
Runtime Checking for Separation Logic

Huu Hai Nguyen1, Viktor Kuncak2, and Wei-Ngan Chin1,3

1 Computer Science Programme, Singapore-MIT Alliance
2 Swiss Federal Institute of Technology (EPFL)

3 Department of Computer Science, National University of Singapore

Abstract. Separation logic is a popular approach for specifying properties of
recursive mutable data structures. Several existing systems verify a subclass of
separation logic specifications using static analysis techniques. Checking data
structure specifications during program execution is an alternative to static verifi-
cation: it can enforce the sophisticated specifications forwhich static verification
fails, and it can help debug incorrect specifications and code by detecting concrete
counterexamples to their validity.
This paper presents Separation Logic Invariant ChecKer (SLICK), a runtime
checker for separation logic specifications. We show that, although the recur-
sive style of separation logic predicates is well suited forruntime execution, the
implicit footprint and existential quantification make efficient runtime checking
challenging. To address these challenges we introduce a coloring technique for ef-
ficiently checking method footprints and describe techniques for inferring values
of existentially quantified variables. We have implementedour runtime checker
in the context of a tool for enforcing specifications of Java programs. Our expe-
rience suggests that our runtime checker is a useful companion to a static verifier
for separation logic specifications.

1 Introduction

Linked structures are ubiquitous in modern software. Such structures appear both in
container implementations of software libraries and in application code as the form of
syntax trees, XML data, and other application-specific relationships. The diversity of
linked structures implies that there is a wide range of invariants that they satisfy. Auto-
mated verification of these invariants is an active area of research and includes verifica-
tion of shape properties [2, 12, 18] as well as properties that extend shape descriptions
with specifications of size, balancing, sortedness, and content change [16,19,21,24,28].
The specification language for expressing these propertieshas a significant impact on
the effectiveness of the analysis and its ability to interact with the developer. Separa-
tion logic with inductively defined predicates [25] has emerged as a popular approach
to specify properties that involve linked structures. In Hoare logic based on separation
logic [15], an assertion specify not only the condition on the initial heap but also the
“footprint” [4], that is, the part of the heap that an operation may access. As a result,
a precondition simultaneously plays the role of a ‘modifies’clause [13] and lead to a
frame rule that enables modular reasoning [15].

Runtime checking as complementary technique.We expect that many operations
and properties in practice can be checked statically, but some will remain beyond the
reach of current analysis tools. In this paper we describe a system calledSLICK which
can check properties during program execution and can therefore serve as a fall-back of
static analysis. Such runtime checking has long been recognized as useful [1, 6]. Run-
time checking detects violations of desired properties in individual runs, and, unlike
many static analyses, can identify cases when code or specification definitely contain
an error. Other benefits of runtime checking include interfacing to unverified code, au-
tomated checking of input data that cannot be trusted, and detecting errors that result
from violating design-time assumptions (for example, operating system corruption or
hardware malfunction).
Previous work on runtime checking. Despite the long history of runtime assertion
checking [9], to the best of our knowledge, our work is the first runtime checker for
separation logic specifications. Most existing runtime assertion checkers either check
assertions in classical logic [1, 8, 10, 29], weave global checks into code at multiple
program points [3, 7], address blame assignment for properties expressed in the pro-
gramming language [11], or explore incremental checking ofassertions [26].

The closest to our system is a checker for heap contracts expressed in linear logic
[23], which also observes the usefulness of checking contracts in separation logic, but
proceeds to check assertions inlinear logic instead. Note that [23] does not deal with
the problem of checking that the footprint of the code executed is contained in the foot-
print of the assertion. The footprint checking is one of the main problems addressed
in our paper: it makes preconditions checking more than justevaluating formulas in
a fixed program state and requires the checking of fine-grained modifies clauses. An-
other difference with [23] is that, instead of invoking a modified interpreter for a linear
logic programming language, our system emits Java code thatcan be compiled and ex-
ecuted using existing virtual machines. In translation from separation logic into Java
our system exploits the deterministic flavor found in most common data structure de-
scriptions. The generated code executes using standard environments and benefits from
just-in-time compilation of the Java virtual machine.
Contributions. The paper makes the following contributions:

– A translation of declarative predicate definitions, method preconditions and post-
conditions expressed in separation logic specification language [21] into executable
Java code.

– Efficient runtime mechanism for checking separation logic assertions based on
coloring heap objects and method invocations. Our approachavoids the memory
blow up of naı̈ve implementations of separation logic semantics.

– Mode analysisfor existentially quantified variables. In most specifications we en-
countered, existentially bound variables are ultimately given as a function of other
variables.SLICK includes mode analysis that determines the place where predicate
parameters are bound, classifying them into input and output parameters.SLICK
also identifiesconditionally bound parametersfor parameters whose binding time
depends on the invocation context of the predicate.SLICK uses a boxed representa-
tion to instantiate such parameters at runtime at the point of their first use.

2

– Integration of static and runtime checking. SLICK ensures that annotated, but
statically unverified, methods conform to their specifications at runtime, providing
a fall-back for the static analyzer and enabling the interface to unverified code.
Conversely, the static checker can act as an optimizer for the code generated from
runtime checks.

2 Example

This section illustrates our run-time checking techniquesthrough an example that ma-
nipulates (possibly sorted) doubly-linked lists. A list iscreated in a region of code
that was not annotated or statically verified. Therefore, our system performs a run-time
check to ensure that the subsequent code can safely use the created list. Depending on
the complexity of subsequent data manipulation, the systemensures invariants in subse-
quent piece of code either statically, using entailment checker for separation logic [21],
or dynamically, using further run-time checks.

classNode{ int val; Node next, prev;}

dll〈p,n〉 == (root = null∧ n=0)
∨ (root::Node〈v,r,p〉 ∗ r::dll〈root, m〉 ∧ n=m+1)
inv n≥ 0;

sdll〈p,n,s〉 == (root = null∧ n = 0)
∨ (root::Node〈s,r,p〉 ∗ r::sdll〈root,m,rs〉 ∧ n=m+1∧ s≤ rs)
inv n≥ 0;

Fig. 1. Predicate definitions for unsorted and sorted doubly-linked list

Figure 1 shows predicate definitions used by the example. Predicateq::dll〈p,n〉
denotes the fact thatq points to a doubly-linked list of lengthn; q::sdll〈p,n,s〉
meansq points to asorteddoubly-linked list of lengthn. q is actual argument for the
implicit root parameter, denoted byroot inside the definition. The first nodes of these
lists has aprev field pointing top. Thesdll definition ensures that the list is sorted
using thes parameter to check that values of subsequent list elements are greater than
the value of the first element, wheres is the value of the first element in the list. The
specification of the predicate uses the connectives of classical logic such as∧,∨ as well
as the separating conjunction operator* which requires that its two arguments hold for
two disjoint partitions of the heap [25]. In our system, a fresh variable, such asr in the
definition ofdll is implicitly existentially quantified. The underscoredenotes a fresh
variable whose name is omitted.

Figure 2 shows the Java code of our example along with specifications of precon-
ditions and postcondition in separation logic with inductive definitions and numerical
constraints. TheloadData method loads a list from a file, sorts it, and returns the
sorted list. Its postcondition ensures that the returned value is a sorted doubly-linked
list. loadData ensures this condition by calling thesort procedure that accepts a

3

1 classProcess{
2 static Node loadData()
3 requires emp
4 ensuresres::sdll〈 , , 〉
5 { Node l = getFromFile();
6 Node sl = sort(l);
7 return sl; }
8 static Node sort(Node l)
9 requires l::dll〈 ,n〉

10 ensuresres::sdll〈 ,n, 〉

1 { if (l != null) {
2 Node tmp = sort(l.next);
3 tmp = insert(tmp, l);
4 return tmp;}
5 return l; }
6 static Node insert(Node l, Node v)
7 requires l::sdll〈p,n,s〉 ∗ v::Node〈vv, , 〉
8 ensures(res::sdll〈 ,n+1,min(s,vv)〉 ∧ l!=null)
9 or (res::sdll〈 ,1,rs〉 ∧ rs=vv∧ l=null)

10 { ... } }

Fig. 2. Annotated code for loading a list from a file and sorting it

doubly-linked list and returns a sorted list. The expectation is thatgetFromFile
method will produce a doubly-linked list. However,getFromFile procedure in our
example is not statically verified and we cannot guarantee statically that it will indeed
produce a doubly-linked list structure expected bysort. In such a situationSLICK per-
forms a runtime check to ensure that the data structure invariant holds. Consequently,
we can still assume when reasoning about the body ofsort that the data structure given
is a doubly-linked list; and when reasoning about the body ofloadData that the result
returned bysort is a sorted list. When reasoning about callers ofloadData, we can
also make use of its postcondition.
Outline. In the rest of this paper we define our specification language and the desired
semantics of runtime checks, we then describe the compile-time and runtime techniques
thatSLICK uses to generate the checks, discuss the issues in combiningstatic and run-
time checking and present preliminary experience with the system.

3 Specification Language

We designed our specification language for preconditions and postconditions to enable
simultaneously runtime checking and static analysis [21],so it largely follows the syn-
tax and semantics of languages in previous separation logicsystem.
Specification language syntax.Figure 3 shows the grammar for our specification lan-
guage. Shape predicatespred is the main specification construct that provides data
structure descriptions. Formulas are canonicalized to an internal representation akin to
the superhomogeneous form [27], namely arguments for heap formulas are distinct and
fresh. Additional existentially quantified variables are introduced if necessary to obtain
the above form. The semantics of our specification language is included in Figure 8 in
the Appendix.

Recursive shape predicate definitions need to satisfy certain syntactic restrictions,
namelywell-formedand well-foundedconditions, to ensure soundness and termina-
tion of static reasoning [21].Well-formedconditions ensure that shape predicates and
formulas do not admit garbage (consequently, code generated for runtime checks can
traverse the entire footprint of the formula).Well-foundedconditions disallowroot to
be passed as argument to a recursive predicate invocation. That meansroot either is

4

spred ::= c〈(v [µ])∗〉 ≡ Φ [inv π0]
µ ::= @in | @out

Φ ::=
W

∃v∗ · (κ ∧ π)
π ::= γ ∧ φ
γ ::= v1 = v2 | v = null | v1 6= v2 | v 6= null | γ1 ∧ γ2

κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

φ ::= arith | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃v · φ | ∀v · φ
arith ::= a1 = a2 | a1 6= a2 | a1 < a2 | a1 ≤ a2

a ::= k | v | k× a | a1 + a2 | −a | max(a1, a2) | min(a1, a2)
k ∈ Integer constants

v,c ∈ Identifiers

Fig. 3. Grammar for Shape Predicates

null, dangles, or points to an object. Well-foundedness ensuresthat the generated run-
time checking code terminates when executed on any given heap, since every invocation
of the generated code either fails/succeeds or recolors at least one object.
Predicate parameter modes. To make the execution of predicates at runtime more
efficient, we assignmodesto predicate parameters, following the approaches in logic
programming [22, 27]. We currently support two modes:in andout. These modes can
be inferred using a constraint-based analysis. In the current paper, we assume that the
developer specifies mode annotations (implicitly or explicitly). For example, the param-
eters of thedll predicate can be annotated asdll〈p@out, n@out〉. Both parameters
p andn haveout mode.

We use several conventions for default modes, which allows developers to omit
most mode declarations in practice. Most of the parameters are out, so we makeout
the default mode. Next, a data structure is typically given as the set of objects obtained
by traversing the data structure starting from theroot node and terminating at either
null or at some of thein parameters.root is therefore always anin parameter; the
out parameters are values computed by traversing the data structures.SLICK considers
method parameters asin parameters for their preconditions and postconditions.out
parameters from preconditions arein parameters for corresponding postconditions.

4 Semantics of Run-Time Checking

In this section we present the semantics for run-time checking separation logic speci-
fications and outline challenges in implementing this semantics. We then describe how
we approach these challenges in our runtime checker.

4.1 Abstract Description of Run-Time Checks

The intended meaning of runtime checking is as follows. Given a stacks, an initial
partial mapL from logical variable names to values, and a heaph, we define the set of
pairs(h0, L0) whereh0 is subheap ofh andL0 is partial map extendingL such that

5

formula is true forh0, L0:

submodelsFor(s, h, L, Φ) = {(h0, L0) | (s ∪ L0), h0 |= Φ ∧ L ⊆ L0 ∧ h0 ⊆ h}

A procedure with preconditionΦ should succeed whenΦ ∗ true holds in the caller,
which happens whensubmodelsFor(s, h, ∅, Φ) is nonempty. Leth denote the current
heap. Consider a procedure call of proceduref with preconditionpref , bodybodyf ,
and postconditionpostf . Taking into account the usual semantics of logic variablesthat
can relate pre- and postcondition, the execution of a procedure call with runtime checks
is the following. Note thatbodyf may update the current heaph.

let M = submodelsFor(s, h, ∅, pref); // subheaps satisfying precondition
if M = ∅ then error ”Precondition failed”;
let (h0, L) ∈ M ; // pick subheap and logic var. bindings
let h1 = h \ h0; // save context
h := h0; // narrow heap to footprint
bodyf ; // actual body of the method
let M ′ = submodelsFor(s, h, L, postf); // check post in currenth,L
if M ′ = ∅ then error ”Postcondition failed”;
let (hR,) ∈ M ′; // pick subheap to return
h := hR ∪ h1; // restore context

4.2 Separation Logic Runtime Checking Challenges

Given the semantics of separation logic formulas and the semantics of checks in Sec-
tion 4.1, there are two main challenges in making runtime checking feasible. We next
discuss the challenges specific to separation logic execution.
Evaluating spatial conjunction inside formulas. Consider first the problem of check-
ing whether a given state satisfies a formula without numerical constraints. This model
checking problem has been studied for first-order logic (with or without inductive def-
initions) [14] and, more recently, for separation logic [5]. Separation connective in-
creases the complexity of the model checking problem because it essentially involves
second-order quantification [17]. In general it is not clearhow to split into two parts
each of which satisfies the corresponding conjunct, so each separation logic formula
could in principle admit an exponential number of sets of locations that denote its foot-
print.

Approach: marking the footprint. Our approach stems from the observation that, in
practice, data structure specifications often contain formulas that have a small number
of possible footprints that can be computed while evaluating the formula. Moreover,
separation logic connective does not appear under a negation in our system. Therefore,
instead of maintaining an explicit container containing objects in the footprint, we mark
objects that participate in the footprint of the formula. Anattempt to mark an object
twice makes the entire formula disjunct unsatisfiable.
Representing method footprints. A naı̈ve implementation of the semantics in Sec-
tion 4.1 would associate with each method invocation a set ofreferences that covers
the method’s footprint. For a call stack of depthn, it would needn copies of these

6

footprints to maintain the information about all contextsh1 for procedures on the call
stack. In the worst case this would cause ann-fold increase in memory consumption.
Next, we need a mechanism to adjust the heaph for each procedure call and check each
individual field read or write, to ensure that they perform operations only on the current
footprint.

Approach: maintaining marking across procedure calls. When a precondition
succeeds, our system retains the marking of nodes, which is unique for a procedure in-
vocation. Reads, writes and procedure calls check the marking and adjust it accordingly.
Postcondition check restores the marking.

5 The Runtime Engine

We now present in more detail the runtime mechanisms of our checker.SLICK aug-
ments each object with a field namedcolor, which indicates the object’s availability
to different method invocations. The color of an object may change during program
execution. Each method invocation is also associated with aunique color, maintained
on a global stack. A method invocation can access an object ifand only if their colors
match. Newly allocated objects belong to the current methodinvocation’s footprint; the
objects receive the color of the current invocation via instrumented object constructors.
An invocation of methodm is permitted if the footprintF of m’s precondition is a sub-
set of the caller’s footprint at the call site. In that case, the system colors the footprintF
to match the color of the invocation ofm. A return from invocation ofm is permitted if
the footprintF ′ of the postcondition ofm is a subset of the current execution footprint
at the end ofm. The system then recolors the postcondition footprintF ′ to the color of
the caller.
Checking formulas. Runtime checking formulas consists in verifying the formula
footprint and computingout parameters.SLICK translates each formula to executable
code in the form of a class with a methodtraverse that, when executed, traverses the
footprint of the formula in the current heap.traverse accepts two input parameters,
curColor andnewColor and returnsboolean. traverse recolors each object it
visits to newColor if the current color of the object iscurColor. If traverse
succeeds in recoloring all visited objects and all pure constraints are also satisfied, it
setsout parameters and returnstrue. Otherwise it fails.
Checking formulas with disjunction. The recursive definition of predicates such as
dll andsdll contain the disjunction operator to differentiate the basecase and the
recursive case of the definition. When evaluating the truth of a pure classical logic
formula F1 ∨ F2 in a given heap, it is possible to simply evaluateF1 first, and, if it
fails, proceed with the evaluation ofF2. In the case of our separation logic formulas,
however, evaluation changes the coloring of the heap. Therefore, if the evaluation ofF1

fails, SLICK must undo the coloring performed byF1. Based on the recursive predicates
we have examined, we expect the failure of false disjuncts tooccur quickly.SLICK
therefore undoes the coloring by re-executing the evaluation of F1 with opposite color
parameters. This approach avoids additional bookkeeping that would be required to
maintain the set of marked objects. In our example ofdll andsdll, the footprint

7

of the first disjunct is empty, which means that its executionperforms no marking and
there is nothing to undo.

Computing bindings for existential quantifiers. Existentially quantified variables in
program specifications are often either determined by variables in program state, or they
do not affect the truth value of the formula at all. Consider,for example, the precondition
of sort, given by the formulal::dll〈p,n〉. The root parameter ofdll predicate
is bound to the value of the local variablel. Then parameter, on the other hand, is
existentially quantified, but is given as the length of the list. Thep parameter ofdll
is given as theprev field of the first node whenever the list is non-empty. When the
list is empty, thep parameter is left unconstrained, but the truth value ofdll does not
depend on it either. Therefore, the value ofp is either given by the context wheredll
is called, as in the recursive invocation insidedll definition, or it is not used anywhere,
as in the precondition ofsort. SLICK uses mode analysis, described in Section 6, to
determine how to compute values of such existentially quantified variables.

Precondition. SLICK invokes precondition checking code in the caller prior to method
invocation. If a precondition check succeeds, it also provides values for theout param-
eters of the formula. These values can then be used by the postcondition of the same
invocation. Note that pre- and postcondition checks are performed in the caller to facil-
itate integration with the static verifier. More details areprovided in section 7.

As an illustration, consider thesortmethod from Figure 2. Figure 4 shows the run-
time checking code thatSLICK generates forsort. SLICK compiles the precondition to
a class with fields to store all free logic variables of the formula (in this case, variables
l andn). In callers ofsort, SLICK also generates instructions to create an instance
of the generated class (the checker object), initialize thein parameter (l) and then
invoketraverse on the initialized checker object.traverse receives two colors
as arguments: the current method invocation’s color is passed tocurColor, a freshly
generated color tonewColor. Upon successful completion oftraverse, SLICK sets
n to the length of the list.SLICK stores a reference to the checker object in a local
variable that is visible to the code that verifies the postcondition.

Postcondition. When a method returns,SLICK checks postcondition against the current
method’s footprint.SLICK then makes the objects covered by the postcondition acces-
sible to the caller. As an example, Figure 5 shows the translation of the postcondition
of sort, whose internal representation is∃r1 · res::SDLL〈r1〉 ∧ r1 = n.

Note that it is possible that the postcondition does not cover all objects of the current
invocation’s footprint. The uncovered objects, even if reachable from the caller, are not
accessible under separation logic semantics. The use of coloring inSLICK correctly en-
forces this semantics. Indeed, observe that any objects in the footprint of the returning
method, if not covered by the postcondition thereof, will retain the color of the return-
ing method invocation. This color is unique for the dynamic method invocation, so no
current or future method invocations will be able to access these objects.

Unannotated code. When a method has no annotations, as is the case of
getFromFile in Figure 2, both precondition and postcondition aretrue. This means
that the footprint of the precondition is the same as the caller’s current footprint and that
the entire footprint of the callee is returned to the caller.SLICK thus executes the callee

8

1 classsort pre{ Node l; int n;
2 booleantraverse(color curColor,
3 color newColor){ ...}
4 }
5 Node loadData(){
6 Node l = getFromFile();
7 /// generated code
8 sort pre prchk =new sort pre();
9 prchk.l = l;

10 SLICK.pushCurrentColor();
11 SLICK.setCurrentColor(
12 SLICK.freshColor());
13 prchk.traverse(SLICK.topColor(),
14 SLICK.currentColor());
15 /// end of generated code
16 Node sl = sort(l);
17 ...

Fig. 4.Compiled precondition ofsort

1 classsort post{
2 Node res;
3 int n;
4 booleantraverse(...)
5 }
6 Node loadData(){
7 ...
8 Node sl = sort(l);
9 /// generated code

10 sort post pockr =newsort post();
11 pockr.res = sl;
12 pockr.n = prchk.n;
13 color c = SLICK.popColor();
14 pockr.traverse(SLICK.currentColor(), c);
15 SLICK.setCurrentColor(c);
16 /// end of generated code
17 return sl; }

Fig. 5. Compiled postcondition ofsort

without any recoloring of the heap and with the callee invocation having the same color
as the caller invocation.

6 From Separation Logic to Executable Code

We now present our translation from separation logic formula to executable code. The
basic idea is to compile a separation logic formula into a function that checks if a given
program state(s, h) is a model of the formula. The translation consists of mode analysis
and Java code generation. Besides checking that the formulaholds in the current pro-
gram state, the translated code recolors the formula’s footprint and computes the values
of out parameters. Each formula is translated to a class with a methodtraverse and
fields representing the free variables of the formula. The fields have the same names as
the free variables they represent. Fields forin parameters need to be initialized before
each invocation oftraverse; fields forout parameters are set bytraverse upon
successful completion of checking.
Mode analysis. At compile time, variables in a formula are classified into two main
groups: bound and unbound. Initially, unbound variables includeout parameters and
existentially quantified variables of the present formula.Bound variables includein
parameters of the present formula andout arguments of recursive predicate invocations.
If an out argument is not unified with a value in all disjuncts of a predicate definition,
we further classify it asconditionally bound.

Conditionally bound variables use a boxed representation of their underlying types.
Each boxed value has a flag indicating whether the underlyingvalue is bound. The first
time when the compiled formula uses a conditionally bound variable v at runtime, it
bindsv to a concrete value. Whenv is used in an equalityv = t and the value of term
t is known,v is bound tot; otherwise bothv and t are bound to the same value by

9

instantiating unbound variables int. If used in a disequality or inequality,v is bound to
a random value such that the constraint holds. This treatment is incomplete, but sound.

The translation consists of two passes. The first pass determines subformulas that
generate bindings for the unbound variables. The second onecompiles the selected sub-
formulas to assignments and the rest of the formulas to tests. To make it easier to read
the formalization, the following names have dedicated meanings in our rules.vmap is
the binding map of unbound variables.vmap also keeps track of which variables and
terms are conditionally bound to help the code generator to invoke correct operations on
these values.ins andouts are in andout parameter sets, respectively.INS(c) returns
all the in parameters of predicatec. uvars is the set of unbound variables. Function
UVARreturns the set of unbound variables of a term. Note thatins andouts are the
same for all disjuncts of a formula, whereasvmap anduvars are computed anew for
each disjunct.|| C || marksC as executable code emitted by the compilation.

The first pass computes a mapping from unbound variables to terms, where a term
can be either constant, variable, field access, or combination of terms using arithmetic
operations. This pass also produces a partial ordering, which determines the order in
which assignments are generated by means of a topological sort. There are three sources
of bindings for unbound variables, namely i)in parameters of the present formula,
ii) out parameters of predicate invocations, and iii) object fields. The computation is
formalized as thegenMap function in Figure 9 in the Appendix. AsgenMap generates
the bindings, it also removes from the input formula all unificationsv = t that it uses
in bindings generation.
Translation of disjunction. SLICK compiles a formulaF1 ∨ . . . ∨ Fn in disjunctive
normal form as follows:

1 booleantraverse(color curColor, color newColor){
2 booleanr 1 = disj1(curColor, newColor);
3 if (r 1) return true;
4 disj1(newColor, curColor);
5 ...
6 booleanr n = disjn(curColor, newColor);
7 if (r n) return true;
8 disjn(newColor, curColor);
9

10 return false;}
Translation of conjunction. SLICK compiles a formulaFi = ∃v∗ · κ ∧ π into a
functionboolean disji(color curColor, color newColor). Figure 6
formalizes the compilation of the body ofdisji as a function that takes a formula and
emits executable code.

The translation also makes use of the following functions. The genInitialization
function emits assignments to initializein parameters of the formula, subject to the
constraint that allin parameters must be initialized.

genInitialization p::c〈v∗i 〉
def
=

foreach fi in INS(c) do : || p.fi =|| genBinding vi

ThegenAssign function emits assignments toout parameters of the predicate. If
a variable does not have a binding from the formula, it is assigned an unbound boxed

10

TR[[p::c〈v∗〉]] | IsObj(c)
def
=

|| if p 6= null ∧ curColor = p.color
then p.color = newColor
else return false; ||

TR[[p::c〈v∗〉]] | IsPred(c)
def
=

|| p = new c Checker; ||
genInitialization p::c〈v∗

i 〉;
|| if not(p.traverse(curColor, newColor))

then return false; ||

TR[[κ1 ∗ κ2]]
def
= TR[[κ1]]; TR[[κ2]]

TR[[∃v∗ · κ ∧ π]]
def
=

let uvars = v∗ ∪ outs in

let π′ = genMap (κ ∧ π) in

TR[[κ]];
|| if || TR[[π′]] || then ||

genAssign;
|| return true; ||

|| else return false; ||

TR[[p = t]] | p is conditionally bound, t is bound def
= || p.EQ(t) ||

Fig. 6. Translation Rules

value.

genAssign def
=

foreach p in outs do :
|| p =|| genBinding p
if genBinding failed then || p = new (boxedtypeof(p)) ||

ThegenBinding function computes the closure of the bindings to get bound terms.

genBinding v
def
=

if v /∈ uvars then || v ||
else genBinding (lookUp v vmap)

If the first argument is a term,genBindings performs the obvious recursion on the
structure of the term and emits a term with identical structure, except for the translated
variables. IflookUp fails to find an entry for an unbound variable,genBinding fails.

7 Integrating Static and Runtime Verification

In this section we discuss the integration of static and runtime verification. The general
idea is that assertions that can be statically verified need not be checked at runtime.
However, such combination is more difficult for analysis domains based on spatial con-
junction of facts than for analysis domains based on classical conjunction of facts. In-
deed, to ensure that assertionF1∧F2 holds after a given program point, it is possible to
ensureF1 statically and then checkF2 dynamically. On the other hand, given assertion
F1 ∗F2, it is necessary to communicate to both the run-time and the static time checker
the footprints of individual formulas in order to enable separation of these two checks.
In the sequel, we describe optimizations that are nevertheless possible in our runtime
checking approach; more fine-grained combinations are possible but beyond the scope
of the current paper.

11

Field access. If the static verifier proves a field access safe, no runtime check is re-
quired. This is because field access does not affect the coloring of the objects or method
invocations. On the other hand, if the static verifier fails to verify a field read, it emits
runtime check for the pointer and continues with a suitably modified symbolic state.

∆ 0 x::c〈f∗〉

⊢ {∆}v = x.f{∃v · ∆}

If it fails to verify a field write, it stops static verification and emits runtime check for
all subsequent code. As an optimization, once a field access has been issued a run-
time check, it needs not be checked again until the pointer itself or its color may have
changed. In many cases this information can be obtained statically.
Method contract. Method contract checks, on the contrary, cannot be as readily elimi-
nated since they change the heap coloring. Let us consider a methodg that calls another
methodf with preconditionpref and postconditionpostf :

1 void g()
2 { g

1
; f(); g

2
; }

1 void f()
2 requires pref ensurespostf { ... }

There are the following possibilities:

1. f is statically verified.
– pref is statically proved: if the partg

2
of g following the call tof is statically

verified by assumingpostf , g need not emit runtime checks forpref andpostf .
Otherwise, asg

2
may attempt to access objects that do not belong topostf ’s

footprint, runtime checks forpref andpostf (and certainly forg
2
) are needed.

– pref is not statically proved:g issues runtime checks forpref andpostf . Static
verification ofg

2
can assumepostf .

2. f is not statically verified:g issues runtime checks forpref andpostf . Static veri-
fication ofg

2
can assumepostf .

The static verifier can take advantage of the fact that after amethod call, the callee’s
postcondition holds. Even if it cannot verify the callee’s precondition, it can still assume
the postcondition, and continues static verification afterissuing appropriate runtime
checks. When the precondition is a pure formula, static verification proceeds as follows:

∆ 0 pre(mn) IsPure(pre(mn))

⊢ {∆}mn(v∗){(∆ ∧ pre(mn)) ∗ post(mn)}

On the other hand, if the precondition has a nonempty heap component, the static
verifier assumes the postcondition as the current program state. Note that we can-
not simply ∗-conjoin the postcondition with the current program state,as they may
cover overlapping footprints. Replacing the entire program state by the postcondition is
sound, but may result in loss of precision if the callee’s postcondition covers only parts
of data structures.

∆ 0 pre(mn) HasHeap(pre(mn))

⊢ {∆}mn(v∗){post(mn)}

12

Integration in the example. In the example of section 2,sort andinsert are
both statically verifiable.loadData fails to verify the precondition ofsort because
the information is simply not available, so it emits runtimecheck, but by assuming
postcondition ofsort, the postcondition ofloadData can be statically verified, a
fact that callers ofloadData can exploit. Note that the runtime checking is localized
within loadData only, so the overhead is small.

8 Implementation

We implementedSLICK in the context of a system for checking data structure proper-
ties [21]. We report our experience with the system on several examples.
Memory overhead. Memory overhead consists of one field per object to store the ob-
ject’s color and a single stack of live colors which has the same height as the program
call stack. Since thecolor type can be implemented aslong, memory overhead de-
creases if the program uses larger objects.traverse method also creates a number
of intermediate objects, but they exist only during the formula traversal and do not per-
manently accumulate in the memory overhead of the code instrumented with runtime
check. Consequently, we were not able to measure any significant difference in memory
consumption on our examples.
Runtime overhead. We evaluate the runtime overhead of our approach by running
experiments with different levels of runtime checking: no runtime checking, all op-
erations are runtime checked, all field accesses are runtimechecked, and checking at
boundaries of data structure operations. In the third case,the entire program runs with
a single color, hence no precondition or postcondition check is performed. This case
measures the overhead of checking field accesses. In the lastcase,SLICK checks only
the first precondition and the last postcondition of a data structure operation at runtime
since the static verifier can assert that checks for recursive calls and field accesses are
statically safe. This case simulates a scenario where thesedata structures are used in
conjunction with unverified or untrusted inputs. In order tominimize the timing effects
of class loading and JIT compilation, we repeat the experiments and ignore the timings
of the first two runs.

Timings for the experiments, measured with JVM 1.5 on Linux 2.6 running on a PC
having a 3GHz CPU and 2GB RAM, are reported in Figure 7. The data structures used
in our experiments have sizes ranging from 1000 to 5000 elements. The first experiment
sorts a list using insertion sort. The “Full” check forsort causes very large increases in
running time. However, the “Boundary” version, which we expect to be used in practice,
causes insignificant increases since the data structure is traversed only two more times.
The second example performs an in order traversal of a binarysearch tree to produce a
sorted list. The “Full” check incurs large overhead since itforces the entire subtree to be
traversed at each recursive invocation. The other two checks are significantly cheaper.
The third example performs the following two operations 1000 times: inserting a ran-
dom element to and deleting the maximum element from a priority queue. The “Native”
and “Field” timings reflect the logarithmic complexity of operations on priority queues.
The “Full” and “Boundary” timings are linear in data structure size as expected, since
everyinsert anddeletemax operation traverses the entire heap, rather than just a

13

path with logarithmic length from root to leaf. The fourth example is a popular opera-
tion in data mining algorithms. It traverses a table containing the iterative patterns used
in software specification mining and calculates the supportof a mined pattern [20]. The
operation is repeated 10 times. Note that the computation ofsupport itself does not need
to traverse the entire table, since the table provides caching of most of the subcompu-
tations. Precondition and postcondition checking therefore causes a significantly larger
number of objects to be visited, causing the large increase in running time. A common
property across all the examples is that “Field” check timings show that the overhead
of checking every heap access inSLICK is small.

Insertion Sort
SizeNat. Full Field Bdry.

1,000 6 49,235 10 7
2,000 28 >50,000 44 31
3,000 69 >50,000 108 81
4,000 127>50,000 183 135
5,000 209>50,000 296 211

Binary Search Tree
Nat. Full Field Bdry.
0.03 181 0.06 0.93
0.07 866 0.12 4.50
0.112,253 0.1810.45
0.144,965 0.24 8.62
0.189,360 0.30 9.07

Priority Queue
SizeNat. Full Field Bdry.

1,0000.93 2,585 1.62 765
2,0000.99 5,171 2.681,521
3,0001.02 7,767 1.792,321
4,0001.0110,320 2.693,032
5,0001.0313,070 1.893,827

Support Calculation
Nat. Full Field Bdry.
0.22 12,205 0.30 25
0.45>50,000 0.63 61
0.68>50,000 0.94 111
0.93>50,000 1.40 169
1.18>50,000 1.73 173

Fig. 7. Performance Measurements (in milliseconds)

9 Conclusion

We presentedSLICK, the first runtime checker for separation logic program specifi-
cations. We have identified several challanges that make separation logic specification
seemingly more difficult to check at run time than for classical logic. However, we be-
lieve that many of these problems would occur in any systems that precisely checks
frame conditions of procedures. The notable features ofSLICK include runtime mecha-
nism that avoids memory blow up and a compilation of separation logic specification to
executable code that runs natively on the JVM. Overall, the run-time checking cost can
be significant for large data structure instances when all intermediate states are checked,
but even in those cases the absolute performance is sufficiently good for debugging the
code and the specifications. Performing only “boundary checks” is an appealing al-
ternative to all intermediate checks: because specifications capture operation footprint,
boundary checks ensure data structure consistency at the end of an operation regardless
of the internal behavior of the operation. In some cases (such as the insertion sort ex-
ample), the overhead when performing only boundary checks appears acceptable even
for deployed applications. Preliminary results demonstrate that running time can be
significantly reduced using static verification to remove majority of runtime checks.

14

References

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. TheSpec# programming system:
An overview. InCASSIS: Int. Workshop on Construction and Analysis of Safe,Secure and
Interoperable Smart devices, 2004.

2. Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter O’Hearn, Thomas
Wies, and Hongseok Yang. Shape analysis for composite data structures. InCAV, 2007.

3. Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged static program analysis to im-
prove the performance of runtime monitoring. InECOOP, 2007.

4. C. Calcagno, D. Distefano, P.W. O’Hearn, and H Yang. Footprint analysis: A shape analysis
that discovers preconditions. InSAS, 2007.

5. Cristiano Calcagno, Hongseok Yang, and Peter O’Hearn. Computability and complexity
results for a spatial assertion language for data structures. InFSTTCS, 2001.

6. Robert Cartwright and Mike Fagan. Soft typing. InPLDI ’91: Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design andimplementation, pages
278–292, 1991.

7. Feng Chen and Grigore Roşu. MOP: An Efficient and Generic Runtime Verifica-
tion Framework. InObject-Oriented Programming, Systems, Languages and Applica-
tions(OOPSLA’07), 2007.

8. Yoonsik Cheon.A Runtime Assertion Checker for the Java Modeling Language. PhD thesis,
Iowa State University, April 2003.

9. Lori A. Clarke and David S. Rosenblum. A historical perspective on runtime assertion check-
ing in software development.SIGSOFT Softw. Eng. Notes, 31(3):25–37, 2006.

10. Brian Demsky, Cristian Cadar, Daniel Roy, and Martin C. Rinard. Efficient specification-
assisted error localization. InSecond International Workshop on Dynamic Analysis, 2004.

11. Robert Bruce Findler and Matthias Felleisen. Contractsfor higher-order functions. InProc.
2002 International Conference on Functional Programming, 2002.

12. Bolei Guo, Neil Vachharajani, and David I. August. Shapeanalysis with inductive recursion
synthesis. InPLDI, 2007.

13. John Guttag and James Horning.Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

14. Neil Immerman.Descriptive Complexity. Springer-Verlag, 1998.
15. Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures.

In Proc. 28th ACM POPL, 2001.
16. Viktor Kuncak.Modular Data Structure Verification. PhD thesis, EECS Department, Mas-

sachusetts Institute of Technology, February 2007.
17. Viktor Kuncak and Martin Rinard. On spatial conjunctionas second-order logic. Technical

Report 970, MIT CSAIL, October 2004.
18. Tal Lev-Ami. TVLA: A framework for Kleene based logic static analyses. Master’s thesis,

Tel-Aviv University, Israel, 2000.
19. Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Putting static analysis to

work for verification: A case study. InInt. Symp. Software Testing and Analysis, 2000.
20. D. Lo, S-C. Khoo, and C. Liu. Efficient mining of iterativepatterns for software specification

discovery. InProc. of SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2007.
21. Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. Automated verifica-

tion of shape, size and bag properties via separation logic.In VMCAI, 2007.
22. David Overton, Zoltan Somogyi, and Peter J. Stuckey. Constraint-based mode analysis of

mercury. InPPDP ’02: Proceedings of the 4th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 109–120, New York, NY, USA,
2002. ACM Press.

15

23. Frances Perry, Limin Jia, and David Walker. Expressing heap-shape contracts in linear logic.
In GPCE ’06: Proceedings of the 5th international conference on Generative programming
and component engineering, pages 101–110, New York, NY, USA, 2006. ACM Press.

24. Jan Reineke. Shape analysis of sets. Master’s thesis, Universität des Saarlandes, Germany,
June 2005.

25. John C. Reynolds. Separation logic: a logic for shared mutable data structures. In17th LICS,
pages 55–74, 2002.

26. Ajeet Shankar and Rastislav Bodik. Ditto: Automatic incrementalization of data structure
invariant checks. InPLDI, 2007.

27. Zoltan Somogyi. A system of precise modes for logic programs. InICLP, 1987.
28. Thomas Wies, Viktor Kuncak, Patrick Lam, Andreas Podelski, and Martin Rinard. Field

constraint analysis. InProc. Int. Conf. Verification, Model Checking, and AbstractInter-
pratation, 2006.

29. Karen Zee, Viktor Kuncak, Michael B. Taylor, and Martin Rinard. Runtime checking for
program verification systems. InWorkshop on Workshop on Runtime Verification (collocated
with AOSD), 2007.

A Specification Language Semantics

Figure 8 shows the semantics of our specification language. The model of a formula
consists of a stacks and a heaph. As usual, a heaph is a partial function from memory
addresses to values, but we additionally require that, for every object, either all or none
of the fields of that object are in the domain ofh (therefore, our semantics does not
split the fields of the same objects across multiple conjuncts). If s, h |= Φ, we call
the domain ofh a footprint of the formulaΦ. The semantics definition also uses some
additional notations.dom(h) returns the domain of the partial functionh. h1⊥h2 holds
if dom(h1)∩dom(h2) = ∅. h1 ·h2 denotes the union of two domain-disjoint functions
h1, h2; it is undefined otherwise.IsObj(c) andIsPred(c) returnstrue if c is the name
of a class or a shape predicate, respectively.s |=A φ is the usual interpretation of
arithmetic formulas.

s, h |= Φ1 ∨ Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |= ∃v∗ · κ ∧ π iff ∃ν∗ · s[v∗ 7→ ν∗], h |= κ and s[v∗ 7→ ν∗] |= π
s, h |= κ1 ∗ κ2 iff ∃h1, h2 · h1⊥h2 and h = h1 · h2 and

s, h1 |= κ1 and s, h2 |= κ2

s, h |= emp iff dom(h) = ∅
s, h |= p::c〈v1..n〉 iff IsObj(c) and s(p) > 0 and h = [s(p) 7→ r]

and r = c[f1 7→ s(v1), .., fn 7→ s(vn)]
or IsPred(c) and s, h |= [p/root]Φ

s |= p1 ⊘ p2 iff s(p1) ⊘ s(p2), where ⊘ ∈ {=, 6=}
s |= p ⊘ null iff s(p) ⊘ 0, where ⊘ ∈ {=, 6=}
s |= π1 ∧ π2 iff s |= π1 and s |= π2

s |= φ iff s |=A φ

Fig. 8. Semantics of Specification Language

16

B Translation Example

The generated class for predicatedll is the following. We will show the body of
traverse subsequently.

1 classdll Checker{
2 Node root;
3 NodeBoxed p;
4 int n;
5 booleantraverse(color curColor, color newColor) ...}
6 classNodeBoxed{ booleanbound = false; Node val; ...}

Before invoking methodtraverse of a checker objectchk of type
dll Checker, we need to initialize fieldchk.root. If traverse returnstrue,
then chk.n and chk.p can be used. Note thatp is declared with (generated)
boxed typeNodeBoxed, which has an additional fieldbound to indicate whether
traverse has set the value ofp. This provision is needed only forout parameters
that are not bound in all disjuncts of the formula.

We now describe the compilation of separation logic formulato executable code.
Each disjunct of a disjunctive formula is compiled to a separate method of the checker
class. The idea is thattraverse tries to call each of these methods to check and re-
color the heap. If the check succeeds,traverse returnstrue. Otherwise it undoes the
coloring by calling the same function again, but with the twoparameter colors swapped.

The first disjunct ofdll, root = null ∧ n = 0, is compiled to:
1 booleandisj1(color curColor, color newColor){
2 if (root == null){
3 n = 0;
4 p = new NodeBoxed();
5 return true;}
6 else
7 return false;}

Note that asroot is anin parameter, the translation compiles the formularoot =
null to a test.n = 0, on the other hand, is compiled to an assignment, sincen is out.
Since parameterp is not provided with a binding by the disjunct, it is set to an unbound
value. We will need to take this into account when compiling the recursive branch.

The second disjunct of thedll predicate:

∃r1, r2, r3, r4, r5 · root::Node〈r5, r1, r2〉 ∗ r1::dll〈r3, r4〉
∧ n = r4 + 1 ∧ r2 = p ∧ r3 = root

is compiled to:
1 booleandisj2(color curColor, color newColor){
2 if (root != null && root.color == curColor)
3 root.color = newColor;
4 else
5 return false;
6

7 dll Checker r1 =newdll Checker();

17

8 r1.root = root.next;
9 if (!r1.traverse(curColor, newColor))

10 return false;
11 if (r1.p.EQ(root)){
12 n = r1.n + 1;
13 p = new NodeBoxed(root.prev);
14 return true;
15 }
16 else
17 return false;}
1 classNodeBoxed{ ...
2 booleanEQ(Node p){
3 if (this.bound)return this.val == p;
4 this.val = p;
5 this.bound = true;
6 return true;
7 } }

Let us explain howdisj2 works. The test at line2 checks if the object has the
same color as the current color (normally the color of the current method invocation). If
the colors match, which means the object is accessible to thecurrent method invocation,
then it is recolored, effectively made available to the target method invocation. Lines7
and8 set up an instance of the checker class for the recursive invocation of thedll
predicate with root pointerr1. The field representingin parameter is intialized prior to
the invocation oftraverse at line9. If the recursive traversal succeeds, then the pure
test is performed at line11 and output parametersn andp computed. Since the object
referenced byroot has been re-colored, any sharing in the list would be detected when
traverse visits the same location the second time.

We can now complete methodtraverse of classdll Checker.
1 classdll Checker{
2 booleantraverse(color curColor, color newColor){
3 booleanr1 = disj1(curColor, newColor);
4 if (r1) return true;
5 disj1(newColor, curColor);
6

7 booleanr2 = disj2(curColor, newColor);
8 if (r2) return true;
9 disj2(newColor, curColor);

10

11 return false;
12 }
13 booleandisj1(color curColor, color newColor)
14 booleandisj2(color curColor, color newColor)
15 }

traverse calls the methods of the disjuncts in sequence. The first disjunct that
returns true will be taken and the rest ignored. In case a disjunct fails,traverse

18

undoes the coloring by calling the disjunct method again with the colors swapped. The
reason for this arrangement is to exploit the common case in predicate definitions. Most
data structures are defined such that we do not need to traverse very deep down the heap
to figure out that a case is successful or not. Hence actual undoing of the coloring rarely
incurs substantial overhead.

C Binding Map Generation

The generation of bindings map is formalized in Figure 9.

genMap p::c〈v∗

i 〉 | IsObj(c)
def
=

if vi ∈ uvars then vmap := vmap[vi 7→ p.fi];
fi is the ith field of c.

return (p::c〈v∗

i 〉, {(p, vi) | vi ∈ uvars})

genMap p::c〈v∗

i 〉 | IsPred(c)
def
=

if vi ∈ uvars ∧ mode(c, i) = out then vmap := vmap[vi 7→ p.pi];

pi is the ith parameter of c.
return (p::c〈v∗

i 〉, {(p, vi) | mode(c, i) = out})

genMap v = t
def
=

if v ∈ uvars then

vmap := vmap[v 7→ t];
return (true, {(vt, v) | vt ∈ UVAR(t)});

else return (v = t, {});

Fig. 9.Mapping generation

Note thatt in the third case can be an unbound variable or a term containing un-
bound variables. ThegenBinding function computes the closure of the bindings to
obtain the correct bound term.|| C || marksC as executable code emitted by the com-
pilation.

genBinding v
def
=

if v /∈ uvars then || v ||
else genBinding (lookUp v vmap)

If the first argument is a term,genBindings performs the obvious recursion on the
structure of the term and emits a term with identical structure, except for the translated
variables. IflookUp fails to find an entry for an unbound variable,genBinding fails.

There are very comprehensive mode systems and analyses, such as [22]. One lim-
itation of these works is the requirement that if a disjunction produces a variable, then
all disjuncts must produce that variable, thereby excluding the possibility of condition-
ally bound parameters. Such a mode system would have problems handling many of
the data structure definitions. We therefore design an approach that is both simple and
capable of handling most of the commonly encountered data structures.

19

