
ACTIVE, A PLATFORM FOR
BUILDING INTELLIGENT OPERATING
ROOMS

D. GUZZONI1, C. BAUR1, A. CHEYER2

1VRAI Group – EPFL – 1015 Lausanne – Switzerland

2AIC – SRI International – Menlo Park, CA – USA

Today computers are part of the
standard equipment of modern surgery
rooms. They assist surgeons in
performing complex procedures that
would not be possible otherwise.
However, despite the availability of
more powerful and complex computer
systems, their user interfaces have not
been adapted to fully leverage their
potential. A new type of software,
behaving as an independent intelligent
assistant, is needed to better assist
surgeons and their staff. Building an
intelligent assistant is a difficult task that
requires expertise in many fields ranging
from artificial intelligence to core
software and hardware engineering. We
believe that providing a unified tool and
methodology to create intelligent
software will bring many benefits to this
area of research. Our solution, the
Active framework, introduces the
original concept of Active Ontologies to
model and implement intelligent
applications. Based on suggestions and
constant evaluations from surgeons, an

Active based assistant for endoscopic
neurosurgery is under development.
Using natural modalities such as speech
recognition and hand gestures, it enables
surgeons to interact with computer
based equipments of the operating room
as if they were full active members of
the team. In a broader context, Active
aims to ease the development of
intelligent software by making required
technologies more accessible. It will
help foster research innovation, easier
development cycle and deployment of
this new type of applications.

INTRODUCTION
Although computer systems have grown
in power, access more networked
content and services, computer
interfaces have not changed.
Conventional user interfaces with simple
direct manipulation commands are no
longer sufficient to fully leverage such
rich and dynamic environment [1]. The
medical field is no exception.

Figure 1 : Active Editor

Computers are now part of the standard
equipment used in modern surgery
rooms. To fully leverage this new
context, modern software systems
should behave as intelligent assistants
able to observe and sense their
environment, for instance human inputs,
to analyze a situation by mapping input
senses into a model of what tasks and
events may be happening [2]. They
would then understand and anticipate
what the user might need to finally act
to produce relevant and useful
behaviour. The development of
intelligent assistants requires expertise
in many ¯fields [3].
Perception of human activities is
typically based on techniques such as
computer vision or speech recognition.
Understanding the meaning of input
signals, is performed by natural
language processors, dialog systems or
activity recognition mechanisms.

Reaction, decision making strategies and
complex task execution are the
responsibility of planning systems.
Finally, as planning unfolds various
actions are taken by the system. Based
on their nature and purpose, intelligent
systems act through a wide range of
modalities. They communicate with
humans, gather information or
physically change their environment.
Designing and implementing intelligent
assistants software is also a difficult
task.
Due to the variety and complexity of
technologies required, intelligent
assistants are made of a collection of
components written in many different
programming languages. Connecting
various heterogeneous programs,
sometimes remotely, requires strong
technical knowledge and careful
deployment policies. Testing and
debugging distributed heterogeneous

systems is also a complex task. To
identify and correct bugs, events and
associated values need to be tracked
from one component to another. Finally,
combining many different approaches,
tools and technologies limits the overall
performance and extensibility of the
system.
We believe that providing a unified tool
and methodology to create intelligent
software will solve many of the
problems described above and bring
many benefits to this area of research. It
will allow more researchers and
engineers to work in the field by
providing a bridge between core AI
technologies and practical engineering.
This paper introduces our
implementation of this vision, the
Active framework. The next section is
dedicated to related work on building
intelligent assistants. The section Active
Framework outlines the Active original
concepts, architecture and current
implementation. The next section
presents how the Active framework is
used to implement an intelligent
assistant in the context of neurosurgery.
Finally, a conclusion presents directions
of our future work.

RELATED WORK

By definition, intelligent interactive
systems are based on various AI
techniques.
Relevant efforts related to our research
can be classified into three categories.
First, the area of interface agents aims at
creating intelligent user interfaces to
assist humans in specific domains [4].
For instance, the Internet is an
environment where intelligent assistants
can leverage a vast amount of

information and services to help users
with complex tasks [5]. Scheduling
meetings, managing an agenda and
communicating also represent
applications where intelligent assistants
are relevant [6].
Intelligent assistant are also relevant in
the domain of heterogeneous smart
spaces, instrumented rooms able to
sense their environment and act upon
events and conditions. In the surgical
field, modern operating rooms are
becoming such smart spaces. Many
components can now be connected and
controlled so that intelligent assistant
software can be deployed to assist
surgeons and their staff. Existing smart
spaces projects are designed and
optimized for specific domains,
implemented using proprietary
frameworks and methods. Our goal is to
provide a more generic intelligent
system toolkit, composed of a suite of
tools and methodologies to rapidly
design and deploy complex software
into smart spaces.
Our work also relates to the field of
multi agent framework research. In this
area, heterogeneous existing AI based
components are turned into agents able
to form communities working together
with humans to help them solve
problems. In this context, the open agent
architecture [7] OAA introduces the
powerful concept of delegated
computing. Requests and plans are
delegated to a facilitator in charge of
orchestrating actions based on declared
capabilities of agents. Thanks to its ease
of deployment and clean design, OAA is
used in a large number of projects.
Though very powerful, OAA does not
provide a unified methodology to create
intelligent systems. It rather provides a

framework where heterogeneous
elements, written in many programming
languages, are turned into OAA
compatible agents to form intelligent
communities. Similarly, the Retsina [8]
framework is advanced multi agent
architecture to build distributed
intelligent systems. It is based on four
classes of agents. Interface agents that
interact with users, task agents that carry
out plans, information retrieval agents
and middle agents to help match agents
that request services with agents that
provide services. Though very efficient
in producing independent reactive
behavior, Restina would not be suited as
a unified methodology to implement
basic AI components such as natural
language processors or multimodal
fusion engines. In addition the design of
Retsina uses different formalisms for
communication, domain representation
and reasoning technique. In contrast, our
aim is to use the same formalism for all
intelligent assistant aspects.
Finally, undertaking tasks on behalf of a
user and attempting to understand what
actions are being carried out involves
planning. BDI based systems [9]
provide goal oriented reactive planning
in dynamic and partially known
environments. Beliefs represent the
model and state of the world and a plan
library defines how to achieve goals.
Intentions are activated plans elected
and picked from the library to reach
some goals. The list of intentions is
constantly evaluated with beliefs, thus
providing a reactive behavior to the
system. Many BDI implementations

[10] [11] are available and have proved
their relevance in the field of intelligent
systems. BDI based engines would be
well suited to be the core of our
research, where dynamic decisions need
to be made to respond to an event. Their
design is nevertheless constrained to
dynamic planning and would not be
suited to implement tasks such as
natural language processing or modality
fusion.

ACTIVE FRAMEWORK

1. Conceptual Overview
Our solution, the Active framework,
provides a unified tool and methodology
to eases the development of intelligent
software. Active is based on the original
concept of Active Ontologies, used to
model and implement applications. A
conventional ontology is defined as a
formal representation for domain
knowledge, with distinct classes,
attributes, and relations among classes;
it is a data structure. An Active
Ontology is a processing formalism
where distinct processing elements are
arranged according to ontology notions;
it is an execution environment. An
Active Ontology is made up of
interconnected processing elements
called Concepts, graphically arranged to
represent the domain objects, events,
actions, and processes that make up an
application. Concepts communicate with
each other through channels, passing
state information, hypotheses, and
requests.

Figure 2 : Active Application Design

2. Technology
The Active framework implementation
is a Java based software suite designed
to be extensible and open. The Active
Editor (Shown in figure 1) is a design
environment used by developers to
model, deploy and test Active
applications. The Active Server is a
scalable runtime engine that hosts and
executes one or more Active
applications.
A plug-in mechanism enables
researchers to package AI functionality
to allow developers to apply and
combine the concepts quickly and
easily. To ensure ease of integration and
extensibility, components of the Active
platform communicate through web
service (SOAP) interfaces.
3. Active based application design

An Active powered application is
composed of one or more Active
Ontologies deployed and executed on
the Active server and a community of
sensors and actuators integrated as
SOAP web services (See figure 2).
Sensors (user interface, speech
recognizer, stereo camera or any
physical measuring probe) report events
captured in the environment through the
SOAP interface of the Active server.
In response to incoming events, an
Active Ontology in charge of natural
language interpretation attempts to
construct structured commands. Such
Active Ontology (See figure 1) defines
the structure of valid commands and,
within the same unified context,
specifies processing rules to turn the
static ontology-like domain definition
into a dynamic execution environment.

An Active Ontology in charge of natural
language interpretation is made out of
two types of concepts: sensor concepts
and node concepts.
Sensor concepts are specialized filters to
sense and rate incoming events about
their possible meaning. A rating defines
the degree of confidence about the
possible meaning of the corresponding
sensed signal. Typically sensor concepts
generate ratings by testing events
ordering and if their values belong to a
known vocabulary set. Sensors use
channels to report their results to their
parents, the node concepts.
There are two types of node concepts:
gathering nodes and selection nodes.
Gathering nodes create and rate a
structured object made out of ratings
coming from all their children. Selection
nodes pick the single best rating coming
from their children. Node concepts are
also part of the hierarchy and report
ratings to their own parent nodes.
Through this bottom up execution, input
signals are incrementally assembled up
the domain tree to produce a structured
command at the root node.
For instance, when the surgeon says:
“endoscope zoom in”, the sequence of
words "endoscope”, "move”, "in” will
be submitted to the network. Each word
is rated by the sensors of the network.
"endoscope” will be rated as a subject,
"move” as a verb and "in” as a zoom
complement. The node complement is of
type selection and picks the best rated
value coming from its children. At the
top of the network, the node command
is of type gathering and assembles
values from its children to create the
final command.
Since sensors report events to the Active
server through a web service interface,

they can be heterogeneous, distributed
and easily added. Active is a test-bed for
multimodal applications where multiple
sensors can contribute to make up a
command.
For instance, a surgeon can say
"endoscope, follow my tool” while
gesturing to the left. The speech
recognizer will contribute by reporting
all recognized words and the gesture
recognizer will report a gesture going
from left to right. The language
processing Active ontology, using its
bottom up network of concepts, will
assemble these fragments to generate a
full command.
Concepts remember their current
ratings, therefore the dialog context
between the user and Active is
maintained. After successfully issuing
the command "endoscope zoom in”, to
further control the zoom factor the user
can simply say "in” or "out”.
Once a structured command has been
generated at the language processing
stage, it is passed to another Active
Ontology in charge of validation and
resolution. The incoming command will
be deconstructed, following a top down
scheme, to verify that each element is
valid and semantically correct.
Complete and valid commands are
processed by a final stage, implemented
as another Active Ontology, will
perform actions and communicate.
Since Active applications interact with
their environment through a set of
loosely coupled services, actuators are
not known at design time and have to be
dynamically chosen at runtime based on
their availability, the environment
context and user preferences.
This concept of delegated computing [7]
is implemented by another specialized

Active Ontology. Registered service
providers are rated and picked at
runtime by a delegation broker. As an
example, if a message has to be
communicated, the delegation Active
Ontology will analyze the current
situation to decide which service
provider is best suited to do the job.
Selection is based on many factors such
as dialog context, user preferences,
location, reliability or cost. Service
integration through a delegation
mechanism provides a powerful plug
and play approach where components
can be dynamically integrated.

NEUROSURGERY
INTELLIGENT
ENVIRONMENT

Following the methodology described in
the previous section, an intelligent
operating assistant for neurosurgery is
under development. The system is
implemented as a multimodal system
allowing surgeons to retrieve and
manipulate pre-operative data (a set of
CT scans and a reconstructed 3D model
of the area to operate). In addition, live
images coming from a powered image
source (endoscope or microscope) are
displayed along with vital patient
information. Surgeons and their staff
interact with the system by a
combination of hand gesture using a
contact-less mouse [12] and voice
recognition. Commands are issued to
control the powered endoscope, navigate
through pre-operative data and choose
which information to show on the main
display. The prototype is implemented
over five Active Ontologies deployed on
an Active server and a community of

SOAP enabled sensors and actuators.
Input sensors are speech recognition,
vision based gesture recognition and
probes used to monitor patient vital
signs. Actuators are the main user
interface, a robotic endoscope holder
and a speech synthesizer.
The system is evaluated and reviewed
by surgeons and medical equipment
suppliers on a regular basis. For the first
time, a natural and intuitive computer
interface enables them to interact with
computers as though they were an active
member of the team. In addition, a
service-based architecture federates
computer based systems present in the
operating to centralize all interactions
through the same set of multimodal
channels. It saves surgeons from
learning about different system designs
and limits the number of user interfaces
they have to deal with.
Since the system is built as a community
of distributed services, multiple
surgeons can collaborate from different
locations by dynamically connecting
their own user interfaces on a shared
network.
The major problem we see for a broader
deployment of our system is the
standardization of the operating room
components. Operating rooms
communication protocols are being
developed, but they are not open and use
proprietary technologies.

SUMMARY AND FUTURE
WORK

The Active framework provides a
unified tool and approach for rapidly
developing applications incorporating
robust natural language interpretation,

dialog management, multimodal fusion
and brokering of web services. As such,
Active aims to unleash the immense
potential of intelligent software by
making required technologies more
easily accessible.
Its goal is foster research and innovation
in this new field of software design by
helping launch more academic and
commercial projects. Active has been
used in various domains, such as
intelligent spaces and ubiquitous mobile
communications.
In the medical field where computers
are part of the standard equipment of
surgery rooms, an Active based
intelligent operating environment is
under development and evaluation. This
software assistant enables surgeons to
interact with computer systems as if
they were an active member of the team.
More work remains to be done on both
implementation and methodology

aspects of Active. To perform realistic
clinical tests, we are working on
integrating real operating room
components with the Active framework.
If Active has proven techniques for
basic language processing and service
orchestration, further investigation
needs to be done on activity recognition
and plan execution. Our philosophy is to
use the Active framework to unify these
two disciplines to perform them in a
unique environment. Active could then
look at the activity of a user, understand
what is being attempted to proactively
provide relevant assistance or take over
the execution of the task.

 ACKNOWLEDGEMENTS

This research has been supported by SRI
International and the NCCR Co-Me of
the Swiss National Science Foundation.

BIBLIOGRAPHY

[1] MAES P.,
Agents that reduce work and
information overload
Communications of the ACM,
1995, 38.

[2] SOWA J.F.,
Architecures for intelligent
systems. Special Issue on
Arti¯cial Intelli-
gence of the IBM Systems
Journal, 2002, 41 : 331-349.

[3] WINIKOFF M.,
PADGHAM, L. HARLAND.
Simplifying the development of
intelligent agents
Australian Joint Conference on
Artificial Intelligence, 2001, 557-
568.

[4] MIDDLETON S.E.
Interface agents: A review of the
field, 2002.

[5] MORRIS J., REE P.,MAE
P.

Sardine: dynamic seller
strategies in an auction
marketplace
ACM Conference on Electronic
Commerce. 2000, 128-134.

[6] BERRY P., MYERS K.,
URIBE T., YORKE-SMITH N.
Constraint solving experience
with the calo project
Proceedings of CP05 Workshop
on Constraint Solving under
Change and Uncertainty, Sitges,
Spain, 2005 4-8

[7] CHEYER A., MARTIN D.
The open agent architecture
Journal of Autonomous Agents
and Multi-Agent Systems. 2001,
4(1) : 143-148.

[8] SYCARA K., DECKER K.,
PANNU A.S.,
WILLIAMSON,.M, ZENG D.
Distributed intelligent agents
IEEE Expert, 1996

[9] RAO A.S, GEORGEFF
M.P.
BDI-agents: from theory to
practice
Proceedings of the First Intl.
Conference on Multiagent
Systems, San Francisco, 1995.
[10]MYERS K..
A procedural knowledge
approach to task-level control
In proceedings AIPS-96, 1996,
AAAI Press 1996 158-165
[11] NORLING E., RITTER
F.E.
Embodying the JACK agent
architecture
Australian Joint Conference on
Artificial Intelligence. 2001, 368-
377.

[12] GRAETZEL C., FONG
T.W, GRANGE S., BAUR, C.
A non-contact mouse for
surgeon-
computer interaction
Technology and Health Care
2004, 12(3) : 245-257

