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Abstract

The cardiovascular system can be macromodelled as a collec-
tion of coupled oscillators [1]. Recently, the use of mutualcou-
plings of these oscillators to characterize the state of thesystem
during anaesthesia has been proposed. Assuming that the syn-
chronization status between three systems, namely, the cardiac,
respiratory and cortical oscillators, changes with respect to the
depth of anaesthesia, we analyzed the synchronization between
these three oscillators using a measure of synchronization, the
S-estimator. Furthermore, we applied a statistical assessment
to detect precisely the deep-light change of anaesthesia.

1. Introduction

The incidence of awareness among patients undergoing
surgery is nonzero (Table 1). In other words, there are stilla
large number of patients who remain conscious during surgery
due to lack of anaesthetic and who are unable to give any vol-
untary indication of awareness because of the muscle relaxant
effect. This problem is particularly severe since, for clinical
reasons, the anaesthesia should be kept as light as possible.

The idea of the depth of anaesthesia was first proposed by Dr.
John Snow in 1845. Since then, many techniques have been in-
troduced to measure this evaluation quantity. A well-publicized
approach to assessing the depth of anaesthesia is the bispectral
index technique known as BIS [2]. Regrettably, the use of this
method is controversial and not 100% reliable. Similarly, all
the other available methods have not yielded promising results
[3].

Recently, one new approach has been proposed to improve
this situation. According to Stefanovska and Bračič [1],the
cardiovascular system can be perceived as a noisy dynami-
cal system whose coupling coefficients depend on the depth
of anaesthesia. The use of mutual couplings of these oscil-
lators has been implemented to characterize the state of the

Table 1: Incidence of awareness during surgery (after Pomfrett
[4] and Myles et al. [5])

Author Date Sample Awareness %
Hutchinson 1960 656 1.2
Harris 1971 120 1.6
McKenna 1973 200 1.5
Wilson 1975 490 0.8
Liu et al. 1990 1000 0.2

system. This idea was tested on the physiological indicators
(activity of heart (ECG) and respiration) of anaesthetizedrats
using synchronization indices and synchrograms. The results
showed that the synchronization state could be used to charac-
terize the depth of anaesthesia [6]. Despite the cardiac andres-
piratory rhythms in rats being approximately four times faster
than those in humans, the dynamics of the cardiovascular - res-
piratory system in rats and humans is very similar; therefore,
it seems plausible that similar results may also be applied to
humans. However, applying this analysis to humans may not
be reliable, since, in contrast to anaesthetized rats whoserespi-
ration does not need to be assisted, human respiration is often
controlled by forced ventilation during surgery. Therefore, a
third system, the brain system, has been added to the study[7].
An analysis based on the wavelet transform has shown that the
frequency contents of the brain waves also vary over time [8].
Presently, assuming that the coupling directions between the
three systems change when anaesthesia lightens, research on
coupling directions using pairs of instantaneous frequencies in
each case is in progress [9]. Meanwhile, other methods of ana-
lyzing the synchronization between these systems to find some
other indices to define the depth of anaesthesia are being in-
vestigated in order to create a reliable measure by combining
several such indices.

In this study, we place the emphasis on synchronization. We
calculate a measure of synchronization called the ”S-estimator”
[10] from the results of experiments along an experimental time
series, and examine how synchronization changes accordingto
the anaesthetic effect. The advantage of this method is its abil-
ity to directly examine the multivariate time series, sincewe
must analyze data recorded simultaneously from three systems.
Moreover, we introduce a Wilcoxon rank sum test [11] as a sta-
tistical assessment in order to detect more precisely the time of
the anaesthesia state change.

2. Method

In this section, we shall introduce the concept of synchro-
nization and then, we will explain how this concept is used
with the synchronization analysis method, which calculates a
measure of synchronization called the ”S-estimator”.

2.1. Definition of synchronization

We define synchronization as a process whereby two (or
more) dynamical subsystems adjust some of their time-varying
properties to a common behavior as a result of coupling or a
common external force.



Consider a large stationary, deterministic, finite-dimensional
dynamical system, which can be divided inton-and m-
dimensional subsystems, respectively.( dxdt = f1(x;y; t)dydt = f2(x;y; t) x 2 Rn ;y 2 Rm (1)

We say that two subtrajectoriesx(t) andy(t) of the whole
system are synchronized with respect to the properties (time-
dependent measures)gx andgy( gx : RnNR ! Rkgy : RmNR ! Rk k � min(m;n) (2)

if there is a time-independent mappingh : RkNRk ! Rk
such that k h[gx(x);gy(y)℄ k= 0 (3)

wherek � k is any norm inRk . This unifying definition cov-
ers most phenomena usually considered to be synchronization
[12]. Condition (3) requires a property (gx) of the trajectoryx(t) to be in a fixed relation (h) with another property (gy) of
the trajectoryy(t), and it implies that synchronized subtrajec-
tories lie on anr-dimensional manifold, wherer depends onh
and is1 � r � k. Consequently, the dimensionality of syn-
chronized dynamics(n+m� r) becomes smaller than that of
generic asynchronous dynamics(n + m) in the whole system
[12], [13].

2.2. S-estimator

By exploiting the above concepts, we quantify the amount
of synchronization within a multivariate time series, recorded
from each system, by comparing the actual dimensionality of
the set of samples of the trajectory with the expected full di-
mensionality of an asynchronous trajectory. We perform this
comparison by considering an embedding technique based on
principal components analysis (PCA) [14] because it is a mul-
tivariate method. PCA explains the variance-covariance struc-
ture of multivariate data through a few linear combinationsof
the original variables. A given multivariate time series withk components can be transformed into the population princi-
pal components (PC) by a linear transformation projecting the
original time series into the eigenbase of the covariance matrix
(correlation matrix, if the data have been power normalized) of
the time series itself [15]. In this coordinate system, the rela-
tive importance of each principal component in justifying the
variance of the original time series is given by the normalized
eigenvalue associated with its corresponding eigenvector. The
application of this method to the delay-embedded (DE) coor-
dinates is indeed possible since a given univariate time seriesy(t) can be transformed into a multivariate time series through
the delay embeddingy(t)! �(t) = [y(t)y(t� �) � � � y(t�K�)℄ (4)

where the time delay� and the window sizeK may be com-
puted through autocorrelation or self-mutual information[14].

The S-estimator is a measure of the amount of synchroniza-
tion using an information-theory-inspired measure definedas
the complement of the entropy of the normalized eigenvalues

of the corresponding correlation matrix. The more dispersethe
eigenspectrum is, the more numerous the significant PCA com-
ponents are (which means a higher embedding dimension), and
the higher the entropy of the eigenspectrum is. On the con-
trary, the more concentrated the eigenspectrum, the fewer the
significant PCA components (which means a lower embedding
dimension), and the lower the entropy of the eigenspectrum.

For the sake of simplicity, let us consider aK-variate non-
delay-embedded time series. All measurement vectorsui are
written as a matrixU such thatU = 26664 u0u1

...uN�1 37775ui 2 RK (5)

whereK is the number of time series andN is the index of the
time series. The correspondingK � K correlation matrix is
given by C = 1NUTU (6)

If �1; : : : ; �K are its eigenvalues and�0i = �iKXj=1 �j = �itr(C) (7)

are the corresponding normalized eigenvalues, the quantityS = 1 + KXi=1 �0ilog(�0i)log(K) (8)

is a measure inversely proportional to the embedding dimen-
sion of the observed dynamical phenomenon; thus, it is pro-
portional to the amount of synchronization.

When all time series are completely synchronized, the cor-
relation matrixC has�01 = 1 and�0i = 0(i 6= 1), hence the
S-estimator givesS = 1. On the contrary, when there is no
synchronization,C is diagonal and�0i = 1=K, henceS = 0.

For the same reason as mentioned before, this computation
can be applied in a similar fashion to delay-embedded data.

3. Data Analysis

In this section, we will explain how experiments were per-
formed and how we analyzed the obtained data using the S-
estimator. Moreover, we describe the statistical assessment that
was used to detect the state change from the obtained results.

3.1. Experiments

The experiments were performed on 10 adult, male Wistar
rats. The depth of anaesthesia was assessed at 5 min inter-
vals by the skin-pinch test. EEG, ECG and respiration were
recorded simultaneously. The experiment started with a nega-
tive response, i.e., when the rat stopped responding to a reflex
withdrawal of the limb, and terminated with the reappearance
of a positive response. The three signals were digitized at a1
kHz sampling rate with 16-bit resolution.



3.2. Analysis

In order to evaluate the temporal change of synchroniza-
tion among the three measured systems, we computed the S-
estimator for the data obtained in the experiments by a sliding
window technique. The window length is set to 1s. (1000 data
points) and the overlap length is set to 0.8s. (800 points). Fig.
1 shows the results for rat #9. As we can see from Fig. 1, the
value ofS seems to increase slightly at the beginning, but sud-
denly begins to decrease at about 38min. We can also note that
the value of S is not very high. This is interesting, because it
allows us to consider these three physiological systems as aset
of weakly coupled oscillators.

Previously, another analysis had been carried out on the
same recorded signals, i.e., the data from rat #9. From those
results, the respiration frequency was found to increase and
become erratic at 38min, and simultaneously, the cardiac fre-
quency increased. Using the wavelet method it was calculated
that theÆ-wave in the EEG slightly increased in frequency
during the initial deep phase of anaesthesia and underwent a
marked decrease in amplitude at 38�5min. The�-and 
2-
oscillations also undergo changes at 37.5min with an appre-
ciable increase in the amplitude after transition. Furthermore,
from the synchrograms computed for the cardiorespiratory sys-
tems, it was found that synchronization ends at 43�3min.

Our detected point of change exactly coincides with the
above results. Consequently, it seems appropriate to desig-
nate this point as the point of deep-light change in anaesthesia.
However, as it can be seen from Fig. 1, the S-estimator is noisy
and it is not easy to detect the exact point of change from the
figure.

3.3. Statistical assessment

In order to detect, statistically more precisely, the state-
change point of anaesthesia, we calculated the statisticalas-
sessment valuep using a Wilcoxon rank sum test. This is a
two-sided rank sum test of the hypothesis that two indepen-
dent samples come from distributions with equal medians, and
yields thep-value. p is the probability of observing the given
result. In the extreme case, when the null hypothesis is true,
i.e., the medians are equal,p = 1. Hence, the closer thep-
value is to zero, the more confident we are in rejecting the null
hypothesis.

We performed the test on two sets of samples of 30s. length
(150 samples) that were separated by 8min intervals (2400
samples) and moved along the time axis. In this way, it is pos-
sible to detect the first pair, because the second set statistically
differs from the first set, which is 8min in the past. Fig. 2 shows
that there is abundant evidence of a highly significant change
at 40min.

To evaluate the robustness of the statistical detection, we
changed the parameters, i.e., the window length and the interval
length, and calculated thep-value. As can be seen from Fig. 3
and Fig. 4, small lengths do not give good results; nevertheless,
there remains a wide range of suitable parameters.

All the experimental results for the other rats also show a
decrease in the S-estimator at the point of deep-light change
of anaesthesia, and thep-value allows us to locate the change
accurately in time.
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Figure 1: Synchronization measure obtained by clustering
three oscillators (ECG, Respiration and EEG) together for rat
#9
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Figure 2: Statistical assessment of S-estimator obtained for rat
#9

4. Discussion

Despite the excellent results we have obtained, we still do
not know what makes the value of the S-estimator decrease
when the anaesthesia lightens. It may be simply because the
interactions between the three systems decline according to the
effect of the anaesthesia, but this seems to be too simplistic.
It is natural to consider that the complexity of each system
changes according to the level of anaesthesia and thus, influ-
ences the S-estimator. Furthermore, because we reconstructed
the state space of each system using the delay-embedding
method, the actual S-estimator contains the information ofcor-
relation among the state variables of each system that should
be normalized.

To avoid this problem, we need a new version of the S-
estimator which takes the complexity inside each system into
account and removes it from the synchronization analysis. The
investigation of this method and its analysis will be a future
topic of study.
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Figure 3:p-value obtained with several window lengths (x-axis
is time (min).)
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Figure 4:p-value obtained with several interval length (x-axis
is time (min).)

5. Conclusions

We applied the use of a synchronization measure, the S-
estimator, to physiological signals, namely, the cardiac,res-
piratory and cortical signals, obtained from experiments on
rats. From the results, we found that the synchronization status
changes with respect to the depth of anaesthesia. Due to the
impossibility of determining the precise point where the state
changes during anaesthesia, we introduced a statistical assess-
ment, the Wilcoxon rank sum test, to detect a statistical change.
This allowed us to determine the moment of change accurately.

This research is just in the beginning stage and there still re-
main many open questions. However, we are convinced that
our index of the depth of anaesthesia will be useful and will
contribute to reducing the number of patients that awake during
surgery. We hope that one day the number of patients undergo-
ing surgery who remain awake reaches zero.
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