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Asymptotic unbiased parameter estimates are obtained if the noise
disturbing the output of the plant is independent with respect to the
external excitation.

In practice a very useful plant model for system identification
is the ARMAX model for which a number of recursive algorithms
for identification in open-loop are available (extended least squares,
recursive maximum likelihood, output error with extended prediction
model, - - -).

The objective of this paper is to develop a recursive ARMAX
model identification algorithm for plants operating in closed-loop
such that:

» global asymptotic stability of the algorithm is assured for any
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A Recursive Algorithm for ARMAX
Model Identification in Closed Loop

I. D. Landau and A. Karimi

Abstract—The joint problem of the recursive estimation of an opti-
mal predictor for the closed-loop system and the unbiased parameter
estimation of an ARMAX plant model in closed-loop operation is con-
sidered. A special reparameterized optimal predictor for the closed-loop
is introduced. This allows a parameter estimation algorithm for the
plant model to be derived which is globally asymptotically stable in a
deterministic environment and gives asymptotically unbiased parameters
estimates under richness conditions.

Index Terms—ARMAX model, closed-loop identification, output error,

initial parameter estimates, and initial error between the outputs
of the two systems (in the absence of noise);

e an asymptotically optimal predictor of the true closed-loop
system is obtained;

« asymptotically unbiased estimates of the plant model parameters
are obtained under the richness conditions;

under the assumptions that: 1) the plant belongs to the model set;

2) the controller is stable, constant, and known; and 3) an external
excitation is applied to the closed-loop system.
The algorithm is obtained by starting from an appropriate repa-
I. INTRODUCTION rameterization of the optimal predictor for the closed loop. The
The plant model identification in closed-loop operation is aabjective of the algorithm is to asymptotically whiten the error
important practical issue. In many cases the plant can be operabetiveen the two systems (i.e., the adjustable closed-loop system will
in open loop with difficulties or a controller may already exisbecome an asymptotically optimal predictor for the true closed-loop
and it is not possible to open the loop. Furthermore, for controllsystem). With respect to the algorithm given in [5] the resulting
maintenance it is convenient to reidentify the plant in closed-loadgorithm called X-CLOE (for extended closed-loop output error)
operation and retune the controller. A number of techniques for plaiies not require any positive real condition for global asymptotic
model identification in closed-loop have been developed and analyztability in deterministic environment. For global convergence toward
in detail [1]-[3]. unbiased parameter estimates it requires a positive real condition
The interest to the problem of closed-loop identification has be&rich depends only on the noise model (like for the modified
enhanced in the recent years in the context of iterative combinatiextended least squares (AM[§] and theoutput error with extended
of the identification in closed-loop and robust control redesign [4fprediction mode[7], [8] used for ARMAX plant model identification
In this context the objective is to identify a new plant model iin open-loop operation) and not upon the characteristics of the closed
closed-loop operation such that a better predictor for the closed-ldopp.
The paper will focus on the analysis of the algorithm both in
Manuscript received September 23, 1997. Recommended by Assocg&terministic and in _stochast_ic envir_onment. The simulgtion and the
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estimation algorithm is derived. The stability analysis is presented in
Section Ill. The convergence properties in the stochastic environment
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Fig. 1. X-CLOE identification scheme.
are examined in Section IV using martingale approach. Conclusiahe asymptotically optimal one step ahead predictor for the output of
are given in Section V. the closed-loop system given by (5) which assures

cop(t+1)=e(t+1 Ot, e, (0) — e(0), ---,
Il. THE ALGORITHM cr(t+1)=e(t+1)4 Ot ccL(0) —e(0), - -,

S;VV_]__/’]_l 8
The objective is to estimate the parameters of the plant model cL(ne ) — e(ne ) ®)
defined by the transfer operator where
H (¢~ = g B(¢™") 1 lim O(t, ec(0) — e(0), -+, cor(ne — 1) — e(ne = 1)) =0
»(q )—W @ Jim Ot e N |
©)
where
- - —n is given by
B(q l)zblq 1+...+anq B |
A =14 arg 4ot an g
=1+ q_lA* (q_l). (3) where
Ar=a" B =5 (11)

The plant is operated in closed loop with an R-S-T (two-degree
of freedom) digital controller (without lack of generality) [11]. Theanol
output of the plant operating in closed-loop is given by (see Fig. 1)

H =C"S—-A"S—-B*¢""R
:hl +h2q71 +"'+hnH(_[7nH+1 (12)

np = max(nc +ns, na+ns,np+d+ng)—1

yt+1)= — A"y(t)+ B u(t —d) + Ce(t+1) 4)

d

* *  — R T
= —A"y(t)+ Bq —gy(t)—l— §7‘(7‘) + Ce(t+1)

(5) W)=~ 2+ (). (13)

wherer(t) is a reference signal,(¢) is the plant inpute(t) is a zero

mean Gaussian white noise sequence, @d is the plant output Proof: Subtracting (10) from (5) and taking into account (11)

and (12) one obtains

ClgH)=1+cg '+ +eneg " B*q "R
=1—|—q710*(q71) (6) EcL(t—Fl) = —A*EGL(f)— TECL('[')

(to simplify the notation the argument ' is in many cases dropped — }é cor(t)+ Ce(t+ 1)
out). *

Then one can construct an asymptotically optimal predictor for = = Cleor(t) + Ce(t+1) (14)
the output of the closed-loop system. The predicted output will Qﬁh h lead

L . t
denotedj(t 4+ 1) and the prediction error will be denoted by Ich feads o
Cleern(t+ 1) —e(t+1)]=0 (15)

zoL(t+1) =y(t+1) gt +1). @
which implies (9) since&”(z~") has all its roots inside the unit circle.
4 Ale="). Bla-! I d the R-S-T I The identification algorithm will try to recursively estimate the
* d, A(g™), Bl¢™), C(¢7), and the R-S-T controller are unknown parameters of*, B*, andH ™ using an adjustable predictor

perfgt]:tly known;_l . . derived from (10). The polynomiald™, B*, andH ™ will be replaced
e C(z7")andS(z7") are asymptotically stable polynomials; by their estimatesi*(¢), B*(t), and H*(t).

Lemma 1: Under the hypotheses (1), (5), and
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A. The X-CLOE Algorithm the recursive algorithm given by (25)—(28) with< A\ (¢) < 1 and
The a priori output of the adjustable predictor is given by 0 < Az(f) < 2 assures
P°(t+1) = = A (0§(t) + B (0)a(t — d) + A" (Hecr s (1) ) Jim ccr(t+1)=0 (29)
=65 (t)oe(t) (16) b) lim sep(t+1)=0 (30)
where c) ||oc(t)<e 0<e<oo Vit (31)
éf(f) ={ag(t) -+ dn (1) ’31(7‘) ,;an for all initial conditionsé.(0), _e%,,(O), ¢e(0). _ N
. . Proof: Observe that adding and subtracting the tebfd™ +
R }_‘1 () }‘"H(t%] (B*¢""R/S))j(t) in (5) for e(t+1) = 0, allows one to rewrite it as
:[91 (t) hl(t) h“H(t)] (17) ) ] ] , 6("r(t)
oL (t)=]=g(t) -+ —g(t —na+1) y(t+1) = — A"g(t) + B"i(t — d) — [A"S + B ¢ "R] T
i(t—d) - d(t—np+1—4d) =0!¢.(t) (32)
soryg(t) --- SCLf(f—nH —|—1)] where
:[él(t) SC’L/'(f) EZ‘OL_[(t_”H +1)] (18)
e fn —1 npr—1 9?(15) =[a1 - an, b1 - by hi o By
H™(t) =hi(t) + ha(t)g™ + -+ + hu g (t)q (19) - 4 7 "
cons(t) = = 2oL () (20) =0 B gl (33)
uof‘fil' — 3 tCL ~ ) H[:)k(qfl) — _ [‘4*S+B*q7dR]
Sg ) =14s1¢" +--sugq "° (21) =hi4+hoq " hagg TETL (34)

andj(t) is thea posteriorioutput of the adjustable predictor given bysyptracting (22) from (32) one gets

gt +1) = — A*(t + 1)j(t) + B*(t+ L)i(t — d) cor(t+1) = [0 — 0.t + 1)) ¢, (2). (35)
+H* (t+ Decrs(t)

o The form of (35) for thea posteriorierror and (27) and (28) of the
=0, (t+1)o(t). (22)

parameter adaptation algorithm allows one to use the results of [12]

The a priori prediction error and tha posterioriprediction error are and (29) follows immediately. It remains to show that (30) and (31)

. hold.
given by To prove (30) one has to show that(¢) is bounded. The
cor(t+ 1) =yt +1)—g°(t+1) (23) components op.(t) arescrp(t—i), §(t—i), anda(t—d —1i) where

(24) i =0,1,2,---. Sincesc.(t) is bounded it results thatcr ;(t) is
bounded [by Assumption A2)]. Assumptions Al) and A3) lead to
Remark: The same equations are obtained when the excitatite boundedness of(t), then fromy(t) = y(¢) — =c1.(¢) it can be
signal r, is added to the output of the controller. Only the terngoncluded thatj(¢) is also bounded. Taking into account (13) and
(T/S)r(t) in (5) and (13) is replaced by, (). Assumptions A2) and A3) it results thatt) is bounded. Therefore
The recursive parameter estimation algorithm is as follows: ~ ¢-(t) is bounded.
Remark: The closed-loop output error algorithm proposed in [5],
coL(t+1) =yt +1) = g°(t+ 1) (25)  which uses an adjustable predictor of the form of (22) but without
1 — e (t+1) the termFI*(t—i— 1)zcr¢(t), requires a strictly positive real condition
cor{t+1) = 14 ¢l (t)F(t)ge(t) (26) upon S/P as a sufficient condition for global stability. The present
9e(t +1) —6.(t) + F(t)ée(tecr(t+1) @27) algorithm removes this condition but the number of parameters to be
‘ estimated is increased.

cor(t+1)=y(t+1) —g(t+1).

F(t)oc(t)o!l () F(t)

) 4 o1 () (6. (1)
A2 () ° ‘ The objective is to show that in the presence of noise one obtains
. . . . . asymptotically an optimal predictor for the closed-loop output as well
Equation (26)d|s obtalrg)ed b_y surk])tractlng (24) from (23) and USINE an unbiased parameter estimation under richness conditions. We
(16), (22), and (27), observing that will use for this analysis a martingale-type analysis [8], [13] (the use
ot 1) —cor(t+1) = [ée(t +1) - ée(t)]Td)e(t) of tt;t_et_ av)eraging method (ODE) [1] leads to the same convergence
n , condition).
=0c (F(t)oc(H)zor(t+1). In the presence of noise the plant model output [using (32)] can
be expressed as

PR * A A * * —d _
The results of the stability analysis are presented in the foIIowing(t U= AT+ Brat—d) — [A7S + B Rlrers (1)
theorem. + Ce(t+1)
Theorem 1: Under the following assumptions: =07¢(t) = [A"S + B¢ "Rlecrs(t) + Ce(t + 1). (36)
Al) the open-loop system is in the model set and the closed-lo
system is stable;
A2) the controller is known and asymptotically stable;
A3) the external excitation(t) (or r,(t)) is bounded andle(t + cor(t+1)=[0 -6t + D] o(t)+[-A"S — B¢ 'R

1) = 0; — H*(t+ D)ecrs(t) + Ce(t + 1). (37

Flt+1) = |F() - 5

0 (28)

IV. CONVERGENCE ANALYSIS

Ill. STABILITY ANALYSIS

g%btracting (22) from (36) tha posterioriprediction error equation
becomes
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Adding and subtracting the tertaC™* =, (¢), (37) can be rewritten as and this according to [8, Lemma 4.1] will hold if
cor(t41) = =C*eor (t)+[0e — 0. (t+1)]" 6. (t)+Ce(t+1) (38)

N
where lim = SCEL (D6t 4t DP <o (A7)
07 =lar -+ an s by - bnpgs Ry - hnyl t—oo N
=[6", hi, -+, by (39)
H' (¢ )=C"S—A'S—B*¢ "R But
=h; +112t]71 +---+han7"H+l. (40)
0. (Hoe(t) +e8,(t+1) =y(t+ 1) (48)

From (38) one obtains
1 . " ,
corL(t+1)==[0. —0.(t+ 1)] o.(t t+1). 41 L . .
or{t+1) C [ (t+ DI oc() +elt+1) (41) which is bounded, therefore (46) is true. The results in [13] can also
For convergence analysis the sequerieét)} will be taken as be used for an alternative proof.
a martingale difference sequence defined on a probability space
(2, A, P) adapted to the sequence of increasinglgebra generated

by the observations up to and including tiheThe sequencée(t)} V. CONCLUSION
is assumed to satisfy the following properties: A recursive algorithm for ARMAX plant model identification in
E{e(t+1)|F} =0 (42) closed-_lo_op oper:_:ttion has been presented. The stability a_nalysis_ i_n a
E{(t+1)|F) =0 43 deterministic environment has shown the global asymptotic stability
el +, 7} =0 (43) of the algorithm without requiring a positive real condition. The
lim sup i i () < oo (44) converge_nce a_nalysis in a stochas_tic environment ha_s shown that
oo N i ’ asymptotic unbiased parameter estimates can be obtained under the

. = o same condition on the noise model as in open-loop identification.
The usual model given by a sequence of equally distributed norml—%wever, compared to the open-loop case a larger number of
random variables (0, 1) satisfies the above properties. One has ﬁg?ameters has to be estimated.
following result.

Theorem 2: Consider the parameter adaptation algorithm given by
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by the way they are obtained, and taking into account gliat and
r(t) are bounded. Therefore, it is enough to show that
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