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A Recursive Algorithm for ARMAX
Model Identification in Closed Loop

I. D. Landau and A. Karimi

Abstract—The joint problem of the recursive estimation of an opti-
mal predictor for the closed-loop system and the unbiased parameter
estimation of an ARMAX plant model in closed-loop operation is con-
sidered. A special reparameterized optimal predictor for the closed-loop
is introduced. This allows a parameter estimation algorithm for the
plant model to be derived which is globally asymptotically stable in a
deterministic environment and gives asymptotically unbiased parameters
estimates under richness conditions.

Index Terms—ARMAX model, closed-loop identification, output error,
recursive algorithm.

I. INTRODUCTION

The plant model identification in closed-loop operation is an
important practical issue. In many cases the plant can be operated
in open loop with difficulties or a controller may already exist
and it is not possible to open the loop. Furthermore, for controller
maintenance it is convenient to reidentify the plant in closed-loop
operation and retune the controller. A number of techniques for plant
model identification in closed-loop have been developed and analyzed
in detail [1]–[3].

The interest to the problem of closed-loop identification has been
enhanced in the recent years in the context of iterative combination
of the identification in closed-loop and robust control redesign [4].
In this context the objective is to identify a new plant model in
closed-loop operation such that a better predictor for the closed-loop

Manuscript received September 23, 1997. Recommended by Associate
Editor, J. C. Spall.

I. D. Landau is with the Laboratoire d’Automatique de Grenoble CNRS-
INPG-UJF, ENSIEG, 38402 Saint Martin d’Hères, France (e-mail: lan-
dau@lag.ensieg.inpg.fr).

A. Karimi is with the Electrical Engineering Department, Sharif University
of Technology, Tehran, Iran.

Publisher Item Identifier S 0018-9286(99)02113-3.

is obtained. While this idea was mentioned in [1], it has not been
developed until recently.

Starting from the objective mentioned above, the plant model
identification can be viewed asa model reference adaptive system
(MRAS) identification problem where thereference modelis the
true closed-loop systemand theadjustable systemhas the form of
the design system. Alternatively, one can view this problem as the
identification of the closed-loop with a reparameterized predictor in
terms of the estimated plant model and the controller (which is known
and constant).

The MRAS approach has led to an “output error” type closed-
loop recursive identification algorithm [5]. This algorithm requires a
positive real condition to be satisfied in both the deterministic and the
stochastic environment. This condition depends upon the parameters
of the controller and the characteristic polynomial of the closed loop.
Asymptotic unbiased parameter estimates are obtained if the noise
disturbing the output of the plant is independent with respect to the
external excitation.

In practice a very useful plant model for system identification
is the ARMAX model for which a number of recursive algorithms
for identification in open-loop are available (extended least squares,
recursive maximum likelihood, output error with extended prediction
model, � � �).

The objective of this paper is to develop a recursive ARMAX
model identification algorithm for plants operating in closed-loop
such that:

• global asymptotic stability of the algorithm is assured for any
initial parameter estimates, and initial error between the outputs
of the two systems (in the absence of noise);

• an asymptotically optimal predictor of the true closed-loop
system is obtained;

• asymptotically unbiased estimates of the plant model parameters
are obtained under the richness conditions;

under the assumptions that: 1) the plant belongs to the model set;
2) the controller is stable, constant, and known; and 3) an external
excitation is applied to the closed-loop system.

The algorithm is obtained by starting from an appropriate repa-
rameterization of the optimal predictor for the closed loop. The
objective of the algorithm is to asymptotically whiten the error
between the two systems (i.e., the adjustable closed-loop system will
become an asymptotically optimal predictor for the true closed-loop
system). With respect to the algorithm given in [5] the resulting
algorithm called X-CLOE (for extended closed-loop output error)
does not require any positive real condition for global asymptotic
stability in deterministic environment. For global convergence toward
unbiased parameter estimates it requires a positive real condition
which depends only on the noise model (like for the modified
extended least squares (AML)[6] and theoutput error with extended
prediction model[7], [8] used for ARMAX plant model identification
in open-loop operation) and not upon the characteristics of the closed
loop.

The paper will focus on the analysis of the algorithm both in
deterministic and in stochastic environment. The simulation and the
experimental evaluation of this algorithm are presented in [9]. For the
case that the plant model is not in the model set an analysis of the
bias distribution in the frequency domain can be carried out [10]. The
paper is organized as follows. In Section II the recursive parameter
estimation algorithm is derived. The stability analysis is presented in
Section III. The convergence properties in the stochastic environment
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Fig. 1. X-CLOE identification scheme.

are examined in Section IV using martingale approach. Conclusions
are given in Section V.

II. THE ALGORITHM

The objective is to estimate the parameters of the plant model
defined by the transfer operator

Hp(q
�1) =

q�dB(q�1)

A(q�1)
(1)

where

B(q�1) = b1q
�1 + � � � + bn q

�n

= q
�1

B
�(q�1) (2)

A(q�1) = 1 + a1q
�1 + � � � + an q

�n

=1 + q
�1

A
�(q�1): (3)

The plant is operated in closed loop with an R-S-T (two-degree
of freedom) digital controller (without lack of generality) [11]. The
output of the plant operating in closed-loop is given by (see Fig. 1)

y(t+ 1) = �A
�

y(t) +B
�

u(t� d) + Ce(t+ 1) (4)

= �A
�

y(t) +B
�

q
�d

�
R

S
y(t) +

T

S
r(t) + Ce(t+ 1)

(5)

wherer(t) is a reference signal,u(t) is the plant input,e(t) is a zero
mean Gaussian white noise sequence, andy(t) is the plant output

C(q�1) = 1 + c1q
�1 + � � �+ cn q

�n

=1 + q
�1

C
�(q�1) (6)

(to simplify the notation the argumentq�1 is in many cases dropped
out).

Then one can construct an asymptotically optimal predictor for
the output of the closed-loop system. The predicted output will be
denotedŷ(t+ 1) and the prediction error will be denoted by

"CL(t+ 1) = y(t+ 1)� ŷ(t+ 1): (7)

Lemma 1: Under the hypotheses (1), (5), and

• d, A(q�1), B(q�1), C(q�1), and the R-S-T controller are
perfectly known;

• C(z�1) andS(z�1) are asymptotically stable polynomials;

the asymptotically optimal one step ahead predictor for the output of
the closed-loop system given by (5) which assures

"CL(t+ 1) = e(t+ 1) +O(t; "CL(0)� e(0); � � � ;

"CL(nC � 1)� e(nC � 1)) (8)

where

lim
t!1

O(t; "CL(0)� e(0); � � � ; "CL(nC � 1)� e(nC � 1)) = 0

(9)

is given by

ŷ(t+ 1) = �Â
�

ŷ(t) + B̂
�

û(t� d) + Ĥ
�
"CL(t)

S
(10)

where

Â
� = A

�

B̂
� = B

� (11)

and

Ĥ
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�
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�

S �B
�

q
�d

R

=h1 + h2q
�1 + � � �+ hn q
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nH = max(nC + nS ; nA + nS ; nB + d+ nR)� 1

û(t) = �
R

S
ŷ(t) +

T

S
r(t): (13)

Proof: Subtracting (10) from (5) and taking into account (11)
and (12) one obtains

"CL(t+ 1) = �A
�

"CL(t)�
B�q�dR

S
"CL(t)

�
Ĥ�

S
"CL(t) + Ce(t+ 1)

= � C
�

"CL(t) + Ce(t+ 1) (14)

which leads to

C["CL(t+ 1)� e(t+ 1)] = 0 (15)

which implies (9) sinceC(z�1) has all its roots inside the unit circle.
The identification algorithm will try to recursively estimate the

unknown parameters of̂A�, B̂�, andĤ� using an adjustable predictor
derived from (10). The polynomialsA�, B�, andH� will be replaced
by their estimatesÂ�(t), B̂�(t), and Ĥ�(t).
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A. The X-CLOE Algorithm

The a priori output of the adjustable predictor is given by

ŷ�(t+ 1) = � Â�(t)ŷ(t) + B̂�(t)û(t� d) + Ĥ�(t)"CLf(t)

= �̂Te (t)�e(t) (16)

where

�̂Te (t) = [â1(t) � � � ân (t) b̂1(t) � � � b̂n (t)

ĥ1(t) � � � ĥn (t)]

= [�̂T (t) ĥ1(t) � � � ĥn (t)] (17)

�Te (t) = [�ŷ(t) � � � � ŷ(t� nA + 1)

û(t� d) � � � û(t� nB + 1� d)

"CLf (t) � � � "CLf(t� nH + 1)]

= [�T (t) "CLf(t) � � � "CLf(t� nH + 1)] (18)

Ĥ�(t) =h1(t) + h2(t)q
�1 + � � �+ hn (t)qn �1 (19)

"CLf(t) =
1

S
"CL(t) (20)

S(q�1) = 1 + s1q
�1 + � � � sn q�n (21)

andŷ(t) is thea posteriorioutput of the adjustable predictor given by

ŷ(t+ 1) = � Â�(t+ 1)ŷ(t) + B̂�(t+ 1)û(t� d)

+ Ĥ�(t+ 1)"CLf(t)

= �̂Te (t+ 1)�e(t): (22)

Thea priori prediction error and thea posterioriprediction error are
given by

"�CL(t+ 1) = y(t+ 1)� ŷ�(t+ 1) (23)

"CL(t+ 1) = y(t+ 1)� ŷ(t+ 1): (24)

Remark: The same equations are obtained when the excitation
signal ru is added to the output of the controller. Only the term
(T=S)r(t) in (5) and (13) is replaced byru(t).

The recursive parameter estimation algorithm is as follows:

"�CL(t+ 1) = y(t+ 1)� ŷ�(t+ 1) (25)

"CL(t+ 1) =
"�CL(t+ 1)

1 + �Te (t)F (t)�e(t)
(26)

�̂e(t+ 1) = �̂e(t) + F (t)�e(t)"CL(t+ 1) (27)

F (t+ 1) =
1

�1(t)
F (t)�

F (t)�e(t)�
T
e (t)F (t)

�1(t)

�2(t)
+ �Te (t)F (t)�e(t)

: (28)

Equation (26) is obtained by subtracting (24) from (23) and using
(16), (22), and (27), observing that

"�CL(t+ 1)� "CL(t+ 1) = [�̂e(t+ 1)� �̂e(t)]
T�e(t)

=�Te (t)F (t)�e(t)"CL(t+ 1):

III. STABILITY ANALYSIS

The results of the stability analysis are presented in the following
theorem.

Theorem 1: Under the following assumptions:

A1) the open-loop system is in the model set and the closed-loop
system is stable;

A2) the controller is known and asymptotically stable;
A3) the external excitationr(t) (or ru(t)) is bounded andke(t+

1) � 0k;

the recursive algorithm given by (25)–(28) with0 < �1(t) � 1 and
0 � �2(t) < 2 assures

a) lim
t!1

"CL(t+ 1) = 0 (29)

b) lim
t!1

"�CL(t+ 1) = 0 (30)

c) k�e(t)k < c 0 < c <1 8 t (31)

for all initial conditions �̂e(0), "�CL(0), �e(0).
Proof: Observe that adding and subtracting the term�(A� +

(B�q�dR=S))ŷ(t) in (5) for e(t+1) � 0, allows one to rewrite it as

y(t+ 1) = �A�ŷ(t) +B�û(t� d)� [A�S +B�q�dR]
"CL(t)

S

= �Te �e(t) (32)

where

�Te (t) = [a1 � � � an b1 � � � bn h1 � � � hn ]

= [�T h1 � � � hn ] (33)

H�

0 (q
�1) = � [A�S +B�q�dR]

=h1 + h2q
�1 + � � �+ hn q�n +1: (34)

Subtracting (22) from (32) one gets

"CL(t+ 1) = [�e � �̂e(t+ 1)]T�e(t): (35)

The form of (35) for thea posteriorierror and (27) and (28) of the
parameter adaptation algorithm allows one to use the results of [12]
and (29) follows immediately. It remains to show that (30) and (31)
hold.

To prove (30) one has to show that�e(t) is bounded. The
components of�e(t) are"CLf(t�i), ŷ(t�i), andû(t�d�i) where
i = 0, 1, 2, � � �. Since"CL(t) is bounded it results that"CLf (t) is
bounded [by Assumption A2)]. Assumptions A1) and A3) lead to
the boundedness ofy(t); then fromŷ(t) = y(t)� "CL(t) it can be
concluded that̂y(t) is also bounded. Taking into account (13) and
Assumptions A2) and A3) it results that̂u(t) is bounded. Therefore
�e(t) is bounded.

Remark: The closed-loop output error algorithm proposed in [5],
which uses an adjustable predictor of the form of (22) but without
the termĤ�(t+1)"CLf(t), requires a strictly positive real condition
uponS=P as a sufficient condition for global stability. The present
algorithm removes this condition but the number of parameters to be
estimated is increased.

IV. CONVERGENCE ANALYSIS

The objective is to show that in the presence of noise one obtains
asymptotically an optimal predictor for the closed-loop output as well
as an unbiased parameter estimation under richness conditions. We
will use for this analysis a martingale-type analysis [8], [13] (the use
of the averaging method (ODE) [1] leads to the same convergence
condition).

In the presence of noise the plant model output [using (32)] can
be expressed as

y(t+ 1) = �A�ŷ(t) +B�û(t� d)� [A�S +B�q�dR]"CLf(t)

+ Ce(t+ 1)

= �T�(t)� [A�S +B�q�dR]"CLf(t) + Ce(t+ 1): (36)

Subtracting (22) from (36) thea posterioriprediction error equation
becomes

"CL(t+ 1) = [� � �̂(t+ 1)]T�(t) + [�A�S �B�q�dR

� Ĥ�(t+ 1)]"CLf(t) + Ce(t+ 1): (37)
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Adding and subtracting the term�C�"CL(t), (37) can be rewritten as

"CL(t+1) = �C�"CL(t)+[�e��̂e(t+1)]T�e(t)+Ce(t+1) (38)

where

�Te = [a1 � � � an ; b1 � � � bn ; h1 � � � hn ]

= [�T ; h1; � � � ; hn ] (39)

H�(q�1) =C�S � A�S �B�q�dR

=h1 + h2q
�1 + � � �+ hn q�n +1: (40)

From (38) one obtains

"CL(t+ 1) =
1

C
[�e � �̂e(t+ 1)]T�e(t) + e(t+ 1): (41)

For convergence analysis the sequencefe(t)g will be taken as
a martingale difference sequence defined on a probability space
(
; A; P ) adapted to the sequence of increasing�-algebra generated
by the observations up to and including timet. The sequencefe(t)g
is assumed to satisfy the following properties:

Efe(t+ 1)jFtg =0 (42)

Efe2(t+ 1)jFtg =�2 (43)

lim
N!1

sup
1

N

N

t=1

e2(t) <1: (44)

The usual model given by a sequence of equally distributed normal
random variables (0, 1) satisfies the above properties. One has the
following result.

Theorem 2: Consider the parameter adaptation algorithm given by
(25)–(28) with�1(t) = 1 and�2(t) = 1. Assume thatfe(t + 1)g
is a martingale sequence satisfying the properties (42)–(44). If the
transfer function

H0(z�1) =
1

C(z�1)
�

1

2
(45)

is strictly positive real, then

lim
N!1

1

N

N

t=1

["CL(t)� e(t)]2 = 0 a.s.

lim
N!1

1

N

N

t=1

"2CL(t) = lim
N!1

1

N

N

t=1

e2(t) a.s.

lim
N!1

1

N

N

t=1

[[�e � �̂e(t)]
T�e(t� 1)]2 = 0 a.s.

lim
N!1

1

N

N

t=1

[�e � �̂e(t)]
T F�1(t)

t
[�e � �̂e(t)] = 0 a.s.

If in addition limt!1(1=t)F�1(t) > 0 (a.s.) thenlimt!1 �̂e(t) =
�e (a.s.).

Proof: The proof of Theorem 2 is a straightforward
application of [8, Th. 4.2] taking into account the form of
(25), (26), and (41), provided that one can prove first that
limN!1(1=N) N

t=1
�Te (t)�e(t) < 1. This condition can be

immediately verified using [8, Lemma 4.1], which is a generalization
of a result from [6]. The components of the vector�e satisfy
the condition

1

N

N

t=1

j�ei(t)j
2 � K1+

K2

N

N

t=1

"2CL(t�i); 0 < K1; K2 <1

by the way they are obtained, and taking into account thaty(t) and
r(t) are bounded. Therefore, it is enough to show that

lim
t!1

1

N

N

t=1

"2CL(t) <1 (46)

and this according to [8, Lemma 4.1] will hold if

lim
t!1

1

N

N

t=1

[�̂Te (t)�e(t) + "�CL(t+ 1)]2 <1: (47)

But

�̂Te (t)�e(t) + "�CL(t+ 1) = y(t+ 1) (48)

which is bounded, therefore (46) is true. The results in [13] can also
be used for an alternative proof.

V. CONCLUSION

A recursive algorithm for ARMAX plant model identification in
closed-loop operation has been presented. The stability analysis in a
deterministic environment has shown the global asymptotic stability
of the algorithm without requiring a positive real condition. The
convergence analysis in a stochastic environment has shown that
asymptotic unbiased parameter estimates can be obtained under the
same condition on the noise model as in open-loop identification.
However, compared to the open-loop case a larger number of
parameters has to be estimated.
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[5] I. D. Landau and A. Karimi, “An output error recursive algorithm for
unbiased identification in closed loop,”Automatica,vol. 33, no. 5, pp.
933–938, May 1997.

[6] V. Solo, “The convergence of AML,”IEEE Trans. Automat. Contr.,
vol. 24, pp. 958–963, 1979.

[7] L. Dugard and I. D. Landau, “Recursive output error identification
algorithms,”Automatica,vol. 16, pp. 443–462, 1980.

[8] I. D. Landau, “Near supermartingales for convergence analysis of
recursive identification and adaptive control schemes,”Int. J. Contr.,
vol. 35, no. 2, pp. 197–226, 1982.

[9] I. D. Landau and A. Karimi, “A recursive algorithm for armax model
identification in closed loop,” Lab. d’Automatique de Grenoble, EN-
SIEG, 38402 St. Martin d’Heres, Tech. Rep., 1996.

[10] A. Karimi and I. D. Landau, “Comparison of the closed loop identifi-
cation methods in terms of the bias distribution,”Syst. Contr. Lett.,vol.
34, pp. 159–167, 1998.

[11] I. D. Landau,System Identification and Control Design.Englewood
Cliffs, NJ: Prentice-Hall, 1990.

[12] , “An extension of a stability theorem applicable to adaptive
control,” IEEE Trans. Automat. Contr.,vol. AC-25, pp. 814–817, 1980.

[13] G. C. Goodwin and K. S. Sin,Adaptive Filtering Prediction and Control.
Englewood Cliffs, NJ: Prentice-Hall, 1984.


