Closing the gap in the capacity of random wireless networks via percolation theory
An achievable bit rate per source-destination pair in a wireless network of n randomly located nodes is determined adopting the scaling limit approach of statistical physics. It is shown that randomly scattered nodes can achieve, with high probability, the same 1/\sqrt{n} transmission rate of arbitrarily located nodes. This contrasts with previous results suggesting that a 1/\sqrt{nlogn} reduced rate is the price to pay for the randomness due to the random location of the nodes. The network operation strategy to achieve the result corresponds to the transition region between order and disorder of an underlying percolation model. If nodes are allowed to transmit over large distances, then paths of connected nodes that cross the entire network area can be easily found, but these generate excessive interference. If nodes transmit over short distances, then such crossing paths do not exist. Percolation theory ensures that crossing paths form in the transition region between these two extreme scenarios. Nodes along these paths are used as a backbone, relaying data for other nodes, and can transport the total amount of information generated by all the sources. A lower bound on the achievable bit rate is then obtained by performing pairwise coding and decoding at each hop along the paths, and using a time division multiple access scheme.
FDTT07.pdf
openaccess
759.75 KB
Adobe PDF
564aa9c490961739d02889c258e25c3c
typo_FDTT07.pdf
openaccess
97.77 KB
Adobe PDF
b397921ed0ede9d2eb89994ed00bac09