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In diffusion MRI, standard approaches for fibertract identification are

based on algorithms that generate lines of coherent diffusion, currently

known as tractography. A tract is then identified as a set of such lines

selected on some criteria. In the present study, we investigate whether

fibertract identification can be formulated as a segmentation task that

recognizes a fibertract as a region where diffusion is intense and

coherent. Indeed, we show that it is possible to segment efficiently well-

known fibertracts with classical image processing methods provided

that the problem is formulated in a five-dimensional space of position

and orientation. As an example, we choose to adapt to this newly

defined high-dimensional non-Euclidean space, called position orien-

tation space, an algorithm based on the hidden Markov random field

framework. Structures such as the cerebellar peduncles, corticospinal

tract, association bundles can be identified and represented in three

dimensions by a back projection technique similar to maximum

intensity projection. Potential advantages and drawbacks as compared

to classical tractography are discussed; for example, it appears that our

formulation handles naturally crossing tracts and is not biased by

human intervention.

D 2006 Elsevier Inc. All rights reserved.

Introduction

Classically, the question of revealing nerve fiber architecture in

the brain, based on diffusion-weighted MR images, is addressed by

building lines of coherent diffusion, that are interpreted as axonal

trajectories. Such magnetic resonance tractography is usually

achieved by solving for some path integral in a field of principal

diffusion vectors derived from Diffusion Tensor (DT) MRI data

(Basser et al., 2000; Conturo et al., 1999; Mori and van Zijl, 2002;

Mori et al., 1999; Wedeen et al., 1996). This approach is now
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understood to have some significant limitations (Basser et al.,

2000; Lazar and Alexander, 2003; Tournier et al., 2002), chief

among them is its inability to image fiber crossings (Mori and van

Zijl, 2002; Wiegell et al., 2000). Several methods, probabilistic and

deterministic, were devised to improve the effects of this limitation

of DTI on tractography (e.g., Behrens et al., 2003; Hagmann et al.,

2003; Lazar et al., 2003; Poupon et al., 2001), but none has proven

to be wholly satisfactory, as none is able to robustly provide

accurate and objective images of tract intersections. It is now

generally accepted that the orientational information provided by

the DT model is insufficient to accurately map important and

critical brain areas (Hagmann et al., 2004; Wedeen et al., 2005).

Moving beyond the tensor model, new representations, now

existing, consider the pattern of diffusion in each voxel in terms

of its orientational distribution of diffusion intensity (orientation

density function, ODF). These methods include diffusion spectrum

MRI (DSI) (Wedeen et al., 2000, 2005), Q-ball (Tuch et al., 2003)

and related ‘‘high angular resolution diffusion imaging’’ MRI

methods which map the angular variation of the probability density

function (PDF) using more limited encoding schemes (Jansons and

Alexander, 2003a,b; Tournier et al., 2004; Zhan et al., 2004). On

such data, it has been shown that MRI tractography is now able to

accurately map important fibertracts as the cortico-spinal tract or

the corpus callosum, while keeping the important directional

information at fibre crossing sites (Hagmann et al., 2004).

If the anatomy of a tract or bundle of fibers needs to be

described, a common solution consists in placing regions of

interest (ROIs) over some particular brain areas and to extract the

lines that pass through such ROIs. A more subtle way is to consider

a fibertract as a set of those lines that share some geometrical

property, like having similar shape and position (Brun et al., 2004)

or being adjacent over long distances (Jonasson et al., 2005c).

However, a fiber tract is not only a set of axons. It can also be seen

as a single object with a rather precise boundary with a given shape

and volume (Jones et al., 1999). For example, the arcuate

fasciculus is a semi-toric or crescent shaped object with a volume
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that depends on gender, handedness and the hemisphere considered

(Hagmann et al., 2006). In terms of diffusion, as will be discussed

further down, such an object is a region of coherent diffusion as the

nerve fibers run mainly parallel within the tract (Beaulieu, 2002).

We have mentioned that the advent of diffusion MRI data of

higher angular resolution (DSI, Q-ball, etc.) enables tractography

to handle naturally fiber trajectories in regions of fiber-crossing,

essential prerequisite to accurately map connectivity. Furthermore,

as we will show hereafter, high angular resolution allows

representing diffusion as a signal (or a scalar field) mapped on a

five-dimensional space of position and orientation. This is

important as standard image processing tools can be readily

applied provided that they are adapted for this high-dimensional

non-Euclidean space. Accordingly, we will see how tract identi-

fication can be reformulated as a segmentation problem on a five-

dimensional space and solved with classical image segmentation

algorithms. In such a space, fibertracts are represented as disjoint

clusters where crossing fiber tracts are disentangled. For illustra-

tion, we show results obtained by adapting a classical segmentation

method based on the hidden random Markov field formalism.
Material and method

Theory

What is the position orientation space (POS)?

In diffusion imaging of high angular resolution, such as

Diffusion Spectrum Imaging or Q-ball imaging, data are repre-

sented by an ODF in every position. The ODF is a two-

dimensional function on the unit sphere whose values describe

the diffusion intensity in each orientation u(h, u). This ODF is

actually a radial projection of the full three dimensional diffusion

function or diffusion spectrum (p̄D) (Wedeen et al., 2005):

ODF uð Þ ¼
Z
R
þ
p̄D quð Þq2dq; ð1Þ

with �u� = 1 and q the integration radius. For the purpose of the

present segmentation application, the ODF is normalized such that

its maximum value is 1. We refer to the sphere on which the ODF

is defined as the orientation space whereas R3 is the position space.

A diffusion MRI dataset provides for any given position voxel

r(x, y, z) and for every orientation u(h, u), a diffusion intensity.

Instead of considering those two spaces separately, we merge

them into a unique space. Intuitively, this new space is a tensor

product between the three-dimensional Euclidean position space

R
3 and a two-dimensional orientation space—the 2D sphere—

resulting in a five-dimensional space whose coordinate system is

(s = [r, u], r Z R
3, u Z 2D sphere) (Figs. 1A and B). Diffusion

is then simply a scalar field mapped on this space. This intuitive

description of POS must now be formulated precisely.

Defining position orientation space

Let us first consider a set S as:

S ¼ fs ¼ r;uð Þ; r a Z
3;

ua N elements distributed over the 2D spheref gg: ð2Þ

We introduce directly a discrete set because it fits naturally the

sampled MRI data (through the discrete measurements) and suits

the segmentation formalism that we will choose. However, an
equivalent continuous set can be constructed if necessary by

defining r Z R
3, u Z 2D continuous sphere. Each element of the

space is called a site s and is identified by its coordinates of

position and orientation (rs, us).

Lets define the function d of two sites s and sV :

d s;sVð Þ ¼ jjr � rVjj þ c û;uV ð3Þ

where u;ûV is the solid angle between vectors u and uV. c is a

constant weighting the angular distance as compared to the

Euclidean distance. We choose c = 18/p to make a unit of angular

distance equal to 10-.
We notice that the function d(.,.) on the set S is a metric since it

satisfies the three basic properties of symmetry and identity

condition as well as the triangle inequality (see Appendix). Hence,

the metric d induces a topology on the set S whose closed sets over

all subsets can be realized as the intersection of closed balls defined

as:

Bq sð Þ ¼ sV: d s;sVð Þ � qf g ð4Þ

with s Z S and q Z R
þ. A closed ball of radius q and centered on

the site s(Bq (s)) is a set of points that are at a distance smaller or

equal to q from s.

Defining POS formally has two obvious positive consequences.

The first is that POS is a metric space (d,S) which is a useful

property for signal processing (Sochen et al., 1998). Second, it

allows defining a neighborhood on POS very easily, which will be

used in our segmentation model.

The neighborhood of a site s Z S is chosen as follows:

Ns ¼ B3 sð Þb sf g ð5Þ
This simply means that the neighbors of a site s are all the sites

that are within a distance less or equal to 3 from s in POS.

The set N = {Ns}sZS defines a neighborhood system for S

(Fig. 1C) since it satisfies the two properties (Geman, 1990;

Geman and Geman, 1984):

& suNs, Os Z S

& s Z NsVS sVZ Ns, O(s,sV) Z S2

Eq. (3) defines a distance that is simple and natural. The

distance between two points is a weighted sum between the

distance in position (the natural physical distance) and the angular

distance between both orientations.

Getting to know the POS

In order to get some intuition on POS, let us consider the

problem in two dimensions instead of three, hence defining a 3D

POS (x, y, h) instead of the actual 5D POS (x, y, z, h, u). As

depicted in Fig. 2A, we consider two fibertracts (yellow and red)

that cross at �30- in the x –y plane. The underlying diffusion

pattern is represented by the ODF map in the same plane. We see

that in the crossing areas the ODFs exhibit two directional maxima

tangent to both fiber tracts. In Fig. 2B, where we have isolated

both individual tracts, we readily see that they overlap in the

middle of the image, reason why it is impossible to separate

crossing tracts in the 2D position space. We now add a third

dimension, which we call h = arccos (uq[1, 0]), that codes for the
angular variable of the ODF with reference to the x axis, its

orientation. Intuitively, we define this space as the 3D POS. The

ODFs of Fig. 2A are then mapped as a scalar field d(x, y, h) of



Fig. 1. Position orientation space. (A) Schematic representations of the three-dimensional Euclidean position space (left) and the two-dimensional orientation

space (right) existing for every position r. (B) The space resulting in the merging of both the position space and the orientation space is represented with a

sphere in every position. One of the sites s = (rs, us) of the space has been painted in red. (C) illustrates the neighborhood. The neighbors of the current site s in

red are black (Ns = B3(s)\{s}). The number of angular neighbors on each voxel decreases with its spatial distance from the center. (D) The subset Ks of the

neighborhood Ns is used to inject a priori on the shape of the object. Only neighbors ‘‘aligned’’ with the current site are selected in Ks. This favors diffusion

homogeneity along the fibertract.
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diffusion intensity on 3D POS. The green interfaces of Fig. 2C

represent iso-surfaces of the scalar field (d(x, y, h) = constant)).

Whereas both tracts where overlying structures in two dimensions,

we see that in 3D POS they nicely disentangle. At this stage, we

would just like to emphasis that for representation purposes the 3D

POS looks Euclidean on our 3D plot, but by no means it is, as

there is periodicity along h.

A proposal of segmentation of POS in two classes

In POS fiber tracts correspond to beams of intense diffusion

(Fig. 2)—i.e., they lie in regions where the diffusion scalar field

d(r, u) takes high values along a preferential direction—whereas

one may not associate tracts to areas of low diffusivity. The aim of

the segmentation task is to label every POS site as ‘‘1’’ if it

corresponds to a position inside a tract or with ‘‘0’’ if it lies outside,

i.e., we want to compute and indicator field on POS.

We are now able to make the link with classical image

segmentation formulations. Many segmentation algorithms can

potentially be adapted. However, given the size of the dataset we

need to choose an efficient approach. For illustration purpose, we

choose to adapt a well-known, rather robust method that has the

additional advantage that it is able to segment all the objects of the

scene at once free of human interaction. The Markovian approach

in image denoising and segmentation, first introduced by (Geman,
1990; Geman and Geman, 1984), is powerful and now a widely

accepted paradigm. It has the advantage of providing lots of

flexibility while keeping implementation simple. Markov Random

Fields are convenient to describe the dependence of one site upon

its neighborhood. This is usually done to add a priori in an image

model and uses the probabilities to model such dependence. The

idea is to consider the data as an observed field, which results from

the noisy measure by an imaging device of some true, yet not

directly observable reality (i.e., the fibertracts), called the hidden

field. It can be guessed from its dependence upon the observed

field and its neighborhood values.

Our goal here is to perform a segmentation; this needs to be

kept in mind when defining the image model and the probabilities.

We will have to favor homogenous, contiguous and high

diffusivity regions and label them as a tract. We will see the

hidden random field as the ideally segmented image and generate

the most probable configuration with respect to the measured

diffusion values.

Practically, we derive our formulation from the Markov

Random Field Maximum A Posteriori (MRF-MAP) classification

algorithm proposed by Zhang et al. (2001) that was designed to

segment T1-weighted MRI images. Accordingly, we reformulate

the neighborhood system in accordance to the particular topology

of POS and the energy functions in order to fit our image model.



Fig. 2. Model of crossing fibertracts in two dimensions. (A) ODF map of 2 crossing fibertracts at �30- in the plane with a noisy background. (B) In two

dimensions, the region of fiber-crossing is shared by both tracts, the two objects, are entangled. (C) An associated 3D POS is constructed by adding to the two

dimensions of position a third dimension that codes for the angular orientation of diffusion. Accordingly, the ODF map is mapped into a scalar field d(x, y, h).
A fiber tract which is a region of intense coherent diffusion corresponds, in this space to an intense beam, represented here by a green iso-intensity surface. We

readily see that as both tracts do not have their maximal diffusion in the same orientation they disentangle nicely in POS. The isolated small vertical patches are

a translation of the noise in the data and illustrate the necessity for the regularization procedure (in our case, the Gibbsian formalism).
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Let us consider the discrete diffusion scalar field reconstructed

from the MRI data:

S Y D

ðr;uÞ[ d r;uð Þ

as a realization y of some random field Y which models the random

variable generating the MRI data ( ys K d(rs, us)). Y is the observed

random field, and it takes its values in the configuration space:

Y ¼ y ¼ y1; . . . ; yjSj
� �

: ys a D; sa S
� �

ð6Þ

where D = {0,1, . . . , D} is the set of values that the diffusion scalar

field can take. In simple terms we can think of each configuration y

of the configuration space Y as one possible diffusion MRI data set

over all possible data sets. Given that y is the observed field, we

know that its true configuration is in fact the acquired MRI data.

We furthermore consider a random field X taking its values in

the configuration space:

X ¼ x ¼ x1; N ;xjSj
� �

: xs a L; sa S
� �

ð7Þ

with L = {0,1} and |S| being the number of elements in the set

S (number of sites). Each configuration x represents an indicator

field of fibertracts, where sites that lie in within a fibertract take

value ‘‘1’’ and sites free of tract value ‘‘0’’. We can think of a

specific configuration x as a kind of ideal ODF map, where in

each position, the ODF would have the shape of one or several

compass needles pointing in the direction of the fibertract. We

call X the hidden random field as it is not directly observable

but considered to be the physical cause of the measured

observed field Y and therefore can be guessed from a realization

of Y.

Obviously X is not independent of Y and Xs is not

independent of its neighborhood; let us formalize these concepts.

We consider that there is a local spatial correlation in X, property

that can be modeled by a Markov Random Field. Accordingly, a
neighborhood system must be defined, and we naturally use the

system that we defined above to generate the POS: N. It follows

that the local characteristic of X can be expressed as:

p xsjxSb sð Þ ¼ p xsjxNs
ð Þ, meaning that the dependences are only

local. The diffusion value at one site xs is only dependent on its

neighbors Ns and not on all the POS. Furthermore, we specify the

relation between X and Y by assuming that these random fields

are related in the following way:

p yjxð Þ ¼ k
s a S

pðysjxsÞ ð8Þ

which states that conditionally to a given configuration x Z X

the random variables Ys are independent.

The image classification problem we consider involves assign-

ing to each POS site a class label belonging to the set L. We look

for the true but unknown configuration x that has generated the

observation y; it can be estimated by maximizing the probability

p(x|y).

According to the Maximum A Posteriori (MAP) criterion, this

objective can be formalized with the following optimization task,

where p( y) is obviously constant:

x̂x ¼ argmax
x a X

p yjxð Þp xð Þf g ð9Þ

and where x is the best estimate given the observation y.

According to the Gibbs-Markov equivalence (p. 260, Brémaud,

1999) and more particularly to the Hammersley–Clifford theorem

(Hammersley and Clifford, 1968), the distribution of a Markov

Random Field can be expressed as a Gibbs distribution. Hence,

p xð Þ ¼ 1

Z
e�U xð Þ ð10Þ

where the energy function U derives from a Gibbs potential (p. 258,

Brémaud, 1999) and Z is a normalizing constant called the partition

function.



For all sites s of the hidden random field X

Find the value (xs = 0 or 1) which minimizes aUs( ys |xs) + bUs(xs)

Update xs
End
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Furthermore, because of the conditional independence stated

above (8), it is always possible to write p( y|x) as a Gibbs

distribution:

p yjxð Þ ¼ 1

Z V
e�U yjxð Þ ð11Þ

Consequently (10) is equivalent to minimizing the negative log-

likelihood:

x̂x ¼ arg min
x a X

U yjxð Þ þ U xð Þf g: ð12Þ

Gibbsian distributions give us considerable flexibility for

shaping the probabilistic relationships between the individual

components of the random field. As such, we choose convenient

and easy to implement potentials in the definition of the energy

functions. We model the conditional energy as

U yjxð Þ ¼ a
X
s a S

Us ysjxsð Þ

¼ a
X
s a S

ys � tð Þ1 xs ¼ 0½ � þ t � ysð Þ1 xs ¼ 1½ �
��
: ð13Þ

where t is a threshold value experimentally chosen between 0 and 1.

1[I] is the indicator function, taking value 1 if the statement in

brackets is satisfied and 0 otherwise; a is a tuning parameter chosen

to be 1. These potentials Us ( ys|xs) are made to favor the state

‘‘fibertract = 1’’ in regions of high diffusivity and reversely favor the

state ‘‘no-fibertract = 0’’ in regions of low diffusivity. With a typical

value of t around 0.5 and with ys ranging from 0 to 1, we can see that

a high value of ys will lead to a smaller energy and thus a more stable

configuration if xs is equal to 1 (if ys > t then t � ys < ys � t),

conversely a low value of ys will lead to a more stable configuration

if xs is chosen to be 0.

While the conditional energy (U( y|x)) is made to link the

segmentation result to the measured data, the prior energy (U(x)) is

designed to shape the result according to our a priori model. As

such, we chose potentials that favor homogeneous and oriented

regions by minimizing the quadratic distance with all the

neighboring values which is the same as computing the mean

diffusion value over the neighborhood (the mean is the value

minimizing the quadratic error within a given set). However,

instead of computing this mean value over the whole neighborhood

Ns, which is isotropic, we choose to only use the values in an

anisotropic subset Ks of the neighborhood Ns (Fig. 1D). Sites that

are aligned in terms of position to the current site orientation have a

higher probability of being part of the same fibertract and thus are

taken into account to favor homogeneity. Sites that do not belong

to the subset Ks are likely not to belong to the same fibertract and

thus are not taken into account.

There are several ways to define Ks. We define it in a similar

way than Ns in Eqs. (3), (5) using this time a semi-distance

function f(I) which is minimum for sites whose orientations u and

uV match their spatial alignment r –r V :

f s;sVð Þ ¼ jj r � rVjj

þ gu;ûVþ lðû;ðr � rVÞ þ ûV; r � rVÞð Þ ð14Þ

with g = 18/p and l = 9/p and where the last term is the solid angle

between the orientations of the sites and their spatial alignment and

is minimum when u, u V and (r –r V ) share the same direction.

We then define the subset Ks (Fig. 1D) in analogy to (5) as:

Ks ¼ sVa Ns : f s; sVð Þ V 3f g ð15Þ
Figs. 1C and D illustrate quite nicely the difference between Ns

and Ks. The prior energy is then defined as the mean on the subset

Ks:

U xð Þ ¼ b
X
s a S

Us xsjxNs
ð Þ ¼

X
s a S

1

jKsj
X

r a Ks

1 xr m xs½ �

)(
ð16Þ

where b is a tuning parameter that must be chosen empirically and

|Ks| the number of elements in the subset Ks, defined in Eq. (15).

This ensures that the configuration xs = 0 will be more stable if

there is already a lot of 0 in Ks and that the configuration xs = 1

will be more stable if there is a lot of 1 in Ks, thus favoring

homogenous region.

Although mathematically simple, this type of MAP problem

can be computationally difficult because of combinatorial explo-

sion. We use the Iterative Conditional Modes (ICM), algorithm

proposed by Besag (1986), that uses a ‘‘greedy’’ strategy by

performing local minimization iteratively and is known to

converge after only a few iterations.

Besag’s ICM segmentation algorithm.

For a few iterations
Fibertract labeling

We define two separate fibertracts as two clusters in the

optimized configuration x that are disjoint with respect to the

neighborhood system. To finalize the segmentation, we therefore use

an iterative algorithm that scans x and labels the separate clusters

uniquely. The labeled clusters are defined on the five-dimensional

POS, space which cannot be easily visualized or interpreted.

Therefore, each labeled cluster which represents a region of maximal

diffusion coherence is back projected into the usual three-dimen-

sional space and represented for example with colored surfaces.

At this stage, we need to make an important conceptual remark.

Since diffusion is symmetric with respect to its orientation (d(r, u) =

d(r, �u)) as shown by Wedeen et al. (2005), it follows that

theoretically every object is segmented twice, once in each

direction. The POS as presented here has two advantages, first, it

is more general, and second, its mathematical properties are

simpler. In practice, however, we perform the segmentation only

on one hemispace in order to improve computational efficiency.

Acquisition and segmentation parameters

Two data sets were acquired at 3 T with either an Allegra

head-scanner (Siemens, Erlangen, Germany) or an Achieva

(Philips, Einthoven, The Netherlands) using diffusion weighted

single-shot echo-planar MRI multislice technique. The imaging

parameters specific to each of the two data sets are summarized

in Table 1. The diffusion-weighted images were acquired

according to the classical DSI scheme as described in (Wedeen

et al., 2005). Briefly, at each location, diffusion-weighted images

were acquired for N = 515 values of q-encoding, comprising in

q-space the points of a cubic lattice within the sphere of 5 lattice

units in radius.

q ¼ aqx þ bqy þ cqz; ð17Þ



Table 1

Summary of acquisition parameters

MRI type Siemens Allegra 3T Philips Achieva 3T

Data set Right hemibrain Brainstem

Diffusion pulse sequence Twice refocused

spin echo

(Reese et al., 2003)

Standard pulsed

gradient spin echo

Matrix size � number

of slices

64 � 64 � 32 128 � 128 � 24

Voxel dimension [mm] 3.8 � 3.8 � 3.8 2.8 � 2.8 � 2.8

TE/TR [ms] 156/3000 154/3000

D/d [ms] 66/60 47.6/35

gmax [mT/m] 40 80

bmax [s/mm2] 17,000 12,000

Acquisition time [min] ¨25 ¨60
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with a, b, c integers and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2
p

� 5. qx, qy and qz
denote the unit phase modulations in the respective coordinate

directions. The diffusion spectrum was then reconstructed by

taking the discrete 3D Fourier transform of the signal modulus.

The signal is pre-multiplied by a Hanning window before Fourier

transformation in order to ensure a smooth attenuation of the

signal at high ||q|| values. An ODF map is built by radial

projection of the diffusion spectrum (1) and multiplied by the

generalized fractional anisotropy (GFA) (Tuch, 2004). Segmen-

tation is performed in a white matter mask that is obtained by

thresholding the GFA map. The value of the different algorithm

parameters are set experimentally depending on the dataset (see

Table 2).
Table 2

Chosen tuning parameters of the algorithm

Data Hemibrain Brainstem

t 0.4 0.65

a 1 1

b 1.25 1.5

Number of iteration(s) 2 1
Results

The first study is centered on the brain stem. We choose this part

of the brain as there are several well-delimited fibertracts that define

the known anatomy of this region. Fig. 3 displays the segmentation

results based on the brainstem acquisition in the middle and right

column. In the left column, we depict as reference the anatomical

structures as reconstructed by DSI-based tractography (Hagmann et

al., 2004). On Fig. 3A, we can see the segmented left and right

corticospinal tracts in red, structures that are involved in voluntary

movement of the body. They travel on this MRI acquisition from the

cerebral peduncles down to the cranial part of the spinal chord by

passing through the pons. In yellow, we can identify the posterior

columns (cuneate and gracile fascicles) that carry on sensitive

information from the extremities up the central nervous system. We

see the trajectory that these fibers take on the tractography result on

the left image. We can see that the segmentation algorithm captures

the core portion of the tract. Fig. 3B displays the cerebellar

peduncles. They connect the cerebellum with the vestibular nuclei

located in the lower pons and the spinal chord: these peduncles are

represented in blue. DSI tractography (left image) as well as POS

segmentation captures these structures although it seems that the

cerebellar extremities that fan out are only captured by tractography.

The middle cerebellar peduncle is the largest of the peduncles and

links the cerebellum with the pons. Segmentation captures well the

body of this tract on each side that is displayed in green. We see that

the most medial part of the peduncle that lies in the middle of the

pons is not captured, the reasons of this phenomenon will be

discussed further down. The superior cerebellar peduncle connects
the cerebellum to the midbrain and contains efferent fibers from

different cerebellar nuclei. It is depicted in white in Fig. 3C.

This tract nearly lies onto the posterior columns in its cranial

portion, thus building a kissing tract situation as commonly

referred to in the tractography jargon when two tracts come

together and run parallel for a while. This situation has an influence

on the segmentation result.

The second data set that has been studied is centered on one

brain hemisphere. The largest structure segmented is the corona

radiata. Under this term, one means a set of fiber bundles that take

their origin or end in the brain cortex and pass through the pons.

Among these tracts, there is the corticospinal tract, the fronto-

pontine tract and the parieto-temporo-pontine fibers. With our

segmentation algorithm the corona radiata is identified as one blue

structure in Fig. 4A. Indeed in the brainstem, these different

bundles share the same position and the same orientation in the

brainstem alike the root of a sheaf of twigs. Cortico-cortical

connections are widespread, and they form for most of them loose

association bundles that are variable in size and shape. However,

some association bundles have got a tight and well-defined body.

In Fig. 4B, we can identify the cingulum bundle in yellow, it is a

structure the belongs to the limbic system and travels anterior–

posteriorily in a parasagittal plane just above the corpus callosum

in the cingulated gyrus. The arcuate fasciculus that travels between

the frontal to the temporal lobe via parietal structures and the

inferior longitudinal fasciculus that connects the temporal with the

occipital lobe share some sites in position orientation space. This

explains the reconstruction from our algorithm that identifies these

structures as one light green object. On the same image, the

uncinate fasciculus is represented in dark green. This structure that

connects the temporal with the frontal lobe clearly separates from

the inferior temporal fasciculus as its orientation is nearly

perpendicular in the tip of the temporal lobe. On Fig. 4C, we see

the relationship between the root of the corona radiata (dark blue)

and the posterior column (light blue) as well as the superior (light

yellow) and mid cerebellar (dark yellow) peduncles at the level of

the pons. Finally, in red, the algorithm has segmented the compact

component of the corpus callosum (Fig. 4D). Fig. 4E is a coronal

cut trough the centrum semi ovale. An ODF map represents

diffusion in a usual fashion, and a section through the different

objects is depicted. We see how different structures share partly the

same 3D volume as their surrounding surfaces overlap. For

example, it is clear that the arcuate fasciculus crosses the

corticospinal tract (i.e., blue and green surface). The same

observation is valid for the cingulum and the callosal fibers (red

and green surface) as well as corticospinal and callosal fibers.
Discussion

The enormous success of DTI has somehow sealed up the

idea that diffusion is a tensor field or in other words a mapping



Fig. 3. Brainstem fibertracts. First column DSI streamline tractography (Hagmann et al., 2004). Second and third column are the comparative segmentation

results. (A) Corticospinal tract in red, posterior columns (cuneate and gracile fascicles) in yellow. (B) Inferior (blue), middle (green) and superior (white)

cerebellar peduncles. (C) Overall relationships between all these structures.
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from the three-dimension position space to a set of 6 or 9

values (the DT). Accordingly, it has obscured the fact that the

DT is nothing else than a parametric representation of a low

pass filtered function defined on the sphere (the orientation

space) or even more a low pass filtered three-dimensional

diffusion function (Wedeen et al., 2005). Recently, the advent of

diffusion techniques with better angular resolution motivated

new parametric representations (Tuch et al., 2002) that seem in

many respect unsatisfactory as fairly heavy in terms of

computation and limited in the spectrum of possible representa-

tions. At this point, it seems rather tempting to represent

diffusion in a non parametric way. We have seen in this paper

that it can be achieved very simply by defining diffusion as a

scalar field defined on a five-dimensional position orientation

space. Our approach has also some implications on the

definition of tractography and fibertract segmentation. Indeed,

it is commonly considered as a modelling procedure that aims

at filling the gap that exists between diffusion measurements

and axonal trajectories. In our opinion, however, it can naturally
be thought of as a simple projection imaging technique based

on diffusion data. Indeed, in POS a fibertract corresponds to a

beam of intense diffusion (see Fig. 2) that is back projected into

the usual three-dimensional position space and represented by a

colored iso-surface. Here, we emphasize the goal of any

projection technique which is to ease the visualization of higher

dimensional data (example maximum intensity projection in

angiography). In this framework, fibertract segmentation is just

a denoising technique.

Defining diffusion as a scalar field has also another very

attractive consequence which is to make it accessible to all the

traditional image processing tools that are usually designed for

scalar fields defined on a two or three-dimensional Euclidean

space. Here, as an example, we have adapted the hidden

Markov random field formalism to regularize and segment the

data. In this sense, our approach is not very different to the idea

of (Zhukov et al., 2003) that applied segmentation to DTI in

order to separate the white matter from the remaining gray

matter and cerebro-spinal fluid using fractional anisotropy



Fig. 4. Segmentation results of fibertracts in the right hemisphere. (A) The corona radiata is isolated in blue. It is made of the corticospinal tract, the fronto-

pontine tract and the parieto-temporo-pontine fibers. (B) Is isolated: the cingulum bundle in yellow, the arcuate fasciculus with the inferior longitudinal

fasciculus together in green. The uncinate fasciculus in dark green. (C) The intricate relationship is demonstrated between the root of the corona radiata

(dark blue) and the posterior column (light blue) as well as the superior (light yellow) and mid cerebellar (dark yellow) peduncles at the level of the pons.

(D) All the above structures are depicted together with the corpus callosum in red. (E) depicts a coronal section trough the centrum semi ovale with ODF

map representing diffusion and sections through the different objects. Different structures share partly the same 3D volume as their surrounding surfaces

cross. For example the corticospinal tract (cst) mixes with the arcuate fasciculus (af) and the inferior longitudinal fasciculus (ilf). The corticospinal tract

(cst) also overlaps with the cingulum bundle (cb) and the corpus callosum (cc). The corpus callosum (cc) crosses the corticospinal tract (cst) in the

centrum semi ovale.
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images. However, as orientational information of the DT is not

used, no specific tract can be identified with its method. More

recently, Jonasson et al. (2005a) have incorporated orientational

information of DT-MRI data to sub-segment brain white matter

into main cores of non-overlapping fiber tracts by a three-

dimensional geometric flow algorithm. Consequently, regions

corresponding to core fibertracts could be segmented, which is a

first step in white matter region identification. But at the same

time, the method is unable to represent white matter regions of

crossing tracts. The typical example is the cortico-spinal tract

and the corpus callosum—obviously two separate objects—that

at the level of the centrum semi-ovale, overlay in three-

dimensional space. We see that the limitations of these

techniques are twofold. First, DT-MRI does not provide

sufficient angular resolution to resolve crossing fiber populations

and secondly formulating the segmentation problem in 3D

Euclidean space is unnatural as the objects looked for are

entangled in such a representation. This is where it becomes

obvious that it is not the segmentation algorithm that is essential

but much more the space in which the problem is formulated.

In this sense, initial work has already be done on POS fibertract

segmentation by adapting level set methods (Jonasson et al.,

2005b).

While the topology of POS is naturally given, the Markovian

methods provide extensive flexibility to introduce appropriate a
priori information in the regularization and segmentation process. In

the particular case of tractography anisotropic prior seems to be

useful as it facilitates the identification of elongated objects.

However, the level of anisotropy (parameter l) that has to be

introduced on the local energy is a difficult parameter to set. Indeed,

too much anisotropy will only capture straight objects while little

anisotropy will capture tracts that curve in a tight manner but also

allow fusion of tracts that cross at shallow angles.

This directly raises the discussion on the limits of the method.

The clustering methods on fibers like (Brun et al., 2004; Jonasson et

al., 2005c) are able to separate two tracts that may be close in a little

region of POS but far apart on most of their trajectories, as such

methods use global information. Our segmentation formulation as it

is presented here considers such two tracts (example: two tracts that

cross at a shallow angle or diverge at some point) as one single

object if the angular contrast is weak, which may be problematic in

some brain areas. A good example among our results is the pair

made of the inferior longitudinal fasciculus and the arcuate

fasciculus. These tracts are over most of their trajectories separate

but meet in position and orientation in the tip of the temporal lobe,

reason why they are considered as a single object.

Another important point is that a region based approach allows

not to measure the ‘‘connectivity’’ between A and B or the trajectory

of a single ‘‘axon’’, and in this sense, it is not a tractography method

in the classical sense but more a fibertract identification method
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capturing regions of coherent diffusion. Instead, it is a powerful

method that does not need any ROI placement, and it identifies all

tracts in a brain in one shot, independently of the number. It further

provides a natural representation for anatomical characterization

such as shapes and volumes of such objects or tracts. It may also

prove useful for performing tract-specific quantitative measure-

ments, like fractional anisotropy and mean diffusion for example in

Wallerian degeneration (Pierpaoli et al., 2001), multiple sclerosis

(Filippi et al., 2001) or schizophrenia (Kubicki et al., 2005) as well as

in brain maturation studies (Huppi et al., 1998), magnetization

transfer (example, Kubicki et al., 2005), in meaningful regions of

interest. It may also simply provide a new way to parcelate the brain

white matter (examples, Huang et al., 2005; Meyer et al., 1999) as it

splits in one shot the brain in a number of significant objects or

regions.

We tested our segmentation approach on DSI data, as it is the

most principled and validated diffusion MRI technique of high

angular resolution (Lin et al., 2003; Wedeen et al., 2005). This

technique may currently not be the most appropriate for patient

studies as it requires long acquisition times, although this may

change rapidly. Fortunately, this segmentation approach can be

applied to any diffusion MRI technique that provides ODF maps of

high angular resolution, for example q-ball (Tuch et al., 2003) or

PAS imaging (Jansons and Alexander, 2003a,b).

In conclusion, we have seen that the advent of diffusion MRI

data of higher angular resolution (DSI, q-ball, etc.) enables

fibertract identification to be approached efficiently by segmenta-

tion methods, provided the problem is formulated in the

appropriate space. Extending standard image processing tools, like

Hidden Markov Fields, on the five-dimensional and non-Euclidean

position orientation space enabled use to segment many tracts of

interest in the brain. It provides an interesting alternative to

streamline tractography when tract-specific volumetric or quanti-

tative measures are needed.
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Appendix

Let d be defined as:

dðs;sVÞ ¼ jjr � rVjj þ cðu;ûVÞ

with s = (r, u) and sV = (rV, uV ) and ðu; ûVÞ is the solid angle

between u and uV .
Why is d a distance function?

In order for d to be a distance on a space S, it has to satisfy

following three conditions:

d(sa, sb) = 0 S sa = sb

d(sa, sb) = d(sb, sa)
d(sa, sb) V d(sa, sc) + d(sc, sb)
Euclidean distance:

In the first term of d, we recognize dE(r, r V ) = ||r –r V || =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � rxVð Þ2 þ ry � ryV

� �2 þ rz � rzVð Þ2
q

which is the Euclidean distance

and therefore satisfies all of the conditions:

||ra –rb|| = 0 S ra = rb

||ra –rb|| = || rb –ra ||

||ra –rb|| V ||ra –rc|| + || rc –rb||.

The first two conditions can be easily shown and come from the

properties of the scalar product.

The triangle inequality follows from the Minkowsky inequality

which states that:

8p � 1;
Xn
k ¼ 1

jak þ bk jp
! 1=p

�
Xn
k ¼ 1

jak jp
! 1=p

þ
Xn
k ¼ 1

jbk jp
! 1=p

which is the triangle inequality for p = 2 and n = 3.

Spherical distance:

The second part of d is ds(u, u V ) = ðu;ûVÞ = arccos (u IuV ),

which is simply the angle between unit vectors u and uV. It is
known as the great circle distance or spherical distance. As a

distance, it also satisfies the following conditions:

ðua;ûbÞ ¼ 0S ua ¼ ub

ðua;ûbÞ ¼ ðub;ûaÞ

ðua;ûbÞ � ðua;ûcÞ þ ðuc;ûbÞ

The identity condition can be shown that way:

ua ¼ ubS jjua � ubjj2 ¼ 0Sua Iua � 2ua Iub þ ubub

¼ 0Sua Iub ¼ 1Sðua;ûbÞ ¼ 0

The symmetry condition simply follows from the symmetry of

the dot product ua Iub = ub Iua.
The triangle inequality follows from the cosines rules for sides

(or spherical law of cosines) which state that, in a spherical triangle

ABC on a unit sphere of center O:

cosðAOĈÞ ¼ cosðAOB̂ÞcosðBOĈÞ þ sinðAOĈÞsinðBOĈÞcosðABĈÞ

We know that �1� cosðABĈÞ � 1 thus

cosðAOĈÞ � cosðAOB̂ÞcosðBOĈÞ � sinðAOB̂ÞsinðBOĈÞ
¼ cosðAOB̂þ BOĈÞ

Since arccos(.) is a strictly decreasing function we can write:

AOĈ� AOB̂þ BOĈ, which is exactly the spherical triangle

inequality.

Back to our distance:

We have s = (r,u) and d s;sVÞ ¼ de r;rVÞ þ da u;uVÞððð

d sa;sbð Þ¼ de ra;rbð Þþda ua;ubð Þ¼ 0Sde ra;rbð Þ¼ 0 and da ua;ubð Þ

¼ 0Sra ¼ rb and ua ¼ ubSsa ¼ sb

d sa;sbð Þ¼ de ra;rbð Þþda ua;ubð Þ¼ de rb;rað Þþda ub;uað Þ¼ d sb;sað Þ

d sa;sbð Þ V de ra;rbð Þ þ da ua;ubð Þ V de ra;rcð Þ þ de rc;rbð Þ

þ da ua;ucð Þ þ da uc;ubð Þ V d sa;scð Þ þ d sc;sbð Þ
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d satisfies the three previous conditions and is thus a distance

function.

Some references on spherical trigonometry:

Eric W. Weisstein et al. FSpherical Distance_.
From Mathworld-A Wolfram Web Resource.

http://mathworld.wolfram.com/SphericalDistance.html

Eric W. Weisstein. ‘‘Spherical Trigonometry.’’

From MathWorld-A Wolfram Web Resource.

http://mathworld.wolfram.com/SphericalTrigonometry.html

Smart, 1960, pp. 7–8; Gellert et al. 1989, p. 264; Zwillinger

1995, p. 469.
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