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The control of very flexible transmissions in the pre-
sence of load variations is a challenging control pro-
blem. In this paper it is shown that based on identified
discrete time models a robust digital linear controller
can be designed using the combined pole placement
method with sensitivity function shaping in the fre-
quency domain. This controller provides satisfactory
performance for a large range of load variations.
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1. Introduction

A robust linear digital controller is designed to solve
the benchmark problem presented in [1]. This con-
troller provides satisfactory performance for a large
range of load variations. The controller design meth-
odology is based on pole placement combined with
the sensitivity function shaping.

The computation of the controller requires the spe-
cification of the desired closed loop poles (the nominal
stability problem) and of some fixed parts of the con-
troller for the rejection of disturbances at various
frequencies (the nominal performance problem). The
robustness of the closed loop system with respect to
the plant model uncertainties (the robust stability and
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robust performance problem) will depend on these
specifications. A methodology is therefore needed
for correctly specifying the desired closed loop poles
and the fixed parts of the controller in order to assure
the ‘nominal performance’, and the ‘robust stability’
of the closed loop for given classes of plant model
uncertainties.

The sensitivity functions, particularly the output
sensitivity function, are key indicators for the nom-
inal and robust performance as well as for the robust
stability of the closed loop system.

The inverse of the maximum value of the output
sensitivity function, i.e. the inverse of its H_, norm,
gives the minimum distance between the Nyquist
plot of the open loop system and the critical point
[ -1, jO ]. This quantity called the modulus margin, is
a much more significant robustness indicator than
the phase and gain margins. On the other hand,
conditions for assuring a certain ‘delay’ margin
which is also a very important robustness indicator
(particularly in the high frequency region) can also
be expressed in terms of the shape of the output
sensitivity function. It seems therefore reasonable
to combine the pole placement with the shaping of
the output sensitivity function (or eventually with
other sensitivity functions) in order to design robust
digital controllers for SISO plants. This method has
been applied to a large number of real systems
[2,3].

The paper is organised as follows: Section 2 reviews
the pole placement technique. Section -3 gives the
various sensitivity functions associated with the pole
placement design. In Section 4 a template for the
output sensitivity function is defined. The shaping
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method for the sensitivity function is described in
Section 5. The controller design is presented in
Section 6 and the simulation results are given in
Section 7.

2. Pole Placement [4]

The discrete time plant is described by the following
transfer operator:

—dpr~1
-1y _9 Blg)
H(g™") ="——"r—
Alg™)

where ¢~' is the backward shift operator

(y(t — 1) = ¢ 'y(1)),d is the integer number of sam-
pling periods (Ts) contained in the plant pure time
delay and:

A(q—l) =1+ alq_l + e anAqMHA

B(q‘l) = blqvl + quwz + - anq‘nB
It is assumed that the polynomials A(¢') and B(¢™")
do not have common factors.

The canonical form of the RST controller is given
by:

S(g ") u(t)y=T(@") y'(t+d+1) = Rg™") »(1)

where u(?) is the plant input, p(¢) is the plant output
and y*(¢+d + 1) is the desired tracking (reference)
trajectory. This trajectory may be generated by a
tracking reference model.

B.(g7")
An(g™h)

where r(¢) is the reference signal.
The closed loop transfer function between the
reference trajectory and the plant output is given by:

9Bz YT ™Y

Yi+d+1)= r(2)

Hep(z7h) = PET)
where
P =4 SE Y+ BEHRET
=Pp(z7 ") Pp(z7h) (1)

defines the closed loop poles.

In Eq. (1) Pp(z™") corresponds to the dominant
closed loop poles chosen to satisfy the desired regula-
tion performance; Pr(z~") corresponds to the auxili-
ary poles which can be introduced either for filtering
effects in certain frequency regions or for reducing the
stress on the actuator as well as for improving the
robustness of the closed loop system (as will be
shown subsequently). For different reasons (i.e. dis-
turbance rejection, signal blocking) the polynomials
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R(z™") and S(z™') generally contain some fixed parts
which are specified before solving Eq. (1) (for exam-
ple the polynomial S(z™') should contain a term
(1-— z‘l) for a null steady state error).

In order to take into account these pre-specified
parts, the polynomials R(z™') and S(z™!) are factored
as:

R(z™")=R'(z"") Hg(z™") )

S =8"(z"") Hs(z™) ©)

where Hg(z™') and Hg(z™') are the pre-specified
polynomials. The closed loop poles are given in this
case by:

Pz )= A(z"") Hs(z™") 8'(z7)

+279 B(z™") Hg(z™") R'(z™") )

The design procedure can be summarised as fol-
lows:

1. Choose the desired closed loop poles P(z™'), the
fixed parts of the controller Hg (z™"), Hs(z™') and
the desired tracking dynamics By, (z" ')/ dm(z™").

2. Compute S'(z™') and R’(z™") by solving Eq. (4)
and consequently compute S(z7') and R(z™')
using Eqs (2) and (3).

3. Compute the pre-filter T(z™!) = GP(z™")

where

_ [1/BQ)if B(1) #0
G'{l ifB(I):()}

This choice leads to the following transfer function
between the reference and the plant output:

2! Bu(z") B(z"")
An(z7") " B(1)

Another method consists of taking 7(z™!) = R(1)

24 Bo(z7") BzTY) P(1)
An(z™") "P(z7h) B(1)

Hyr(z—l) =

Hy(=!) =

3. The Sensitivity Functions

The sensitivity functions play a crucial role in the
robustness analysis of the closed loop system with
respect to modelling errors. These functions will be
‘shaped’ in order to assure ‘nominal performance’ for
the rejection of the disturbances and the stability of
the closed loop system in the presence of model mis-
match. Two types of disturbances are considered: the
output disturbance and the measurement noise. The
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Fig. 1. Closed loop system with a RST controller in presence of
output disturbances and measurement noise.

various sensitivity functions can be established from
Fig. 1.

The transfer functions between the disturbance p(z)
and the plant output y(z) (output senmsitivity function),
between p(t) and the plant input u(¢) (input sensitivity
Junction) and between the measurement noise 5(¢) and
(1) (noise sensitivity function) are given respectively
by:

Sole™) = Ty 5 : f’(B<)-')R< )

Su(z™) = A7) S(ﬁgigfiz)‘) R(z™")
_ —A(z};(’z_{e;z”) (6)

Syp(z) = Az S (Z*d )BJ(r _—lf)f };E:i R(z)

-z Bz R(z7Y)

- P(z7h) ™

4. Definition of a ‘Template’ for the OQutput
Sensitivity Function

Using the small gain theorem and various representa-
tions of the plant uncertainties, the modulus margin
and the delay margin can be converted into ‘robust
stability’ conditions. On the other hand the robust
stability conditions allow the definition of ‘upper’
templates for the modulus of the various sensitivity
functions [2,5,6].

For a ‘delay margin’ of one sampling period the
robust stability condition is expressed as follows [7]:

I. D. Landau et al.
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Fig. 2. Desired template for the output sensitivity function (the case
of low frequencies disturbance rejection).

l (”‘1 )< It —=z"h™

= YO<w<T

®)

But, we have:
Syp(znl) - Syb(z_l) =1
and therefore
1 - ’Syb(z_l)l < ISyp(Z_I)I <1+ [Syb(2_1)|

If Sy,(z"") satisfies condition (8) then S,,(z7") will
satisfy the following condition :

I- 1=z < S < 141 -2,
Zze_-iw,OSwS?r

Therefore in order to assure the delay margin
A7 =Ty, it is required that the modulus of S,(z l)
lies inside a ‘tube’ defined by a lower template
(W Ny =1-11-2z"""" and an upper template
defined by |W ~ 1Isup =1+[1-z1"

The ‘nominal performance’ requirements and the
‘robust stability’ conditions lead to the definition of
a desired ‘template’ for the sensitivity functions. We
will subsequently consider the definition of such a
template for the output sensitivity function. The
desired template takes in general the form shown in
Fig. 2.

Regarding the robust stability , the chosen modulus
margin will define the maximum value of the modulus
of the output sensitivity function (upper template)
and the chosen delay margin will define an upper
and a lower template starting for example around
0.15 f; (for AT = Ty).

5. Shaping the Sensitivity Function

The dominant poles PD(Z"), the auxiliary poles
Pe(z') and the two filters Hy(z™") and Hg(z™")
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are the tools for shaping the various sensitivity func-
tions in order to meet the specifications defined by the
desired templates. Placing a pair of complex zeros in
Hg(z™") decreases the magnitude of the modulus of
the sensitivity function around the frequencies of
these zeros. Introducing a pair of pure imaginary
zeros at a certain frequency in Hg(z~ ) will make
|Sypl = 1 and |Sup| = 0 at this frequency. Complex
zeros in Hy(z™') will bring |S yp| closer to the 0 dB
axis and will reduce |Sy,|. Putting some asymptotx—
cally stable real high frequency poles in P(z~ ) will
cause an attenuation of |Syp| in the domain of
attenuation of 1/Pp(z™"). Placing a pair of complex
poles at a certain frequency in Pp(z~") will lead to an
increase in |Sy,| around this frequency.

The underlying philosophy of the design is to
choose the closed loop poles and the fixed parts of
the controller in order to bring the sensitivity function
within the defined template. The shaping method
which is an iterative procedure (generally converging
in few steps) is as follows:

Step I

e Choose the dominant closed loop poles of P(z™")
and the fixed part of R(z"!) and S(z™") in order to
meet the nominal performance specifications.

e Compute the controller.

e Check the shape of the output sensitivity function.
If the upper bound of the template is not satisfied,
generally two situations are identified:

(a) The maximum of the sensitivity function is
located in the frequency range next to the
attenuation band. In this case, go to step 1I;

(b) The maximum of the sensitivity function is
located in the high frequency range (near 0.5
fs)- In this case jump to step III.

Step II

e Add a pair of complex zeros to Hg(z™'):

Hy(z Y =14a:z ' 40y 272
The frequency of these zeros is chosen close to the
frequency where the maximum of the |S,,| occurs
(between the maximum frequency of the attenua-
tion band and the frequency where |[Sy,| ax
occurs). The damping factor is chosen such that
the introduced attenuation brings |Syp|.. below
the admissible value. Typical values are between
¢ =0.3-0.8.

® Recompute the controller. If |S,,| is too large in
the high frequency range, go to step Il
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Remark: The effect of these additional zeros are in
general:

(a) A reduction in the modulus of the sensitivity
function in the region next to the attenuation
band.

(b) An increase in the maximum of the modulus of
the sensitivity function in the high frequency
range (in general its maximum is shifted in the
high frequency range).

(c) An increase in the attenuation band.

Step X

o Add auxiliary high frequency poles of the form:
Pe(zYy = (1= piz71)";0.05 < p; <0.5
where

ng < np — np;np = (deg P) ..

np = degPD

with increasing values of p; starting from 0.05 till the
specifications on the S| in the high frequency range
are met. It should be mentioned that high frequency
auxiliary poles shift, in general, the maximum of the
|Syp| towards the lower frequency range. If the
|SypImax 18 satisfactory stop here, if not go to step IV.

Step 1V

This step is similar to step II:

e If the new maximum is close to the one resulting
after step I, change accordingly the frequency and
the damping of the zeros introduced in Hs.

e If the new maximum is at a significantly different
frequency, add a new pair of complex zeros in
Hs(z‘l) at a frequency close to the maximum of
|Syp|. The damping is chosen in order to bring
|Syplmax Delow the maximum acceptable value. If
the results are unsatisfactory, go to step V.

Step V

e The value of the real auxiliary poles (defined at
step III) can be increased.

e If necessary, the dominant poles also may be
slowed down.
*End of the procedure for the shaping of the out-
put sensitivity function.
*Check the input sensitivity function. Add if neces-

sary high frequency complex zeros in Hy(z ')
(often at 0.5 f;).
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6. Controller Design for the Benchmark
Problem

The analysis of the frequency characteristics of the
models under different loads shows that [1]:

1. The unloaded model is the most difficult to control
because it has the lowest damping factors.

2. Very large gain variations (around 20 dB) take
place between the frequencies corresponding to
the first vibration mode of the full load model
and that of the unloaded model.

3. If the synthesis of the controller is carried out for
the unloaded case, it is observed that at frequencies
above the first vibration mode of the no load
model, the process gain will be lower in the pre-
sence of load. This indicates that this region will
not raise problems for the stability of the closed
loop system.

From this analysis, it is found that the critical
frequency zone both for robust stability and robust
performance is located at frequencies below the first
vibration mode of the unloaded model
(w< 12.6 rad/s; f/f; < 0.1).

In the first step, a controller with integrator, based
on the pole placement technique is computed for the
no load model. The dominant poles correspond to a
second order system having a natural frequency equal
to that of the first vibration mode of the full load
model with a damping factor of 0.9.

The frequency characteristics of the sensitivity
function are given in Fig. 3 (curve A). It is observed

I. D. Landau et al.

that the output sensitivity function is almost placed in
the defined template therefore the controller meets
the conditions for the nominal model. The lower tem-
plate is computed for a delay margin of one sampling
period whereas the desired delay margin is 0.8 7.
Therefore the small violation of the lower template
is not very important since the required delay margin
is assured.

For robust stability, the model uncertainty should
be analysed. If the unloaded model is chosen as the
nominal plant the additive uncertainty will be given by:

[Wa(jw)| = max {|Py(jw) = Py (jw)l,
|Py(jw) — Pr(jw)l}

where Py,Py and Pg are the no load, half load and
full load models, respectively. Using the small gain
theorem, the sufficient condition for robust stability
for all of the plant will be as follows [2]:

‘Sup(jw)| < |Wa61(/’w)| (9)

Figure 4 shows the magnitude of S,,(jw) and
W 7' (jw) respectively as curves A and W. To satisfy
Eq. (9) a pair of zeros with a frequency near the
minimum value of W ;' (jw) should be added in either
Hpy or Hg in order to decrease the magnitude of S,,.
Adding this pair of zeros in Hg causes a peak value in
Syp at high frequency. To solve this problem the algo-
rithm presented in Section 5 can be used. Figure 4
(curve C) shows S, after introducing a pair of
complex zeros in Hg (wy = 5.8 rad/s and ¢ = 0.4)
and shaping Sy, by the method proposed. For
shaping Sy, a pair of complex zeros in Hy

[ ADAPTECH PC-REG
35, syp(a) Syp (B) Syp (C)
........ A
5
. /%\ M\
B
-5
-104
~15+
f/fe
-20 T T T T T T T T 7
0 0.10 0.20 0.30 0.40 0.50

Fig. 3. Evolution of the output sensitivity function in different steps of design.
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Fig. 4. Input sensitivity function S, and inverse of additive uncertainty.

(wg =22.5rad/s\ and (¢ =0.25) and the auxiliary
real poles (1 —0.2 g71)°(1 —0.55¢"") are used. The
introduction of this leads to the sensitivity functions
represented by the curve C in Figs 3 and 4.

The flexible system is now robustly stable in the
presence of load variations (despite a small violation
of the sufficient condition (9)) and it also meets the
specifications for the nominal model (except for S, in
the high frequencies). However, for the loaded cases
the rejection time of the disturbances are too long and
the step responses are under damped. This means that

robust performance is not yet achieved. Since the dis-
turbance is filtered by 1/4, for output disturbance
analysis it will be very interesting to look at the mag-
nitude of Sy, multiplied by 1/4 for the loaded cases (.S/
P). From Fig. 5 (curve C) it can be concluded that the
large value of S/P (about 35 dB) may be the cause of
insufficient damping for the loaded cases. Again, by
adding a pair of complex zeros in Hg we will be able to
reduce this maximum by 10 dB (Fig. 5, curve D). In
this way the rejection of disturbances for the loaded
cases will be significantly improved. It should be men-

dB/ S/P Full_load

254
20
154

104

-10+

-15+

T T T T
0 0.10 0.20

T Ll 1 i | K4

0.30 0.40 0.50

Fig. 5. S, filtered by 1/4 (S/P).
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tioned that after adding a pair of complex zeros in Hg
the output sensitivity function shaping procedure pre-
sented in Section 5 is carried out in order to bring S,
within the defined template.

From Fig. 4 (curve C) it is found that the magni-
tude of S, at high frequencies is too large and the
constraint on Sy, is not satisfied. Therefore a term
of the form (I1+4z7") should be added in Hy to
open the loop at high frequencies (Fig. 6). Table 1
shows different steps of controller design. In each
step the zeros and poles which should be added to
Hpg, Hs and Pg are shown. The complex zeros are
presented in the form of the natural frequency and
damping factor. After satisfying the conditions on Sy,
and S, the poles and zeros of the controller which
are close to each other are cancelled. Then the pre-
filter is chosen as T'(¢~") = R(1).

Table 1. The different steps of controller design.

1. D. Landau et al.

The tracking reference model is a second order
system with wy = 12.5 and ¢ = 0.75. This natural fre-
quency corresponds to the first vibration mode of the
unloaded model. It is chosen in order to meet the rise
time specification. This choice is not critical.

The final RST controller which meets almost all of
the specifications is as follows:

R(g™") = 0.401602 — 1.0793784 " + 0.2848954>

+ 1.358224¢ 7 — 0.9865494™ — 0.27196147°

+0.30693747°

S(g7") =1-1.031142¢g7" — 099518242
+0.7520864 " + 0.7107444™* — 0.2422974™°
—0.1942094 ¢

T(g7") = 0.013769

The design of the controller as well as the simulations
have been carried out using the PC-REG and PC-

Hy Hq Pe REG/TR software [8].
A — (1—z7h —
B — wy=58 (=4 (1-.2:1° 7. Simulation Result
< Slinuiation S
C  wy=225 — (1-.2z7h u esults
=25 (1-.55271 ) . .
e Figures 6-15 show the different characteristics of the
b - wo =82 (=.5 (1—-.55277) controller and of the closed loop system in the pre-
E (1+z7h — — sence of load variations. The performances of the
controller are summarised in Table 2.
dB_Sup Sup Sup
209
15 -
L0 m = e
5 /}.\
0
-5
-104 Half load --
<-- No load
“1591 Pull
204 load->
~254
£/£4
-30 T T T T T T T T T?
0 0.10 0.20 0.30 0.40 0.50

Fig. 6. Input sensitivity functions.
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Fig. 7. Output sensitivity functions.
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Fig. 8. Step and disturbance responses (no load case).
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S o CL_Poles
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Fig. 9. Poles chart (no load case).
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Fig. 10. Step and disturbance responses (half load case).
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Fig. 11. Poles chart (half load case).
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Fig. 12. Step and disturbance responses (full load case).
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dl% Frequency_Resp
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Fig. 15. Controller frequency response.

Table 2. The simulation results.

No load Half load Full load
Rise time (s) 1.06 0.90 0.93
Over shoot (%) 0 2.03 10.02
Rej. of dist. (s) 1.11 1.24 . 089
Delay margin (s) 0.043 0.100 0.487
Modulus margin (dB) -5.33 -5.32 -5.98
Attenuation band (Hz) 0.164 0.170 0.164
Syp max (dB) 5.90 5.80 5.79

8. Conclusions

It has been shown in this paper that the control of
flexible transmissions in the presence of large load
variations can be obtained using a robust digital
controller designed by pole placement combined
with sensitivity function shaping. This method
aillows us to take into account iteratively, both
robust stability conditions and robust performance
specifications.
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