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Abstract system. This idea was tested on the physiological indisator
(activity of heart (ECG) and respiration) of anaesthetizad
The cardiovascular system can be macromodelled as a coll@gng synchronization indices and synchrograms. Theteesul
tion of coupled oscillators [1]. Recently, the use of mutt@l-  showed that the synchronization state could be used tochara
plings of these oscillators to characterize the state cys&em terize the depth of anaesthesia [6]. Despite the cardiacesad
during anaesthesia has been proposed. Assuming that the gytory rhythms in rats being approximately four timestdas
chronization status between three systems, namely, th&acar than those in humans, the dynamics of the cardiovasculat - re
respiratory and cortical oscillators, changes with resfethe  pjratory system in rats and humans is very similar; theesfor
depth of anaesthesia, we analyzed the synchronizatioreketwit seems plausible that similar results may also be apptied t
these three oscillators using a measure of synchronizatien hymans. However, applying this analysis to humans may not
S-estimator. Furthermore, we applied a statistical ass@ss pe reliable, since, in contrast to anaesthetized rats wiespi
to detect precisely the deep-light change of anaesthesia.  ration does not need to be assisted, human respirationeis oft
controlled by forced ventilation during surgery. Therefoa
1. Introduction third system, the brain system, has been added to the sjudy[7
An analysis based on the wavelet transform has shown that the
The incidence of awareness among patients undergoffghuency contents of the brain waves also vary over time [8]
surgery is nonzero (Table 1). In other words, there areatillpresently, assuming that the coupling directions betwhen t
large number of patients who remain conscious during surgefiree systems change when anaesthesia lightens, research o
due to lack of anaesthetic and who are unable to give any V@bupling directions using pairs of instantaneous freqiesio
untary indication of awareness because of the muscle relaxgach case is in progress [9]. Meanwhile, other methods of ana
effect. This problem is particularly severe since, foriclh |yzing the synchronization between these systems to findesom
reasons, the anaesthesia should be kept as light as possibleyther indices to define the depth of anaesthesia are being in-
The idea of the depth of anaesthesia was first proposed by{¥stigated in order to create a reliable measure by compinin
John Snow in 1845. Since then, many techniques have beens@eral such indices.
troduced to measure this evaluation quantity. A well-ptibéd | this study, we place the emphasis on synchronization. We
approach to assessing the depth of anaesthesia is thetbi$pega|culate a measure of synchronization called the *S-@stirh
index technique known as BIS [2]. Regrettably, the use &f thi o] from the results of experiments along an experimeirted t
method is controversial and not 100% reliable. Similarly, aseries. and examine how synchronization changes accdualing
the other available methods have not yielded promisingt®sithe anaesthetic effect. The advantage of this method ibits a
[3]. ity to directly examine the multivariate time series, sinvoe
Recently, one new approach has been proposed to imprgygst analyze data recorded simultaneously from threersgste
this situation. According to Stefanovska and BraciC fhe Moreover, we introduce a Wilcoxon rank sum test [11] as a sta-

cardiovascular system can be perceived as a noisy dynagtical assessment in order to detect more precisely e oif
cal system whose coupling coefficients depend on the degi anaesthesia state change.

of anaesthesia. The use of mutual couplings of these oscil-

lators has been implemented to characterize the state of ﬁheMethod

In this section, we shall introduce the concept of synchro-
Table 1: Incidence of awareness during surgery (after Retinfmization and then, we will explain how this concept is used
[4] and Myles et al. [5]) with the synchronization analysis method, which calcdate
measure of synchronization called the "S-estimator”.

Author Date Sample Awareness %

Hutchinson| 1960 656 1.2 — o

Harris 1971 120 16 2.1. Definition of synchronization

McKenna | 1973 200 15 We define synchronization as a process whereby two (or
Wilson 1975 490 0.8 more) dynamical subsystems adjust some of their time-ngryi
Liuetal. 1990 1000 0.2 properties to a common behavior as a result of coupling or a

common external force.



Consider a large stationary, deterministic, finite-dimemnal of the corresponding correlation matrix. The more disptrse
dynamical system, which can be divided inteand m- eigenspectrum s, the more numerous the significant PCA com-
dimensional subsystems, respectively. ponents are (which means a higher embedding dimension), and
the higher the entropy of the eigenspectrum is. On the con-
trary, the more concentrated the eigenspectrum, the fdweer t
significant PCA components (which means a lower embedding
dimension), and the lower the entropy of the eigenspectrum.
We say that two subtrajectoriegt) and y(t) of the whole  For the sake of simplicity, let us consider&variate non-
system are synchronized with respect to the propertie®{tintlelay-embedded time series. All measurement vecipare

dx
& = f(x,y;t)
dt 5D ]Rn. ]Rm
{ Y = f(x,y;t) xemye @)

dependent measures) andgy written as a matriXU such that
gx: R" @R — R . to
{ gy R" QR — R k< min(m, n) @) u=| " |wmerr (5)
if there is a time-independent mappihg: R* @ R¥ — Rk uN-1
such that . . . . )
|| hlgx(x), gy (¥)] [|= 0 3 v.vhereK.|s the number of time series andis the_ index of th_e
time series. The correspondiig x K correlation matrix is
where|| - || is any norm inR*. This unifying definition cov- given by
ers most phenomena usually considered to be synchromizatio Cc- iUTU (©)
[12]. Condition (3) requires a propertgy) of the trajectory N
x(t) to be in a fixed relationk) with another propertygy) of |t ), )\, are its eigenvalues and
the trajectoryy (¢), and it implies that synchronized subtrajec-
tories lie on anr-dimensional manifold, wheredepends o N i N )
and is1 < r < k. Consequently, the dimensionality of syn- tK ~ tr(C)
chronized dynamicé: + m — r) becomes smaller than that of Z Aj
generic asynchronous dynamigs+ m) in the whole system j=1

12], [13]. . . . .
(12, [13] are the corresponding normalized eigenvalues, the guantit

2.2. S-estimator

K
! !
By exploiting the above concepts, we quantify the amount Z Ailog(Ai)
of synchronization within a multivariate time series, netsxl S=1+2L (8)
from each system, by comparing the actual dimensionality of log(K)

the set of samples of the trajectory with the expected full di 4 measure inversely proportional to the embedding dimen-

mensionality of an asynchronous trajectory. We perforra thijsn of the observed dynamical phenomenon:; thus, it is pro-
comparison by considering an embedding technique basedgfional to the amount of synchronization.

principal components analysis (PCA) [14] because itis amul \when all time series are completely synchronized, the cor-
tivariate method. PCA explains the variance-covariantest g|ation matrixC has\, = 1and)\, = 0(i # 1), hence the

ture of multivariate data through a few linear combinatiohs g_gstimator gives = 1. On the contrary, when there is no
the original variables. A given multivariate time serieshwi synchronizationC is diagonal and\; = 1/K, henceS = 0.
k components can be transformed into the population princi-go the same reason as mentioned before, this computation

pal components (PC) by a linear transformation projectieg tcap pe applied in a similar fashion to delay-embedded data.
original time series into the eigenbase of the covariandeixna

(correlation matrix, if the data have been power normalinéd 5 o Analysis

the time series itself [15]. In this coordinate system, thla+

tive importance of each principal component in justifyi@t  |n this section, we will explain how experiments were per-
variance of the original time series is given by the norn&aliz formed and how we analyzed the obtained data using the S-
eigenvalue associated with its corresponding eigenvett estimator. Moreover, we describe the statistical assestsimet
application of this method to the delay-embedded (DE) coatas used to detect the state change from the obtained results
dinates is indeed possible since a given univariate timeser

y(t) can be transformed into a multivariate time series throughl. Experiments

the delay embeddin
Y g The experiments were performed on 10 adult, male Wistar

y(t) = O@t) = [yt)y(t — 1) -yt — K7)] (4) rats. The depth of anaesthesia was assessed at 5 min inter-
vals by the skin-pinch test. EEG, ECG and respiration were
where the time delay and the window sizé{ may be com- recorded simultaneously. The experiment started with aneg
puted through autocorrelation or self-mutual informafib4]. tive response, i.e., when the rat stopped responding toexrefl
The S-estimator is a measure of the amount of synchronizdthdrawal of the limb, and terminated with the reappeaganc
tion using an information-theory-inspired measure defiaged of a positive response. The three signals were digitizedlat a
the complement of the entropy of the normalized eigenvaluieldz sampling rate with 16-bit resolution.



3.2. Analysis S estimator
0.4 T T T T

In order to evaluate the temporal change of synchroniz
tion among the three measured systems, we computed the
estimator for the data obtained in the experiments by angjidi 0.3
window technique. The window length is set to 1s. (1000 de
points) and the overlap length is set to 0.8s. (800 pointg). F
1 shows the results for rat #9. As we can see from Fig. 1, t 0.2
value of S seems to increase slightly at the beginning, but su
denly begins to decrease at about 38min. We can also note
the value of S is not very high. This is interesting, becatise 0.1 ]
allows us to consider these three physiological systemses &

0.35f;

0.25

0.15 1

0.05f 1
of weakly coupled oscillators.
Previously, another analysis had been carried out on i % 10 20 30 40 50 60 70
same recorded signals, i.e., the data from rat #9. From thi time(min)

results, the respiration frequency was found to increase an

become erratic at 38min, and simultaneously, the card&c fFigure 1: Synchronization measure obtained by clustering
guency increased. Using the wavelet method it was calalilateree oscillators (ECG, Respiration and EEG) togetherdor r
that thej-wave in the EEG slightly increased in frequenc#9

during the initial deep phase of anaesthesia and underwent a

marked decrease in amplitude at3min. Thefd-and ;- p-value
oscillations also undergo changes at 37.5min with an app 1 ‘ ‘ ‘ ‘
ciable increase in the amplitude after transition. Furtiere,

from the synchrograms computed for the cardiorespiratgsy s 0.8

tems, it was found that synchronization ends at-3in. ‘

Our detected point of change exactly coincides with tt
above results. Consequently, it seems appropriate to -de:
nate this point as the point of deep-light change in anasisthe
However, as it can be seen from Fig. 1, the S-estimator iyno 0.4 7
and it is not easy to detect the exact point of change from t
figure. 0.2- | |

| ML K1 ﬂ Jj . b | |

0.61

3.3. Statistical assessment 0
0 10 20 30 40 50 60 70

In order to detect, statistically more precisely, the stat. time(min)

change point of anaesthesia, we calculated the statistgzal

sessment valug using a Wilcoxon rank sum test. This is Figure 2: Statistical assessment of S-estimator obtaimiect
two-sided rank sum test of the hypothesis that two indepe*FQ

dent samples come from distributions with equal mediang, an

yields thep-value. p is the probability of observing the given

result. In the extreme case, when the null hypothesis is trde Discussion

i.e., the medians are equal,= 1. Hence, the closer thg-
value is to zero, the more confident we are in rejecting the nul Despite the excellent results we have obtained, we still do

hypothesis. not know what makes the value of the S-estimator decrease

We performed the test on two sets of samples of 30s. lengjRen the anaesthesia lightens. It may be simply because the
(150 samples) that were separated by 8min intervals (24Qfkractions between the three systems decline accoralingt
samples) and moved along the time axis. In this way, it is pasffect of the anaesthesia, but this seems to be too singplisti
sible to detect the first pair, because the second set &tallist |; js natural to consider that the complexity of each system
differs from the first set, which is 8min in the past. Fig. 2680 changes according to the level of anaesthesia and thus influ
that there is abundant evidence of a highly significant changnces the S-estimator. Furthermore, because we recaestruc
at 40min. the state space of each system using the delay-embedding

To evaluate the robustness of the statistical detection, Wthod, the actual S-estimator contains the informatiaroof
changed the parameters, i.e., the window length and theatte re|ation among the state variables of each system that ghoul
length, and calculated thevalue. As can be seen from Fig. 3ye normalized.

and Fig. 4, small lengths do not give good results; nevestisel . . .
9 g gved e To avoid this problem, we need a new version of the S-

there remains a wide range of suitable parameters. timator which takes th mplexity insid h teon int
All the experimental results for the other rats also show:az couan?an d r(e::m:v:ssit fres)r?thgse nZhr;nizea'fi}gr? ar?ZIS ;[:: T
decrease in the S-estimator at the point of deep-light ahan y ysI8.

of anaesthesia, and thevalue allows us to locate the chang%ﬁv?sugat'on of this method and its analysis will be a fetur
N opic of study.
accurately in time.
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