given data. Then
the algorithm alternates these two phases until it reaches some stopping
conditions. From [5], we know that this algorithm improves the likelihood
at every step. We haven’t see any package in R using the Turnbull algorithm,
so we will implement this.

How does the Turnbull algorithm work?

For this algorithm, we make a partition of R+ such that each censored set
during which an event could happens is a union of intervals of the partition.
Actually, we have some knots k1, ..., km−1 and the partition is formed by
the intervals : J1 = (0, k1], J2 = (k1, k2], ..., Jm−1 = (km−2, km−1], Jm =
(km−1,∞).

Let s = (s1, ..., sm) be a m-vector with si ≥ 0, i = 1, ...,m and
∑m

i=1 si =

1. Here s represents the step of the distribution function F̂ between each
knot of the partition. We may find s in order to get an nonparametric
estimate of the distribution of the survival time using the relation:

Ŝ(t) = 1 −
∑

{i∈K}∩{i≤t}

si, t > 0.

Now, using the n given data, we define a n × m matrix α such that

αij =

{

1 if the event i could have occured during interval Jj ,

0 if the event i could not have occured during interval Jj ,

i = 1, ..., n, j = 1, ...,m.

Then let

Iij =

{

1 if the event i occurs during interval Jj ,

0 if the event i doesn’t occurs at time Jj ,

i = 1, ..., n, j = 1, ...,m.
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Because of censored data, it is impossible to know Iij for all values of i and
j, so we work with its expectation assuming we know s :

µij = Es[Iij ] = αijsj

/

m
∑

k=1

αiksk, i = 1, ..., n, j = 1, ...,m.

Here µij represents the probability the event i occurs during interval Jj,
assuming survival time has the distribution induced by s.

If we assume now that µij ’s are observed data, the proportion of data in
interval Jj is

πj(s) = (1/n)

n
∑

i=1

µij, j = 1, ...,m.

We say that s is self-consistent if sj = πj(s), and we show that a self con-
sistent estimate s is actually an MLE.
Proof: The likelihood function of s is given by

L(s) =

n
∏

i=1

(

m
∑

j=1

αijsj

)

,

so the log-likelihood is

l(s) =

n
∑

i=1

log
(

m
∑

j=1

αijsj

)

.

Now assume that we increase a chosen sj with ǫ > 0, then we have to divide
sk (k = 1, ...,m) by 1 + ǫ in order to keep the sum of sk (k = 1, ..,m) equal
to one. Then let dj(s) be the derivative of l(s) with respect to ǫ evaluated
at ǫ = 0. Using the chain rule [15] we get:

dj(s) =
∂

∂ǫ
l
( s1

1 + ǫ
, ...,

sj−1

1 + ǫ
,
sj + ǫ

1 + ǫ
,

sj+1

1 + ǫ
, ...,

sm

1 + ǫ

)
∣

∣

∣

ǫ=0

=

m
∑

k=1

∂l

∂sk

∂sk

∂ǫ

∣

∣

∣

ǫ=0

=

m
∑

k=1

[ ∂l

∂sk

−
sk

(1 + ǫ)2

]

+
∂l

∂sj

(1 + ǫ) − ǫ

(1 + ǫ)2

∣

∣

∣

ǫ=0

= −

m
∑

k=1

∂l

∂sk

sk +
∂l

∂sj

= −

m
∑

k=1

αiksk
∑m

k=1 αiksk

+

n
∑

i=1

αij
∑m

k=1 αiksk

= −1 +

n
∑

i=1

αij
∑m

k=1 αiksk

.
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Thus we obtain

πj(s) = (1/n)

n
∑

i=1

µij = (1/n)

n
∑

i=1

αijsj
∑m

k=1 αiksk

= sj+
1

n
dj(s)sj =

(

1+
dj(s)

n

)

sj.

From this last relation, we conclude

ŝ is a MLE ⇔ dj(s) = 0 OR (dj(s) ≤ 0 AND sj = 0), j = 1, ...,m

⇔ πj(s) = sj, j = 1, ...,m.

Indeed dj(s) ≤ 0 means we could increase the likelihood decreasing by sj,
what is impossible if sj = 0, and using a continuity argument Turnbull
claims that dj(s) ≤ 0 if sj = 0.
Now we have shown that a self-consistent estimate s is an MLE. We will
then implement the Turnbull algorithm to find a self-consistent estimate of
s.

Input:

From a data set, we construct the partition of R+, and a n × m matrix α
with coefficients αij as described.

Output:

We get a vector ŝ of dimension m which represents the step of the survival
function made in interval Jj , for j = 1, ...,m.

Initialisation:

s0 = ( 1
m

, ..., 1
m

), k = 0.

Loop:

Until stopping conditions are reached do:

• Compute

sk+1
j = πj(s

k) =
1

n

n
∑

i=1

αijs
k
j

∑m
l=1 αis

k
l

, for j = 1, ...,m.

• k := k + 1.

A stopping condition could be

m
∑

j=1

(

sk+1
j − sk

j

)2
< ǫ, or max

j=1,...,n

∣

∣

∣
sk+1
j − sk

j

∣

∣

∣
< ǫ

for a given ǫ > 0.
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Chapter 5

Applications

5.1 HIV data

We will now apply the theory on HIV infection data provided by David W.
Hosmer and Stanley Lemeshow [1]. We are interested in the survival time
of patients who have been infected by HIV, and we will see how age of the
patient influence the survival time.

Non-parametric K-M estimator

It is interesting to start with nonparametric estimator in order to have an
idea of the shape of the survival function that we may compare then with
some fitted models. We first estimate the survival function using the triv-
ial estimator, that ignores the censored data. Then we estimate it with
the Kaplan-Meier estimator. Actually, ignoring censored data the trivial
estimator is equal to the K-M.

Comparing graphs, we see in Figure 5.1 that the trivial and K-M estima-
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Figure 5.1: Comparison between survival function given by nonparametric
estimator, with 95% confidence interval.

20



tor are quite close to each other. As we expected, the K-M estimator gives
a higher estimate of the survival function. That show the bias of the trivial
estimator ignoring the censored-data.

Non-parametric Turnbull estimator

We may now compare the K-M estimator with the Turnbull estimator, see
Section 4.3. This estimate is used for interval censored data, but we may
use it on right-censored data, telling that every censored data is an interval
censored data with right interval bound equal to infinity. We compute it
using 60 knots corresponding to the first 60 months, and we obtain the
estmate given in Figure 5.2.
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Figure 5.2: Comparison of the Turnbull and K-M estimates.

The two estimators of Figure 5.2 are quite close to each other. Actually
they are both MLE, so they should be exactly the same. The little difference
that we see here comes from a computation approximation. Actually, the
Turnbull algorithm consider non-censored data as interval-censored data,
where the interval are (Ti − 1, Ti].
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Parametric exponential model

The first model we fit is the next simple model :

Ti = exp(β0)Zi, Zi ∼ exp(1), β0 ∈ R, i = 1, ..., n.

This is a very simple model taking only positive value what is reasonable to
explain survival time. In order to fit the model, we find the MLE by max-
imising the log-likelihood as explained in Section 2.4. However, using the R
software, there are some ready-to-use package Survival which provides some
tools we need to fit our model [6]. In order to test this package, we have
also use the function optim directly on the log-likelihood function we found
and found the same results. More details about optim are provided in [7].

Considering only non-censored data:

Value Std. Error z p

(Intercept) 2.36 0.112 21.1 5.66e-99

Scale fixed at 1

Considering all data:

Value Std. Error z p

(Intercept) 2.65 0.112 23.7 1.71e-124

Scale fixed at 1

We draw the graph of the survival time using the formula:

Ŝ(t) = 1 − F (t) = exp

(

t

exp(β0)

)

, t ≥ 0, β0 = 2.36, 2.65.

The Figure 5.3 shows the estimated survival function according to the
simple model fitted one time using all the data and the other time using only
non-censored data. We note that they are quite close to each other, and that
the estimate survival function using all data is greater than the other. That
shows the bias of non-censored data estimate. Then we compare the simple
model with the K-M nonparametric estimate, and see in Figure 5.4 that this
simple model is a first approximation.
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Figure 5.3: Survival function given by the simple exponential model.
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Figure 5.4: Comparison between the simple exponential model and K-M
estimate.
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Parametric Weibull model

The first model we fitted was really simple, maybe we could explain more
using the Weibull model (2) considering the age of patients:

Ti = exp(β0 + β1AGEi)Zi, Zi ∼ Wei(1,
1

σ
), β0, β1 ∈ R, σ > 0, i = 1, ..., n.

This model is reasonable for HIV survival time. We think that there should
be a correlation between age and survival time. We expect that younger
patients survive longer than older. We also relax the hypothesis that the
scale parameter is fixed at one, which correspond to the exponential model.
We fit the Weibull model and get these next results:

Considering only non-censored data:

Value Std. Error z p

(Intercept) 4.9387 0.6266 7.881 3.25e-15,

AGEN -0.0746 0.0169 -4.418 9.95e-06,

Log(scale) 0.0289 0.0818 0.353 7.24e-01.

Considering all data:

Value Std. Error z p

(Intercept) 5.8607 0.5918 9.904 4.02e-23,

AGE -0.0941 0.0160 -5.889 3.88e-09,

Log(scale) 0.0110 0.0817 0.135 8.93e-01.

Analysing these results, we keep the hypothesis that age is a significant
covariate in the model. We see that the sign of AGE is negative and that is
what we expected. Another result we note is that the Log(scale) parameter
is not significantly different from 0. That means the scale paramter is not
significantly different from 1. Thus, we should prefer an exponential model
including the explainatory covariate AGE.
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Parametric exponential model considering AGE

We fit the model :

Ti = exp(β0 + β1AGEi)Zi, Zi ∼ exp(1), β0 ∈ R, i = 1, ..., n.

and find the results:

Value Std. Error z p

(Intercept) 5.859 0.5853 10.01 1.37e-23,

AGE -0.094 0.0158 -5.96 2.59e-09.

Scale fixed at 1.

We could perform a likelihood ratio test to show that the Weibull model
is not significantly better. Here the exponential model is a special case of
the Weibull model with one fixed parameters : σ = 1. The log-likelihood
of the exponential model is −275 and −275 too for the Weibull model. It’s
obvious to say that the exponential model is better, as the likelihood of both
models are the same.
We could also perform a likelihood ratio test between the exponential model
considering age and the other without covariates. Here, the score of the test
is

−2 ∗ (−292.3 + 275) = 34.6 > χ2
1, 0.95 = 3.84,

which confirm that the covariates AGE should be added. Some difficulties
appears when we want to draw the graph of the survival function of this
last model, because the survival time doesn’t only depend on the time, but
it depends on the age too. In order to draw the graph, we compute the
expected survival time T̂i = exp(5.86 − 0.09AGEi) for each AGEi in the
data set. Then we have a set of survival times T̂i and we draw the empirical
survival function:

Ŝ(t) =
|T̂i > t|

n
.

In the Figure 5.5 we see that, like the simple exponential model, the
model with the AGE covariate seems to overestimate the survival function
for little time and then under-evaluates it. If we are just looking at the
graph, we may think that the simple model gives a survival function which
is closer to the K-M estimate. This model is still not very adapted. Then
note in Figure 5.6 how the model explains the difference of expected survival
time between young and older patients.
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Figure 5.5: Comparison between survival functions given by the exponential
model considering age and K-M estimate.
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Figure 5.6: Comparison between survival functions at differents ages (ac-
cording to the exponential model).

In Figure 5.7, we show the non-censored data (bullet) and the relation
between age and survival time deducted by the exponential model (line).
For a given age, we note that there is a great difference of survival time.
For example at 26 years old, there is a patient dying after one month and
another after 43. To improve the prediction, it seems necessary to add new
covariates into the model.
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Figure 5.7: Relation between age and survival time.

We remember that in Figure 5.5, the model seems to give a survival
function which does not fit very well to the K-M estimate. It might come
from a bad assumption on the distribution of the error term. In order to
test if the exponential distribution is a good hypothesis, we will look at the
non-censored residuals and performed a Kolmogorov-Smirnov test [9] to see
if they follow an exponential distribution.

One-sample Kolmogorov-Smirnov test

data: resexp

D = 0.4611, p-value = 3.442e-15

alternative hypothesis: two.sided

We conclude that the exponential distribution is not a good choice for our
data. To get a better fit, we should maybe take a look to other models as
the log logistic [2] distibution which provides another accelarate failure time
model or the log normal distibution or even a generalized gamma distribu-
tion. However, we may remember that the most important is not to find
a model that perfectly fit the data, but to be able to say why a model is
adequate for some data.
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5.2 Applications on cosmetic deterioration of breast

cancer patients data

Here we give an application of the Turnbull algorithm on interval-censored
data. John P. Klein and Melvin L. Moeschberger give data [2] about the cos-
metic deterioration of the breast after the beginning of a cancer treatment.
These data were obtained in order to compare the effect of two treatments
on cosmetic deterioration. The study checks patients every 4-6 month at the
beginning and then less frequently. When a deterioration occurs, it happens
in an interval of time between two medical checks. If deterioration has never
happend, we consider the last medical check as a right-censored bound. We
compute a nonparametric estimator of both treatments (with or without
chemotherapy) using the Turnbull algorithm.
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Figure 5.8: Nonparametric comparison between two treatments.

We see in Figure 5.8 that the treatment with chemotherapy seems to
accelerate the deterioration, and that’s what we expected. In order to test
if the treatment with chemotherapy really accelarate the time of deteriora-
tion, we could look at the Kolmogorov-Smirnov test [9] for two samples. The
problem is to deal with censored data in the sample, so an idea is to sim-
ulate data samples according to the estimated survival function, and then
compute a 2-sample Kolmogorov-Smirnov test on these simulated sample.
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We have simulated a sample of 95 survival time according to each estimated
distributions, computed a Kolmogorov-Smirnov test, and found:

Two-sample Kolmogorov-Smirnov test

data: s1 and s2

D = 0.5474, p-value = 8.702e-13

alternative hypothesis: two.sided

We could also perform the test with the hypothesis that treatment with-
out chemotherapy is better:

data: s1 and s2

D^- = 0.5474, p-value = 4.351e-13

alternative hypothesis: less

We conclude that the treatment without chemoterapy improves highly sig-
nificantly the time of deterioration. This test confirms our first idea given
by Figure 5.8.
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Chapter 6

Conclusion

We have seen in this report some fundamental theories on study of survival
time using censored data. We are able now to construct non-parametric
estimate for right-, left- or interval-censored data. Some given examples
shows how to use non-parametric estimators as a good start to guess the
shape of the survival function. These estimators are useful for comparisons
with fitted parametric models.
We have introduced some reasonable accelerated life time models for survival
time, and of course there is a lot of more complicated models, but the basic
ideas are given here.
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Appendix A

HIV data

Here we give the survival time in month of each patient, his age and a
censoring information. CENSOR = 1 if the datum is not censored and
CENSOR = 0 if the datum is right-censored. This data set is provided by
[1].

TIME AGE CENSOR/TIME AGE CENSOR/TIME AGE CENSOR/TIME AGE CENSOR

5 46 1 11 32 1 11 31 1 3 37 0

6 35 0 2 42 0 56 20 0 43 25 1

8 30 1 5 47 1 2 44 0 1 38 0

3 30 1 4 30 0 3 39 0 6 32 0

22 36 1 1 47 0 15 33 1 53 34 1

1 32 0 13 41 1 1 31 0 14 29 1

7 36 1 3 40 0 10 33 1 4 36 0

9 31 1 2 43 0 1 50 0 54 21 1

3 48 1 1 41 0 7 36 0 1 26 0

12 47 1 30 30 1 3 30 0 1 32 0

2 28 0 7 37 0 3 42 0 8 42 0

12 34 1 4 42 0 2 32 0 5 40 0

1 44 1 8 31 0 32 34 1 1 37 0

15 32 1 5 39 0 3 38 0 1 47 0

34 36 1 10 32 1 10 33 0 2 32 0

1 36 1 2 51 0 11 39 1 7 41 0

4 54 1 9 36 0 3 39 0 1 46 0

19 35 0 36 43 1 7 33 0 10 26 1

3 44 0 3 39 0 5 34 0 24 30 0

2 38 1 9 33 0 31 34 1 7 32 0

2 40 0 3 45 0 5 46 0 12 31 0

6 34 1 35 33 1 58 22 1 4 35 0

60 25 0 8 28 0 1 44 0 57 36 1

7 35 0 1 34 0 2 35 0 1 41 0

60 29 0 5 28 0 1 34 1 12 36 0
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Appendix B

Cosmetic Deterioration of

Breast Cancer data

On the left side, you find data in which the deterioration has appeared in
the time interval (low,up], and on the right side data where no deterioration
has appeared until the last check. Treatment 1 is without chemotherapy
and treatment 2 is with. Time are given in month, and the data set come
from [2].

low up Treatment last Treatment

0 5 1 15 1

0 7 1 17 1

0 8 1 18 1

4 11 1 22 1

5 11 1 24 1

5 12 1 24 1

6 10 1 32 1

7 14 1 33 1

7 16 1 34 1

11 15 1 36 1

11 18 1 36 1

17 25 1 37 1

17 25 1 37 1

18 26 1 37 1

19 35 1 38 1

25 37 1 40 1

26 40 1 45 1

27 34 1 46 1

36 44 1 46 1

36 48 1 46 1

37 44 1 46 1
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low up Treatment last Treatment

0 5 2 46 1

0 22 2 46 1

4 8 2 46 1

4 9 2 46 1

5 8 2 11 2

8 12 2 11 2

8 21 2 13 2

10 17 2 13 2

10 35 2 13 2

11 13 2 21 2

11 17 2 23 2

11 20 2 31 2

12 20 2 32 2

13 39 2 34 2

14 17 2 34 2

14 19 2 35 2

15 22 2

16 20 2

16 24 2

16 24 2

16 60 2

17 23 2

17 26 2

17 27 2

18 24 2

18 25 2

19 32 2

22 32 2

24 30 2

24 31 2

30 34 2

30 36 2

33 40 2

34 34 2

35 39 2

44 48 2

48 48 2

33



Appendix C

R Code

*************** MASS, Survival ***********************

library(MASS)

library(survival)

*************** NON-CENSORED DATA ******************

k=1

TIMEN=0

AGEN=0

for(i in 1:100) if(CENSOR[i] == 0) i else

{TIMEN[k]<-TIME[i];k<-k+1}

k=1

for(i in 1:100) if(CENSOR[i] == 0) i else

{AGEN[k]<-AGE[i];k<-k+1}

**************FIT TRIVIAL KAPLAN-MEIER ****************

s_empirical_all<-survfit(Surv(TIME,CENSOR))

plot(s_empirical_all,xlab="Time (month)"

,ylab="Survival function")

title(main="Survival function using all data")

s_empirical_n<-survfit(Surv(TIMEN))

plot(s_empirical_n,xlab="Time (month)"

,ylab="Survival function")

title(main="Survival function using only non-censored data")

************** COMPARAISON SELF-made K-M *************

plot(s_empirical_all)

points(s_empirical_n,lty=1,type=’S’,pch=21)

legend(locator(1),legend=c("All data","Non-censored")

,lty=c(1,1))

title(main="Comparaison between trivial and K-M estimator")
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plot(1:60,km,type="S",xlab="Time (month)"

,ylab="Survival function")

points(s_empirical_all)

***************** SIMPLE MODEL ************************

s_sim_all<-survreg(Surv(TIME,CENSOR)~1

,dist="exponential")

s_sim_n<-survreg(Surv(TIMEN)~1 ,dist="exponential")

summary(s_sim_all)

summary(s_sim_n)

plot(survfit(Surv(ntimes)),log=T)

******************** WEIBULL MODEL ********************

s_wei_all<-survreg(Surv(TIME,CENSOR)~AGE,dist="weibull")

s_wei_n<-survreg(Surv(TIMEN)~AGEN,dist="weibull")

summary(s_wei_all)

summary(s_wei_n)

************* TURNBULL ALGORITHM **********************

****Init*****

a=1

noeud=1

a<-read.table("alpha.dat")

nc<-length(a)

nr=length(t(a))/nc

noeud<-read.table("knot.dat")

alpha<-matrix(c(t(a)),nrow=nr,ncol=nc,byrow=TRUE)

mu<-matrix(0,nrow=nr,ncol=nc,byrow=TRUE)

s0=1

for (i in 1:nc) s0[i]=1/nc

****Loop******

expe <- function(mu){

num<-matrix(t(t(alpha)*s0),nrow=nr,ncol=nc,byrow=FALSE)

den<-c(alpha %*% s0)

mu<-num/den

}

maxi <- function(s0){

for(i in 1:nc) s0[i]=sum(mu[,i])/nr

s0
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}

***** ALGORITHM *****

for(i in 1:50)

{

mu<-expe(mu)

s0<-maxi(s0)

}

survival.fct=1

for(i in 2:(nc+1)) survival.fct[i-1]-s0[i-1]

->survival.fct[i]

survival.fct

***** GRAPH **********

plot(c(0,t(noeud)),survival.fct,type="s",xlab="Time"

,ylab="Survival function")

title(main="Turnbull estimation")

*********** COMPARAISON K-M, TURNBULL **************

**** ALPHA ****

nr=100

nc=61

alpha<-matrix(1:nc*nr,nrow=nr,ncol=nc,byrow=TRUE)

mu<-matrix(0,nrow=nr,ncol=nc,byrow=TRUE)

one=0

for (i in 1:nr)

{

one=0;

for(j in 1:nc)

{

if(TIME[i]==j) one=1;

alpha[i,j]<-one;

if(CENSOR[i]==1) one=0;

}

}

noeud=1:nc

s0=1

for (i in 1:nc) s0[i]=1/nc

for(i in 1:150)

{

mu<-expe(mu)

s0<-maxi(s0)

}
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survival.fct=1

for(i in 2:(nc+1)) survival.fct[i-1]-s0[i-1]

->survival.fct[i]

plot(c(0,t(noeud)),survival.fct,type="s"

,xlim=c(0,60),xlab="Time (month)"

,ylab="Survival function")

title(main="Turnbull vs K-M")

points(s_empirical_all,lty=2,type=’s’)

legend(locator(1),legend=c("Turnbull","K-M")

,lty=c(1,2))

plot(c(0,t(noeud)),survival.fct,type="s"

,xlab="Time (month)",ylab="Survival function")

title(main="Turnbull estimation")

********** KAPLAN-MEIER Self-made ******************

c(j):

for(i in 1:60) kmc[i]<- {t<-0;for(j in 1:100)

if(TIME[j]==i &&

CENSOR[j]==0) t+1->t else t->t}

d(j):

for(i in 1:60) kmd[i]<- {t<-0;for(j in 1:100)

if(TIME[j]==i) t+1->t

else t->t}

kmd-kmc->kmd

n(j):

for(i in 2:60) kmn[i]<-kmn[i-1]-kmd[i-1]-kmc[i-1]

km=1

for(i in 2:60) km[i]<-( km[i-1]*

( 1- (kmd[i-1]/kmn[i-1]) ) )

************* EMPIRICAL Self made *****************

for(i in 1:60) nn[i]<-0

for(i in 1:60) for(j in 1:80) if(timenc[j]>i)

nn[i]<-nn[i]+1

else nn[i]->nn[i]

for(i in 1:60) S[i]<-nn[i]/80

*************** MLE USING OPTIM *******************

fn<-function(timefull,beta) { sum( CENSOR

* ( - log( beta[3] ) +
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( 1/beta[3] - 1 ) * log(TIME) - 1/beta[3]

* (beta[1] + beta[2] * AGE) ) -

(TIME / ( beta[3] * exp( beta[1]+beta[2]*AGE ) ) ) ) }

ffn<-function(beta){-fn(beta)}

optim(c(1,1,1),ffn)

fnc<-function(beta) {- sum( CENSOR *

( - log( beta[3] ) + ( 1/beta[3] - 1 )

* log(TIME) - 1/beta[3] * (beta[1] + beta[2] * AGE)

- (TIME / ( beta[3] *

exp( beta[1]+beta[2]*AGE ) ) ) ) ) }

Tc=exp(5.85-0.09*AGE)

Tnc=exp(4.94-0.07*AGE)

************* GRAPHIC **************************

***** NON PARAMETRIC ******

plot(1:60,km,type="s",xlab="Time"

,ylab="Probabilities")

points(1:60,S,type="s",lty=2)

legend(locator(1),legend=c(’Trivial’,’Kaplan-Meier’)

,lty=c(2,1))

***** SIMPLE MODEL *********

Ssimple<-function(t){exp(-(1/exp(2.65))*t)}

Ssimplew<-function(t){exp(-(1/exp(2.36))*t)}

plot(1:60,Ssimple(1:60),type="l",xlab="Time (month)"

,ylab="Survival function")

points(1:60,Ssimplew(1:60),type="l",lty=2)

legend(locator(1),legend=c("All data","Non-censored")

,lty=c(1,2))

title(main="Simple model")

****** EXP MODEL - AGE ************

twei=0

for(i in 1:100) twei[i]=exp(5.8607-0.0941*AGE[i])

swei<-survfit(Surv(twei))

plot(s_empirical_all,lty=1,xlab="Time (month)"

,ylab="Survival function",)

points(swei,lty=3,type=’s’)

title(main="K-M vs EXP model")

legend(locator(1),legend=
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c("K-M with confidence interval","Exp")

,lty=c(1,3))

***** DIFFERENT AGES ************

plot(0:60,c(1,exp(-(1/exp(5.85-0.09*40))*1:60)^(1/1.75))

,type="l",lty=3,xlab="Time (month)",ylab="Survival time")

points(0:60,c(1,exp(-(1/exp(5.8607-0.0941*60))*1:60)

^(1/1.75)),type="l",lty=5)

points(0:60,c(1,exp(-(1/exp(5.8607-0.0941*20))*1:60)

^(1/1.75)),type="l",lty=1)

points(0:60,c(1,exp(-(1/exp(5.8607-0.0941*30))*1:60)

^(1/1.75)),type="l",lty=2)

points(0:60,c(1,exp(-(1/exp(5.8607-0.0941*50))*1:60)

^(1/1.75)),type="l",lty=4)

legend(locator(1),legend=c("20 years old","30 years old"

,"40 years old",

"50 years old","60 years old"),lty=c(1,2,3,4,5))

title(main="Age effect on survival time")

***** SIMPLE MODEL vs K-M *****

plot(s_empirical_all,xlab="Time (month)"

,ylab="Survival function")

points(1:60,Ssimple(1:60),type="l")

title(main="Simple model vs K-M")

****** Exp-AGE vs K-M ********

expti<-exp(5.859-0.094*AGE)

empexp<-survfit(Surv(expti))

plot(s_empirical_all,xlab="Time (month)"

,ylab="Survival function")

points(empexp,type="s",lty=3)

legend(locator(1),legend=c("K-M","Exponential")

,lty=c(1,3))

title(main="Exponential model vs K-M")

*************** BREAST CANCER ****************

cancer<-read.table("cancer1.dat",header=TRUE)

canc<-read.table("cancer2.dat",header=TRUE)

attach(cancer)

attach(canc)
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*** TREATMENT 1 ****

nr=46

ncc=61

nc=ncc+1

alpha<-matrix(0,nrow=nr,ncol=nc,byrow=TRUE)

mu<-matrix(0,nrow=nr,ncol=nc,byrow=TRUE)

one=0

for (i in 1:21)

{

one=0;

for(j in 1:ncc)

{

if(up[i]>=j && low[i]<j) one=1;

alpha[i,j]<-one;

one=0;

}

}

for (i in 22:nr)

{

one=0;

for(j in 1:nc)

{

if(bound[i-21]==j) one=1;

alpha[i,j]<-one;

}

}

noeud=1:nc

s0=1

for (i in 1:nc) s0[i]=1/nc

for(i in 1:150)

{

mu<-expe(mu)

s0<-maxi(s0)

}

surv.t1=1

for(i in 2:(nc+1)) surv.t1[i-1]-s0[i-1] ->surv.t1[i]

xt1<-noeud

***** TREATMENT 2 *****

nr=49

nc=62

alpha<-matrix(0,nrow=nr,ncol=nc,byrow=TRUE)
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mu<-matrix(0,nrow=nr,ncol=nc,byrow=TRUE)

one=0

for (i in 22:58)

{

one=0;

for(j in 1:nc)

{

if(up[i]>=j && low[i]<j) one=1;

alpha[i-21,j]<-one;

one=0;

}

}

for (i in 26:37)

{

one=0;

for(j in 1:nc)

{

if(bound[i]==j) one=1;

alpha[i+12,j]<-one;

}

}

alpha[34,34]=1;

alpha[37,48]=1;

noeud=1:nc

s0=1

for (i in 1:nc) s0[i]=1/nc

for(i in 1:150)

{

mu<-expe(mu)

s0<-maxi(s0)

}

surv.t2=1

for(i in 2:(nc+1)) surv.t2[i-1]-s0[i-1] ->surv.t2[i]

xt2<-noeud

***** PLOT GRAPH *******

plot(c(0,xt1),surv.t1,type="s",xlim=c(0,60)

,xlab="Time (month)",ylab="Survival function")

title(main="Comparaison of two treatments")

points(c(0,xt2),surv.t2,lty=2,type=’s’)

legend(locator(1),legend=c("Radiotherapy only"

,"Radiotherapy and Chemotherapy"),lty=c(1,2))

plot(c(0,t(noeud)),survival.fct,type="s"
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,xlab="Time (month)",ylab="Survival function")

title(main="Turnbull estimation")

****** COMPARE TREATMENT *********

t1=surv.t1[1:61]

t2=surv.t2[1:61]

pt1=0

pt2=0

for (i in 1:60) pt1[i]=t1[i]-t1[i+1]

for (i in 1:60) pt2[i]=t2[i]-t2[i+1]

s1<-sample(1:60,95,replace=TRUE,prob=pt1)

s2<-sample(1:60,95,replace=TRUE,prob=pt2)

ks.test(s1,s2,alternative="greater")

ks.test(s1,s2,alternative="less")

ks.test(s1,s2,alternative="two.sided")
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