Runtime Checking for Separation Logic

Huu Hai Nguyen, Viktor Kuncak, and Wei-Ngan Chih?

! Computer Science Programme, Singapore-MIT Alliance
2 Swiss Federal Institute of Technology (EPFL)
3 Department of Computer Science, National University og@jpore

Abstract. Separation logic is a popular approach for specifying prioge of
recursive mutable data structures. Several existing systeerify a subclass of
separation logic specifications using static analysisrtiegtes. Checking data
structure specifications during program execution is arTraditive to static verifi-
cation: it can enforce the sophisticated specificationsvftich static verification
fails, and it can help debug incorrect specifications ane ¢xycetecting concrete
counterexamples to their validity.

This paper presents Separation Logic Invariant ChecKelGR), a runtime
checker for separation logic specifications. We show thgtpagh the recur-
sive style of separation logic predicates is well suitedréotime execution, the
implicit footprint and existential quantification make eféint runtime checking
challenging. To address these challenges we introduc@adrmptechnique for ef-
ficiently checking method footprints and describe techegjior inferring values
of existentially quantified variables. We have implemerded runtime checker
in the context of a tool for enforcing specifications of Javagpams. Our expe-
rience suggests that our runtime checker is a useful coropdaia static verifier
for separation logic specifications.

1 Introduction

Linked structures are ubiquitous in modern software. Suiaicires appear both in
container implementations of software libraries and inligggion code as the form of
syntax trees, XML data, and other application-specificti@aships. The diversity of
linked structures implies that there is a wide range of iilavas that they satisfy. Auto-
mated verification of these invariants is an active areas#aech and includes verifica-
tion of shape properties [2,12, 18] as well as propertiesgkiend shape descriptions
with specifications of size, balancing, sortedness, anttcbnhange [16,19,21,24,28].
The specification language for expressing these propédréigs significant impact on
the effectiveness of the analysis and its ability to inteveith the developer. Separa-
tion logic with inductively defined predicates [25] has egeat as a popular approach
to specify properties that involve linked structures. Inafologic based on separation
logic [15], an assertion specify not only the condition oa thitial heap but also the
“footprint” [4], that is, the part of the heap that an opesatmay access. As a result,
a precondition simultaneously plays the role of a ‘modifidause [13] and lead to a
frame rule that enables modular reasoning [15].

Runtime checking as complementary technique.We expect that many operations
and properties in practice can be checked statically, bueswill remain beyond the
reach of current analysis tools. In this paper we descrilystzs calledSLICK which
can check properties during program execution and canfrerserve as a fall-back of
static analysis. Such runtime checking has long been réoedjias useful [1, 6]. Run-
time checking detects violations of desired propertiesaghiviidual runs, and, unlike
many static analyses, can identify cases when code or syaitfi definitely contain
an error. Other benefits of runtime checking include int@nfg to unverified code, au-
tomated checking of input data that cannot be trusted, atettileg errors that result
from violating design-time assumptions (for example, afiag system corruption or
hardware malfunction).

Previous work on runtime checking. Despite the long history of runtime assertion
checking [9], to the best of our knowledge, our work is thet fitsitime checker for
separation logic specifications. Most existing runtimesgssn checkers either check
assertions in classical logic [1, 8, 10, 29], weave globackls into code at multiple
program points [3, 7], address blame assignment for priggeepressed in the pro-
gramming language [11], or explore incremental checkingsskrtions [26].

The closest to our system is a checker for heap contractessgu in linear logic
[23], which also observes the usefulness of checking cotstia separation logic, but
proceeds to check assertiondiimear logic instead. Note that [23] does not deal with
the problem of checking that the footprint of the code exedig contained in the foot-
print of the assertion. The footprint checking is one of the&improblems addressed
in our paper: it makes preconditions checking more thanguatuating formulas in
a fixed program state and requires the checking of fine-gilaimedifies clauses. An-
other difference with [23] is that, instead of invoking a rifeatl interpreter for a linear
logic programming language, our system emits Java code#mabe compiled and ex-
ecuted using existing virtual machines. In translatiomfreeparation logic into Java
our system exploits the deterministic flavor found in moshown data structure de-
scriptions. The generated code executes using standardements and benefits from
just-in-time compilation of the Java virtual machine.

Contributions. The paper makes the following contributions:

— Atranslation of declarative predicate definitions, method precondgiand post-
conditions expressed in separation logic specificatiogdage [21] into executable
Java code.

— Efficient runtime mechanism for checking separation logic assertions based on
coloring heap objects and method invocations. Our apprasolis the memory
blow up of naive implementations of separation logic setinan

— Mode analysisfor existentially quantified variables. In most specifioat we en-
countered, existentially bound variables are ultimatéhgig as a function of other
variablesSLICK includes mode analysis that determines the place wherécpted
parameters are bound, classifying them into input and dytprametersSLICK
also identifiecconditionally bound parametefsr parameters whose binding time
depends on the invocation context of the predicatéCK uses a boxed representa-
tion to instantiate such parameters at runtime at the pdithisar first use.

— Integration of static and runtime checking. SLICK ensures that annotated, but
statically unverified, methods conform to their specifizas at runtime, providing
a fall-back for the static analyzer and enabling the intefto unverified code.
Conversely, the static checker can act as an optimizer éctlde generated from
runtime checks.

2 Example

This section illustrates our run-time checking technigiresugh an example that ma-
nipulates (possibly sorted) doubly-linked lists. A listdeeated in a region of code
that was not annotated or statically verified. Therefore system performs a run-time
check to ensure that the subsequent code can safely usestiiecttist. Depending on
the complexity of subsequent data manipulation, the systesures invariants in subse-
quent piece of code either statically, using entailmentkbefor separation logic [21],
or dynamically, using further run-time checks.

classNode{ int val; Node next, prev}

dll(p,n) == (root = null A n=0)
V (root::Nodgv,r,p) * r::dll{root, m) A n=m+1)
invn>0;

sdll(p,n,9 == (root = nullA n = 0)
V (root::Nod€s,r,p = r::sdll{root,m,rs A n=m+1A s <rs)
invn>0;

Fig. 1. Predicate definitions for unsorted and sorted doubly-tinlket

Figure 1 shows predicate definitions used by the examplédic¢ateq: : di | (p, n)
denotes the fact thaf points to a doubly-linked list of length; q: : sdl | {p, n, s)
meang] points to asorteddoubly-linked list of lengtm. q is actual argument for the
implicit root parameter, denoted byot inside the definition. The first nodes of these
lists has gr ev field pointing top. Thesdl | definition ensures that the list is sorted
using thes parameter to check that values of subsequent list elementgeater than
the value of the first element, wheseis the value of the first element in the list. The
specification of the predicate uses the connectives oficidsgic such ag\, v as well
as the separating conjunction operatavhich requires that its two arguments hold for
two disjoint partitions of the heap [25]. In our system, asfreariable, such asin the
definition ofdl | is implicitly existentially quantified. The underscardenotes a fresh
variable whose name is omitted.

Figure 2 shows the Java code of our example along with spaitiifits of precon-
ditions and postcondition in separation logic with induetdefinitions and numerical
constraints. Thé oadDat a method loads a list from a file, sorts it, and returns the
sorted list. Its postcondition ensures that the returnédevis a sorted doubly-linked
list. | oadDat a ensures this condition by calling tls®rt procedure that accepts a

© © N o o A W N R

classProcesy
static Node loadData()
requires emp
ensuresres::sdll_,_,)
{ Node | = getFromFile();
Node sl = sort(l);
return sl; }

{if (I=null) {
Node tmp = sort(l.next);
tmp = insert(tmp, 1);
return tmp; }
return I; }
static Node insert(Node I, Node v)
requires l::sdll{p,n,9 * v::Nodewv,_,_)
static Node sort(Node I) ensures(res::sdl{_,n+1,min(s,wv) A I'=null)
requires |::dll (_,n) or (res::sdll_,1,r9 A rs=vv A I=null)
ensuresres::sdif_,n,.) 10 {..}}

© © N o g A~ W N B

Fig. 2. Annotated code for loading a list from a file and sorting it

doubly-linked list and returns a sorted list. The expeotaiis thatget Fr onFi | e
method will produce a doubly-linked list. Howeveget Fr onti | e procedure in our
example is not statically verified and we cannot guaranggeatly that it will indeed
produce a doubly-linked list structure expectedsloy t . In such a situatiosLICK per-
forms a runtime check to ensure that the data structureiantanolds. Consequently,
we can still assume when reasoning about the bodyot that the data structure given
is a doubly-linked list; and when reasoning about the bodyoafd Dat a that the result
returned bysor t is a sorted list. When reasoning about callers @dDat a, we can
also make use of its postcondition.

Outline. In the rest of this paper we define our specification languagelze desired
semantics of runtime checks, we then describe the compileand runtime techniques
thatSLICK uses to generate the checks, discuss the issues in combiatimyand run-
time checking and present preliminary experience with jfstesn.

3 Specification Language

We designed our specification language for preconditiodspastconditions to enable
simultaneously runtime checking and static analysis [24]t largely follows the syn-
tax and semantics of languages in previous separationsggtem.

Specification language syntaxFigure 3 shows the grammar for our specification lan-
guage. Shape predicaspred is the main specification construct that provides data
structure descriptions. Formulas are canonicalized tomnal representation akin to
the superhomogeneous form [27], namely arguments for lweapfas are distinct and
fresh. Additional existentially quantified variables anrdduced if necessary to obtain
the above form. The semantics of our specification languageiuded in Figure 8 in
the Appendix.

Recursive shape predicate definitions need to satisfyinesyatactic restrictions,
namelywell-formedand well-foundedconditions, to ensure soundness and termina-
tion of static reasoning [21}Vell-formedconditions ensure that shape predicates and
formulas do not admit garbage (consequently, code gemefateuntime checks can
traverse the entire footprint of the formul&yell-foundectonditions disallow oot to
be passed as argument to a recursive predicate invocatiahiieans oot either is

spred ::= c((v [u])*) = @ [inv 7o)
p = @Qin | @Qout
&=\ - (kAT)
t=yAP
s=wv1 =v2 |v=mnull | vi vz | v#null |11 A
m=emp | Vi:iC(V") | K1 * K2
s=arith | g1 Aga | p1 Vo | | Fv-¢ | Vu- ¢
arith::=a; =ax |las #az |a1 <az |ar < a
a:x=k|v|kxala +az|—a|max(a,az) | min(ai,az)
k € Integer constants
v,c € ldentifiers

NS

Fig. 3. Grammar for Shape Predicates

nul | , dangles, or points to an object. Well-foundedness enshiaéthe generated run-
time checking code terminates when executed on any gives bie&e every invocation
of the generated code either fails/succeeds or recoloesst bne object.
Predicate parameter modes. To make the execution of predicates at runtime more
efficient, we assigmodesto predicate parameters, following the approaches in logic
programming [22, 27]. We currently support two mod@esandout. These modes can
be inferred using a constraint-based analysis. In the oupa@per, we assume that the
developer specifies mode annotations (implicitly or exgyiz For example, the param-
eters of thell | predicate can be annotatedds (p@out, n@out). Both parameters
p andn haveout mode.

We use several conventions for default modes, which allos@ldpers to omit
most mode declarations in practice. Most of the parametersewt, so we makeout
the default mode. Next, a data structure is typically givetha set of objects obtained
by traversing the data structure starting from tlo®t node and terminating at either
nul | or at some of thén parameters: oot is therefore always aim parameter; the
out parameters are values computed by traversing the datas&ssSLICK considers
method parameters as parameters for their preconditions and postconditiaus.
parameters from preconditions anegparameters for corresponding postconditions.

4 Semantics of Run-Time Checking

In this section we present the semantics for run-time clmgckéeparation logic speci-
fications and outline challenges in implementing this sdimanWe then describe how
we approach these challenges in our runtime checker.

4.1 Abstract Description of Run-Time Checks

The intended meaning of runtime checking is as follows. Gigestacks, an initial
partial mapL from logical variable names to values, and a heaywe define the set of
pairs (ho, Lo) wherehg is subheap oh and L, is partial map extending such that

formulais true forhg, Lo:
submodelsFor(s, h, L,®) = {(ho, Lo) | (sULg),ho =P AN L C Lo A hy C h}

A procedure with preconditios® should succeed wheh * true holds in the caller,
which happens whesubmodelsFor(s, h,), &) is nonempty. Let: denote the current
heap. Consider a procedure call of procedfingith preconditionpre;, body body;,
and postconditiopost;. Taking into account the usual semantics of logic variatiias
can relate pre- and postcondition, the execution of a pruoreschll with runtime checks
is the following. Note thabody; may update the current heap

let M = submodelsFor(s, h, (), prey); /I subheaps satisfying precondition

if M = () then error "Precondition failed”;

let (ho, L) € M; /I pick subheap and logic var. bindings
lethy = h\ ho; /] save context

h := hg; /I narrow heap to footprint

body;; /I actual body of the method

let M’ = submodelsFor(s, h, L, posg); /I check post in current, L
if M’ = () then error "Postcondition failed”;

let (hg,-) € M'; /I pick subheap to return
h:=hgrU h; /] restore context

4.2 Separation Logic Runtime Checking Challenges

Given the semantics of separation logic formulas and theaséos of checks in Sec-
tion 4.1, there are two main challenges in making runtimeckimg feasible. We next
discuss the challenges specific to separation logic exatuti

Evaluating spatial conjunction inside formulas. Consider first the problem of check-
ing whether a given state satisfies a formula without nurakcenstraints. This model
checking problem has been studied for first-order logich{wit without inductive def-
initions) [14] and, more recently, for separation logic.[SEparation connective in-
creases the complexity of the model checking problem bechwessentially involves
second-order quantification [17]. In general it is not cleaw to split into two parts
each of which satisfies the corresponding conjunct, so eggaration logic formula
could in principle admit an exponential number of sets o&tans that denote its foot-
print.

Approach: marking the footprint. Our approach stems from the observation that, in
practice, data structure specifications often contain fdasithat have a small number
of possible footprints that can be computed while evalgative formula. Moreover,
separation logic connective does not appear under a nagatour system. Therefore,
instead of maintaining an explicit container containingecks in the footprint, we mark
objects that participate in the footprint of the formula. Atempt to mark an object
twice makes the entire formula disjunct unsatisfiable.

Representing method footprints. A naive implementation of the semantics in Sec-
tion 4.1 would associate with each method invocation a seefeffences that covers
the method’s footprint. For a call stack of depthit would needn copies of these

footprints to maintain the information about all contektsfor procedures on the call
stack. In the worst case this would causenafold increase in memory consumption.
Next, we need a mechanism to adjust the he#gr each procedure call and check each
individual field read or write, to ensure that they perforneigions only on the current
footprint.

Approach: maintaining marking across procedure calls. When a precondition
succeeds, our system retains the marking of nodes, whiatigsie for a procedure in-
vocation. Reads, writes and procedure calls check the mguekid adjust it accordingly.
Postcondition check restores the marking.

5 The Runtime Engine

We now present in more detail the runtime mechanisms of oaclar.SLICK aug-
ments each object with a field named| or , which indicates the object’s availability
to different method invocations. The color of an object mhgrge during program
execution. Each method invocation is also associated withigue color, maintained
on a global stack. A method invocation can access an objeadfonly if their colors
match. Newly allocated objects belong to the current meiinaatation’s footprint; the
objects receive the color of the current invocation viarinstented object constructors.
An invocation of methodn is permitted if the footprinF’ of m’s precondition is a sub-
set of the caller’s footprint at the call site. In that cabe, $ystem colors the footprit

to match the color of the invocation ef. A return from invocation ofn is permitted if
the footprintF” of the postcondition ofn is a subset of the current execution footprint
at the end ofn. The system then recolors the postcondition footpFihto the color of
the caller.

Checking formulas. Runtime checking formulas consists in verifying the forenul
footprint and computingut parametersSLICK translates each formula to executable
code in the form of a class with a methbdaver se that, when executed, traverses the
footprint of the formula in the current hedpr. aver se accepts two input parameters,
cur Col or andnewCol or and returndoolean t r aver se recolors each object it
visits to newCol or if the current color of the object isur Col or. If traver se
succeeds in recoloring all visited objects and all pure trairgs are also satisfied, it
setsout parameters and returtrsie. Otherwise it fails.

Checking formulas with disjunction. The recursive definition of predicates such as
dl I andsdl | contain the disjunction operator to differentiate the besse and the
recursive case of the definition. When evaluating the trdth pure classical logic
formula Fy v F» in a given heap, it is possible to simply evaludtefirst, and, if it
fails, proceed with the evaluation @%. In the case of our separation logic formulas,
however, evaluation changes the coloring of the heap. Ttvexgf the evaluation of?;
fails, SLICK must undo the coloring performed 5y. Based on the recursive predicates
we have examined, we expect the failure of false disjunctsctur quickly.SLICK
therefore undoes the coloring by re-executing the evalnatf F;, with opposite color
parameters. This approach avoids additional bookkeepiagviould be required to
maintain the set of marked objects. In our examplellof andsdl | , the footprint

of the first disjunct is empty, which means that its execugierforms no marking and
there is nothing to undo.

Computing bindings for existential quantifiers. Existentially quantified variables in
program specifications are often either determined by bbasin program state, or they
do not affect the truth value of the formula at all. Consiftarexample, the precondition
of sort, given by the formuld : : dl | (p, n). The root parameter afl | predicate

is bound to the value of the local variallle The n parameter, on the other hand, is
existentially quantified, but is given as the length of ttst. [Thep parameter ofll |

is given as ther ev field of the first node whenever the list is non-empty. When the
list is empty, thep parameter is left unconstrained, but the truth valudldf does not
depend on it either. Therefore, the valugak either given by the context whedé |

is called, as in the recursive invocation insdld definition, or it is not used anywhere,
as in the precondition afor t . SLICK uses mode analysis, described in Section 6, to
determine how to compute values of such existentially dfiadtvariables.

Precondition. SLICK invokes precondition checking code in the caller prior tahod
invocation. If a precondition check succeeds, it also mtesivalues for theut param-
eters of the formula. These values can then be used by theogpalgion of the same
invocation. Note that pre- and postcondition checks arfopmed in the caller to facil-
itate integration with the static verifier. More details arevided in section 7.

As anillustration, consider theor t method from Figure 2. Figure 4 shows the run-
time checking code th&®LICK generates fosor t . SLICK compiles the precondition to
a class with fields to store all free logic variables of therfala (in this case, variables
| andn). In callers ofsort, SLICK also generates instructions to create an instance
of the generated class (the checker object), initializeithparameterl() and then
invoket r aver se on the initialized checker objedt.r aver se receives two colors
as arguments: the current method invocation’s color isgghgscur Col or , a freshly
generated color toewCol or . Upon successful completion bf aver se, SLICK sets
n to the length of the listSLICK stores a reference to the checker object in a local
variable that is visible to the code that verifies the posiidton.

Postcondition. When a method returnSLICK checks postcondition against the current
method’s footprintSLICK then makes the objects covered by the postcondition acces-
sible to the caller. As an example, Figure 5 shows the tréoslaf the postcondition

of sor t, whose internal representatiords; - res::SDLL(r;) Ar; = n.

Note that it is possible that the postcondition does not callebjects of the current
invocation’s footprint. The uncovered objects, even itctegble from the caller, are not
accessible under separation logic semantics. The useafrgin SLICK correctly en-
forces this semantics. Indeed, observe that any objecheifobtprint of the returning
method, if not covered by the postcondition thereof, withie the color of the return-
ing method invocation. This color is unique for the dynamietihod invocation, so no
current or future method invocations will be able to acchssé objects.

Unannotated code. When a method has no annotations, as is the case of
get Fronti | e in Figure 2, both precondition and postcondition e . This means
that the footprint of the precondition is the same as thecalturrent footprint and that
the entire footprint of the callee is returned to the calb&tCK thus executes the callee

© © N o o A W N R

11

12

13

14

15

16

17

classsortpre{ Node l;int n;
booleantraverse(color curColor,
color newColorX ...}

classsortpost{
Node res;
int n;
booleantraverse(...)
Node loadData(}{
Node | = getFromFile();
/Il generated code
sortpre prchk =new sortpre();

Node loadData(]

Node sl = sort(l);

© © N o o A W N R

prchk.l =1; /Il generated code
SLICK.pushCurrentColor(); 10 sortpost pockr =new sort post();
SLICK.setCurrentColor(1 pockr.res = sl;

SLICK.freshColor()); 12 pockr.n = prchk.n;
prchk.traverse(SLICK.topColor(), 13 color ¢ = SLICK.popCaolor();

SLICK.currentColor()); 14 pockr.traverse(SLICK.currentColor(), c);

/Il end of generated code 15 SLICK.setCurrentColor(c);
Node sl = sort(l); 16/l end of generated code
17 return sl; }
Fig. 4. Compiled precondition ofor t Fig. 5. Compiled postcondition aor t

without any recoloring of the heap and with the callee intimrehaving the same color
as the caller invocation.

6 From Separation Logic to Executable Code

We now present our translation from separation logic foenalexecutable code. The
basic idea is to compile a separation logic formula into afiom that checks if a given
program statés, h) is a model of the formula. The translation consists of modsyesis
and Java code generation. Besides checking that the foimolda in the current pro-
gram state, the translated code recolors the formula’fotdtand computes the values
of out parameters. Each formula is translated to a class with aodéthaver se and
fields representing the free variables of the formula. THddibave the same names as
the free variables they represent. Fieldsifoparameters need to be initialized before
each invocation of r aver se; fields forout parameters are set by aver se upon
successful completion of checking.
Mode analysis. At compile time, variables in a formula are classified int@ twain
groups: bound and unbound. Initially, unbound variabletuithe out parameters and
existentially quantified variables of the present formBaund variables includén
parameters of the present formula and arguments of recursive predicate invocations.
If an out argument is not unified with a value in all disjuncts of a pcatie definition,
we further classify it asonditionally bound

Conditionally bound variables use a boxed representafitmedr underlying types.
Each boxed value has a flag indicating whether the underiyahge is bound. The first
time when the compiled formula uses a conditionally boundbatéde v at runtime, it
bindsv to a concrete value. Whenis used in an equality = ¢ and the value of term
t is known,v is bound tot; otherwise bothv and¢ are bound to the same value by

instantiating unbound variablesiénlif used in a disequality or inequality,is bound to
a random value such that the constraint holds. This treatim@rcomplete, but sound.

The translation consists of two passes. The first pass dietesrsubformulas that
generate bindings for the unbound variables. The secondampiles the selected sub-
formulas to assignments and the rest of the formulas to. tEsthake it easier to read
the formalization, the following names have dedicated rivggnin our rulesvmap is
the binding map of unbound variablesnap also keeps track of which variables and
terms are conditionally bound to help the code generatomiakie correct operations on
these valuesins andouts arein andout parameter sets, respectivelldS(c) returns
all thein parameters of predicate uvars is the set of unbound variables. Function
UVARreturns the set of unbound variables of a term. Note thatandouts are the
same for all disjuncts of a formula, whereasap anduvars are computed anew for
each disjunct]| C' || marksC' as executable code emitted by the compilation.

The first pass computes a mapping from unbound variablesrtstevhere a term
can be either constant, variable, field access, or combimafiterms using arithmetic
operations. This pass also produces a partial orderingshndiétermines the order in
which assignments are generated by means of a topologitalsere are three sources
of bindings for unbound variables, namelyii) parameters of the present formula,
i) out parameters of predicate invocations, and iii) object fielde computation is
formalized as thgenMap function in Figure 9 in the Appendix. AgenMap generates
the bindings, it also removes from the input formula all waifionsy = ¢ that it uses
in bindings generation.

Translation of disjunction. SLICK compiles a formula} Vv ... Vv F, in disjunctive
normal form as follows:
booleantraverse(color curColor, color newColdf)

booleanr_1 = disj1(curColor, newColor);

if (r_1) return true;

disj1(newColor, curColor);

booleanr_n = disjn(curColor, newColor);
if (r_n) return true;
disjn(newColor, curColor);

return false;}
Translation of conjunction. SLICK compiles a formulaF; = Fv* - k A 7w into a
functionbool ean di sji (col or curCol or, color newCol or). Figure 6
formalizes the compilation of the body df sj i as a function that takes a formula and
emits executable code.

The translation also makes use of the following functiortse genlinitialization
function emits assignments to initialize parameters of the formula, subject to the
constraint that alin parameters must be initialized.

genlnitialization p::c(v;) =

foreach f; in INS(c) do: || p.f; =|| genBinding v;

The genAssign function emits assignments tut parameters of the predicate. If
a variable does not have a binding from the formula, it isgaesil an unbound boxed

10

def

TR[[p::c(v™)]] | IsObj(c) =
|| if p # null A curColor = p.color

TR[[k1 * k2] = TR[[r1]); T Rl[rs2]]

then p.color = newColor TR[[Fv* - k A7 gef
else return false; || let wvars =v* Uouts in
let 7' = genMap (k A7) in
TR[[p:c(w)]] | IsPred(c) < TR[[x]];
I p = new c.Checker | i€ || TR || then |
genlnitialization p::c{v;); genAssign;
|| if not(p.traverse(curColor, newColor)) || return true; ||
then return false; || || else return false; ||
TRI[[p = t]] | pis conditionally bound, ¢ is bound £ || p.EQ(¢) ||

Fig. 6. Translation Rules

value.

def

genAssign =
foreach p in outs do:
| » =I| genBinding p
if genBinding failed then || p = new (boxedt ypeof (p)) ||

ThegenBinding function computes the closure of the bindings to get bourrdge

ef

genBinding v £
if v ¢ wvars then || v ||
else genBinding (lookUp v vmap)

If the first argument is a terngenBindings performs the obvious recursion on the
structure of the term and emits a term with identical strigtaxcept for the translated
variables. IflookUp fails to find an entry for an unbound variabggnBinding fails.

7 Integrating Static and Runtime Verification

In this section we discuss the integration of static andimmterification. The general
idea is that assertions that can be statically verified ne¢da checked at runtime.
However, such combination is more difficult for analysis @ns based on spatial con-
junction of facts than for analysis domains based on claksmnjunction of facts. In-
deed, to ensure that assertibpA F» holds after a given program point, it is possible to
ensurel’ statically and then check; dynamically. On the other hand, given assertion
Fy « Fy, itis necessary to communicate to both the run-time andt#tie sime checker
the footprints of individual formulas in order to enable aegiion of these two checks.
In the sequel, we describe optimizations that are nevessgdossible in our runtime
checking approach; more fine-grained combinations ardlgedsut beyond the scope
of the current paper.

11

Field access. If the static verifier proves a field access safe, no runtinecklis re-
quired. This is because field access does not affect theieglofthe objects or method
invocations. On the other hand, if the static verifier fails/erify a field read, it emits
runtime check for the pointer and continues with a suitabdgified symbolic state.

AV xze(f*)
F{A}v=az.f{Fv- A}

If it fails to verify a field write, it stops static verificatioand emits runtime check for
all subsequent code. As an optimization, once a field accasdéen issued a run-
time check, it needs not be checked again until the poirgelfior its color may have
changed. In many cases this information can be obtainadadtat

Method contract. Method contract checks, on the contrary, cannot be as yeeldtti-
nated since they change the heap coloring. Let us considetteonly that calls another
methodf with preconditionpre; and postconditiopos;:

1 void g() 1 void f()
2 {9,:f0; 95 } 2 requires pre; ensurespost: { ... }

There are the following possibilities:

1. f is statically verified.

— pre; is statically proved: if the pag, of g following the call tof is statically
verified by assumingost;, g need not emit runtime checks fpre; andpost;.
Otherwise, ag), may attempt to access objects that do not belonygotst,’s
footprint, runtime checks fopre, andpost: (and certainly forg,) are needed.

— prey is not statically provedg issues runtime checks fpre, andpost;. Static
verification ofg, can assumpost.

2. f is not statically verifiedg issues runtime checks fpre, andpost;. Static veri-
fication ofg, can assumpost;.

The static verifier can take advantage of the fact that afteethod call, the callee’s
postcondition holds. Even if it cannot verify the callee’sgondition, it can still assume
the postcondition, and continues static verification aitsuing appropriate runtime
checks. When the precondition is a pure formula, statidigation proceeds as follows:

A ¥ pre(mn) IsPure(pre(mn))
F {A}mn(v*){(A A pre(mn)) * post(mn)}

On the other hand, if the precondition has a nonempty heapooent, the static
verifier assumes the postcondition as the current prograte.diote that we can-
not simply «-conjoin the postcondition with the current program state they may
cover overlapping footprints. Replacing the entire progsdate by the postcondition is
sound, but may result in loss of precision if the callee’stpmsdition covers only parts
of data structures.

A ¥ pre(mn) HasHeap(pre(mn))
F {A}mn(v*){post(mn)}

12

Integration in the example. In the example of section Zort andi nsert are
both statically verifiablel. oadDat a fails to verify the precondition afor t because
the information is simply not available, so it emits runtimikeeck, but by assuming
postcondition ofsor t , the postcondition of oadDat a can be statically verified, a
fact that callers of oadDat a can exploit. Note that the runtime checking is localized
within | oadDat a only, so the overhead is small.

8 Implementation

We implementeLICK in the context of a system for checking data structure proper
ties [21]. We report our experience with the system on séeseamples.

Memory overhead. Memory overhead consists of one field per object to storelbhe o
ject’s color and a single stack of live colors which has thees&eight as the program
call stack. Since theol or type can be implemented &g, memory overhead de-
creases if the program uses larger objectsaver se method also creates a number
of intermediate objects, but they exist only during the folatraversal and do not per-
manently accumulate in the memory overhead of the codauimstnted with runtime
check. Consequently, we were not able to measure any semifiifference in memory
consumption on our examples.

Runtime overhead. We evaluate the runtime overhead of our approach by running
experiments with different levels of runtime checking: nmtime checking, all op-
erations are runtime checked, all field accesses are rumtimeked, and checking at
boundaries of data structure operations. In the third ¢hsegntire program runs with
a single color, hence no precondition or postcondition khe@erformed. This case
measures the overhead of checking field accesses. In theassSLICK checks only
the first precondition and the last postcondition of a datacstire operation at runtime
since the static verifier can assert that checks for recairsills and field accesses are
statically safe. This case simulates a scenario where thesestructures are used in
conjunction with unverified or untrusted inputs. In ordenimimize the timing effects
of class loading and JIT compilation, we repeat the expartsw@nd ignore the timings
of the first two runs.

Timings for the experiments, measured with JVM 1.5 on Linu&r2inning on a PC
having a 3GHz CPU and 2GB RAM, are reported in Figure 7. Tha siatictures used
in our experiments have sizes ranging from 1000 to 5000 elesn€he first experiment
sorts a list using insertion sort. The “Full” check Bwr t causes very large increases in
running time. However, the “Boundary” version, which we egpto be used in practice,
causes insignificant increases since the data structuaviersed only two more times.
The second example performs an in order traversal of a bseasch tree to produce a
sorted list. The “Full” check incurs large overhead sinderites the entire subtree to be
traversed at each recursive invocation. The other two chak significantly cheaper.
The third example performs the following two operations @ @ihes: inserting a ran-
dom element to and deleting the maximum element from a pyiqtieue. The “Native”
and “Field” timings reflect the logarithmic complexity of e@tions on priority queues.
The “Full” and “Boundary” timings are linear in data strucdtsize as expected, since
everyi nsert anddel et emax operation traverses the entire heap, rather than just a

13

path with logarithmic length from root to leaf. The fourtheemple is a popular opera-
tion in data mining algorithms. It traverses a table contajnhe iterative patterns used
in software specification mining and calculates the suppicatmined pattern [20]. The
operationis repeated 10 times. Note that the computatisagdort itself does not need
to traverse the entire table, since the table provides ngabfimost of the subcompu-
tations. Precondition and postcondition checking theeetauses a significantly larger
number of objects to be visited, causing the large increasenning time. A common
property across all the examples is that “Field” check tgsishow that the overhead
of checking every heap access3niCK is small.

Insertion Sort Binary Search Tree
Siz¢Nat| Full [FieldBdry.||Nat.,| Full |Field Bdry.
1,000 6| 49,233 10 7(/0.03 181 0.0 0.93
2,009 28>50,000 44/ 31)|0.07 866 0.12 4.50
3,000 69/>50,000 108 81}0.112,253 0.1810.45
4,000 127>50,000 183 135|0.144,965 0.24 8.62
5,00Q 209 >50,000 296 211||0.189,360 0.30 9.07
Priority Queue Support Calculation
Siz¢Nat.| Full |FieldBdry.|[Nat.| Full |Field|Bdry.
1,0000.93 2,585 1.62 765|0.22 12,2058 0.30 25
2,00Q00.99 5,171 2.681,521|0.45>50,000 0.63 61
3,0001.02 7,767 1.792,321|0.68>50,000 0.94 111
4,0001.02{10,320 2.693,032|0.93>50,000 1.40 169
5,0001.0313,070Q 1.893,82%|1.18>50,000 1.73 173

Fig. 7. Performance Measurements (in milliseconds)
9 Conclusion

We presentedLICK, the first runtime checker for separation logic program sgpec
cations. We have identified several challanges that malaratgn logic specification
seemingly more difficult to check at run time than for claaklogic. However, we be-
lieve that many of these problems would occur in any systérasprecisely checks
frame conditions of procedures. The notable feature® oK include runtime mecha-
nism that avoids memory blow up and a compilation of sepamdtigic specification to
executable code that runs natively on the JVM. Overall, timetime checking cost can
be significant for large data structure instances whentaltimediate states are checked,
but even in those cases the absolute performance is suffjoggrod for debugging the
code and the specifications. Performing only “boundary k&ieis an appealing al-
ternative to all intermediate checks: because specifitattapture operation footprint,
boundary checks ensure data structure consistency atdha en operation regardless
of the internal behavior of the operation. In some casesh(asahe insertion sort ex-
ample), the overhead when performing only boundary chepgears acceptable even
for deployed applications. Preliminary results demonstthat running time can be
significantly reduced using static verification to removearity of runtime checks.

14

References

1.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. Bpec# programming system:
An overview. INCASSIS: Int. Workshop on Construction and Analysis of Safeyre and
Interoperable Smart device2004.

. Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Daste, Peter O’'Hearn, Thomas

Wies, and Hongseok Yang. Shape analysis for composite ttatdiges. InNCAV, 2007.

. Eric Bodden, Laurie Hendren, and Ondfej Lhotak. A stiagfatic program analysis to im-

prove the performance of runtime monitoring. BE€OOR 2007.

. C. Calcagno, D. Distefano, P.W. O’Hearn, and H Yang. Faatpnalysis: A shape analysis

that discovers preconditions. 8AS 2007.

. Cristiano Calcagno, Hongseok Yang, and Peter O’'HearnmpDeability and complexity

results for a spatial assertion language for data strustdnd=-STTC$2001.

. Robert Cartwright and Mike Fagan. Soft typing. RDI '91: Proceedings of the ACM

SIGPLAN 1991 conference on Programming language designiraptémentationpages
278-292, 1991.

. Feng Chen and Grigore Rosu. MOP: An Efficient and Genenntife Verifica-

tion Framework. InObject-Oriented Programming, Systems, Languages andidsppl
tions(OOPSLA’07)2007.

. Yoonsik CheonA Runtime Assertion Checker for the Java Modeling LanguBt® thesis,

lowa State University, April 2003.

. Lori A. Clarke and David S. Rosenblum. A historical pexgpe on runtime assertion check-

ing in software developmenSIGSOFT Softw. Eng. Note&l (3):25-37, 2006.

Brian Demsky, Cristian Cadar, Daniel Roy, and Martin @aRd. Efficient specification-
assisted error localization. Becond International Workshop on Dynamic Analya$4.
Robert Bruce Findler and Matthias Felleisen. Contriacthigher-order functions. IRroc.
2002 International Conference on Functional Programmi2@02.

Bolei Guo, Neil Vachharajani, and David |. August. Shapalysis with inductive recursion
synthesis. IPLDI, 2007.

John Guttag and James Horningarch: Languages and Tools for Formal Specification
Springer-Verlag, 1993.

Neil ImmermanDescriptive ComplexitySpringer-Verlag, 1998.

Samin Ishtiag and Peter W. O’Hearn. Bl as an assertigubege for mutable data structures.
In Proc. 28th ACM POP[2001.

Viktor Kuncak. Modular Data Structure VerificatianPhD thesis, EECS Department, Mas-
sachusetts Institute of Technology, February 2007.

Viktor Kuncak and Martin Rinard. On spatial conjunctamsecond-order logic. Technical
Report 970, MIT CSAIL, October 2004.

Tal Lev-Ami. TVLA: A framework for Kleene based logic staanalyses. Master’s thesis,
Tel-Aviv University, Israel, 2000.

Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard lifh Putting static analysis to
work for verification: A case study. Imt. Symp. Software Testing and Analy&800.

D. Lo, S-C. Khoo, and C. Liu. Efficient mining of iteratipatterns for software specification
discovery. InProc. of SIGKDD Int. Conf. on Knowledge Discovery and Dataikiy, 2007.
Huu Hai Nguyen, Cristina David, Shengchao Qin, and WgiINChin. Automated verifica-
tion of shape, size and bag properties via separation Idgi¢MCAI, 2007.

David Overton, Zoltan Somogyi, and Peter J. Stuckey. s€aimt-based mode analysis of
mercury. INPPDP '02: Proceedings of the 4th ACM SIGPLAN internationahference on
Principles and practice of declarative programmjmages 109-120, New York, NY, USA,
2002. ACM Press.

15

23. Frances Perry, Limin Jia, and David Walker. Expresseaphshape contracts in linear logic.
In GPCE '06: Proceedings of the 5th international conferenngGenerative programming
and component engineeringages 101-110, New York, NY, USA, 2006. ACM Press.

24. Jan Reineke. Shape analysis of sets. Master’s thedigrsitat des Saarlandes, Germany,
June 2005.

25. John C. Reynolds. Separation logic: a logic for sharethble data structures. ivth LICS
pages 55-74, 2002.

26. Ajeet Shankar and Rastislav Bodik. Ditto: Automaticrémentalization of data structure
invariant checks. IfPLDI, 2007.

27. Zoltan Somogyi. A system of precise modes for logic paogs. InICLP, 1987.

28. Thomas Wies, Viktor Kuncak, Patrick Lam, Andreas Pddeknd Martin Rinard. Field
constraint analysis. I®Proc. Int. Conf. Verification, Model Checking, and Abstrédier-
pratation, 2006.

29. Karen Zee, Viktor Kuncak, Michael B. Taylor, and MartiimBrd. Runtime checking for
program verification systems. Workshop on Workshop on Runtime Verification (collocated
with AOSD) 2007.

A Specification Language Semantics

Figure 8 shows the semantics of our specification langualge.iodel of a formula
consists of a stackand a heaj. As usual, a heap is a partial function from memory
addresses to values, but we additionally require thatieryeobject, either all or none
of the fields of that object are in the domain /of(therefore, our semantics does not
split the fields of the same objects across multiple cong)ntt s, = @, we call
the domain ofh afootprint of the formula®. The semantics definition also uses some
additional notationsdom(/) returns the domain of the partial functiénh; L h, holds

if dom(hi)Ndom(ha) = 0. hy - he denotes the union of two domain-disjoint functions
h1, he; itis undefined otherwisd.sObj(c¢) andlsPred(c) returnstrue if ¢ is the name
of a class or a shape predicate, respectively=4 ¢ is the usual interpretation of
arithmetic formulas.

S,h':§p1\/§p2 iff S,h':¢10rs,h':¢2
s,h|E " -k ATiff s —v,hErand s — v =7
S,h':fﬂ * K2 iff E|h1,h2'h1J_h2 andh:h1~h2 and
s, h1 ': x1 and s, ha ': K2
s, h = emp iff domh) =0
s, h = pie(vr.g) iff IsObj(c) and s(p) > 0and h = [s(p) — 7]
and r = ¢[f1 — s(v1), .., fn — s(vn)]
or IsPred(c) and s, h = [p/r oot |®
S ':pl @ p2 iff 5(p1) %) S(pz), where @ € {:77&}
s = p©null iff s(p) @0, where © € {=,#}
S|:7T1/\7T2 iﬁs':ﬂjands':ﬂ'z
skE¢ iff sf=a ¢

Fig. 8. Semantics of Specification Language

16

o o 0~ W N

N~ o o a

AW N R

B Translation Example

The generated class for predicatel is the following. We will show the body of
t raver se subsequently.
classdll_Checker
Node root;
NodeBoxed p;
int n;
booleantraverse(color curColor, color newColor) }..
classNodeBoxed{ booleanbound = false; Node val; .}.

Before invoking methodtraverse of a checker objectchk of type
dl I _Checker, we need to initialize fieldchk. r oot . If t raver se returnstrue,
then chk. n and chk. p can be used. Note thgi is declared with (generated)
boxed typeNodeBoxed, which has an additional fieldound to indicate whether
t raver se has set the value gi. This provision is needed only faut parameters
that are not bound in all disjuncts of the formula.

We now describe the compilation of separation logic fornmalaxecutable code.
Each disjunct of a disjunctive formula is compiled to a sepamethod of the checker
class. The idea is thatr aver se tries to call each of these methods to check and re-
color the heap. If the check succeedsaver se returnstrue. Otherwise it undoes the
coloring by calling the same function again, but with the yewsameter colors swapped.

The first disjunct ofll | ,r oot = null An = 0, is compiled to:

booleandisj1(color curColor, color newColof)
if (root == null){
n=0;
p =new NodeBoxed();
return true;}
else
return false;}

Note that as oot is anin parameter, the translation compiles the fornmmdat =
nul | toatestn = 0, onthe other hand, is compiled to an assignment, siris@ut.
Since parametqy is not provided with a binding by the disjunct, it is set to arvbaund
value. We will need to take this into account when compilimg tecursive branch.

The second disjunct of thedd | predicate:

Jry,T9,T3,T4,Ts - F 00t ::Node(rs, ry,To) * r9::d11{rs, 14)
An=r1r4+1ANryg=pAr3="ro00t

is compiled to:
booleandisj2(color curColor, color newColof)
if (root !=null && root.color == curColor)
root.color = newColor,;
else
return false;

dll_Checker r1 =new dll_Checker();

17

14

rl.root = root.next;
if (Irl.traverse(curColor, newColor))
return false;
if (r1.p.EQ(root)}
n=rl.n+1;
p =new NodeBoxed(root.prev);
return true;
}
else
return false;}
classNodeBoxed ...
booleanEQ(Node p){
if (this.boundyeturn this.val == p;
this.val = p;
this.bound = true;
return true;

H}

Let us explain howdi sj 2 works. The test at lin@ checks if the object has the
same color as the current color (normally the color of theentrmethod invocation). If
the colors match, which means the object is accessible wutient method invocation,
then it is recolored, effectively made available to the éargethod invocation. Lines
and8 set up an instance of the checker class for the recursiveatiom of thedl |
predicate with root pointarl. The field representinigp parameter is intialized prior to
the invocation of r aver se at line9. If the recursive traversal succeeds, then the pure
test is performed at liné1 and output parametersandp computed. Since the object
referenced by oot has been re-colored, any sharing in the list would be deteden
t raver se visits the same location the second time.

We can now complete methad aver se of classdl | _Checker .
classdll_Checker{
booleantraverse(color curColor, color newColdr)
booleanrl = disj1(curColor, newColor);
if (rl) return true;
disj1(newColor, curColor);

booleanr2 = disj2(curColor, newColor);
if (r2) return true;
disj2(newColor, curColor);

return false;

}

booleandisj1(color curColor, color newColor)
booleandisj2(color curColor, color newColor)

t raver se calls the methods of the disjuncts in sequence. The firsimtisjthat
returns true will be taken and the rest ignored. In case amtisjfails,t r aver se

18

undoes the coloring by calling the disjunct method agai Wit colors swapped. The
reason for this arrangement is to exploit the common caseettigate definitions. Most
data structures are defined such that we do not need to teaxemsdeep down the heap
to figure out that a case is successful or not. Hence actualingdf the coloring rarely
incurs substantial overhead.

C Binding Map Generation

The generation of bindings map is formalized in Figure 9.

def

genMap p::c{vi) | I1sObj(c) =
if v; € wvars then vmap := vmap[v; — p.fil;
fi is the " field of c.
return (p::c(vy), {(p,vi) | vi € uvars})
genMap p::c(vy) | IsPred(c) &
if v; € wvars A mode(c,i) = out then vmap := vmap[v; — p.pil;
pi is the i'" parameter of c.
return (p::c(vi), {(p,v;) | mode(c,i) = out})
genMap v =t £
if v € wvars then
vmap := vmaplv — tJ;
return (true, {(vs,v) | v; € UVAR{)});

else return (v =¢,{});

Fig. 9. Mapping generation

Note thatt in the third case can be an unbound variable or a term contaum-
bound variables. ThgenBinding function computes the closure of the bindings to
obtain the correct bound teri.C' || marksC' as executable code emitted by the com-
pilation.

genBinding v £
if v ¢ wvars then || v ||
else genBinding (lookUp v vmap)

If the first argument is a terngenBindings performs the obvious recursion on the
structure of the term and emits a term with identical striestaxcept for the translated
variables. IflookUp fails to find an entry for an unbound variabggnBinding fails.

There are very comprehensive mode systems and analysesas({@22]. One lim-
itation of these works is the requirement that if a disjumctproduces a variable, then
all disjuncts must produce that variable, thereby exclgdie possibility of condition-
ally bound parameters. Such a mode system would have prelilamdling many of
the data structure definitions. We therefore design an agprthat is both simple and
capable of handling most of the commonly encountered datatates.

19

