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Abstract. SEAM is an enterprise architecture method that defines a visual lan-
guage for modeling. Our goal is to provide formal semantics for SEAM. Model
simulation, model comparison, and refinement verification are practical benefits
we expect from this formalization. This paper complements the existing SEAM
semantics by formalizingroperty-property relationd his formalization is based

on the theory of multi-relations and Relation Partition Algebra (RPA).

1 Introduction

In enterprise architecture projects, an enterprise, its environment, and its information
systems are analyzed and designed. In general, the EA frameworks such as ISA [1],
TOGAF [2] (for a more exhaustive list, see also [3]) do not propose a visual modeling
notation. SEAM (Systemic Enterprise Architecture Methodology)[4] is a visual EA
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Fig. 1. SEAM visual notation.

method, based on Systems Thinking principles [5]. SEAM represents an enterprise and
its environment as a hierarchy of systems (e.g. market, company, IT system, etc.)[4].
Figure 1 illustrates the SEAM visual notation: Syst8ia modeled as a collaboration of
two systemsSl andS2. SystemSl is described by its observahbeopertiesP1, P2, and
a behavior. The latter is represented by a setaifonsA, B organized withinactivity
AC. SEAM specifies three types of relations between its elemenigerty-property
relations action-action relation@ndaction-property relations

Our current research focuses on the definition of formal semantics for the SEAM
visual language. In software engineering, formal methods have been successfully used
in combination with UML[6] to formalize its visual notation, and to provide means for



model analysis [7],[8]. However, to our knowledge, no such experience in the domain
of EA is reported in literature. Model simulation [9], refinement verification [10], and
model comparison for SEAM specifications are the main benefits we expect from this
formalization.

In our previous work [10], formal semantics for SEAM properties, actions, activi-
ties, and action-property relations (Fig. 1) have been defined using higher-order logic
and Refinement Calculus [11]. To complete the formalization of SEAM, the semantics
for property-property relations and action-action relations has to be provided. This pa-
per introduces a formal semantics for property-property relations, based on the Relation
Partition Algebra (RPA)[13] and on the theory of multi-relations [12]. This semantics is
especially useful for refinement propagation technique, explained in [10]: introduction,
elimination, or modification of model elements (including property-property relations)
affects the model correctness and consistency and requires model adjustments. Refine-
ment propagation technique is based on the formal semantics of model elements. It
defines the set of rules to enforce model consistency and correctness and allows to au-
tomate aforementioned adjustments.

This paper is organized as follows. In Section 2 we introduce the SEAM visual
language and define its main modeling concepts. In Section 3 we present in more de-
tails the three types of relations defined in SEAM. In Section 4 we provide an exten-
sion of Relation Partition Algebra and the theory of multi-relations that formalizes the
property-property relations in SEAM. Based on this formalization, we specify the con-
sistency criteria for SEAM specifications. In Section 5 we discuss the related work.
Section 6 presents our conclusions.

2 The SEAM visual modeling language

The SEAM ontology is based on the second part of the RM-ODP [14] specification.
Based on this standard, the main modeling concepts such as property, state, action are
defined. We briefly introduce these concepts below. For a detailed explanation, see [15].

Any system or system component in SEAM is modeled ageking object We
distinguish between the following views of a working object:
- Working object as a whole - a black box system specification;
- Working object as a composite - a white box system specification.

A working object as a wholé describes a system by a numbermbperties
P: ... Py that specify data types, atehavior B.

We distinguish betweeprimitive andcompoundroperties. The former can be con-
sidered as an alias for an operational data type (gtgString, Booleanetc.); the latter
is defined by a set afomponent propertieendreferenceso properties usingroperty-
property relations

A state of the primitive property denotes a value of the corresponding operational
type (e.g.1,” ABC’,true); a state of the compound property is defined by the states of
its components and references.

Lin this paper, we focus on modeling the working object as a whole and do not consider the
working object as a composite, therefore the identifier 'as a whole’ can be omitted



A tuple of property instances and their corresponding values defisiestem state
o € %, whereX specifies atate spacea set of all possible states of the modeled system.
A system state can be changed by a system behavior.
Behavior B of a working object can be seen as an action or as an activity.
Action A is defined by a three-tuplgPre,U, Post}. PreconditiorPre specifies a set of
system stateg € X~ whereA is applicable. PostconditidRost specifies a set of system
state’ € ¥ after the application of. U specifies a state transition and is callgxdiate
Pre-, post- conditions, and updates are modeled as annaigtied-property relations
Activity Accan be considered as a detailed specification of aétiondescribeshow
the transition from pre- state to post- state is perforndetefines a set of component
actions and the way they are composed to carry out the transition:

AcZ AL OAD...OA

where () stands for component action ordering. This ordering is defineddsipn-
action relations

3 The Three Types of Relations in SEAM

Action-Action(AA) Relations. SEAM specifies AA-relations using the BPMN [16]
notation. Figure 2 illustrates activithC1l composed of four action® B,C, andD.

[ Start End |

Fig. 2. Action-action relations.

An activity starts with a control action, called 'Start’ and finishes with a control action
'End’. Actions A andB are connected by @ansition relation that specifies a sequen-
tial invocation ofB after A terminates. ActiorB is connected with its successors by an
and-splitrelation, which specifies that actioBsandD are performed in parallel. Based
on a joint-type ¢r-joint) of the last AA-relation towards the End symbol, the activity
will terminate after at least one of the actiors er D - terminates. We will address the
formalization of AA-relations in our future work.

Action-Property(AP) Relations. Contrary to languages like UML [6], in which di-
agrams are specialized (e.g. class diagram, state diagram, activity diagram), SEAM
describes system behavior and data structure within one diagram and provides explicit
relations between them (Fig. 3). A group of expressions on the destination end speci-
fies an information, useful for specification simulatidiarget expressionspecify the
relation type: Pre-, Post- conditions, or Updatestance expressiorspecify the in-
stance names to be used by the corresponding target expressetat; expressions
(optional) specify the instance choice providing multiple instances available. In UML,
this information is usually provided by annotated OCL[22] expressions.

Action GDiv in Fig. 3 specifies a division operation and selects the greatest devisor
if more then one is available.
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Fig. 3. Action-property relations annotated with instance, selection, and target expressions.

Property-Property (PP) Relations.Relation Partition Algebra (RPA) [13] defines 'part-

of’ and 'use’ relations as a special type of binary relations. These terms can be used to
represent PP-relations in SEAM. Consider a system data structure defined by a number
of data types (properties). The modularization of the data types (definition of compound
properties) gives rise to thmart-of relations(Fig. 4-b, 5-a). Mechanism, when one prop-

erty references (uses) another, can be modelagsbyelationgFig. 4-c)Fig. 5-b).

In SEAM, part-of relations are used to designate the context, in which a property
exists. These relations are depicted by a line with a 'black diamond’ at its destination
end and an expression at its source end, to be’fsadrce] is a part of [destination]”.

Use relations are depicted by a line with an expression at its destination end, to be
read[source] references (uses) [destinatiomxpressions specify relatianultiplicity
(usually, an integer-valued interval with a possibly infinite upper bound) and a list of
instance names. The multiplicity constrains the minimum and the maximum allowable
number of instances of a given property in the system. The multiplicity of the opposite
relation end is constant and equal tlmthe SEAM specifications (usually omitted).

4 Formalization of Property-Property Relations Using RPA

The Relation Partition Algebra (RPA) by Feijs and van Ommering [13] defiaes

of anduserelations as special types of binary relations. The theory of multi-relations
by Feijs and Krikhaar [12] defines a formalism, suitable for reasoning about relation
multiplicities. We combine these theories and formalize PP-relations in SEAdras

of and userelations with multiplicities that can be also call8&AM multi-relations

4.1 SEAM Multi-Relations

Multi-relation m(x,y) = n (Fig. 4-a), defined in [12], specifies occurrences of the
binary relation(x,y). Wherex € X,y € Y - are elements of corresponding sets.

SEAM multi-relationspart anduse(Fig. 4-b,c) between propertiésandQ, and
P andT, whereP,Q, T € P, specify 'relations with multiplicities’ between instances
x:P y:Q, z: T of corresponding properties.
SEAM multi-relationspart anduseon P are defined by pairs of total functions:

partps, usenf : P xP — NU{e}, partsyp, useup:PxP — NU{w} (1)
0 < partips < partsyp < o, 0 < usnt < usgyp< o

There araat leastn; andat mostn;, instances of propertl for each instance dp:
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Fig. 4. SEAM multi-relations. a) binary multi-relation; b) SEAM 'part-of’ relatiof? Is a part of
Q’; c) SEAM 'use’ relation: P usesT'. Above: short notation, below: detailed notation.

part(P,Q) = ny, partg (PQ) =Nz & Vy:Q3Ix, .. % :P[m<n<ny (2)
There areat leastr; andat mostr, instances of property used (or referenced) by each
instance of propert:

usen(P,T) =ry, usguy(RT) =12 ©VXx:P 327,z :T|ri<r<ra (3)
Above,n andr are the correspondingctualnumber of instances.

Example 1.Figure 5-a illustrates the part-of relation between propeRiaadQ:
partsyp(P, Q) = My; partint(P,Q) =0, where'P is a part ofQ’ and there exist at most
My instances oP for each instance d. Xy, .., Xv;, - is a list of available instance names.
O
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Fig. 5. Property-property relations annotated with multiplicity and instance expressiquetta)
of relations; bluserelation; c)Well-formedness of PP-relations.

Example 2.Figure 5-b illustrates the use relation between propeRiasdT:
partsuo(P, T) = M2; partns(P,T) =0, where’P references (use€)’ and there exist
at mostM, references ol for each instance of. yi1,..,ym, - is a list of available
reference namesl

Similarly to [13], we define a relation compositiorof SEAM multi-relations (Fig. 6:
smosm={(PR)|IQeP e sm(P.Q) A sm(QR)} 4)

Identity relationl is a neutral element:o sm= smo| = sm

For propertie®, Q,R € P we write:

(sm osmp)inf(P,R) = g sMyint(P, Q) - sMpint(Q, R)
cP

(smo Snb)sup(P, R) = g Srrlsup(Pa Q) 'Sstup(Qa R)
cP

ISUD(PaQ) = |inf(PaQ) =0 if P7é Q

where the following holds:
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Fig. 6.a) SEAM multi-relation compositiorsmy - a relation with sourc®, smp - a relation with
destinatiorR; b) Identity relation.

(SMLosnp) oSme = sm o (SMp o SNB) = SM 0 SMp o STy

We define the exponentiation for SEAM multi-relations Brassni' = smo sm. osm
(n-times), puttingsn® = | - identity relation.

We define a transitive closummt (P, P,) on PP iff there exists a sequence of ele-
mentsQ; € P,i = 1..n such thaP, = Q; and

smMQ1,Qz)0...oSMQn_1,Qn) oSMQn, P2) = snl'(Py, P).

SnTLnf = U sy and Snﬁup: U SI'ﬁ;up ®)

n=1 n=1

Heresnf'(Py,P,) is an n-step path frorR; to P..
4.2 'Part-Of

A part-of relation between properti®andQ (Fig. 4-b) specifies the fact that property
P is a part of a data type, defined by prope@tysee Example 1). ProperBcan be a
part of one and only one compound property, i.e. part-of relations is functional:

vV PQ,R € Ppartgyy(P.Q) > 0 A partsfPR) > 0 & Q = R (6)

PropertyP cannot be a part of itself, and there is no path of one or more legs that starts
atP and leads back tB, i.e. part-of relations is cycle-free, as defined in [13]:

VPeP partt(PP)=0 )
We define a part-of relation between a property and a system (a working object):
partsyp: P — NU{eo},  partir : P — NU {0} (8)

Here, part-of relation specifies a collection of instanceP pfovided by the system.
These instances can be identified with the global variables of the system.

Example 3.Figure 5-a illustrates the part-of relation whe€is a part ofSped’ and
there exist at mosdtl instances oR in Sped: partsyy(Q) = M; partf(Q) = 1, and
y1,..,Ym - is a list of available instance named.]

Dynamic creation and deletion of property instances is an important issue that can be
specified on the diagram, using part-of relations, prior to model simulation.



Example 4.In Fig.5-a, consider some acti@reateQthat creates instances of property

Q, actionDeleteQthat deletes them, ard,; - the actual number of instances@fin

the system (i.e. a number gfat a given moment of simulation), whete< Magt < M.
Using multiplicities, the effect of creation of an instangean be expressed by the

following statementMac; := Mact + 1. For instance deletion we can writdyct := Mact — 1.

This can be interpreted as follows:

1)If M € N is a constant - every time, after a new instanc&adk dynamically cre-

ated, one more namgis taken from the list of available instance namggsyy. When

Mact = M - CeateQmust not be available any more.

2)If M = 0 - CreateQis not restricted.

3) Every time one instance @ is deleted, one namg is put back to the lisy;..ym.

WhenMgyc; = 1 - DeleteQmust not be available any moig.

We generalize the assertion that part-of relation is functional eq.(6) for the part-of rela-
tion compositions:

Lemma 1. For each ordered pair of properties P;,P, > there exists at most 1 se-
guence of propertie®1, .., Q, € P with P, = Q1 and a corresponding sequence of part-
of relations

part(Q1,Qz) o... o part(Qn-1,Qn) o part(Qn, P2) = part" (P, P,)

such that part"(Py,P,) = partt (P, P,).
Here part"(Py, ) is a path fromP; to P, of the length n, whereP; is a part ofQ,, and
Q2 is a part 0ofQ3, and .. andQj is a part of P,'.

This lemma stipulates that between two properties can be found at most one sequence
of 'part-of’ relations of an arbitrary length and this sequence is linear.
We can generalize the definition of part-of relations for relation composition:

Definition 1. If for two propertiesP andQ there exists some> 0 such thatpart"(P, Q) #
0 thenQ containsP as a part.

Corollary 1. For each propertyP there exists at most one propef@y< P such thatQ
containsP as a part, andpart™ax(P, Q) = part™ (P, Q) # 0 Here nmax - is the longest
path that starts aP and finishes aQ.

By Lemma 1 and Corollary 1 we can calculate thaximum and minimum number of
instancef propertyP in the systens.

Instnax(P) = partsup(P) + g party, (P, Q) - partsus(Q) )
cP

InStyin(P) = partint(P) + g part:(P,Q) - partins (Q) (10)
cP

4.3 'Use’

A use relation between properti®sand T (Fig. 4 -¢) specifies the fact that property
P references property (see Example 2). Properfly can be referenced by multiple
compound properties, i.e. use relations is non-functional:

3 T,PP € P | P # P eusggPT) > 0A useuP,T) > 0 (11)



PropertyT can be referenced by itself, i.e. use relations can be cyclic as defined in [13]:
3TeP| use (T,T)#0

We can calculate the number of references ia the system:
V B | useuR,T) > 0, Ref(R,T) = Instna(P) - useuwy(R,T) (12)

and the maximum number of references:
Refax(T) = mpax(lnstmax(P.) -useup(R, T)) (13)

4.4 From Property-Property Relations to Specification Well-Formedness and
Consistency

PP-relations define a data structure in SEAM specifications. To obtain the well-formed
data structure, the following must be ensured for each system prdperty

-PropertyP can be a part of one and only one compound property or a working object;
-PropertyP cannot be a part of itself, and there is no path of two or more legs that starts
at P and leads back t®.

Formalization of PP-relations enables us to detect errors concerned with data structure
inconsistencyFor example, aimstantiation deficiengywhen for some propertl the
number of declared instances in the specificalittya(P) is less then required by the
system (specified by references from other properties):

FQ e P | RefaxQ,P) > Instnax(P)
Example 5.In Fig. 5-c, propertyP is referenced by two properti@sandW. To avoid
instantiation deficiency, the specification must guaranteentized M4, M3} < M, i.e.
the number of references dnfrom eitherW or T must not exceed the number of
instancesv of P, defined by the specification. [

A free-floating propertys a data type that is not instantiated in the system.
Definition 2. PropertyP is free-floating iff InStnaxP) = 0.

Example 6.In Fig. 5-c, propertie3, W, Q are free-floating:
INStmax(T) = INStnax(W) = Instnax(Q) =0. O

A propertycanbe specified as a free-floating, when the number of instances is not
important at a given level of abstraction. For example, a humber of ’items for sale’
might be omitted in an abstract specification of a vending machine, since a behavior of
this machine is the same for each item.

If free-floating propertyP is referencedy some propert@, i.e.
3QeP|RefhadQ,P) >0
this causes an instantiation deficiency in the specificaf®fnaxQ, P) > 0= InStnaxP).
We summarize with the following criteria of consistency:
System data structure defined by SEAM specification is consistent if:

1. all part-of relations in the specification are functional and cycle-free (i.e(62q.
and eq(7) hold),

2. instance declaration is sufficient:
VPEP RefnadP) < InSinaxP) (14)

3. no reference on a free-floating property exists:
VPeP|InstnafP)=0 = usgP,P)=0VPReP (15)



5 Related work

The scientific publications, listed below, report some practical applications in the area
of visual model analysis based on a combination of visual and formal methods:

Pons [8] presents the OCL-based technique and a tool support for UML and OCL
model refinement. Object-Z is an underlying theory for refinement verification. The au-
thors discuss the refinement patterns and formulate the refinement conditions for these
patterns in OCL [22].

Muskens et al. [23] focuse on the problem of consistency checking between soft-
ware views, expressed as UML diagrams. The approach in [23] is based on verification
of obligations and constraint rules using relation partition algebra.

Modeling languages, listed below, consider formalization of their visual notation as
a bridge to model simulation.

OPM (Object-Process Methodology)[17] proposes a method for the complete inte-
gration of the system’ states and behaviors within a single graphical model. OPM dis-
tinguishes different types of relations between its model elements, similarly to SEAM.
An Object-Process Language (OPL) serves as a basis for generation an executable code
and a database schema and represents a formal semantics for OPM.

DEMO (Design & Engineering Methodology for Organizations) [18] is a method
for (re)designing organizations. DEMO provides a semantics for model simulation.

BPMN (Business Process Modeling Notation)[16] provides a visual notation for
business process modeling (BPM). SEAM action-action relations are defined based
on BPMN. Explicit bindings between a BPMN process and the data this process op-
erates on (represented by action-property relations in SEAM) is made by annotation
with BPEL constraints. BPEL (Business Process Executable Language)[19] was devel-
oped for business process model simulation and verification. An automated mapping of
BPMN diagrams to BPEL for further execution is supported by many commercial tools
(e.g. iGrafx, IBM WBI Modeler, etc - settp://www.bpmn.org/BPMN_Supporters.htm#current
for an exhaustive list). Formal semantics for business process modeling was provided
using Petri Net [20].

UML (Unified Modeling Language) [21], [6] defines a set of specialized diagrams
for its models. System behavior is addressed in UML by activity diagrams. The data
structure of a system is captured by UML class diagrams. A class diagram defines
classes, organized within a model using association, aggregation, composition, and in-
heritance relations. Part-of relation in SEAM can be identified with UML composition,
whereas SEAM use relation is defined by analogy with UML association. The semantics
of activity diagrams in UML 2.0 is based on Petri Nets[7]. However, there were many
attempts to define this semantics based on other formal languages: LOTOS, ASM, CSP,
LTS (see [7] for detalils).

6 Conclusion

In this work, we introduce the formal semantics of property-property (PP) relations in
SEAM visual language. This formalization enables us reasoning about consistency of
data structure.

In our previous work [10], the refinement propagation technique for SEAM visual
specifications has been introduced. The proposed algorithm explores the possible con-



flicts between model elements, caused by refinement, and applies specific rules of re-
finement propagation to enforce the model correctness.

Model refinement where property-property relations are eliminated, introduced, or
modified is not considered in [10] and can be captured using the theory proposed
in this work. Refinement propagation rules that enforce model consistency and well-
formedness, as defined at the end of section 4, can be introduced. For instance, such a
rule may forbid the user from deleting a part-of relation because it will lead to an instan-
tiation deficiency. Alternatively, an alert can be generated in the case of a creation of a
part-of relation if it leads to a cycle. Automated model refinement is the main practical
benefit expected from the proposed formal semantics.
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